mesa/src/util/disk_cache.c

687 lines
20 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifdef ENABLE_SHADER_CACHE
#include <ctype.h>
#include <ftw.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/file.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <errno.h>
#include <dirent.h>
#include <inttypes.h>
#include "util/compress.h"
#include "util/crc32.h"
#include "util/u_debug.h"
#include "util/rand_xor.h"
#include "util/u_atomic.h"
#include "util/mesa-sha1.h"
#include "util/perf/cpu_trace.h"
#include "util/ralloc.h"
#include "util/compiler.h"
#include "disk_cache.h"
#include "disk_cache_os.h"
/* The cache version should be bumped whenever a change is made to the
* structure of cache entries or the index. This will give any 3rd party
* applications reading the cache entries a chance to adjust to the changes.
*
* - The cache version is checked internally when reading a cache entry. If we
* ever have a mismatch we are in big trouble as this means we had a cache
* collision. In case of such an event please check the skys for giant
* asteroids and that the entire Mesa team hasn't been eaten by wolves.
*
* - There is no strict requirement that cache versions be backwards
* compatible but effort should be taken to limit disruption where possible.
*/
#define CACHE_VERSION 1
#define DRV_KEY_CPY(_dst, _src, _src_size) \
do { \
memcpy(_dst, _src, _src_size); \
_dst += _src_size; \
} while (0);
static bool
disk_cache_init_queue(struct disk_cache *cache)
{
if (util_queue_is_initialized(&cache->cache_queue))
return true;
/* 4 threads were chosen below because just about all modern CPUs currently
* available that run Mesa have *at least* 4 cores. For these CPUs allowing
* more threads can result in the queue being processed faster, thus
* avoiding excessive memory use due to a backlog of cache entrys building
* up in the queue. Since we set the UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY
* flag this should have little negative impact on low core systems.
*
* The queue will resize automatically when it's full, so adding new jobs
* doesn't stall.
*/
return util_queue_init(&cache->cache_queue, "disk$", 32, 4,
UTIL_QUEUE_INIT_RESIZE_IF_FULL |
UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY |
UTIL_QUEUE_INIT_SET_FULL_THREAD_AFFINITY, NULL);
}
static struct disk_cache *
disk_cache_type_create(const char *gpu_name,
const char *driver_id,
uint64_t driver_flags,
enum disk_cache_type cache_type)
{
void *local;
struct disk_cache *cache = NULL;
char *max_size_str;
uint64_t max_size;
uint8_t cache_version = CACHE_VERSION;
size_t cv_size = sizeof(cache_version);
/* A ralloc context for transient data during this invocation. */
local = ralloc_context(NULL);
if (local == NULL)
goto fail;
cache = rzalloc(NULL, struct disk_cache);
if (cache == NULL)
goto fail;
/* Assume failure. */
cache->path_init_failed = true;
cache->type = DISK_CACHE_NONE;
if (!disk_cache_enabled())
goto path_fail;
char *path = disk_cache_generate_cache_dir(local, gpu_name, driver_id,
cache_type);
if (!path)
goto path_fail;
cache->path = ralloc_strdup(cache, path);
if (cache->path == NULL)
goto path_fail;
/* Cache tests that want to have a disabled cache compression are using
* the "make_check_uncompressed" for the driver_id name. Hence here we
* disable disk cache compression when mesa's build tests require it.
