mesa/src/intel/compiler/brw_fs_visitor.cpp

1129 lines
44 KiB
C++

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file brw_fs_visitor.cpp
*
* This file supports generating the FS LIR from the GLSL IR. The LIR
* makes it easier to do backend-specific optimizations than doing so
* in the GLSL IR or in the native code.
*/
#include "brw_eu.h"
#include "brw_fs.h"
#include "brw_fs_builder.h"
#include "brw_nir.h"
#include "compiler/glsl_types.h"
using namespace brw;
/* Input data is organized with first the per-primitive values, followed
* by per-vertex values. The per-vertex will have interpolation information
* associated, so use 4 components for each value.
*/
/* The register location here is relative to the start of the URB
* data. It will get adjusted to be a real location before
* generate_code() time.
*/
fs_reg
fs_visitor::interp_reg(const fs_builder &bld, unsigned location,
unsigned channel, unsigned comp)
{
assert(stage == MESA_SHADER_FRAGMENT);
assert(BITFIELD64_BIT(location) & ~nir->info.per_primitive_inputs);
const struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
assert(prog_data->urb_setup[location] >= 0);
unsigned nr = prog_data->urb_setup[location];
channel += prog_data->urb_setup_channel[location];
/* Adjust so we start counting from the first per_vertex input. */
assert(nr >= prog_data->num_per_primitive_inputs);
nr -= prog_data->num_per_primitive_inputs;
const unsigned per_vertex_start = prog_data->num_per_primitive_inputs;
const unsigned regnr = per_vertex_start + (nr * 4) + channel;
if (max_polygons > 1) {
/* In multipolygon dispatch each plane parameter is a
* dispatch_width-wide SIMD vector (see comment in
* assign_urb_setup()), so we need to use offset() instead of
* component() to select the specified parameter.
*/
const fs_reg tmp = bld.vgrf(BRW_TYPE_UD);
bld.MOV(tmp, offset(fs_reg(ATTR, regnr, BRW_TYPE_UD),
dispatch_width, comp));
return retype(tmp, BRW_TYPE_F);
} else {
return component(fs_reg(ATTR, regnr, BRW_TYPE_F), comp);
}
}
/* The register location here is relative to the start of the URB
* data. It will get adjusted to be a real location before
* generate_code() time.
*/
fs_reg
fs_visitor::per_primitive_reg(const fs_builder &bld, int location, unsigned comp)
{
assert(stage == MESA_SHADER_FRAGMENT);
assert(BITFIELD64_BIT(location) & nir->info.per_primitive_inputs);
const struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
comp += prog_data->urb_setup_channel[location];
assert(prog_data->urb_setup[location] >= 0);
const unsigned regnr = prog_data->urb_setup[location] + comp / 4;
assert(regnr < prog_data->num_per_primitive_inputs);
if (max_polygons > 1) {
/* In multipolygon dispatch each primitive constant is a
* dispatch_width-wide SIMD vector (see comment in
* assign_urb_setup()), so we need to use offset() instead of
* component() to select the specified parameter.
*/
const fs_reg tmp = bld.vgrf(BRW_TYPE_UD);
bld.MOV(tmp, offset(fs_reg(ATTR, regnr, BRW_TYPE_UD),
dispatch_width, comp % 4));
return retype(tmp, BRW_TYPE_F);
} else {
return component(fs_reg(ATTR, regnr, BRW_TYPE_F), comp % 4);
}
}
/** Emits the interpolation for the varying inputs. */
void
fs_visitor::emit_interpolation_setup()
{
const fs_builder bld = fs_builder(this).at_end();
fs_builder abld = bld.annotate("compute pixel centers");
this->pixel_x = bld.vgrf(BRW_TYPE_F);
this->pixel_y = bld.vgrf(BRW_TYPE_F);
const struct brw_wm_prog_key *wm_key = (brw_wm_prog_key*) this->key;
struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(prog_data);
fs_reg int_sample_offset_x, int_sample_offset_y; /* Used on Gen12HP+ */
fs_reg int_sample_offset_xy; /* Used on Gen8+ */
fs_reg half_int_sample_offset_x, half_int_sample_offset_y;
if (wm_prog_data->coarse_pixel_dispatch != BRW_ALWAYS) {
/* The thread payload only delivers subspan locations (ss0, ss1,
* ss2, ...). Since subspans covers 2x2 pixels blocks, we need to
* generate 4 pixel coordinates out of each subspan location. We do this
* by replicating a subspan coordinate 4 times and adding an offset of 1
* in each direction from the initial top left (tl) location to generate
* top right (tr = +1 in x), bottom left (bl = +1 in y) and bottom right
* (br = +1 in x, +1 in y).
*
* The locations we build look like this in SIMD8 :
*
* ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
*
* The value 0x11001010 is a vector of 8 half byte vector. It adds
* following to generate the 4 pixels coordinates out of the subspan0:
*
* 0x
* 1 : ss0.y + 1 -> ss0.br.y
* 1 : ss0.y + 1 -> ss0.bl.y
* 0 : ss0.y + 0 -> ss0.tr.y
* 0 : ss0.y + 0 -> ss0.tl.y
* 1 : ss0.x + 1 -> ss0.br.x
* 0 : ss0.x + 0 -> ss0.bl.x
* 1 : ss0.x + 1 -> ss0.tr.x
* 0 : ss0.x + 0 -> ss0.tl.x
*
* By doing a SIMD16 add in a SIMD8 shader, we can generate the 8 pixels
* coordinates out of 2 subspans coordinates in a single ADD instruction
* (twice the operation above).
