mesa/src/util/ralloc.c

1438 lines
35 KiB
C

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "util/list.h"
#include "util/macros.h"
#include "util/u_math.h"
#include "util/u_printf.h"
#include "ralloc.h"
#define CANARY 0x5A1106
#if defined(__LP64__) || defined(_WIN64)
#define HEADER_ALIGN 16
#else
#define HEADER_ALIGN 8
#endif
/* Align the header's size so that ralloc() allocations will return with the
* same alignment as a libc malloc would have (8 on 32-bit GLIBC, 16 on
* 64-bit), avoiding performance penalities on x86 and alignment faults on
* ARM.
*/
struct ralloc_header
{
alignas(HEADER_ALIGN)
#ifndef NDEBUG
/* A canary value used to determine whether a pointer is ralloc'd. */
unsigned canary;
unsigned size;
#endif
struct ralloc_header *parent;
/* The first child (head of a linked list) */
struct ralloc_header *child;
/* Linked list of siblings */
struct ralloc_header *prev;
struct ralloc_header *next;
void (*destructor)(void *);
};
typedef struct ralloc_header ralloc_header;
static void unlink_block(ralloc_header *info);
static void unsafe_free(ralloc_header *info);
static ralloc_header *
get_header(const void *ptr)
{
ralloc_header *info = (ralloc_header *) (((char *) ptr) -
sizeof(ralloc_header));
assert(info->canary == CANARY);
return info;
}
#define PTR_FROM_HEADER(info) (((char *) info) + sizeof(ralloc_header))
static void
add_child(ralloc_header *parent, ralloc_header *info)
{
if (parent != NULL) {
info->parent = parent;
info->next = parent->child;
parent->child = info;
if (info->next != NULL)
info->next->prev = info;
}
}
void *
ralloc_context(const void *ctx)
{
return ralloc_size(ctx, 0);
}
void *
ralloc_size(const void *ctx, size_t size)
{
/* Some malloc allocation doesn't always align to 16 bytes even on 64 bits
* system, from Android bionic/tests/malloc_test.cpp:
* - Allocations of a size that rounds up to a multiple of 16 bytes
* must have at least 16 byte alignment.
* - Allocations of a size that rounds up to a multiple of 8 bytes and
* not 16 bytes, are only required to have at least 8 byte alignment.
*/
void *block = malloc(align64(size + sizeof(ralloc_header),
alignof(ralloc_header)));
ralloc_header *info;
ralloc_header *parent;
if (unlikely(block == NULL))
return NULL;
info = (ralloc_header *) block;
/* measurements have shown that calloc is slower (because of
* the multiplication overflow checking?), so clear things
* manually
*/
info->parent = NULL;
info->child = NULL;
info->prev = NULL;
info->next = NULL;
info->destructor = NULL;
parent = ctx != NULL ? get_header(ctx) : NULL;
add_child(parent, info);
#ifndef NDEBUG
info->canary = CANARY;
info->size = size;
#endif
return PTR_FROM_HEADER(info);
}
void *
rzalloc_size(const void *ctx, size_t size)
{
void *ptr = ralloc_size(ctx, size);
if (likely(ptr))
memset(ptr, 0, size);
return ptr;
}
/* helper function - assumes ptr != NULL */
static void *
resize(void *ptr, size_t size)
{
ralloc_header *child, *old, *info;
old = get_header(ptr);
info = realloc(old, align64(size + sizeof(ralloc_header),
alignof(ralloc_header)));
if (info == NULL)
return NULL;
/* Update parent and sibling's links to the reallocated node. */
if (info != old && info->parent != NULL) {
if (info->parent->child == old)
info->parent->child = info;
if (info->prev != NULL)
info->prev->next = info;
if (info->next != NULL)
info->next->prev = info;
}
/* Update child->parent links for all children */
for (child = info->child; child != NULL; child = child->next)
child->parent = info;
return PTR_FROM_HEADER(info);
}
void *
reralloc_size(const void *ctx, void *ptr, size_t size)
{
if (unlikely(ptr == NULL))
return ralloc_size(ctx, size);
assert(ralloc_parent(ptr) == ctx);
return resize(ptr, size);
}
void *
rerzalloc_size(const void *ctx, void *ptr, size_t old_size, size_t new_size)
{
if (unlikely(ptr == NULL))
return rzalloc_size(ctx, new_size);
assert(ralloc_parent(ptr) == ctx);
ptr = resize(ptr, new_size);
if (new_size > old_size)
memset((char *)ptr + old_size, 0, new_size - old_size);
return ptr;
}
void *
ralloc_array_size(const void *ctx, size_t size, unsigned count)
{
if (count > SIZE_MAX/size)
return NULL;
return ralloc_size(ctx, size * count);
}
void *
rzalloc_array_size(const void *ctx, size_t size, unsigned count)
{
if (count > SIZE_MAX/size)
return NULL;
