mesa/src/intel/compiler/brw_fs_cmod_propagation.cpp

564 lines
22 KiB
C++

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_fs.h"
#include "brw_cfg.h"
#include "brw_eu.h"
/** @file brw_fs_cmod_propagation.cpp
*
* Implements a pass that propagates the conditional modifier from a CMP x 0.0
* instruction into the instruction that generated x. For instance, in this
* sequence
*
* add(8) g70<1>F g69<8,8,1>F 4096F
* cmp.ge.f0(8) null g70<8,8,1>F 0F
*
* we can do the comparison as part of the ADD instruction directly:
*
* add.ge.f0(8) g70<1>F g69<8,8,1>F 4096F
*
* If there had been a use of the flag register and another CMP using g70
*
* add.ge.f0(8) g70<1>F g69<8,8,1>F 4096F
* (+f0) sel(8) g71<F> g72<8,8,1>F g73<8,8,1>F
* cmp.ge.f0(8) null g70<8,8,1>F 0F
*
* we can recognize that the CMP is generating the flag value that already
* exists and therefore remove the instruction.
*/
using namespace brw;
static bool
cmod_propagate_cmp_to_add(const intel_device_info *devinfo, bblock_t *block,
fs_inst *inst)
{
bool read_flag = false;
const unsigned flags_written = inst->flags_written(devinfo);
foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
if (scan_inst->opcode == BRW_OPCODE_ADD &&
!scan_inst->is_partial_write() &&
scan_inst->exec_size == inst->exec_size) {
bool negate;
/* A CMP is basically a subtraction. The result of the
* subtraction must be the same as the result of the addition.
* This means that one of the operands must be negated. So (a +
* b) vs (a == -b) or (a + -b) vs (a == b).
*/
if ((inst->src[0].equals(scan_inst->src[0]) &&
inst->src[1].negative_equals(scan_inst->src[1])) ||
(inst->src[0].equals(scan_inst->src[1]) &&
inst->src[1].negative_equals(scan_inst->src[0]))) {
negate = false;
} else if ((inst->src[0].negative_equals(scan_inst->src[0]) &&
inst->src[1].equals(scan_inst->src[1])) ||
(inst->src[0].negative_equals(scan_inst->src[1]) &&
inst->src[1].equals(scan_inst->src[0]))) {
negate = true;
} else {
goto not_match;
}
/* If the scan instruction writes a different flag register than the
* instruction we're trying to propagate from, bail.
*
* FINISHME: The second part of the condition may be too strong.
* Perhaps (scan_inst->flags_written() & flags_written) !=
* flags_written?
*/
if (scan_inst->flags_written(devinfo) != 0 &&
scan_inst->flags_written(devinfo) != flags_written)
goto not_match;
/* From the Kaby Lake PRM Vol. 7 "Assigning Conditional Flags":
*
* * Note that the [post condition signal] bits generated at
* the output of a compute are before the .sat.
*
* Paragraph about post_zero does not mention saturation, but
* testing it on actual GPUs shows that conditional modifiers
* are applied after saturation.
*
* * post_zero bit: This bit reflects whether the final
* result is zero after all the clamping, normalizing,
* or format conversion logic.
*
* For signed types we don't care about saturation: it won't
* change the result of conditional modifier.
*
* For floating and unsigned types there two special cases,
* when we can remove inst even if scan_inst is saturated: G
* and LE. Since conditional modifiers are just comparisons
* against zero, saturating positive values to the upper
* limit never changes the result of comparison.