*/
int_sample_offset_xy = fs_reg(brw_imm_v(0x11001010));
half_int_sample_offset_x = fs_reg(brw_imm_uw(0));
half_int_sample_offset_y = fs_reg(brw_imm_uw(0));
/* On Gfx12.5, because of regioning restrictions, the interpolation code
* is slightly different and works off X & Y only inputs. The ordering
* of the half bytes here is a bit odd, with each subspan replicated
* twice and every other element is discarded :
*
* ss0.tl ss0.tl ss0.tr ss0.tr ss0.bl ss0.bl ss0.br ss0.br
* X offset: 0 0 1 0 0 0 1 0
* Y offset: 0 0 0 0 1 0 1 0
*/
int_sample_offset_x = fs_reg(brw_imm_v(0x01000100));
int_sample_offset_y = fs_reg(brw_imm_v(0x01010000));
}
fs_reg int_coarse_offset_x, int_coarse_offset_y; /* Used on Gen12HP+ */
fs_reg int_coarse_offset_xy; /* Used on Gen8+ */
fs_reg half_int_coarse_offset_x, half_int_coarse_offset_y;
if (wm_prog_data->coarse_pixel_dispatch != BRW_NEVER) {
/* In coarse pixel dispatch we have to do the same ADD instruction that
* we do in normal per pixel dispatch, except this time we're not adding
* 1 in each direction, but instead the coarse pixel size.
*
* The coarse pixel size is delivered as 2 u8 in r1.0
*/
struct brw_reg r1_0 = retype(brw_vec1_reg(BRW_GENERAL_REGISTER_FILE, 1, 0), BRW_TYPE_UB);
const fs_builder dbld =
abld.exec_all().group(MIN2(16, dispatch_width) * 2, 0);
if (devinfo->verx10 >= 125) {
/* To build the array of half bytes we do and AND operation with the
* right mask in X.
*/
int_coarse_offset_x = dbld.vgrf(BRW_TYPE_UW);
dbld.AND(int_coarse_offset_x, byte_offset(r1_0, 0), brw_imm_v(0x0f000f00));
/* And the right mask in Y. */
int_coarse_offset_y = dbld.vgrf(BRW_TYPE_UW);
dbld.AND(int_coarse_offset_y, byte_offset(r1_0, 1), brw_imm_v(0x0f0f0000));
} else {
/* To build the array of half bytes we do and AND operation with the
* right mask in X.
*/
int_coarse_offset_x = dbld.vgrf(BRW_TYPE_UW);
dbld.AND(int_coarse_offset_x, byte_offset(r1_0, 0), brw_imm_v(0x0000f0f0));
/* And the right mask in Y. */
int_coarse_offset_y = dbld.vgrf(BRW_TYPE_UW);
dbld.AND(int_coarse_offset_y, byte_offset(r1_0, 1), brw_imm_v(0xff000000));
/* Finally OR the 2 registers. */
int_coarse_offset_xy = dbld.vgrf(BRW_TYPE_UW);
dbld.OR(int_coarse_offset_xy, int_coarse_offset_x, int_coarse_offset_y);
}
/* Also compute the half coarse size used to center coarses. */
half_int_coarse_offset_x = bld.vgrf(BRW_TYPE_UW);
half_int_coarse_offset_y = bld.vgrf(BRW_TYPE_UW);
bld.SHR(half_int_coarse_offset_x, suboffset(r1_0, 0), brw_imm_ud(1));
bld.SHR(half_int_coarse_offset_y, suboffset(r1_0, 1), brw_imm_ud(1));
}
fs_reg int_pixel_offset_x, int_pixel_offset_y; /* Used on Gen12HP+ */
fs_reg int_pixel_offset_xy; /* Used on Gen8+ */
fs_reg half_int_pixel_offset_x, half_int_pixel_offset_y;
switch (wm_prog_data->coarse_pixel_dispatch) {
case BRW_NEVER:
int_pixel_offset_x = int_sample_offset_x;
int_pixel_offset_y = int_sample_offset_y;
int_pixel_offset_xy = int_sample_offset_xy;
half_int_pixel_offset_x = half_int_sample_offset_x;
half_int_pixel_offset_y = half_int_sample_offset_y;
break;
case BRW_SOMETIMES: {
const fs_builder dbld =
abld.exec_all().group(MIN2(16, dispatch_width) * 2, 0);
check_dynamic_msaa_flag(dbld, wm_prog_data,
INTEL_MSAA_FLAG_COARSE_RT_WRITES);
int_pixel_offset_x = dbld.vgrf(BRW_TYPE_UW);
set_predicate(BRW_PREDICATE_NORMAL,
dbld.SEL(int_pixel_offset_x,
int_coarse_offset_x,
int_sample_offset_x));
int_pixel_offset_y = dbld.vgrf(BRW_TYPE_UW);
set_predicate(BRW_PREDICATE_NORMAL,
dbld.SEL(int_pixel_offset_y,
int_coarse_offset_y,
int_sample_offset_y));
int_pixel_offset_xy = dbld.vgrf(BRW_TYPE_UW);
set_predicate(BRW_PREDICATE_NORMAL,
dbld.SEL(int_pixel_offset_xy,
int_coarse_offset_xy,
int_sample_offset_xy));
half_int_pixel_offset_x = bld.vgrf(BRW_TYPE_UW);
set_predicate(BRW_PREDICATE_NORMAL,
bld.SEL(half_int_pixel_offset_x,
half_int_coarse_offset_x,
half_int_sample_offset_x));
half_int_pixel_offset_y = bld.vgrf(BRW_TYPE_UW);
set_predicate(BRW_PREDICATE_NORMAL,
bld.SEL(half_int_pixel_offset_y,
half_int_coarse_offset_y,
half_int_sample_offset_y));
break;
}
case BRW_ALWAYS:
int_pixel_offset_x = int_coarse_offset_x;
int_pixel_offset_y = int_coarse_offset_y;
int_pixel_offset_xy = int_coarse_offset_xy;
half_int_pixel_offset_x = half_int_coarse_offset_x;
half_int_pixel_offset_y = half_int_coarse_offset_y;
break;
}
for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i);
/* According to the "PS Thread Payload for Normal Dispatch"
* pages on the BSpec, subspan X/Y coordinates are stored in
* R1.2-R1.5/R2.2-R2.5 on gfx6+, and on R0.10-R0.13/R1.10-R1.13
* on gfx20+. gi_reg is the 32B section of the GRF that
* contains the subspan coordinates.