*/
if (strcmp(driver_id, "make_check_uncompressed") == 0)
cache->compression_disabled = true;
if (cache_type == DISK_CACHE_SINGLE_FILE) {
if (!disk_cache_load_cache_index_foz(local, cache))
goto path_fail;
} else if (cache_type == DISK_CACHE_DATABASE) {
if (!disk_cache_db_load_cache_index(local, cache))
goto path_fail;
}
if (!getenv("MESA_SHADER_CACHE_DIR") && !getenv("MESA_GLSL_CACHE_DIR"))
disk_cache_touch_cache_user_marker(cache->path);
cache->type = cache_type;
cache->stats.enabled = debug_get_bool_option("MESA_SHADER_CACHE_SHOW_STATS",
false);
if (!disk_cache_mmap_cache_index(local, cache, path))
goto path_fail;
max_size = 0;
max_size_str = getenv("MESA_SHADER_CACHE_MAX_SIZE");
if (!max_size_str) {
max_size_str = getenv("MESA_GLSL_CACHE_MAX_SIZE");
if (max_size_str)
fprintf(stderr,
"*** MESA_GLSL_CACHE_MAX_SIZE is deprecated; "
"use MESA_SHADER_CACHE_MAX_SIZE instead ***\n");
}
#ifdef MESA_SHADER_CACHE_MAX_SIZE
if( !max_size_str ) {
max_size_str = MESA_SHADER_CACHE_MAX_SIZE;
}
#endif
if (max_size_str) {
char *end;
max_size = strtoul(max_size_str, &end, 10);
if (end == max_size_str) {
max_size = 0;
} else {
switch (*end) {
case 'K':
case 'k':
max_size *= 1024;
break;
case 'M':
case 'm':
max_size *= 1024*1024;
break;
case '\0':
case 'G':
case 'g':
default:
max_size *= 1024*1024*1024;
break;
}
}
}
/* Default to 1GB for maximum cache size. */
if (max_size == 0) {
max_size = 1024*1024*1024;
}
cache->max_size = max_size;
if (cache->type == DISK_CACHE_DATABASE)
mesa_cache_db_multipart_set_size_limit(&cache->cache_db, cache->max_size);
if (!disk_cache_init_queue(cache))
goto fail;
cache->path_init_failed = false;
path_fail:
cache->driver_keys_blob_size = cv_size;
/* Create driver id keys */
size_t id_size = strlen(driver_id) + 1;
size_t gpu_name_size = strlen(gpu_name) + 1;
cache->driver_keys_blob_size += id_size;
cache->driver_keys_blob_size += gpu_name_size;
/* We sometimes store entire structs that contains a pointers in the cache,
* use pointer size as a key to avoid hard to debug issues.
*/
uint8_t ptr_size = sizeof(void *);
size_t ptr_size_size = sizeof(ptr_size);
cache->driver_keys_blob_size += ptr_size_size;
size_t driver_flags_size = sizeof(driver_flags);
cache->driver_keys_blob_size += driver_flags_size;
cache->driver_keys_blob =
ralloc_size(cache, cache->driver_keys_blob_size);
if (!cache->driver_keys_blob)
goto fail;
uint8_t *drv_key_blob = cache->driver_keys_blob;
DRV_KEY_CPY(drv_key_blob, &cache_version, cv_size)
DRV_KEY_CPY(drv_key_blob, driver_id, id_size)
DRV_KEY_CPY(drv_key_blob, gpu_name, gpu_name_size)
DRV_KEY_CPY(drv_key_blob, &ptr_size, ptr_size_size)
DRV_KEY_CPY(drv_key_blob, &driver_flags, driver_flags_size)
/* Seed our rand function */
s_rand_xorshift128plus(cache->seed_xorshift128plus, true);
ralloc_free(local);
return cache;
fail:
if (cache)
ralloc_free(cache);
ralloc_free(local);
return NULL;
}
struct disk_cache *
disk_cache_create(const char *gpu_name, const char *driver_id,
uint64_t driver_flags)
{
enum disk_cache_type cache_type;
struct disk_cache *cache;
if (debug_get_bool_option("MESA_DISK_CACHE_SINGLE_FILE", false))
cache_type = DISK_CACHE_SINGLE_FILE;
else if (debug_get_bool_option("MESA_DISK_CACHE_DATABASE", false))
cache_type = DISK_CACHE_DATABASE;
else
cache_type = DISK_CACHE_MULTI_FILE;
/* Create main writable cache. */
cache = disk_cache_type_create(gpu_name, driver_id, driver_flags,
cache_type);
if (!cache)
return NULL;
/* If MESA_DISK_CACHE_SINGLE_FILE is unset and MESA_DISK_CACHE_COMBINE_RW_WITH_RO_FOZ
* is set, then enable additional Fossilize RO caches together with the RW
* cache. At first we will check cache entry presence in the RO caches and
* if entry isn't found there, then we'll fall back to the RW cache.