*
* For negative values:
* (sat(x) > 0) == (x > 0) --- false
* (sat(x) <= 0) == (x <= 0) --- true
*/
const enum brw_conditional_mod cond =
negate ? brw_swap_cmod(inst->conditional_mod)
: inst->conditional_mod;
if (scan_inst->saturate &&
(brw_type_is_float(scan_inst->dst.type) ||
brw_type_is_uint(scan_inst->dst.type)) &&
(cond != BRW_CONDITIONAL_G &&
cond != BRW_CONDITIONAL_LE))
goto not_match;
/* Otherwise, try propagating the conditional. */
if (scan_inst->can_do_cmod() &&
((!read_flag && scan_inst->conditional_mod == BRW_CONDITIONAL_NONE) ||
scan_inst->conditional_mod == cond)) {
scan_inst->conditional_mod = cond;
scan_inst->flag_subreg = inst->flag_subreg;
inst->remove(block, true);
return true;
}
break;
}
not_match:
if ((scan_inst->flags_written(devinfo) & flags_written) != 0)
break;
read_flag = read_flag ||
(scan_inst->flags_read(devinfo) & flags_written) != 0;
}
return false;
}
/**
* Propagate conditional modifiers from NOT instructions
*
* Attempt to convert sequences like
*
* or(8) g78<8,8,1> g76<8,8,1>UD g77<8,8,1>UD
* ...
* not.nz.f0(8) null g78<8,8,1>UD
*
* into
*
* or.z.f0(8) g78<8,8,1> g76<8,8,1>UD g77<8,8,1>UD
*/
static bool
cmod_propagate_not(const intel_device_info *devinfo, bblock_t *block,
fs_inst *inst)
{
const enum brw_conditional_mod cond = brw_negate_cmod(inst->conditional_mod);
bool read_flag = false;
const unsigned flags_written = inst->flags_written(devinfo);
if (cond != BRW_CONDITIONAL_Z && cond != BRW_CONDITIONAL_NZ)
return false;
foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
if (regions_overlap(scan_inst->dst, scan_inst->size_written,
inst->src[0], inst->size_read(0))) {
if (scan_inst->opcode != BRW_OPCODE_OR &&
scan_inst->opcode != BRW_OPCODE_AND)
break;
if (scan_inst->is_partial_write() ||
scan_inst->dst.offset != inst->src[0].offset ||
scan_inst->exec_size != inst->exec_size)
break;
/* If the scan instruction writes a different flag register than the
* instruction we're trying to propagate from, bail.
*
* FINISHME: The second part of the condition may be too strong.
* Perhaps (scan_inst->flags_written() & flags_written) !=
* flags_written?
*/
if (scan_inst->flags_written(devinfo) != 0 &&
scan_inst->flags_written(devinfo) != flags_written)
break;
if (scan_inst->can_do_cmod() &&
((!read_flag && scan_inst->conditional_mod == BRW_CONDITIONAL_NONE) ||
scan_inst->conditional_mod == cond)) {
scan_inst->conditional_mod = cond;
scan_inst->flag_subreg = inst->flag_subreg;
inst->remove(block, true);
return true;
}
break;
}
if ((scan_inst->flags_written(devinfo) & flags_written) != 0)
break;
read_flag = read_flag ||
(scan_inst->flags_read(devinfo) & flags_written) != 0;
}
return false;
}
static bool
opt_cmod_propagation_local(const intel_device_info *devinfo, bblock_t *block)
{
bool progress = false;
UNUSED int ip = block->end_ip + 1;
foreach_inst_in_block_reverse_safe(fs_inst, inst, block) {
ip--;
if ((inst->opcode != BRW_OPCODE_AND &&
inst->opcode != BRW_OPCODE_CMP &&
inst->opcode != BRW_OPCODE_MOV &&
inst->opcode != BRW_OPCODE_NOT) ||
inst->predicate != BRW_PREDICATE_NONE ||
!inst->dst.is_null() ||
(inst->src[0].file != VGRF && inst->src[0].file != ATTR &&
inst->src[0].file != UNIFORM))
continue;
/* An ABS source modifier can only be handled when processing a compare
* with a value other than zero.
*/
if (inst->src[0].abs &&
(inst->opcode != BRW_OPCODE_CMP || inst->src[1].is_zero()))
continue;
/* Only an AND.NZ can be propagated. Many AND.Z instructions are
* generated (for ir_unop_not in fs_visitor::emit_bool_to_cond_code).
* Propagating those would require inverting the condition on the CMP.
* This changes both the flag value and the register destination of the
* CMP. That result may be used elsewhere, so we can't change its value
* on a whim.