*/
const struct brw_reg gi_reg = devinfo->ver >= 20 ? xe2_vec1_grf(i, 8) :
brw_vec1_grf(i + 1, 0);
const struct brw_reg gi_uw = retype(gi_reg, BRW_TYPE_UW);
if (devinfo->verx10 >= 125) {
const fs_builder dbld =
abld.exec_all().group(hbld.dispatch_width() * 2, 0);
const fs_reg int_pixel_x = dbld.vgrf(BRW_TYPE_UW);
const fs_reg int_pixel_y = dbld.vgrf(BRW_TYPE_UW);
dbld.ADD(int_pixel_x,
fs_reg(stride(suboffset(gi_uw, 4), 2, 8, 0)),
int_pixel_offset_x);
dbld.ADD(int_pixel_y,
fs_reg(stride(suboffset(gi_uw, 5), 2, 8, 0)),
int_pixel_offset_y);
if (wm_prog_data->coarse_pixel_dispatch != BRW_NEVER) {
fs_inst *addx = dbld.ADD(int_pixel_x, int_pixel_x,
horiz_stride(half_int_pixel_offset_x, 0));
fs_inst *addy = dbld.ADD(int_pixel_y, int_pixel_y,
horiz_stride(half_int_pixel_offset_y, 0));
if (wm_prog_data->coarse_pixel_dispatch != BRW_ALWAYS) {
addx->predicate = BRW_PREDICATE_NORMAL;
addy->predicate = BRW_PREDICATE_NORMAL;
}
}
hbld.MOV(offset(pixel_x, hbld, i), horiz_stride(int_pixel_x, 2));
hbld.MOV(offset(pixel_y, hbld, i), horiz_stride(int_pixel_y, 2));
} else {
/* The "Register Region Restrictions" page says for BDW (and newer,
* presumably):
*
* "When destination spans two registers, the source may be one or
* two registers. The destination elements must be evenly split
* between the two registers."
*
* Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16
* to compute our pixel centers.
*/
const fs_builder dbld =
abld.exec_all().group(hbld.dispatch_width() * 2, 0);
fs_reg int_pixel_xy = dbld.vgrf(BRW_TYPE_UW);
dbld.ADD(int_pixel_xy,
fs_reg(stride(suboffset(gi_uw, 4), 1, 4, 0)),
int_pixel_offset_xy);
hbld.emit(FS_OPCODE_PIXEL_X, offset(pixel_x, hbld, i), int_pixel_xy,
horiz_stride(half_int_pixel_offset_x, 0));
hbld.emit(FS_OPCODE_PIXEL_Y, offset(pixel_y, hbld, i), int_pixel_xy,
horiz_stride(half_int_pixel_offset_y, 0));
}
}
abld = bld.annotate("compute pos.z");
fs_reg coarse_z;
if (wm_prog_data->coarse_pixel_dispatch != BRW_NEVER &&
wm_prog_data->uses_depth_w_coefficients) {
/* In coarse pixel mode, the HW doesn't interpolate Z coordinate
* properly. In the same way we have to add the coarse pixel size to
* pixels locations, here we recompute the Z value with 2 coefficients
* in X & Y axis.