return rzalloc_size(ctx, size * count);
}
void *
reralloc_array_size(const void *ctx, void *ptr, size_t size, unsigned count)
{
if (count > SIZE_MAX/size)
return NULL;
return reralloc_size(ctx, ptr, size * count);
}
void *
rerzalloc_array_size(const void *ctx, void *ptr, size_t size,
unsigned old_count, unsigned new_count)
{
if (new_count > SIZE_MAX/size)
return NULL;
return rerzalloc_size(ctx, ptr, size * old_count, size * new_count);
}
void
ralloc_free(void *ptr)
{
ralloc_header *info;
if (ptr == NULL)
return;
info = get_header(ptr);
unlink_block(info);
unsafe_free(info);
}
static void
unlink_block(ralloc_header *info)
{
/* Unlink from parent & siblings */
if (info->parent != NULL) {
if (info->parent->child == info)
info->parent->child = info->next;
if (info->prev != NULL)
info->prev->next = info->next;
if (info->next != NULL)
info->next->prev = info->prev;
}
info->parent = NULL;
info->prev = NULL;
info->next = NULL;
}
static void
unsafe_free(ralloc_header *info)
{
/* Recursively free any children...don't waste time unlinking them. */
ralloc_header *temp;
while (info->child != NULL) {
temp = info->child;
info->child = temp->next;
unsafe_free(temp);
}
/* Free the block itself. Call the destructor first, if any. */
if (info->destructor != NULL)
info->destructor(PTR_FROM_HEADER(info));
free(info);
}
void
ralloc_steal(const void *new_ctx, void *ptr)
{
ralloc_header *info, *parent;
if (unlikely(ptr == NULL))
return;
info = get_header(ptr);
parent = new_ctx ? get_header(new_ctx) : NULL;
unlink_block(info);
add_child(parent, info);
}
void
ralloc_adopt(const void *new_ctx, void *old_ctx)
{
ralloc_header *new_info, *old_info, *child;
if (unlikely(old_ctx == NULL))
return;
old_info = get_header(old_ctx);
new_info = get_header(new_ctx);
/* If there are no children, bail. */
if (unlikely(old_info->child == NULL))
return;
/* Set all the children's parent to new_ctx; get a pointer to the last child. */
for (child = old_info->child; child->next != NULL; child = child->next) {
child->parent = new_info;
}
child->parent = new_info;
/* Connect the two lists together; parent them to new_ctx; make old_ctx empty. */
child->next = new_info->child;
if (child->next)
child->next->prev = child;
new_info->child = old_info->child;
old_info->child = NULL;
}
void *
ralloc_parent(const void *ptr)
{
ralloc_header *info;
if (unlikely(ptr == NULL))
return NULL;
info = get_header(ptr);
return info->parent ? PTR_FROM_HEADER(info->parent) : NULL;
}
void
ralloc_set_destructor(const void *ptr, void(*destructor)(void *))
{
ralloc_header *info = get_header(ptr);
info->destructor = destructor;
}
void *
ralloc_memdup(const void *ctx, const void *mem, size_t n)
{
void *ptr = ralloc_size(ctx, n);
if (unlikely(ptr == NULL))
return NULL;
memcpy(ptr, mem, n);
return ptr;
}
char *
ralloc_strdup(const void *ctx, const char *str)
{
size_t n;
char *ptr;
if (unlikely(str == NULL))
return NULL;
n = strlen(str);
ptr = ralloc_array(ctx, char, n + 1);
memcpy(ptr, str, n);
ptr[n] = '\0';
return ptr;
}
char *
ralloc_strndup(const void *ctx, const char *str, size_t max)
{
size_t n;
char *ptr;
if (unlikely(str == NULL))
return NULL;
n = strnlen(str, max);
ptr = ralloc_array(ctx, char, n + 1);
memcpy(ptr, str, n);
ptr[n] = '\0';
return ptr;
}
/* helper routine for strcat/strncat - n is the exact amount to copy */
static bool
cat(char **dest, const char *str, size_t n)
{
char *both;
size_t existing_length;
assert(dest != NULL && *dest != NULL);
existing_length = strlen(*dest);
both = resize(*dest, existing_length + n + 1);
if (unlikely(both == NULL))
return false;
memcpy(both + existing_length, str, n);
both[existing_length + n] = '\0';
*dest = both;
return true;
}
bool
ralloc_strcat(char **dest, const char *str)
{
return cat(dest, str, strlen(str));
}
bool
ralloc_strncat(char **dest, const char *str, size_t n)
{
return cat(dest, str, strnlen(str, n));
}
bool
ralloc_str_append(char **dest, const char *str,
size_t existing_length, size_t str_size)
{
char *both;
assert(dest != NULL && *dest != NULL);
both = resize(*dest, existing_length + str_size + 1);
if (unlikely(both == NULL))
return false;
memcpy(both + existing_length, str, str_size);
both[existing_length + str_size] = '\0';
*dest = both;
return true;
}
char *
ralloc_asprintf(const void *ctx, const char *fmt, ...)