*/
if (cache_type != DISK_CACHE_SINGLE_FILE && !cache->path_init_failed &&
debug_get_bool_option("MESA_DISK_CACHE_COMBINE_RW_WITH_RO_FOZ", false)) {
/* Create read-only cache used for sharing prebuilt shaders.
* If cache entry will be found in this cache, then the main cache
* will be bypassed.
*/
cache->foz_ro_cache = disk_cache_type_create(gpu_name, driver_id,
driver_flags,
DISK_CACHE_SINGLE_FILE);
}
return cache;
}
void
disk_cache_destroy(struct disk_cache *cache)
{
if (unlikely(cache && cache->stats.enabled)) {
printf("disk shader cache: hits = %u, misses = %u\n",
cache->stats.hits,
cache->stats.misses);
}
if (cache && util_queue_is_initialized(&cache->cache_queue)) {
util_queue_finish(&cache->cache_queue);
util_queue_destroy(&cache->cache_queue);
if (cache->foz_ro_cache)
disk_cache_destroy(cache->foz_ro_cache);
if (cache->type == DISK_CACHE_SINGLE_FILE)
foz_destroy(&cache->foz_db);
if (cache->type == DISK_CACHE_DATABASE)
mesa_cache_db_multipart_close(&cache->cache_db);
disk_cache_destroy_mmap(cache);
}
ralloc_free(cache);
}
void
disk_cache_wait_for_idle(struct disk_cache *cache)
{
util_queue_finish(&cache->cache_queue);
}
void
disk_cache_remove(struct disk_cache *cache, const cache_key key)
{
if (cache->type == DISK_CACHE_DATABASE) {
mesa_cache_db_multipart_entry_remove(&cache->cache_db, key);
return;
}
char *filename = disk_cache_get_cache_filename(cache, key);
if (filename == NULL) {
return;
}
disk_cache_evict_item(cache, filename);
}
static struct disk_cache_put_job *
create_put_job(struct disk_cache *cache, const cache_key key,
void *data, size_t size,
struct cache_item_metadata *cache_item_metadata,
bool take_ownership)
{
struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *)
malloc(sizeof(struct disk_cache_put_job) + (take_ownership ? 0 : size));
if (dc_job) {
dc_job->cache = cache;
memcpy(dc_job->key, key, sizeof(cache_key));
if (take_ownership) {
dc_job->data = data;
} else {
dc_job->data = dc_job + 1;
memcpy(dc_job->data, data, size);
}
dc_job->size = size;
/* Copy the cache item metadata */
if (cache_item_metadata) {
dc_job->cache_item_metadata.type = cache_item_metadata->type;
if (cache_item_metadata->type == CACHE_ITEM_TYPE_GLSL) {
dc_job->cache_item_metadata.num_keys =
cache_item_metadata->num_keys;
dc_job->cache_item_metadata.keys = (cache_key *)
malloc(cache_item_metadata->num_keys * sizeof(cache_key));
if (!dc_job->cache_item_metadata.keys)
goto fail;
memcpy(dc_job->cache_item_metadata.keys,
cache_item_metadata->keys,
sizeof(cache_key) * cache_item_metadata->num_keys);
}
} else {
dc_job->cache_item_metadata.type = CACHE_ITEM_TYPE_UNKNOWN;
dc_job->cache_item_metadata.keys = NULL;
}
}
return dc_job;
fail:
free(dc_job);
return NULL;
}
static void
destroy_put_job(void *job, void *gdata, int thread_index)
{
if (job) {
struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job;
free(dc_job->cache_item_metadata.keys);
free(job);
}
}
static void
destroy_put_job_nocopy(void *job, void *gdata, int thread_index)
{
struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job;
free(dc_job->data);
destroy_put_job(job, gdata, thread_index);
}
static void