*/
fs_reg coef_payload = brw_vec8_grf(fs_payload().depth_w_coef_reg, 0);
const fs_reg x_start = brw_vec1_grf(coef_payload.nr, 2);
const fs_reg y_start = brw_vec1_grf(coef_payload.nr, 6);
const fs_reg z_cx = brw_vec1_grf(coef_payload.nr, 1);
const fs_reg z_cy = brw_vec1_grf(coef_payload.nr, 0);
const fs_reg z_c0 = brw_vec1_grf(coef_payload.nr, 3);
const fs_reg float_pixel_x = abld.vgrf(BRW_TYPE_F);
const fs_reg float_pixel_y = abld.vgrf(BRW_TYPE_F);
abld.ADD(float_pixel_x, this->pixel_x, negate(x_start));
abld.ADD(float_pixel_y, this->pixel_y, negate(y_start));
/* r1.0 - 0:7 ActualCoarsePixelShadingSize.X */
const fs_reg u8_cps_width = fs_reg(retype(brw_vec1_grf(1, 0), BRW_TYPE_UB));
/* r1.0 - 15:8 ActualCoarsePixelShadingSize.Y */
const fs_reg u8_cps_height = byte_offset(u8_cps_width, 1);
const fs_reg u32_cps_width = abld.vgrf(BRW_TYPE_UD);
const fs_reg u32_cps_height = abld.vgrf(BRW_TYPE_UD);
abld.MOV(u32_cps_width, u8_cps_width);
abld.MOV(u32_cps_height, u8_cps_height);
const fs_reg f_cps_width = abld.vgrf(BRW_TYPE_F);
const fs_reg f_cps_height = abld.vgrf(BRW_TYPE_F);
abld.MOV(f_cps_width, u32_cps_width);
abld.MOV(f_cps_height, u32_cps_height);
/* Center in the middle of the coarse pixel. */
abld.MAD(float_pixel_x, float_pixel_x, brw_imm_f(0.5f), f_cps_width);
abld.MAD(float_pixel_y, float_pixel_y, brw_imm_f(0.5f), f_cps_height);
coarse_z = abld.vgrf(BRW_TYPE_F);
abld.MAD(coarse_z, z_c0, z_cx, float_pixel_x);
abld.MAD(coarse_z, coarse_z, z_cy, float_pixel_y);
}
if (wm_prog_data->uses_src_depth)
this->pixel_z = fetch_payload_reg(bld, fs_payload().source_depth_reg);
if (wm_prog_data->uses_depth_w_coefficients ||
wm_prog_data->uses_src_depth) {
fs_reg sample_z = this->pixel_z;
switch (wm_prog_data->coarse_pixel_dispatch) {
case BRW_NEVER:
assert(wm_prog_data->uses_src_depth);
assert(!wm_prog_data->uses_depth_w_coefficients);
this->pixel_z = sample_z;
break;
case BRW_SOMETIMES:
assert(wm_prog_data->uses_src_depth);
assert(wm_prog_data->uses_depth_w_coefficients);
this->pixel_z = abld.vgrf(BRW_TYPE_F);
/* We re-use the check_dynamic_msaa_flag() call from above */
set_predicate(BRW_PREDICATE_NORMAL,
abld.SEL(this->pixel_z, coarse_z, sample_z));
break;
case BRW_ALWAYS:
assert(!wm_prog_data->uses_src_depth);
assert(wm_prog_data->uses_depth_w_coefficients);
this->pixel_z = coarse_z;
break;
}
}
if (wm_prog_data->uses_src_w) {
abld = bld.annotate("compute pos.w");
this->pixel_w = fetch_payload_reg(abld, fs_payload().source_w_reg);
this->wpos_w = bld.vgrf(BRW_TYPE_F);
abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
}
if (wm_key->persample_interp == BRW_SOMETIMES) {
assert(!devinfo->needs_unlit_centroid_workaround);
const fs_builder ubld = bld.exec_all().group(16, 0);
bool loaded_flag = false;
for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
if (!(wm_prog_data->barycentric_interp_modes & BITFIELD_BIT(i)))
continue;
/* The sample mode will always be the top bit set in the perspective
* or non-perspective section. In the case where no SAMPLE mode was
* requested, wm_prog_data_barycentric_modes() will swap out the top
* mode for SAMPLE so this works regardless of whether SAMPLE was
* requested or not.
*/
int sample_mode;
if (BITFIELD_BIT(i) & BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) {
sample_mode = util_last_bit(wm_prog_data->barycentric_interp_modes &
BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) - 1;
} else {
sample_mode = util_last_bit(wm_prog_data->barycentric_interp_modes &
BRW_BARYCENTRIC_PERSPECTIVE_BITS) - 1;
}
assert(wm_prog_data->barycentric_interp_modes &
BITFIELD_BIT(sample_mode));
if (i == sample_mode)
continue;
uint8_t *barys = fs_payload().barycentric_coord_reg[i];
uint8_t *sample_barys = fs_payload().barycentric_coord_reg[sample_mode];
assert(barys[0] && sample_barys[0]);
if (!loaded_flag) {
check_dynamic_msaa_flag(ubld, wm_prog_data,
INTEL_MSAA_FLAG_PERSAMPLE_INTERP);
}
for (unsigned j = 0; j < dispatch_width / 8; j++) {
set_predicate(
BRW_PREDICATE_NORMAL,
ubld.MOV(brw_vec8_grf(barys[j / 2] + (j % 2) * 2, 0),
brw_vec8_grf(sample_barys[j / 2] + (j % 2) * 2, 0)));
}
}
}
for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
this->delta_xy[i] = fetch_barycentric_reg(
bld, fs_payload().barycentric_coord_reg[i]);
}
uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes &
(1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID |
1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
if (devinfo->needs_unlit_centroid_workaround && centroid_modes) {
/* Get the pixel/sample mask into f0 so that we know which
* pixels are lit. Then, for each channel that is unlit,
* replace the centroid data with non-centroid data.