{
char *ptr;
va_list args;
va_start(args, fmt);
ptr = ralloc_vasprintf(ctx, fmt, args);
va_end(args);
return ptr;
}
char *
ralloc_vasprintf(const void *ctx, const char *fmt, va_list args)
{
size_t size = u_printf_length(fmt, args) + 1;
char *ptr = ralloc_size(ctx, size);
if (ptr != NULL)
vsnprintf(ptr, size, fmt, args);
return ptr;
}
bool
ralloc_asprintf_append(char **str, const char *fmt, ...)
{
bool success;
va_list args;
va_start(args, fmt);
success = ralloc_vasprintf_append(str, fmt, args);
va_end(args);
return success;
}
bool
ralloc_vasprintf_append(char **str, const char *fmt, va_list args)
{
size_t existing_length;
assert(str != NULL);
existing_length = *str ? strlen(*str) : 0;
return ralloc_vasprintf_rewrite_tail(str, &existing_length, fmt, args);
}
bool
ralloc_asprintf_rewrite_tail(char **str, size_t *start, const char *fmt, ...)
{
bool success;
va_list args;
va_start(args, fmt);
success = ralloc_vasprintf_rewrite_tail(str, start, fmt, args);
va_end(args);
return success;
}
bool
ralloc_vasprintf_rewrite_tail(char **str, size_t *start, const char *fmt,
va_list args)
{
size_t new_length;
char *ptr;
assert(str != NULL);
if (unlikely(*str == NULL)) {
// Assuming a NULL context is probably bad, but it's expected behavior.
*str = ralloc_vasprintf(NULL, fmt, args);
*start = strlen(*str);
return true;
}
new_length = u_printf_length(fmt, args);
ptr = resize(*str, *start + new_length + 1);
if (unlikely(ptr == NULL))
return false;
vsnprintf(ptr + *start, new_length + 1, fmt, args);
*str = ptr;
*start += new_length;
return true;
}
/***************************************************************************
* GC context.
***************************************************************************
*/
/* The maximum size of an object that will be allocated specially.
*/
#define MAX_FREELIST_SIZE 512
/* Allocations small enough to be allocated from a freelist will be aligned up
* to this size.
*/
#define FREELIST_ALIGNMENT 32
#define NUM_FREELIST_BUCKETS (MAX_FREELIST_SIZE / FREELIST_ALIGNMENT)
/* The size of a slab. */
#define SLAB_SIZE (32 * 1024)
#define GC_CONTEXT_CANARY 0xAF6B6C83
#define GC_CANARY 0xAF6B5B72
enum gc_flags {
IS_USED = (1 << 0),
CURRENT_GENERATION = (1 << 1),
IS_PADDING = (1 << 7),
};
typedef struct
{
#ifndef NDEBUG
/* A canary value used to determine whether a pointer is allocated using gc_alloc. */
unsigned canary;
#endif
uint16_t slab_offset;
uint8_t bucket;
uint8_t flags;
/* The last padding byte must have IS_PADDING set and is used to store the amount of padding. If
* there is no padding, the IS_PADDING bit of "flags" is unset and "flags" is checked instead.
* Because of this, "flags" must be the last member of this struct.
*/
uint8_t padding[];
} gc_block_header;
/* This structure is at the start of the slab. Objects inside a slab are
* allocated using a freelist backed by a simple linear allocator.
*/
typedef struct gc_slab {
alignas(HEADER_ALIGN)
gc_ctx *ctx;
/* Objects are allocated using either linear or freelist allocation. "next_available" is the
* pointer used for linear allocation, while "freelist" is the next free object for freelist
* allocation.
*/
char *next_available;
gc_block_header *freelist;
/* Slabs that handle the same-sized objects. */
struct list_head link;
/* Free slabs that handle the same-sized objects. */
struct list_head free_link;
/* Number of allocated and free objects, recorded so that we can free the slab if it
* becomes empty or add one to the freelist if it's no longer full.
*/
unsigned num_allocated;
unsigned num_free;
} gc_slab;
struct gc_ctx {
#ifndef NDEBUG
unsigned canary;
#endif
/* Array of slabs for fixed-size allocations. Each slab tracks allocations
* of specific sized blocks. User allocations are rounded up to the nearest
* fixed size. slabs[N] contains allocations of size
* FREELIST_ALIGNMENT * (N + 1).
