mesa/src/intel/compiler/brw_shader.cpp

735 lines
19 KiB
C++

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_cfg.h"
#include "brw_eu.h"
#include "brw_fs.h"
#include "brw_nir.h"
#include "brw_private.h"
#include "dev/intel_debug.h"
#include "util/macros.h"
bool
fs_reg_saturate_immediate(fs_reg *reg)
{
union {
unsigned ud;
int d;
float f;
double df;
} imm, sat_imm = { 0 };
const unsigned size = brw_type_size_bytes(reg->type);
/* We want to either do a 32-bit or 64-bit data copy, the type is otherwise
* irrelevant, so just check the size of the type and copy from/to an
* appropriately sized field.
*/
if (size < 8)
imm.ud = reg->ud;
else
imm.df = reg->df;
switch (reg->type) {
case BRW_TYPE_UD:
case BRW_TYPE_D:
case BRW_TYPE_UW:
case BRW_TYPE_W:
case BRW_TYPE_UQ:
case BRW_TYPE_Q:
/* Nothing to do. */
return false;
case BRW_TYPE_F:
sat_imm.f = SATURATE(imm.f);
break;
case BRW_TYPE_DF:
sat_imm.df = SATURATE(imm.df);
break;
case BRW_TYPE_UB:
case BRW_TYPE_B:
unreachable("no UB/B immediates");
case BRW_TYPE_V:
case BRW_TYPE_UV:
case BRW_TYPE_VF:
unreachable("unimplemented: saturate vector immediate");
case BRW_TYPE_HF:
unreachable("unimplemented: saturate HF immediate");
default:
unreachable("invalid type");
}
if (size < 8) {
if (imm.ud != sat_imm.ud) {
reg->ud = sat_imm.ud;
return true;
}
} else {
if (imm.df != sat_imm.df) {
reg->df = sat_imm.df;
return true;
}
}
return false;
}
bool
fs_reg_negate_immediate(fs_reg *reg)
{
switch (reg->type) {
case BRW_TYPE_D:
case BRW_TYPE_UD:
reg->d = -reg->d;
return true;
case BRW_TYPE_W:
case BRW_TYPE_UW: {
uint16_t value = -(int16_t)reg->ud;
reg->ud = value | (uint32_t)value << 16;
return true;
}
case BRW_TYPE_F:
reg->f = -reg->f;
return true;
case BRW_TYPE_VF:
reg->ud ^= 0x80808080;
return true;
case BRW_TYPE_DF:
reg->df = -reg->df;
return true;
case BRW_TYPE_UQ:
case BRW_TYPE_Q:
reg->d64 = -reg->d64;
return true;
case BRW_TYPE_UB:
case BRW_TYPE_B:
unreachable("no UB/B immediates");
case BRW_TYPE_UV:
case BRW_TYPE_V:
assert(!"unimplemented: negate UV/V immediate");
case BRW_TYPE_HF:
reg->ud ^= 0x80008000;
return true;
default:
unreachable("invalid type");
}
return false;
}
bool
fs_reg_abs_immediate(fs_reg *reg)
{
switch (reg->type) {
case BRW_TYPE_D:
reg->d = abs(reg->d);
return true;
case BRW_TYPE_W: {
uint16_t value = abs((int16_t)reg->ud);
reg->ud = value | (uint32_t)value << 16;
return true;
}
case BRW_TYPE_F:
reg->f = fabsf(reg->f);
return true;
case BRW_TYPE_DF:
reg->df = fabs(reg->df);
return true;
case BRW_TYPE_VF:
reg->ud &= ~0x80808080;
return true;
case BRW_TYPE_Q:
reg->d64 = imaxabs(reg->d64);
return true;
case BRW_TYPE_UB:
case BRW_TYPE_B:
unreachable("no UB/B immediates");
case BRW_TYPE_UQ:
case BRW_TYPE_UD:
case BRW_TYPE_UW:
case BRW_TYPE_UV:
/* Presumably the absolute value modifier on an unsigned source is a
* nop, but it would be nice to confirm.