*/
if (inst->opcode == BRW_OPCODE_AND &&
!(inst->src[1].is_one() &&
inst->conditional_mod == BRW_CONDITIONAL_NZ &&
!inst->src[0].negate))
continue;
/* A CMP with a second source of zero can match with anything. A CMP
* with a second source that is not zero can only match with an ADD
* instruction.
*
* Only apply this optimization to float-point sources. It can fail for
* integers. For inputs a = 0x80000000, b = 4, int(0x80000000) < 4, but
* int(0x80000000) - 4 overflows and results in 0x7ffffffc. that's not
* less than zero, so the flags get set differently than for (a < b).
*/
if (inst->opcode == BRW_OPCODE_CMP && !inst->src[1].is_zero()) {
if (brw_type_is_float(inst->src[0].type) &&
cmod_propagate_cmp_to_add(devinfo, block, inst))
progress = true;
continue;
}
if (inst->opcode == BRW_OPCODE_NOT) {
progress = cmod_propagate_not(devinfo, block, inst) || progress;
continue;
}
bool read_flag = false;
const unsigned flags_written = inst->flags_written(devinfo);
foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
if (regions_overlap(scan_inst->dst, scan_inst->size_written,
inst->src[0], inst->size_read(0))) {
/* If the scan instruction writes a different flag register than
* the instruction we're trying to propagate from, bail.
*
* FINISHME: The second part of the condition may be too strong.
* Perhaps (scan_inst->flags_written() & flags_written) !=
* flags_written?
*/
if (scan_inst->flags_written(devinfo) != 0 &&
scan_inst->flags_written(devinfo) != flags_written)
break;
if (scan_inst->is_partial_write() ||
scan_inst->dst.offset != inst->src[0].offset ||
scan_inst->exec_size != inst->exec_size)
break;
/* If the write mask is different we can't propagate. */
if (scan_inst->force_writemask_all != inst->force_writemask_all)
break;
/* CMP's result is the same regardless of dest type. */
if (inst->conditional_mod == BRW_CONDITIONAL_NZ &&
scan_inst->opcode == BRW_OPCODE_CMP &&
brw_type_is_int(inst->dst.type)) {
inst->remove(block, true);
progress = true;
break;
}
/* If the AND wasn't handled by the previous case, it isn't safe
* to remove it.
*/
if (inst->opcode == BRW_OPCODE_AND)
break;
if (inst->opcode == BRW_OPCODE_MOV) {
if (brw_type_is_float(scan_inst->dst.type)) {
/* If the destination type of scan_inst is floating-point,
* then:
*
* - The source of the MOV instruction must be the same
* type.
*
* - The destination of the MOV instruction must be float
* point with a size at least as large as the destination
* of inst. Size-reducing f2f conversions could cause
* non-zero values to become zero, etc.
*/
if (scan_inst->dst.type != inst->src[0].type)
break;
if (!brw_type_is_float(inst->dst.type))
break;
if (brw_type_size_bits(scan_inst->dst.type) >
brw_type_size_bits(inst->dst.type))
break;
} else {
/* If the destination type of scan_inst is integer, then:
*
* - The source of the MOV instruction must be integer with
* the same size.
*
* - If the conditional modifier is Z or NZ, then the
* destination type of inst must either be floating point
* (of any size) or integer with a size at least as large
* as the destination of inst.
*
* - If the conditional modifier is neither Z nor NZ, then the
* destination type of inst must either be floating point
* (of any size) or integer with a size at least as large
* as the destination of inst and the same signedness.
*/
if (!brw_type_is_int(inst->src[0].type) ||
brw_type_size_bits(scan_inst->dst.type) != brw_type_size_bits(inst->src[0].type))
break;
if (brw_type_is_int(inst->dst.type)) {
if (brw_type_size_bits(inst->dst.type) <
brw_type_size_bits(scan_inst->dst.type))
break;
if (inst->conditional_mod != BRW_CONDITIONAL_Z &&
inst->conditional_mod != BRW_CONDITIONAL_NZ &&
brw_type_is_uint(inst->dst.type) !=
brw_type_is_uint(scan_inst->dst.type))
break;
}
}
} else {
/* Not safe to use inequality operators if the types are
* different.