*/
struct {
/* List of slabs in this bucket. */
struct list_head slabs;
/* List of slabs with free space in this bucket, so we can quickly choose one when
* allocating.
*/
struct list_head free_slabs;
} slabs[NUM_FREELIST_BUCKETS];
uint8_t current_gen;
void *rubbish;
};
static gc_block_header *
get_gc_header(const void *ptr)
{
uint8_t *c_ptr = (uint8_t *)ptr;
/* Adjust for padding added to ensure alignment of the allocation. There might also be padding
* added by the compiler into gc_block_header, but that isn't counted in the IS_PADDING byte.
*/
if (c_ptr[-1] & IS_PADDING)
c_ptr -= c_ptr[-1] & ~IS_PADDING;
c_ptr -= sizeof(gc_block_header);
gc_block_header *info = (gc_block_header *)c_ptr;
assert(info->canary == GC_CANARY);
return info;
}
static gc_block_header *
get_gc_freelist_next(gc_block_header *ptr)
{
gc_block_header *next;
/* work around possible strict aliasing bug using memcpy */
memcpy(&next, (void*)(ptr + 1), sizeof(next));
return next;
}
static void
set_gc_freelist_next(gc_block_header *ptr, gc_block_header *next)
{
memcpy((void*)(ptr + 1), &next, sizeof(next));
}
static gc_slab *
get_gc_slab(gc_block_header *header)
{
return (gc_slab *)((char *)header - header->slab_offset);
}
gc_ctx *
gc_context(const void *parent)
{
gc_ctx *ctx = rzalloc(parent, gc_ctx);
for (unsigned i = 0; i < NUM_FREELIST_BUCKETS; i++) {
list_inithead(&ctx->slabs[i].slabs);
list_inithead(&ctx->slabs[i].free_slabs);
}
#ifndef NDEBUG
ctx->canary = GC_CONTEXT_CANARY;
#endif
return ctx;
}
static_assert(UINT32_MAX >= MAX_FREELIST_SIZE, "Freelist sizes use uint32_t");
static uint32_t
gc_bucket_obj_size(uint32_t bucket)
{
return (bucket + 1) * FREELIST_ALIGNMENT;
}
static uint32_t
gc_bucket_for_size(uint32_t size)
{
return (size - 1) / FREELIST_ALIGNMENT;
}
static_assert(UINT32_MAX >= SLAB_SIZE, "SLAB_SIZE use uint32_t");
static uint32_t
gc_bucket_num_objs(uint32_t bucket)
{
return (SLAB_SIZE - sizeof(gc_slab)) / gc_bucket_obj_size(bucket);
}
static gc_block_header *
alloc_from_slab(gc_slab *slab, uint32_t bucket)
{
uint32_t size = gc_bucket_obj_size(bucket);
gc_block_header *header;
if (slab->freelist) {
/* Prioritize already-allocated chunks, since they probably have a page
* backing them.
*/
header = slab->freelist;
slab->freelist = get_gc_freelist_next(slab->freelist);
} else if (slab->next_available + size <= ((char *) slab) + SLAB_SIZE) {
header = (gc_block_header *) slab->next_available;
header->slab_offset = (char *) header - (char *) slab;
header->bucket = bucket;
slab->next_available += size;
} else {
return NULL;
}
slab->num_allocated++;
slab->num_free--;
if (!slab->num_free)
list_del(&slab->free_link);
return header;
}
static void
free_slab(gc_slab *slab)
{
if (list_is_linked(&slab->free_link))
list_del(&slab->free_link);
list_del(&slab->link);
ralloc_free(slab);
}
static void
free_from_slab(gc_block_header *header, bool keep_empty_slabs)
{
gc_slab *slab = get_gc_slab(header);
if (slab->num_allocated == 1 && !(keep_empty_slabs && list_is_singular(&slab->free_link))) {
/* Free the slab if this is the last object. */
free_slab(slab);
return;
} else if (slab->num_free == 0) {
list_add(&slab->free_link, &slab->ctx->slabs[header->bucket].free_slabs);
} else {
/* Keep the free list sorted by the number of free objects in ascending order. By prefering to
* allocate from the slab with the fewest free objects, we help free the slabs with many free
* objects.