*/
assert(!"unimplemented: abs unsigned immediate");
case BRW_TYPE_V:
assert(!"unimplemented: abs V immediate");
case BRW_TYPE_HF:
reg->ud &= ~0x80008000;
return true;
default:
unreachable("invalid type");
}
return false;
}
bool
fs_reg::is_zero() const
{
if (file != IMM)
return false;
assert(brw_type_size_bytes(type) > 1);
switch (type) {
case BRW_TYPE_HF:
assert((d & 0xffff) == ((d >> 16) & 0xffff));
return (d & 0xffff) == 0 || (d & 0xffff) == 0x8000;
case BRW_TYPE_F:
return f == 0;
case BRW_TYPE_DF:
return df == 0;
case BRW_TYPE_W:
case BRW_TYPE_UW:
assert((d & 0xffff) == ((d >> 16) & 0xffff));
return (d & 0xffff) == 0;
case BRW_TYPE_D:
case BRW_TYPE_UD:
return d == 0;
case BRW_TYPE_UQ:
case BRW_TYPE_Q:
return u64 == 0;
default:
return false;
}
}
bool
fs_reg::is_one() const
{
if (file != IMM)
return false;
assert(brw_type_size_bytes(type) > 1);
switch (type) {
case BRW_TYPE_HF:
assert((d & 0xffff) == ((d >> 16) & 0xffff));
return (d & 0xffff) == 0x3c00;
case BRW_TYPE_F:
return f == 1.0f;
case BRW_TYPE_DF:
return df == 1.0;
case BRW_TYPE_W:
case BRW_TYPE_UW:
assert((d & 0xffff) == ((d >> 16) & 0xffff));
return (d & 0xffff) == 1;
case BRW_TYPE_D:
case BRW_TYPE_UD:
return d == 1;
case BRW_TYPE_UQ:
case BRW_TYPE_Q:
return u64 == 1;
default:
return false;
}
}
bool
fs_reg::is_negative_one() const
{
if (file != IMM)
return false;
assert(brw_type_size_bytes(type) > 1);
switch (type) {
case BRW_TYPE_HF:
assert((d & 0xffff) == ((d >> 16) & 0xffff));
return (d & 0xffff) == 0xbc00;
case BRW_TYPE_F:
return f == -1.0;
case BRW_TYPE_DF:
return df == -1.0;
case BRW_TYPE_W:
assert((d & 0xffff) == ((d >> 16) & 0xffff));
return (d & 0xffff) == 0xffff;
case BRW_TYPE_D:
return d == -1;
case BRW_TYPE_Q:
return d64 == -1;
default:
return false;
}
}
bool
fs_reg::is_null() const
{
return file == ARF && nr == BRW_ARF_NULL;
}
bool
fs_reg::is_accumulator() const
{
return file == ARF && (nr & 0xF0) == BRW_ARF_ACCUMULATOR;
}
bool
fs_inst::is_commutative() const
{
switch (opcode) {
case BRW_OPCODE_AND:
case BRW_OPCODE_OR:
case BRW_OPCODE_XOR:
case BRW_OPCODE_ADD:
case BRW_OPCODE_ADD3:
case SHADER_OPCODE_MULH:
return true;
case BRW_OPCODE_MUL:
/* Integer multiplication of dword and word sources is not actually
* commutative. The DW source must be first.