*/
for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
bld.exec_all().group(1, 0)
.MOV(retype(brw_flag_reg(0, i), BRW_TYPE_UW),
retype(brw_vec1_grf(1 + i, 7), BRW_TYPE_UW));
}
for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
if (!(centroid_modes & (1 << i)))
continue;
const fs_reg centroid_delta_xy = delta_xy[i];
const fs_reg &pixel_delta_xy = delta_xy[i - 1];
delta_xy[i] = bld.vgrf(BRW_TYPE_F, 2);
for (unsigned c = 0; c < 2; c++) {
for (unsigned q = 0; q < dispatch_width / 8; q++) {
set_predicate(BRW_PREDICATE_NORMAL,
bld.quarter(q).SEL(
quarter(offset(delta_xy[i], bld, c), q),
quarter(offset(centroid_delta_xy, bld, c), q),
quarter(offset(pixel_delta_xy, bld, c), q)));
}
}
}
}
}
fs_inst *
fs_visitor::emit_single_fb_write(const fs_builder &bld,
fs_reg color0, fs_reg color1,
fs_reg src0_alpha, unsigned components)
{
assert(stage == MESA_SHADER_FRAGMENT);
struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
/* Hand over gl_FragDepth or the payload depth. */
const fs_reg dst_depth = fetch_payload_reg(bld, fs_payload().dest_depth_reg);
fs_reg src_depth, src_stencil;
if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
src_depth = frag_depth;
if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
src_stencil = frag_stencil;
const fs_reg sources[] = {
color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
(prog_data->uses_omask ? sample_mask : fs_reg()),
brw_imm_ud(components)
};
assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
sources, ARRAY_SIZE(sources));
if (prog_data->uses_kill) {
write->predicate = BRW_PREDICATE_NORMAL;
write->flag_subreg = sample_mask_flag_subreg(*this);
}
return write;
}
void
fs_visitor::do_emit_fb_writes(int nr_color_regions, bool replicate_alpha)
{
const fs_builder bld = fs_builder(this).at_end();
fs_inst *inst = NULL;
for (int target = 0; target < nr_color_regions; target++) {
/* Skip over outputs that weren't written. */
if (this->outputs[target].file == BAD_FILE)
continue;
const fs_builder abld = bld.annotate(
ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
fs_reg src0_alpha;
if (replicate_alpha && target != 0)
src0_alpha = offset(outputs[0], bld, 3);
inst = emit_single_fb_write(abld, this->outputs[target],
this->dual_src_output, src0_alpha, 4);
inst->target = target;
}
if (inst == NULL) {
/* Even if there's no color buffers enabled, we still need to send
* alpha out the pipeline to our null renderbuffer to support
* alpha-testing, alpha-to-coverage, and so on.
*/
/* FINISHME: Factor out this frequently recurring pattern into a
* helper function.
*/
const fs_reg srcs[] = { reg_undef, reg_undef,
reg_undef, offset(this->outputs[0], bld, 3) };
const fs_reg tmp = bld.vgrf(BRW_TYPE_UD, 4);
bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
inst->target = 0;
}
inst->last_rt = true;
inst->eot = true;
}
void
fs_visitor::emit_fb_writes()
{
assert(stage == MESA_SHADER_FRAGMENT);
struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
/* From the 'Render Target Write message' section of the docs:
* "Output Stencil is not supported with SIMD16 Render Target Write
* Messages."
*/
if (devinfo->ver >= 20)
limit_dispatch_width(16, "gl_FragStencilRefARB unsupported "
"in SIMD32+ mode.\n");
else
limit_dispatch_width(8, "gl_FragStencilRefARB unsupported "
"in SIMD16+ mode.\n");
}
/* ANV doesn't know about sample mask output during the wm key creation
* so we compute if we need replicate alpha and emit alpha to coverage
* workaround here.
*/
const bool replicate_alpha = key->alpha_test_replicate_alpha ||
(key->nr_color_regions > 1 && key->alpha_to_coverage &&
sample_mask.file == BAD_FILE);
prog_data->dual_src_blend = (this->dual_src_output.file != BAD_FILE &&
this->outputs[0].file != BAD_FILE);
assert(!prog_data->dual_src_blend || key->nr_color_regions == 1);
/* Following condition implements Wa_14017468336:
*
* "If dual source blend is enabled do not enable SIMD32 dispatch" and
* "For a thread dispatched as SIMD32, must not issue SIMD8 message with Last
* Render Target Select set."
*/
if (devinfo->ver >= 11 && devinfo->ver <= 12 &&
prog_data->dual_src_blend) {
/* The dual-source RT write messages fail to release the thread
* dependency on ICL and TGL with SIMD32 dispatch, leading to hangs.
*
* XXX - Emit an extra single-source NULL RT-write marked LastRT in
* order to release the thread dependency without disabling
* SIMD32.
*
* The dual-source RT write messages may lead to hangs with SIMD16
* dispatch on ICL due some unknown reasons, see
* https://gitlab.freedesktop.org/mesa/mesa/-/issues/2183
*/
if (devinfo->ver >= 20)
limit_dispatch_width(16, "Dual source blending unsupported "
"in SIMD32 mode.\n");
else
limit_dispatch_width(8, "Dual source blending unsupported "
"in SIMD16 and SIMD32 modes.\n");
}
do_emit_fb_writes(key->nr_color_regions, replicate_alpha);
}
void
fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
{
int slot, urb_offset, length;
int starting_urb_offset = 0;
const struct brw_vue_prog_data *vue_prog_data =
brw_vue_prog_data(this->prog_data);
const GLbitfield64 psiz_mask =
VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ | VARYING_BIT_PRIMITIVE_SHADING_RATE;
const struct intel_vue_map *vue_map = &vue_prog_data->vue_map;
bool flush;
fs_reg sources[8];
fs_reg urb_handle;
switch (stage) {
case MESA_SHADER_VERTEX:
urb_handle = vs_payload().urb_handles;
break;
case MESA_SHADER_TESS_EVAL:
urb_handle = tes_payload().urb_output;
break;
case MESA_SHADER_GEOMETRY:
urb_handle = gs_payload().urb_handles;
break;
default:
unreachable("invalid stage");
}
const fs_builder bld = fs_builder(this).at_end();
fs_reg per_slot_offsets;
if (stage == MESA_SHADER_GEOMETRY) {
const struct brw_gs_prog_data *gs_prog_data =
brw_gs_prog_data(this->prog_data);
/* We need to increment the Global Offset to skip over the control data
* header and the extra "Vertex Count" field (1 HWord) at the beginning
* of the VUE. We're counting in OWords, so the units are doubled.