*/
while (slab->free_link.next != &slab->ctx->slabs[header->bucket].free_slabs &&
slab->num_free > list_entry(slab->free_link.next, gc_slab, free_link)->num_free) {
gc_slab *next = list_entry(slab->free_link.next, gc_slab, free_link);
/* Move "slab" to after "next". */
list_move_to(&slab->free_link, &next->free_link);
}
}
set_gc_freelist_next(header, slab->freelist);
slab->freelist = header;
slab->num_allocated--;
slab->num_free++;
}
static uint32_t
get_slab_size(uint32_t bucket)
{
/* SLAB_SIZE rounded down to a multiple of the object size so that it's not larger than what can
* be used.
*/
uint32_t obj_size = gc_bucket_obj_size(bucket);
uint32_t num_objs = gc_bucket_num_objs(bucket);
return align((uint32_t)sizeof(gc_slab) + num_objs * obj_size, alignof(gc_slab));
}
static gc_slab *
create_slab(gc_ctx *ctx, unsigned bucket)
{
gc_slab *slab = ralloc_size(ctx, get_slab_size(bucket));
if (unlikely(!slab))
return NULL;
slab->ctx = ctx;
slab->freelist = NULL;
slab->next_available = (char*)(slab + 1);
slab->num_allocated = 0;
slab->num_free = gc_bucket_num_objs(bucket);
list_addtail(&slab->link, &ctx->slabs[bucket].slabs);
list_addtail(&slab->free_link, &ctx->slabs[bucket].free_slabs);
return slab;
}
void *
gc_alloc_size(gc_ctx *ctx, size_t size, size_t alignment)
{
assert(ctx);
assert(util_is_power_of_two_nonzero_uintptr(alignment));
alignment = MAX2(alignment, alignof(gc_block_header));
/* Alignment will add at most align-alignof(gc_block_header) bytes of padding to the header, and
* the IS_PADDING byte can only encode up to 127.
*/
assert((alignment - alignof(gc_block_header)) <= 127);
/* We can only align as high as the slab is. */
assert(alignment <= HEADER_ALIGN);
size_t header_size = align64(sizeof(gc_block_header), alignment);
size = align64(size, alignment);
size += header_size;
gc_block_header *header = NULL;
if (size <= MAX_FREELIST_SIZE) {
uint32_t bucket = gc_bucket_for_size((uint32_t)size);
if (list_is_empty(&ctx->slabs[bucket].free_slabs) && !create_slab(ctx, bucket))
return NULL;
gc_slab *slab = list_first_entry(&ctx->slabs[bucket].free_slabs, gc_slab, free_link);
header = alloc_from_slab(slab, bucket);
} else {
header = ralloc_size(ctx, size);
if (unlikely(!header))
return NULL;
/* Mark the header as allocated directly, so we know to actually free it. */
header->bucket = NUM_FREELIST_BUCKETS;
}
header->flags = ctx->current_gen | IS_USED;
#ifndef NDEBUG
header->canary = GC_CANARY;
#endif
uint8_t *ptr = (uint8_t *)header + header_size;
if ((header_size - 1) != offsetof(gc_block_header, flags))
ptr[-1] = IS_PADDING | (header_size - sizeof(gc_block_header));
assert(((uintptr_t)ptr & (alignment - 1)) == 0);
return ptr;
}
void *
gc_zalloc_size(gc_ctx *ctx, size_t size, size_t alignment)
{
void *ptr = gc_alloc_size(ctx, size, alignment);
if (likely(ptr))
memset(ptr, 0, size);
return ptr;
}
void
gc_free(void *ptr)
{
if (!ptr)
return;
gc_block_header *header = get_gc_header(ptr);
header->flags &= ~IS_USED;
if (header->bucket < NUM_FREELIST_BUCKETS)
free_from_slab(header, true);
else
ralloc_free(header);
}
gc_ctx *gc_get_context(void *ptr)
{
gc_block_header *header = get_gc_header(ptr);
if (header->bucket < NUM_FREELIST_BUCKETS)
return get_gc_slab(header)->ctx;
else
return ralloc_parent(header);
}
void
gc_sweep_start(gc_ctx *ctx)
{
ctx->current_gen ^= CURRENT_GENERATION;
ctx->rubbish = ralloc_context(NULL);
ralloc_adopt(ctx->rubbish, ctx);
}
void
gc_mark_live(gc_ctx *ctx, const void *mem)
{
gc_block_header *header = get_gc_header(mem);
if (header->bucket < NUM_FREELIST_BUCKETS)
header->flags ^= CURRENT_GENERATION;
else
ralloc_steal(ctx, header);
}
void
gc_sweep_end(gc_ctx *ctx)
{
assert(ctx->rubbish);
for (unsigned i = 0; i < NUM_FREELIST_BUCKETS; i++) {
unsigned obj_size = gc_bucket_obj_size(i);
list_for_each_entry_safe(gc_slab, slab, &ctx->slabs[i].slabs, link) {
if (!slab->num_allocated) {
free_slab(slab);
continue;
}
for (char *ptr = (char*)(slab + 1); ptr != slab->next_available; ptr += obj_size) {
gc_block_header *header = (gc_block_header *)ptr;
if (!(header->flags & IS_USED))
continue;
if ((header->flags & CURRENT_GENERATION) == ctx->current_gen)
continue;
bool last = slab->num_allocated == 1;
header->flags &= ~IS_USED;
free_from_slab(header, false);
if (last)
break;
}
}
}
for (unsigned i = 0; i < NUM_FREELIST_BUCKETS; i++) {
list_for_each_entry(gc_slab, slab, &ctx->slabs[i].slabs, link) {
assert(slab->num_allocated > 0); /* free_from_slab() should free it otherwise */
ralloc_steal(ctx, slab);
}
}
ralloc_free(ctx->rubbish);
ctx->rubbish = NULL;
}
/***************************************************************************
* Linear allocator for short-lived allocations.