*/
return !brw_type_is_int(src[0].type) ||
brw_type_size_bits(src[0].type) == brw_type_size_bits(src[1].type);
case BRW_OPCODE_SEL:
/* MIN and MAX are commutative. */
if (conditional_mod == BRW_CONDITIONAL_GE ||
conditional_mod == BRW_CONDITIONAL_L) {
return true;
}
FALLTHROUGH;
default:
return false;
}
}
bool
fs_inst::is_3src(const struct brw_compiler *compiler) const
{
return ::is_3src(&compiler->isa, opcode);
}
bool
fs_inst::is_math() const
{
return (opcode == SHADER_OPCODE_RCP ||
opcode == SHADER_OPCODE_RSQ ||
opcode == SHADER_OPCODE_SQRT ||
opcode == SHADER_OPCODE_EXP2 ||
opcode == SHADER_OPCODE_LOG2 ||
opcode == SHADER_OPCODE_SIN ||
opcode == SHADER_OPCODE_COS ||
opcode == SHADER_OPCODE_INT_QUOTIENT ||
opcode == SHADER_OPCODE_INT_REMAINDER ||
opcode == SHADER_OPCODE_POW);
}
bool
fs_inst::is_control_flow_begin() const
{
switch (opcode) {
case BRW_OPCODE_DO:
case BRW_OPCODE_IF:
case BRW_OPCODE_ELSE:
return true;
default:
return false;
}
}
bool
fs_inst::is_control_flow_end() const
{
switch (opcode) {
case BRW_OPCODE_ELSE:
case BRW_OPCODE_WHILE:
case BRW_OPCODE_ENDIF:
return true;
default:
return false;
}
}
bool
fs_inst::is_control_flow() const
{
switch (opcode) {
case BRW_OPCODE_DO:
case BRW_OPCODE_WHILE:
case BRW_OPCODE_IF:
case BRW_OPCODE_ELSE:
case BRW_OPCODE_ENDIF:
case BRW_OPCODE_BREAK:
case BRW_OPCODE_CONTINUE:
return true;
default:
return false;
}
}
bool
fs_inst::uses_indirect_addressing() const
{
switch (opcode) {
case SHADER_OPCODE_BROADCAST:
case SHADER_OPCODE_CLUSTER_BROADCAST:
case SHADER_OPCODE_MOV_INDIRECT:
return true;
default:
return false;
}
}
bool
fs_inst::can_do_saturate() const
{
switch (opcode) {
case BRW_OPCODE_ADD:
case BRW_OPCODE_ADD3:
case BRW_OPCODE_ASR:
case BRW_OPCODE_AVG:
case BRW_OPCODE_CSEL:
case BRW_OPCODE_DP2:
case BRW_OPCODE_DP3:
case BRW_OPCODE_DP4:
case BRW_OPCODE_DPH:
case BRW_OPCODE_DP4A:
case BRW_OPCODE_LINE:
case BRW_OPCODE_LRP:
case BRW_OPCODE_MAC:
case BRW_OPCODE_MAD:
case BRW_OPCODE_MATH:
case BRW_OPCODE_MOV:
case BRW_OPCODE_MUL:
case SHADER_OPCODE_MULH:
case BRW_OPCODE_PLN:
case BRW_OPCODE_RNDD:
case BRW_OPCODE_RNDE:
case BRW_OPCODE_RNDU:
case BRW_OPCODE_RNDZ:
case BRW_OPCODE_SEL:
case BRW_OPCODE_SHL:
case BRW_OPCODE_SHR:
case SHADER_OPCODE_COS:
case SHADER_OPCODE_EXP2:
case SHADER_OPCODE_LOG2:
case SHADER_OPCODE_POW:
case SHADER_OPCODE_RCP:
case SHADER_OPCODE_RSQ:
case SHADER_OPCODE_SIN:
case SHADER_OPCODE_SQRT:
return true;
default:
return false;
}
}
bool
fs_inst::reads_accumulator_implicitly() const
{
switch (opcode) {
case BRW_OPCODE_MAC:
case BRW_OPCODE_MACH:
case BRW_OPCODE_SADA2:
return true;
default:
return false;
}
}
bool
fs_inst::writes_accumulator_implicitly(const struct intel_device_info *devinfo) const
{
return writes_accumulator ||
(eot && intel_needs_workaround(devinfo, 14010017096));
}
bool
fs_inst::has_side_effects() const
{
switch (opcode) {
case SHADER_OPCODE_SEND:
return send_has_side_effects;
case BRW_OPCODE_SYNC:
case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
case SHADER_OPCODE_MEMORY_FENCE:
case SHADER_OPCODE_INTERLOCK:
case SHADER_OPCODE_URB_WRITE_LOGICAL:
case FS_OPCODE_FB_WRITE_LOGICAL:
case SHADER_OPCODE_BARRIER:
case SHADER_OPCODE_RND_MODE:
case SHADER_OPCODE_FLOAT_CONTROL_MODE:
case FS_OPCODE_SCHEDULING_FENCE:
case SHADER_OPCODE_OWORD_BLOCK_WRITE_LOGICAL:
case SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL:
case SHADER_OPCODE_BTD_SPAWN_LOGICAL:
case SHADER_OPCODE_BTD_RETIRE_LOGICAL:
case RT_OPCODE_TRACE_RAY_LOGICAL:
return true;
default:
return eot;
}
}
bool
fs_inst::is_volatile() const
{
switch (opcode) {
case SHADER_OPCODE_SEND:
return send_is_volatile;
case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
return true;
default:
return false;
}
}
#ifndef NDEBUG
static bool
inst_is_in_block(const bblock_t *block, const fs_inst *inst)
{
const exec_node *n = inst;
/* Find the tail sentinel. If the tail sentinel is the sentinel from the
* list header in the bblock_t, then this instruction is in that basic
* block.