*/
starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
if (gs_prog_data->static_vertex_count == -1)
starting_urb_offset += 2;
/* The URB offset is in 128-bit units, so we need to multiply by 2 */
const int output_vertex_size_owords =
gs_prog_data->output_vertex_size_hwords * 2;
/* On Xe2+ platform, LSC can operate on the Dword data element with byte
* offset granularity, so convert per slot offset in bytes since it's in
* Owords (16-bytes) unit else keep per slot offset in oword unit for
* previous platforms.
*/
const int output_vertex_size = devinfo->ver >= 20 ?
output_vertex_size_owords * 16 :
output_vertex_size_owords;
if (gs_vertex_count.file == IMM) {
per_slot_offsets = brw_imm_ud(output_vertex_size *
gs_vertex_count.ud);
} else {
per_slot_offsets = bld.vgrf(BRW_TYPE_UD);
bld.MUL(per_slot_offsets, gs_vertex_count,
brw_imm_ud(output_vertex_size));
}
}
length = 0;
urb_offset = starting_urb_offset;
flush = false;
/* SSO shaders can have VUE slots allocated which are never actually
* written to, so ignore them when looking for the last (written) slot.
*/
int last_slot = vue_map->num_slots - 1;
while (last_slot > 0 &&
(vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD ||
outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) {
last_slot--;
}
bool urb_written = false;
for (slot = 0; slot < vue_map->num_slots; slot++) {
int varying = vue_map->slot_to_varying[slot];
switch (varying) {
case VARYING_SLOT_PSIZ: {
/* The point size varying slot is the vue header and is always in the
* vue map. But often none of the special varyings that live there
* are written and in that case we can skip writing to the vue
* header, provided the corresponding state properly clamps the
* values further down the pipeline. */
if ((vue_map->slots_valid & psiz_mask) == 0) {
assert(length == 0);
urb_offset++;
break;
}
fs_reg zero(VGRF, alloc.allocate(dispatch_width / 8),
BRW_TYPE_UD);
bld.MOV(zero, brw_imm_ud(0u));
if (vue_map->slots_valid & VARYING_BIT_PRIMITIVE_SHADING_RATE &&
this->outputs[VARYING_SLOT_PRIMITIVE_SHADING_RATE].file != BAD_FILE) {
sources[length++] = this->outputs[VARYING_SLOT_PRIMITIVE_SHADING_RATE];
} else if (devinfo->has_coarse_pixel_primitive_and_cb) {
uint32_t one_fp16 = 0x3C00;
fs_reg one_by_one_fp16(VGRF, alloc.allocate(dispatch_width / 8),
BRW_TYPE_UD);
bld.MOV(one_by_one_fp16, brw_imm_ud((one_fp16 << 16) | one_fp16));
sources[length++] = one_by_one_fp16;
} else {
sources[length++] = zero;
}
if (vue_map->slots_valid & VARYING_BIT_LAYER)
sources[length++] = this->outputs[VARYING_SLOT_LAYER];
else
sources[length++] = zero;
if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
else
sources[length++] = zero;
if (vue_map->slots_valid & VARYING_BIT_PSIZ)
sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
else
sources[length++] = zero;
break;
}
case VARYING_SLOT_EDGE:
unreachable("unexpected scalar vs output");
break;
default:
/* gl_Position is always in the vue map, but isn't always written by
* the shader. Other varyings (clip distances) get added to the vue
* map but don't always get written. In those cases, the
* corresponding this->output[] slot will be invalid we and can skip
* the urb write for the varying. If we've already queued up a vue
* slot for writing we flush a mlen 5 urb write, otherwise we just
* advance the urb_offset.
*/
if (varying == BRW_VARYING_SLOT_PAD ||
this->outputs[varying].file == BAD_FILE) {
if (length > 0)
flush = true;
else
urb_offset++;
break;
}
int slot_offset = 0;
/* When using Primitive Replication, there may be multiple slots
* assigned to POS.
*/
if (varying == VARYING_SLOT_POS)
slot_offset = slot - vue_map->varying_to_slot[VARYING_SLOT_POS];
for (unsigned i = 0; i < 4; i++) {
sources[length++] = offset(this->outputs[varying], bld,
i + (slot_offset * 4));
}
break;
}
const fs_builder abld = bld.annotate("URB write");
/* If we've queued up 8 registers of payload (2 VUE slots), if this is
* the last slot or if we need to flush (see BAD_FILE varying case
* above), emit a URB write send now to flush out the data.
