mesa/src/intel/compiler/brw_nir_lower_rt_intrinsics.c

387 lines
14 KiB
C

/*
* Copyright (c) 2020 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_nir_rt.h"
#include "brw_nir_rt_builder.h"
static nir_def *
build_leaf_is_procedural(nir_builder *b, struct brw_nir_rt_mem_hit_defs *hit)
{
switch (b->shader->info.stage) {
case MESA_SHADER_ANY_HIT:
/* Any-hit shaders are always compiled into intersection shaders for
* procedural geometry. If we got here in an any-hit shader, it's for
* triangles.
*/
return nir_imm_false(b);
case MESA_SHADER_INTERSECTION:
return nir_imm_true(b);
default:
return nir_ieq_imm(b, hit->leaf_type,
BRW_RT_BVH_NODE_TYPE_PROCEDURAL);
}
}
static void
lower_rt_intrinsics_impl(nir_function_impl *impl,
const struct intel_device_info *devinfo)
{
bool progress = false;
nir_builder build = nir_builder_at(nir_before_impl(impl));
nir_builder *b = &build;
struct brw_nir_rt_globals_defs globals;
brw_nir_rt_load_globals(b, &globals);
nir_def *hotzone_addr = brw_nir_rt_sw_hotzone_addr(b, devinfo);
nir_def *hotzone = nir_load_global(b, hotzone_addr, 16, 4, 32);
gl_shader_stage stage = b->shader->info.stage;
struct brw_nir_rt_mem_ray_defs world_ray_in = {};
struct brw_nir_rt_mem_ray_defs object_ray_in = {};
struct brw_nir_rt_mem_hit_defs hit_in = {};
switch (stage) {
case MESA_SHADER_ANY_HIT:
case MESA_SHADER_CLOSEST_HIT:
case MESA_SHADER_INTERSECTION:
brw_nir_rt_load_mem_hit(b, &hit_in,
stage == MESA_SHADER_CLOSEST_HIT);
brw_nir_rt_load_mem_ray(b, &object_ray_in,
BRW_RT_BVH_LEVEL_OBJECT);
FALLTHROUGH;
case MESA_SHADER_MISS:
brw_nir_rt_load_mem_ray(b, &world_ray_in,
BRW_RT_BVH_LEVEL_WORLD);
break;
default:
break;
}
nir_def *thread_stack_base_addr = brw_nir_rt_sw_stack_addr(b, devinfo);
nir_def *stack_base_offset = nir_channel(b, hotzone, 0);
nir_def *stack_base_addr =
nir_iadd(b, thread_stack_base_addr, nir_u2u64(b, stack_base_offset));
ASSERTED bool seen_scratch_base_ptr_load = false;
ASSERTED bool found_resume = false;
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
b->cursor = nir_after_instr(&intrin->instr);
nir_def *sysval = NULL;
switch (intrin->intrinsic) {
case nir_intrinsic_load_scratch_base_ptr:
assert(nir_intrinsic_base(intrin) == 1);
seen_scratch_base_ptr_load = true;
sysval = stack_base_addr;
break;
case nir_intrinsic_btd_stack_push_intel: {
int32_t stack_size = nir_intrinsic_stack_size(intrin);
if (stack_size > 0) {
nir_def *child_stack_offset =
nir_iadd_imm(b, stack_base_offset, stack_size);
nir_store_global(b, hotzone_addr, 16, child_stack_offset, 0x1);
}
nir_instr_remove(instr);
break;
}
case nir_intrinsic_rt_resume:
/* This is the first "interesting" instruction */
assert(block == nir_start_block(impl));
assert(!seen_scratch_base_ptr_load);
found_resume = true;
int32_t stack_size = nir_intrinsic_stack_size(intrin);
if (stack_size > 0) {
stack_base_offset =
nir_iadd_imm(b, stack_base_offset, -stack_size);
nir_store_global(b, hotzone_addr, 16, stack_base_offset, 0x1);
stack_base_addr = nir_iadd(b, thread_stack_base_addr,
nir_u2u64(b, stack_base_offset));
}
nir_instr_remove(instr);
break;
case nir_intrinsic_load_uniform: {
/* We don't want to lower this in the launch trampoline. */
if (stage == MESA_SHADER_COMPUTE)
break;