***************************************************************************
*
* The allocator consists of a parent node (2K buffer), which requires
* a ralloc parent, and child nodes (allocations). Child nodes can't be freed
* directly, because the parent doesn't track them. You have to release
* the parent node in order to release all its children.
*
* The allocator uses a fixed-sized buffer with a monotonically increasing
* offset after each allocation. If the buffer is all used, another buffer
* is allocated, using the linear parent node as ralloc parent.
*
* The linear parent node is always the first buffer and keeps track of all
* other buffers.
*/
#define SUBALLOC_ALIGNMENT 8
#define LMAGIC_CONTEXT 0x87b9c7d3
#define LMAGIC_NODE 0x87b910d3
struct linear_ctx {
alignas(HEADER_ALIGN)
#ifndef NDEBUG
unsigned magic; /* for debugging */
#endif
unsigned min_buffer_size;
unsigned offset; /* points to the first unused byte in the latest buffer */
unsigned size; /* size of the latest buffer */
void *latest; /* the only buffer that has free space */
};
typedef struct linear_ctx linear_ctx;
#ifndef NDEBUG
struct linear_node_canary {
alignas(HEADER_ALIGN)
unsigned magic;
unsigned offset; /* points to the first unused byte in *this* buffer */
};
typedef struct linear_node_canary linear_node_canary;
static linear_node_canary *
get_node_canary(void *ptr)
{
return (void *)((char *)ptr - sizeof(linear_node_canary));
}
#endif
static unsigned
get_node_canary_size()
{
#ifndef NDEBUG
return sizeof(linear_node_canary);
#else
return 0;
#endif
}
void *
linear_alloc_child(linear_ctx *ctx, unsigned size)
{
assert(ctx->magic == LMAGIC_CONTEXT);
assert(get_node_canary(ctx->latest)->magic == LMAGIC_NODE);
assert(get_node_canary(ctx->latest)->offset == ctx->offset);
size = ALIGN_POT(size, SUBALLOC_ALIGNMENT);
if (unlikely(ctx->offset + size > ctx->size)) {
/* allocate a new node */
unsigned node_size = size;
if (likely(node_size < ctx->min_buffer_size))
node_size = ctx->min_buffer_size;
const unsigned canary_size = get_node_canary_size();
const unsigned full_size = canary_size + node_size;
/* linear context is also a ralloc context */
char *ptr = ralloc_size(ctx, full_size);
if (unlikely(!ptr))
return NULL;
#ifndef NDEBUG
linear_node_canary *canary = (void *) ptr;
canary->magic = LMAGIC_NODE;
canary->offset = 0;
#endif
/* If the new buffer is going to be full, don't update `latest`
* pointer. Either the current one is also full, so doesn't
* matter, or the current one is not full, so there's still chance
* to use that space.