*/
if (length == 8 || (length > 0 && slot == last_slot))
flush = true;
if (flush) {
fs_reg srcs[URB_LOGICAL_NUM_SRCS];
srcs[URB_LOGICAL_SRC_HANDLE] = urb_handle;
srcs[URB_LOGICAL_SRC_PER_SLOT_OFFSETS] = per_slot_offsets;
srcs[URB_LOGICAL_SRC_DATA] = fs_reg(VGRF,
alloc.allocate((dispatch_width / 8) * length),
BRW_TYPE_F);
srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(length);
abld.LOAD_PAYLOAD(srcs[URB_LOGICAL_SRC_DATA], sources, length, 0);
fs_inst *inst = abld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
srcs, ARRAY_SIZE(srcs));
/* For ICL Wa_1805992985 one needs additional write in the end. */
if (devinfo->ver == 11 && stage == MESA_SHADER_TESS_EVAL)
inst->eot = false;
else
inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY;
inst->offset = urb_offset;
urb_offset = starting_urb_offset + slot + 1;
length = 0;
flush = false;
urb_written = true;
}
}
/* If we don't have any valid slots to write, just do a minimal urb write
* send to terminate the shader. This includes 1 slot of undefined data,
* because it's invalid to write 0 data:
*
* From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
* Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
* Write Data Payload:
*
* "The write data payload can be between 1 and 8 message phases long."
*/
if (!urb_written) {
/* For GS, just turn EmitVertex() into a no-op. We don't want it to
* end the thread, and emit_gs_thread_end() already emits a SEND with
* EOT at the end of the program for us.
*/
if (stage == MESA_SHADER_GEOMETRY)
return;
fs_reg uniform_urb_handle = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
BRW_TYPE_UD);
fs_reg payload = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
BRW_TYPE_UD);
bld.exec_all().MOV(uniform_urb_handle, urb_handle);
fs_reg srcs[URB_LOGICAL_NUM_SRCS];
srcs[URB_LOGICAL_SRC_HANDLE] = uniform_urb_handle;
srcs[URB_LOGICAL_SRC_DATA] = payload;
srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(1);
fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
srcs, ARRAY_SIZE(srcs));
inst->eot = true;
inst->offset = 1;
return;
}
/* ICL Wa_1805992985:
*
* ICLLP GPU hangs on one of tessellation vkcts tests with DS not done. The
* send cycle, which is a urb write with an eot must be 4 phases long and
* all 8 lanes must valid.
*/
if (devinfo->ver == 11 && stage == MESA_SHADER_TESS_EVAL) {
assert(dispatch_width == 8);
fs_reg uniform_urb_handle = fs_reg(VGRF, alloc.allocate(1), BRW_TYPE_UD);
fs_reg uniform_mask = fs_reg(VGRF, alloc.allocate(1), BRW_TYPE_UD);
fs_reg payload = fs_reg(VGRF, alloc.allocate(4), BRW_TYPE_UD);
/* Workaround requires all 8 channels (lanes) to be valid. This is
* understood to mean they all need to be alive. First trick is to find
* a live channel and copy its urb handle for all the other channels to
* make sure all handles are valid.
*/
bld.exec_all().MOV(uniform_urb_handle, bld.emit_uniformize(urb_handle));
/* Second trick is to use masked URB write where one can tell the HW to
* actually write data only for selected channels even though all are
* active.
* Third trick is to take advantage of the must-be-zero (MBZ) area in
* the very beginning of the URB.
*
* One masks data to be written only for the first channel and uses
* offset zero explicitly to land data to the MBZ area avoiding trashing
* any other part of the URB.
*
* Since the WA says that the write needs to be 4 phases long one uses
* 4 slots data. All are explicitly zeros in order to to keep the MBZ
* area written as zeros.
*/
bld.exec_all().MOV(uniform_mask, brw_imm_ud(0x10000u));
bld.exec_all().MOV(offset(payload, bld, 0), brw_imm_ud(0u));
bld.exec_all().MOV(offset(payload, bld, 1), brw_imm_ud(0u));
bld.exec_all().MOV(offset(payload, bld, 2), brw_imm_ud(0u));
bld.exec_all().MOV(offset(payload, bld, 3), brw_imm_ud(0u));
fs_reg srcs[URB_LOGICAL_NUM_SRCS];
srcs[URB_LOGICAL_SRC_HANDLE] = uniform_urb_handle;
srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = uniform_mask;
srcs[URB_LOGICAL_SRC_DATA] = payload;
srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(4);
fs_inst *inst = bld.exec_all().emit(SHADER_OPCODE_URB_WRITE_LOGICAL,
reg_undef, srcs, ARRAY_SIZE(srcs));
inst->eot = true;
inst->offset = 0;
}
}
void
fs_visitor::emit_urb_fence()
{
const fs_builder bld = fs_builder(this).at_end();
fs_reg dst = bld.vgrf(BRW_TYPE_UD);
fs_inst *fence = bld.emit(SHADER_OPCODE_MEMORY_FENCE, dst,
brw_vec8_grf(0, 0),
brw_imm_ud(true),
brw_imm_ud(0));
fence->sfid = BRW_SFID_URB;
fence->desc = lsc_fence_msg_desc(devinfo, LSC_FENCE_LOCAL,
LSC_FLUSH_TYPE_NONE, true);
bld.exec_all().group(1, 0).emit(FS_OPCODE_SCHEDULING_FENCE,
bld.null_reg_ud(),
&dst,
1);
}
void
fs_visitor::emit_cs_terminate()
{
const fs_builder ubld = fs_builder(this).at_end().exec_all();
/* We can't directly send from g0, since sends with EOT have to use
* g112-127. So, copy it to a virtual register, The register allocator will
* make sure it uses the appropriate register range.