sysval = brw_nir_load_global_const(b, intrin,
nir_load_btd_global_arg_addr_intel(b),
BRW_RT_PUSH_CONST_OFFSET);
break;
}
case nir_intrinsic_load_ray_launch_id:
sysval = nir_channels(b, hotzone, 0xe);
break;
case nir_intrinsic_load_ray_launch_size:
sysval = globals.launch_size;
break;
case nir_intrinsic_load_ray_world_origin:
sysval = world_ray_in.orig;
break;
case nir_intrinsic_load_ray_world_direction:
sysval = world_ray_in.dir;
break;
case nir_intrinsic_load_ray_object_origin:
sysval = object_ray_in.orig;
break;
case nir_intrinsic_load_ray_object_direction:
sysval = object_ray_in.dir;
break;
case nir_intrinsic_load_ray_t_min:
/* It shouldn't matter which we pull this from */
sysval = world_ray_in.t_near;
break;
case nir_intrinsic_load_ray_t_max:
if (stage == MESA_SHADER_MISS)
sysval = world_ray_in.t_far;
else
sysval = hit_in.t;
break;
case nir_intrinsic_load_primitive_id:
sysval = brw_nir_rt_load_primitive_id_from_hit(b,
build_leaf_is_procedural(b, &hit_in),
&hit_in);
break;
case nir_intrinsic_load_instance_id: {
struct brw_nir_rt_bvh_instance_leaf_defs leaf;
brw_nir_rt_load_bvh_instance_leaf(b, &leaf, hit_in.inst_leaf_ptr);
sysval = leaf.instance_index;
break;
}
case nir_intrinsic_load_ray_object_to_world: {
struct brw_nir_rt_bvh_instance_leaf_defs leaf;
brw_nir_rt_load_bvh_instance_leaf(b, &leaf, hit_in.inst_leaf_ptr);
sysval = leaf.object_to_world[nir_intrinsic_column(intrin)];
break;
}
case nir_intrinsic_load_ray_world_to_object: {
struct brw_nir_rt_bvh_instance_leaf_defs leaf;
brw_nir_rt_load_bvh_instance_leaf(b, &leaf, hit_in.inst_leaf_ptr);
sysval = leaf.world_to_object[nir_intrinsic_column(intrin)];
break;
}
case nir_intrinsic_load_ray_hit_kind: {
nir_def *tri_hit_kind =
nir_bcsel(b, hit_in.front_face,
nir_imm_int(b, BRW_RT_HIT_KIND_FRONT_FACE),
nir_imm_int(b, BRW_RT_HIT_KIND_BACK_FACE));
sysval = nir_bcsel(b, build_leaf_is_procedural(b, &hit_in),
hit_in.aabb_hit_kind, tri_hit_kind);
break;
}
case nir_intrinsic_load_ray_flags:
/* We need to fetch the original ray flags we stored in the
* leaf pointer, because the actual ray flags we get here
* will include any flags passed on the pipeline at creation
* time, and the spec for IncomingRayFlagsKHR says:
* Setting pipeline flags on the raytracing pipeline must not
* cause any corresponding flags to be set in variables with
* this decoration.
*/
sysval = nir_u2u32(b, world_ray_in.inst_leaf_ptr);
break;
case nir_intrinsic_load_cull_mask:
sysval = nir_u2u32(b, world_ray_in.ray_mask);
break;
case nir_intrinsic_load_ray_geometry_index: {
nir_def *geometry_index_dw =
nir_load_global(b, nir_iadd_imm(b, hit_in.prim_leaf_ptr, 4), 4,
1, 32);
sysval = nir_iand_imm(b, geometry_index_dw, BITFIELD_MASK(29));
break;
}
case nir_intrinsic_load_ray_instance_custom_index: {
struct brw_nir_rt_bvh_instance_leaf_defs leaf;
brw_nir_rt_load_bvh_instance_leaf(b, &leaf, hit_in.inst_leaf_ptr);
sysval = leaf.instance_id;
break;
}
case nir_intrinsic_load_shader_record_ptr:
/* We can't handle this intrinsic in resume shaders because the
* handle we get there won't be from the original SBT. The shader
* call lowering/splitting pass should have ensured that this
* value was spilled from the initial shader and unspilled in any
* resume shaders that need it.