*/
while (!n->is_tail_sentinel())
n = n->get_next();
return n == &block->instructions.tail_sentinel;
}
#endif
static void
adjust_later_block_ips(bblock_t *start_block, int ip_adjustment)
{
for (bblock_t *block_iter = start_block->next();
block_iter;
block_iter = block_iter->next()) {
block_iter->start_ip += ip_adjustment;
block_iter->end_ip += ip_adjustment;
}
}
void
fs_inst::insert_after(bblock_t *block, fs_inst *inst)
{
assert(this != inst);
assert(block->end_ip_delta == 0);
if (!this->is_head_sentinel())
assert(inst_is_in_block(block, this) || !"Instruction not in block");
block->end_ip++;
adjust_later_block_ips(block, 1);
exec_node::insert_after(inst);
}
void
fs_inst::insert_before(bblock_t *block, fs_inst *inst)
{
assert(this != inst);
assert(block->end_ip_delta == 0);
if (!this->is_tail_sentinel())
assert(inst_is_in_block(block, this) || !"Instruction not in block");
block->end_ip++;
adjust_later_block_ips(block, 1);
exec_node::insert_before(inst);
}
void
fs_inst::remove(bblock_t *block, bool defer_later_block_ip_updates)
{
assert(inst_is_in_block(block, this) || !"Instruction not in block");
if (exec_list_is_singular(&block->instructions)) {
this->opcode = BRW_OPCODE_NOP;
this->resize_sources(0);
this->dst = fs_reg();
this->size_written = 0;
return;
}
if (defer_later_block_ip_updates) {
block->end_ip_delta--;
} else {
assert(block->end_ip_delta == 0);
adjust_later_block_ips(block, -1);
}
if (block->start_ip == block->end_ip) {
if (block->end_ip_delta != 0) {
adjust_later_block_ips(block, block->end_ip_delta);
block->end_ip_delta = 0;
}
block->cfg->remove_block(block);
} else {
block->end_ip--;
}
exec_node::remove();
}
extern "C" const unsigned *
brw_compile_tes(const struct brw_compiler *compiler,
brw_compile_tes_params *params)
{
const struct intel_device_info *devinfo = compiler->devinfo;
nir_shader *nir = params->base.nir;
const struct brw_tes_prog_key *key = params->key;
const struct intel_vue_map *input_vue_map = params->input_vue_map;
struct brw_tes_prog_data *prog_data = params->prog_data;
const bool debug_enabled = brw_should_print_shader(nir, DEBUG_TES);
prog_data->base.base.stage = MESA_SHADER_TESS_EVAL;
prog_data->base.base.ray_queries = nir->info.ray_queries;
nir->info.inputs_read = key->inputs_read;
nir->info.patch_inputs_read = key->patch_inputs_read;
brw_nir_apply_key(nir, compiler, &key->base,
brw_geometry_stage_dispatch_width(compiler->devinfo));
brw_nir_lower_tes_inputs(nir, input_vue_map);
brw_nir_lower_vue_outputs(nir);
brw_postprocess_nir(nir, compiler, debug_enabled,
key->base.robust_flags);
brw_compute_vue_map(devinfo, &prog_data->base.vue_map,
nir->info.outputs_written,
nir->info.separate_shader, 1);
unsigned output_size_bytes = prog_data->base.vue_map.num_slots * 4 * 4;
assert(output_size_bytes >= 1);
if (output_size_bytes > GFX7_MAX_DS_URB_ENTRY_SIZE_BYTES) {
params->base.error_str = ralloc_strdup(params->base.mem_ctx,