blob_put_compressed(struct disk_cache *cache, const cache_key key,
const void *data, size_t size);
static void
cache_put(void *job, void *gdata, int thread_index)
{
assert(job);
unsigned i = 0;
char *filename = NULL;
struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job;
if (dc_job->cache->blob_put_cb) {
blob_put_compressed(dc_job->cache, dc_job->key, dc_job->data, dc_job->size);
} else if (dc_job->cache->type == DISK_CACHE_SINGLE_FILE) {
disk_cache_write_item_to_disk_foz(dc_job);
} else if (dc_job->cache->type == DISK_CACHE_DATABASE) {
disk_cache_db_write_item_to_disk(dc_job);
} else if (dc_job->cache->type == DISK_CACHE_MULTI_FILE) {
filename = disk_cache_get_cache_filename(dc_job->cache, dc_job->key);
if (filename == NULL)
goto done;
/* If the cache is too large, evict something else first. */
while (p_atomic_read_relaxed(&dc_job->cache->size->value) + dc_job->size > dc_job->cache->max_size &&
i < 8) {
disk_cache_evict_lru_item(dc_job->cache);
i++;
}
disk_cache_write_item_to_disk(dc_job, filename);
done:
free(filename);
}
}
struct blob_cache_entry {
uint32_t uncompressed_size;
uint8_t compressed_data[];
};
static void
blob_put_compressed(struct disk_cache *cache, const cache_key key,
const void *data, size_t size)
{
MESA_TRACE_FUNC();
size_t max_buf = util_compress_max_compressed_len(size);
struct blob_cache_entry *entry = malloc(max_buf + sizeof(*entry));
if (!entry)
goto out;
entry->uncompressed_size = size;
size_t compressed_size =
util_compress_deflate(data, size, entry->compressed_data, max_buf);
if (!compressed_size)
goto out;
unsigned entry_size = compressed_size + sizeof(*entry);
// The curly brackets are here to only trace the blob_put_cb call
{
MESA_TRACE_SCOPE("blob_put");
cache->blob_put_cb(key, CACHE_KEY_SIZE, entry, entry_size);
}
out:
free(entry);
}
static void *
blob_get_compressed(struct disk_cache *cache, const cache_key key,
size_t *size)
{
MESA_TRACE_FUNC();
/* This is what Android EGL defines as the maxValueSize in egl_cache_t
* class implementation.
*/
const signed long max_blob_size = 64 * 1024;
struct blob_cache_entry *entry = malloc(max_blob_size);
if (!entry)
return NULL;
signed long entry_size;
// The curly brackets are here to only trace the blob_get_cb call
{
MESA_TRACE_SCOPE("blob_get");
entry_size = cache->blob_get_cb(key, CACHE_KEY_SIZE, entry, max_blob_size);
}
if (!entry_size) {
free(entry);
return NULL;
}
void *data = malloc(entry->uncompressed_size);
if (!data) {
free(entry);
return NULL;
}
unsigned compressed_size = entry_size - sizeof(*entry);
bool ret = util_compress_inflate(entry->compressed_data, compressed_size,
data, entry->uncompressed_size);
if (!ret) {
free(data);
free(entry);
return NULL;
}
if (size)
*size = entry->uncompressed_size;
free(entry);
return data;
}
void
disk_cache_put(struct disk_cache *cache, const cache_key key,
const void *data, size_t size,
struct cache_item_metadata *cache_item_metadata)
{
if (!util_queue_is_initialized(&cache->cache_queue))
return;
struct disk_cache_put_job *dc_job =
create_put_job(cache, key, (void*)data, size, cache_item_metadata, false);
if (dc_job) {
util_queue_fence_init(&dc_job->fence);
util_queue_add_job(&cache->cache_queue, dc_job, &dc_job->fence,