*/
struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_TYPE_UD);
fs_reg payload = fs_reg(VGRF, alloc.allocate(reg_unit(devinfo)),
BRW_TYPE_UD);
ubld.group(8 * reg_unit(devinfo), 0).MOV(payload, g0);
/* Set the descriptor to "Dereference Resource" and "Root Thread" */
unsigned desc = 0;
/* Set Resource Select to "Do not dereference URB" on Gfx < 11.
*
* Note that even though the thread has a URB resource associated with it,
* we set the "do not dereference URB" bit, because the URB resource is
* managed by the fixed-function unit, so it will free it automatically.
*/
if (devinfo->ver < 11)
desc |= (1 << 4); /* Do not dereference URB */
fs_reg srcs[4] = {
brw_imm_ud(desc), /* desc */
brw_imm_ud(0), /* ex_desc */
payload, /* payload */
fs_reg(), /* payload2 */
};
fs_inst *send = ubld.emit(SHADER_OPCODE_SEND, reg_undef, srcs, 4);
/* On Alchemist and later, send an EOT message to the message gateway to
* terminate a compute shader. For older GPUs, send to the thread spawner.
*/
send->sfid = devinfo->verx10 >= 125 ? BRW_SFID_MESSAGE_GATEWAY
: BRW_SFID_THREAD_SPAWNER;
send->mlen = reg_unit(devinfo);
send->eot = true;
}
fs_visitor::fs_visitor(const struct brw_compiler *compiler,
const struct brw_compile_params *params,
const brw_base_prog_key *key,
struct brw_stage_prog_data *prog_data,
const nir_shader *shader,
unsigned dispatch_width,
bool needs_register_pressure,
bool debug_enabled)
: compiler(compiler), log_data(params->log_data),
devinfo(compiler->devinfo), nir(shader),
mem_ctx(params->mem_ctx),
cfg(NULL), stage(shader->info.stage),
debug_enabled(debug_enabled),
key(key), gs_compile(NULL), prog_data(prog_data),
live_analysis(this), regpressure_analysis(this),
performance_analysis(this), idom_analysis(this),
needs_register_pressure(needs_register_pressure),
dispatch_width(dispatch_width),
max_polygons(0),
api_subgroup_size(brw_nir_api_subgroup_size(shader, dispatch_width))
{
init();
}
fs_visitor::fs_visitor(const struct brw_compiler *compiler,
const struct brw_compile_params *params,
const brw_wm_prog_key *key,
struct brw_wm_prog_data *prog_data,
const nir_shader *shader,
unsigned dispatch_width, unsigned max_polygons,
bool needs_register_pressure,
bool debug_enabled)
: compiler(compiler), log_data(params->log_data),
devinfo(compiler->devinfo), nir(shader),
mem_ctx(params->mem_ctx),
cfg(NULL), stage(shader->info.stage),
debug_enabled(debug_enabled),
key(&key->base), gs_compile(NULL), prog_data(&prog_data->base),
live_analysis(this), regpressure_analysis(this),
performance_analysis(this), idom_analysis(this),
needs_register_pressure(needs_register_pressure),
dispatch_width(dispatch_width),
max_polygons(max_polygons),
api_subgroup_size(brw_nir_api_subgroup_size(shader, dispatch_width))
{
init();
assert(api_subgroup_size == 0 ||
api_subgroup_size == 8 ||
api_subgroup_size == 16 ||
api_subgroup_size == 32);
}
fs_visitor::fs_visitor(const struct brw_compiler *compiler,
const struct brw_compile_params *params,
struct brw_gs_compile *c,
struct brw_gs_prog_data *prog_data,
const nir_shader *shader,
bool needs_register_pressure,
bool debug_enabled)
: compiler(compiler), log_data(params->log_data),
devinfo(compiler->devinfo), nir(shader),
mem_ctx(params->mem_ctx),
cfg(NULL), stage(shader->info.stage),
debug_enabled(debug_enabled),
key(&c->key.base), gs_compile(c),
prog_data(&prog_data->base.base),
live_analysis(this), regpressure_analysis(this),
performance_analysis(this), idom_analysis(this),
needs_register_pressure(needs_register_pressure),
dispatch_width(compiler->devinfo->ver >= 20 ? 16 : 8),
max_polygons(0),
api_subgroup_size(brw_nir_api_subgroup_size(shader, dispatch_width))
{
init();
assert(api_subgroup_size == 0 ||
api_subgroup_size == 8 ||
api_subgroup_size == 16 ||
api_subgroup_size == 32);
}
void
fs_visitor::init()
{
this->max_dispatch_width = 32;
this->failed = false;
this->fail_msg = NULL;
this->payload_ = NULL;
this->source_depth_to_render_target = false;
this->first_non_payload_grf = 0;
this->uniforms = 0;
this->last_scratch = 0;
this->push_constant_loc = NULL;
memset(&this->shader_stats, 0, sizeof(this->shader_stats));
this->grf_used = 0;
this->spilled_any_registers = false;
}
fs_visitor::~fs_visitor()
{
delete this->payload_;
}