*/
if (unlikely(size == node_size)) {
#ifndef NDEBUG
canary->offset = size;
#endif
assert((uintptr_t)(ptr + canary_size) % SUBALLOC_ALIGNMENT == 0);
return ptr + canary_size;
}
ctx->offset = 0;
ctx->size = node_size;
ctx->latest = ptr + canary_size;
}
void *ptr = (char *)ctx->latest + ctx->offset;
ctx->offset += size;
#ifndef NDEBUG
linear_node_canary *canary = get_node_canary(ctx->latest);
canary->offset += size;
#endif
assert((uintptr_t)ptr % SUBALLOC_ALIGNMENT == 0);
return ptr;
}
linear_ctx *
linear_context(void *ralloc_ctx)
{
const linear_opts opts = {0};
return linear_context_with_opts(ralloc_ctx, &opts);
}
linear_ctx *
linear_context_with_opts(void *ralloc_ctx, const linear_opts *opts)
{
linear_ctx *ctx;
if (unlikely(!ralloc_ctx))
return NULL;
const unsigned default_min_buffer_size = 2048;
const unsigned min_buffer_size =
MAX2(ALIGN_POT(opts->min_buffer_size, default_min_buffer_size),
default_min_buffer_size);
const unsigned size = min_buffer_size;
const unsigned canary_size = get_node_canary_size();
const unsigned full_size =
sizeof(linear_ctx) + canary_size + size;
ctx = ralloc_size(ralloc_ctx, full_size);
if (unlikely(!ctx))
return NULL;
ctx->min_buffer_size = min_buffer_size;
ctx->offset = 0;
ctx->size = size;
ctx->latest = (char *)&ctx[1] + canary_size;
#ifndef NDEBUG
ctx->magic = LMAGIC_CONTEXT;
linear_node_canary *canary = get_node_canary(ctx->latest);
canary->magic = LMAGIC_NODE;
canary->offset = 0;
#endif
return ctx;
}
void *
linear_zalloc_child(linear_ctx *ctx, unsigned size)
{
void *ptr = linear_alloc_child(ctx, size);
if (likely(ptr))
memset(ptr, 0, size);
return ptr;
}
void
linear_free_context(linear_ctx *ctx)
{
if (unlikely(!ctx))
return;
assert(ctx->magic == LMAGIC_CONTEXT);
/* Linear context is also the ralloc parent of extra nodes. */
ralloc_free(ctx);
}
void
ralloc_steal_linear_context(void *new_ralloc_ctx, linear_ctx *ctx)
{
if (unlikely(!ctx))
return;
assert(ctx->magic == LMAGIC_CONTEXT);
/* Linear context is also the ralloc parent of extra nodes. */
ralloc_steal(new_ralloc_ctx, ctx);
}
void *
ralloc_parent_of_linear_context(linear_ctx *ctx)
{
assert(ctx->magic == LMAGIC_CONTEXT);
return PTR_FROM_HEADER(get_header(ctx)->parent);
}
/* All code below is pretty much copied from ralloc and only the alloc
* calls are different.
*/
char *
linear_strdup(linear_ctx *ctx, const char *str)
{
unsigned n;
char *ptr;
if (unlikely(!str))
return NULL;
n = strlen(str);
ptr = linear_alloc_child(ctx, n + 1);
if (unlikely(!ptr))
return NULL;
memcpy(ptr, str, n);
ptr[n] = '\0';
return ptr;
}
char *
linear_asprintf(linear_ctx *ctx, const char *fmt, ...)
{
char *ptr;
va_list args;
va_start(args, fmt);
ptr = linear_vasprintf(ctx, fmt, args);
va_end(args);
return ptr;
}
char *
linear_vasprintf(linear_ctx *ctx, const char *fmt, va_list args)
{
unsigned size = u_printf_length(fmt, args) + 1;
char *ptr = linear_alloc_child(ctx, size);
if (ptr != NULL)
vsnprintf(ptr, size, fmt, args);
return ptr;
}
bool
linear_asprintf_append(linear_ctx *ctx, char **str, const char *fmt, ...)
{
bool success;
va_list args;
va_start(args, fmt);
success = linear_vasprintf_append(ctx, str, fmt, args);
va_end(args);
return success;
}
bool
linear_vasprintf_append(linear_ctx *ctx, char **str, const char *fmt, va_list args)
{
size_t existing_length;
assert(str != NULL);
existing_length = *str ? strlen(*str) : 0;
return linear_vasprintf_rewrite_tail(ctx, str, &existing_length, fmt, args);
}
bool
linear_asprintf_rewrite_tail(linear_ctx *ctx, char **str, size_t *start,
const char *fmt, ...)