cache_put, destroy_put_job, dc_job->size);
}
}
void
disk_cache_put_nocopy(struct disk_cache *cache, const cache_key key,
void *data, size_t size,
struct cache_item_metadata *cache_item_metadata)
{
if (!util_queue_is_initialized(&cache->cache_queue)) {
free(data);
return;
}
struct disk_cache_put_job *dc_job =
create_put_job(cache, key, data, size, cache_item_metadata, true);
if (dc_job) {
util_queue_fence_init(&dc_job->fence);
util_queue_add_job(&cache->cache_queue, dc_job, &dc_job->fence,
cache_put, destroy_put_job_nocopy, dc_job->size);
}
}
void *
disk_cache_get(struct disk_cache *cache, const cache_key key, size_t *size)
{
void *buf = NULL;
if (size)
*size = 0;
if (cache->foz_ro_cache)
buf = disk_cache_load_item_foz(cache->foz_ro_cache, key, size);
if (!buf) {
if (cache->blob_get_cb) {
buf = blob_get_compressed(cache, key, size);
} else if (cache->type == DISK_CACHE_SINGLE_FILE) {
buf = disk_cache_load_item_foz(cache, key, size);
} else if (cache->type == DISK_CACHE_DATABASE) {
buf = disk_cache_db_load_item(cache, key, size);
} else if (cache->type == DISK_CACHE_MULTI_FILE) {
char *filename = disk_cache_get_cache_filename(cache, key);
if (filename)
buf = disk_cache_load_item(cache, filename, size);
}
}
if (unlikely(cache->stats.enabled)) {
if (buf)
p_atomic_inc(&cache->stats.hits);
else
p_atomic_inc(&cache->stats.misses);
}
return buf;
}
void
disk_cache_put_key(struct disk_cache *cache, const cache_key key)
{
const uint32_t *key_chunk = (const uint32_t *) key;
int i = CPU_TO_LE32(*key_chunk) & CACHE_INDEX_KEY_MASK;
unsigned char *entry;
if (cache->blob_put_cb) {
cache->blob_put_cb(key, CACHE_KEY_SIZE, key_chunk, sizeof(uint32_t));
return;
}
if (cache->path_init_failed)
return;
entry = &cache->stored_keys[i * CACHE_KEY_SIZE];
memcpy(entry, key, CACHE_KEY_SIZE);
}
/* This function lets us test whether a given key was previously
* stored in the cache with disk_cache_put_key(). The implement is
* efficient by not using syscalls or hitting the disk. It's not
* race-free, but the races are benign. If we race with someone else
* calling disk_cache_put_key, then that's just an extra cache miss and an
* extra recompile.
*/
bool
disk_cache_has_key(struct disk_cache *cache, const cache_key key)
{
const uint32_t *key_chunk = (const uint32_t *) key;
int i = CPU_TO_LE32(*key_chunk) & CACHE_INDEX_KEY_MASK;
unsigned char *entry;
if (cache->blob_get_cb) {
uint32_t blob;
return cache->blob_get_cb(key, CACHE_KEY_SIZE, &blob, sizeof(uint32_t));
}
if (cache->path_init_failed)
return false;
entry = &cache->stored_keys[i * CACHE_KEY_SIZE];
return memcmp(entry, key, CACHE_KEY_SIZE) == 0;
}
void
disk_cache_compute_key(struct disk_cache *cache, const void *data, size_t size,
cache_key key)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
_mesa_sha1_update(&ctx, cache->driver_keys_blob,
cache->driver_keys_blob_size);
_mesa_sha1_update(&ctx, data, size);
_mesa_sha1_final(&ctx, key);
}
void
disk_cache_set_callbacks(struct disk_cache *cache, disk_cache_put_cb put,
disk_cache_get_cb get)
{
cache->blob_put_cb = put;
cache->blob_get_cb = get;
disk_cache_init_queue(cache);
}
#endif /* ENABLE_SHADER_CACHE */