"DS outputs exceed maximum size");
return NULL;
}
prog_data->base.clip_distance_mask =
((1 << nir->info.clip_distance_array_size) - 1);
prog_data->base.cull_distance_mask =
((1 << nir->info.cull_distance_array_size) - 1) <<
nir->info.clip_distance_array_size;
prog_data->include_primitive_id =
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID);
/* URB entry sizes are stored as a multiple of 64 bytes. */
prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
prog_data->base.urb_read_length = 0;
STATIC_ASSERT(INTEL_TESS_PARTITIONING_INTEGER == TESS_SPACING_EQUAL - 1);
STATIC_ASSERT(INTEL_TESS_PARTITIONING_ODD_FRACTIONAL ==
TESS_SPACING_FRACTIONAL_ODD - 1);
STATIC_ASSERT(INTEL_TESS_PARTITIONING_EVEN_FRACTIONAL ==
TESS_SPACING_FRACTIONAL_EVEN - 1);
prog_data->partitioning =
(enum intel_tess_partitioning) (nir->info.tess.spacing - 1);
switch (nir->info.tess._primitive_mode) {
case TESS_PRIMITIVE_QUADS:
prog_data->domain = INTEL_TESS_DOMAIN_QUAD;
break;
case TESS_PRIMITIVE_TRIANGLES:
prog_data->domain = INTEL_TESS_DOMAIN_TRI;
break;
case TESS_PRIMITIVE_ISOLINES:
prog_data->domain = INTEL_TESS_DOMAIN_ISOLINE;
break;
default:
unreachable("invalid domain shader primitive mode");
}
if (nir->info.tess.point_mode) {
prog_data->output_topology = INTEL_TESS_OUTPUT_TOPOLOGY_POINT;
} else if (nir->info.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES) {
prog_data->output_topology = INTEL_TESS_OUTPUT_TOPOLOGY_LINE;
} else {
/* Hardware winding order is backwards from OpenGL */
prog_data->output_topology =
nir->info.tess.ccw ? INTEL_TESS_OUTPUT_TOPOLOGY_TRI_CW
: INTEL_TESS_OUTPUT_TOPOLOGY_TRI_CCW;
}
if (unlikely(debug_enabled)) {
fprintf(stderr, "TES Input ");
brw_print_vue_map(stderr, input_vue_map, MESA_SHADER_TESS_EVAL);
fprintf(stderr, "TES Output ");
brw_print_vue_map(stderr, &prog_data->base.vue_map,
MESA_SHADER_TESS_EVAL);
}
const unsigned dispatch_width = devinfo->ver >= 20 ? 16 : 8;
fs_visitor v(compiler, &params->base, &key->base,
&prog_data->base.base, nir, dispatch_width,
params->base.stats != NULL, debug_enabled);
if (!v.run_tes()) {
params->base.error_str =
ralloc_strdup(params->base.mem_ctx, v.fail_msg);
return NULL;
}
assert(v.payload().num_regs % reg_unit(devinfo) == 0);
prog_data->base.base.dispatch_grf_start_reg = v.payload().num_regs / reg_unit(devinfo);
prog_data->base.dispatch_mode = INTEL_DISPATCH_MODE_SIMD8;
fs_generator g(compiler, &params->base,
&prog_data->base.base, MESA_SHADER_TESS_EVAL);
if (unlikely(debug_enabled)) {
g.enable_debug(ralloc_asprintf(params->base.mem_ctx,
"%s tessellation evaluation shader %s",
nir->info.label ? nir->info.label
: "unnamed",
nir->info.name));
}
g.generate_code(v.cfg, dispatch_width, v.shader_stats,
v.performance_analysis.require(), params->base.stats);
g.add_const_data(nir->constant_data, nir->constant_data_size);
return g.get_assembly();
}