{
bool success;
va_list args;
va_start(args, fmt);
success = linear_vasprintf_rewrite_tail(ctx, str, start, fmt, args);
va_end(args);
return success;
}
bool
linear_vasprintf_rewrite_tail(linear_ctx *ctx, char **str, size_t *start,
const char *fmt, va_list args)
{
size_t new_length;
char *ptr;
assert(str != NULL);
if (unlikely(*str == NULL)) {
*str = linear_vasprintf(ctx, fmt, args);
*start = strlen(*str);
return true;
}
new_length = u_printf_length(fmt, args);
ptr = linear_alloc_child(ctx, *start + new_length + 1);
if (unlikely(ptr == NULL))
return false;
memcpy(ptr, *str, *start);
vsnprintf(ptr + *start, new_length + 1, fmt, args);
*str = ptr;
*start += new_length;
return true;
}
/* helper routine for strcat/strncat - n is the exact amount to copy */
static bool
linear_cat(linear_ctx *ctx, char **dest, const char *str, unsigned n)
{
char *both;
unsigned existing_length;
assert(dest != NULL && *dest != NULL);
existing_length = strlen(*dest);
both = linear_alloc_child(ctx, existing_length + n + 1);
if (unlikely(both == NULL))
return false;
memcpy(both, *dest, existing_length);
memcpy(both + existing_length, str, n);
both[existing_length + n] = '\0';
*dest = both;
return true;
}
bool
linear_strcat(linear_ctx *ctx, char **dest, const char *str)
{
return linear_cat(ctx, dest, str, strlen(str));
}
void *
linear_alloc_child_array(linear_ctx *ctx, size_t size, unsigned count)
{
if (count > SIZE_MAX/size)
return NULL;
return linear_alloc_child(ctx, size * count);
}
void *
linear_zalloc_child_array(linear_ctx *ctx, size_t size, unsigned count)
{
if (count > SIZE_MAX/size)
return NULL;
return linear_zalloc_child(ctx, size * count);
}
typedef struct {
FILE *f;
unsigned indent;
unsigned ralloc_count;
unsigned linear_count;
unsigned gc_count;
/* These don't include padding or metadata from suballocators. */
unsigned content_bytes;
unsigned ralloc_metadata_bytes;
unsigned linear_metadata_bytes;
unsigned gc_metadata_bytes;
bool inside_linear;
bool inside_gc;
} ralloc_print_info_state;
static void
ralloc_print_info_helper(ralloc_print_info_state *state, const ralloc_header *info)
{
FILE *f = state->f;
if (f) {
for (unsigned i = 0; i < state->indent; i++) fputc(' ', f);
fprintf(f, "%p", info);
}
/* TODO: Account for padding used in various places. */
#ifndef NDEBUG
assert(info->canary == CANARY);
if (f) fprintf(f, " (%d bytes)", info->size);
state->content_bytes += info->size;
state->ralloc_metadata_bytes += sizeof(ralloc_header);
const void *ptr = PTR_FROM_HEADER(info);
const linear_ctx *lin_ctx = ptr;
const gc_ctx *gc_ctx = ptr;
if (lin_ctx->magic == LMAGIC_CONTEXT) {
if (f) fprintf(f, " (linear context)");
assert(!state->inside_gc && !state->inside_linear);
state->inside_linear = true;
state->linear_metadata_bytes += sizeof(linear_ctx);
state->content_bytes -= sizeof(linear_ctx);
state->linear_count++;
} else if (gc_ctx->canary == GC_CONTEXT_CANARY) {
if (f) fprintf(f, " (gc context)");
assert(!state->inside_gc && !state->inside_linear);
state->inside_gc = true;
state->gc_metadata_bytes += sizeof(gc_block_header);
} else if (state->inside_linear) {
const linear_node_canary *lin_node = ptr;
if (lin_node->magic == LMAGIC_NODE) {
if (f) fprintf(f, " (linear node buffer)");
state->content_bytes -= sizeof(linear_node_canary);
state->linear_metadata_bytes += sizeof(linear_node_canary);
state->linear_count++;
}
} else if (state->inside_gc) {
if (f) fprintf(f, " (gc slab or large block)");
state->gc_count++;
}
#endif
state->ralloc_count++;
if (f) fprintf(f, "\n");
const ralloc_header *c = info->child;
state->indent += 2;
while (c != NULL) {
ralloc_print_info_helper(state, c);
c = c->next;
}
state->indent -= 2;
#ifndef NDEBUG
if (lin_ctx->magic == LMAGIC_CONTEXT) state->inside_linear = false;
else if (gc_ctx->canary == GC_CONTEXT_CANARY) state->inside_gc = false;
#endif
}
void
ralloc_print_info(FILE *f, const void *p, unsigned flags)
{
ralloc_print_info_state state = {
.f = ((flags & RALLOC_PRINT_INFO_SUMMARY_ONLY) == 1) ? NULL : f,
};
const ralloc_header *info = get_header(p);
ralloc_print_info_helper(&state, info);
fprintf(f, "==== RALLOC INFO ptr=%p info=%p\n"
"ralloc allocations = %d\n"
" - linear = %d\n"
" - gc = %d\n"
" - other = %d\n",
p, info,
state.ralloc_count,
state.linear_count,
state.gc_count,
state.ralloc_count - state.linear_count - state.gc_count);
if (state.content_bytes) {
fprintf(f,
"content bytes = %d\n"
"ralloc metadata bytes = %d\n"
"linear metadata bytes = %d\n",
state.content_bytes,
state.ralloc_metadata_bytes,
state.linear_metadata_bytes);
}
fprintf(f, "====\n");
}