*/
assert(!found_resume);
sysval = nir_load_btd_local_arg_addr_intel(b);
break;
case nir_intrinsic_load_ray_base_mem_addr_intel:
sysval = globals.base_mem_addr;
break;
case nir_intrinsic_load_ray_hw_stack_size_intel:
sysval = nir_imul_imm(b, globals.hw_stack_size, 64);
break;
case nir_intrinsic_load_ray_sw_stack_size_intel:
sysval = nir_imul_imm(b, globals.sw_stack_size, 64);
break;
case nir_intrinsic_load_ray_num_dss_rt_stacks_intel:
sysval = globals.num_dss_rt_stacks;
break;
case nir_intrinsic_load_ray_hit_sbt_addr_intel:
sysval = globals.hit_sbt_addr;
break;
case nir_intrinsic_load_ray_hit_sbt_stride_intel:
sysval = globals.hit_sbt_stride;
break;
case nir_intrinsic_load_ray_miss_sbt_addr_intel:
sysval = globals.miss_sbt_addr;
break;
case nir_intrinsic_load_ray_miss_sbt_stride_intel:
sysval = globals.miss_sbt_stride;
break;
case nir_intrinsic_load_callable_sbt_addr_intel:
sysval = globals.call_sbt_addr;
break;
case nir_intrinsic_load_callable_sbt_stride_intel:
sysval = globals.call_sbt_stride;
break;
case nir_intrinsic_load_btd_resume_sbt_addr_intel:
sysval = nir_pack_64_2x32_split(b,
nir_load_reloc_const_intel(b, BRW_SHADER_RELOC_RESUME_SBT_ADDR_LOW),
nir_load_reloc_const_intel(b, BRW_SHADER_RELOC_RESUME_SBT_ADDR_HIGH));
break;
case nir_intrinsic_load_leaf_procedural_intel:
sysval = build_leaf_is_procedural(b, &hit_in);
break;
case nir_intrinsic_load_ray_triangle_vertex_positions: {
struct brw_nir_rt_bvh_primitive_leaf_positions_defs pos;
brw_nir_rt_load_bvh_primitive_leaf_positions(b, &pos, hit_in.prim_leaf_ptr);
sysval = pos.positions[nir_intrinsic_column(intrin)];
break;
}
case nir_intrinsic_load_leaf_opaque_intel: {
if (stage == MESA_SHADER_INTERSECTION) {
/* In intersection shaders, the opaque bit is passed to us in
* the front_face bit.
*/
sysval = hit_in.front_face;
} else {
nir_def *flags_dw =
nir_load_global(b, nir_iadd_imm(b, hit_in.prim_leaf_ptr, 4), 4,
1, 32);
sysval = nir_i2b(b, nir_iand_imm(b, flags_dw, 1u << 30));
}
break;
}
default:
continue;
}
progress = true;
if (sysval) {
nir_def_rewrite_uses(&intrin->def,
sysval);
nir_instr_remove(&intrin->instr);
}
}
}
nir_metadata_preserve(impl,
progress ?
nir_metadata_none :
(nir_metadata_block_index |
nir_metadata_dominance));
}
/** Lower ray-tracing system values and intrinsics
*
* In most 3D shader stages, intrinsics are a fairly thin wrapper around
* hardware functionality and system values represent magic bits that come
* into the shader from FF hardware. Ray-tracing, however, looks a bit more
* like the OpenGL 1.0 world where the underlying hardware is simple and most
* of the API implementation is software.
*
* In particular, most things that are treated as system values (or built-ins
* in SPIR-V) don't get magically dropped into registers for us. Instead, we
* have to fetch them from the relevant data structures shared with the
* ray-tracing hardware. Most come from either the RT_DISPATCH_GLOBALS or
* from one of the MemHit data structures. Some, such as primitive_id require
* us to fetch the leaf address from the MemHit struct and then manually read
* the data out of the BVH. Instead of trying to emit all this code deep in
* the back-end where we can't effectively optimize it, we lower it all to
* global memory access in NIR.
*
* Once this pass is complete, the only real system values left are the two
* argument pointer system values for BTD dispatch: btd_local_arg_addr and
* btd_global_arg_addr.
*/
void
brw_nir_lower_rt_intrinsics(nir_shader *nir,
const struct intel_device_info *devinfo)
{
nir_foreach_function_impl(impl, nir) {
lower_rt_intrinsics_impl(impl, devinfo);
}
}