*/
if (scan_inst->dst.type != inst->src[0].type &&
inst->conditional_mod != BRW_CONDITIONAL_Z &&
inst->conditional_mod != BRW_CONDITIONAL_NZ)
break;
/* Comparisons operate differently for ints and floats */
if (scan_inst->dst.type != inst->dst.type) {
/* Comparison result may be altered if the bit-size changes
* since that affects range, denorms, etc
*/
if (brw_type_size_bits(scan_inst->dst.type) !=
brw_type_size_bits(inst->dst.type))
break;
if (brw_type_is_float(scan_inst->dst.type) !=
brw_type_is_float(inst->dst.type))
break;
}
}
/* Knowing following:
* - CMP writes to flag register the result of
* applying cmod to the `src0 - src1`.
* After that it stores the same value to dst.
* Other instructions first store their result to
* dst, and then store cmod(dst) to the flag
* register.
* - inst is either CMP or MOV
* - inst->dst is null
* - inst->src[0] overlaps with scan_inst->dst
* - inst->src[1] is zero
* - scan_inst wrote to a flag register
*
* There can be three possible paths:
*
* - scan_inst is CMP:
*
* Considering that src0 is either 0x0 (false),
* or 0xffffffff (true), and src1 is 0x0:
*
* - If inst's cmod is NZ, we can always remove
* scan_inst: NZ is invariant for false and true. This
* holds even if src0 is NaN: .nz is the only cmod,
* that returns true for NaN.
*
* - .g is invariant if src0 has a UD type
*
* - .l is invariant if src0 has a D type
*
* - scan_inst and inst have the same cmod:
*
* If scan_inst is anything than CMP, it already
* wrote the appropriate value to the flag register.
*
* - else:
*
* We can change cmod of scan_inst to that of inst,
* and remove inst. It is valid as long as we make
* sure that no instruction uses the flag register
* between scan_inst and inst.
*/
if (!inst->src[0].negate &&
scan_inst->flags_written(devinfo)) {
if (scan_inst->opcode == BRW_OPCODE_CMP) {
if ((inst->conditional_mod == BRW_CONDITIONAL_NZ) ||
(inst->conditional_mod == BRW_CONDITIONAL_G &&
inst->src[0].type == BRW_TYPE_UD) ||
(inst->conditional_mod == BRW_CONDITIONAL_L &&
inst->src[0].type == BRW_TYPE_D)) {
inst->remove(block, true);
progress = true;
break;
}
} else if (scan_inst->conditional_mod == inst->conditional_mod) {
/* sel.cond will not write the flags. */
assert(scan_inst->opcode != BRW_OPCODE_SEL);
inst->remove(block, true);
progress = true;
break;
} else if (!read_flag && scan_inst->can_do_cmod()) {
scan_inst->conditional_mod = inst->conditional_mod;
scan_inst->flag_subreg = inst->flag_subreg;
inst->remove(block, true);
progress = true;
break;
}
}
/* The conditional mod of the CMP/CMPN instructions behaves
* specially because the flag output is not calculated from the
* result of the instruction, but the other way around, which
* means that even if the condmod to propagate and the condmod
* from the CMP instruction are the same they will in general give
* different results because they are evaluated based on different
* inputs.
*/
if (scan_inst->opcode == BRW_OPCODE_CMP ||
scan_inst->opcode == BRW_OPCODE_CMPN)
break;
/* From the Sky Lake PRM, Vol 2a, "Multiply":
*
* "When multiplying integer data types, if one of the sources
* is a DW, the resulting full precision data is stored in
* the accumulator. However, if the destination data type is
* either W or DW, the low bits of the result are written to
* the destination register and the remaining high bits are
* discarded. This results in undefined Overflow and Sign
* flags. Therefore, conditional modifiers and saturation
* (.sat) cannot be used in this case."
*
* We just disallow cmod propagation on all integer multiplies.
*/
if (!brw_type_is_float(scan_inst->dst.type) &&
scan_inst->opcode == BRW_OPCODE_MUL)
break;
enum brw_conditional_mod cond =
inst->src[0].negate ? brw_swap_cmod(inst->conditional_mod)
: inst->conditional_mod;
/* From the Kaby Lake PRM Vol. 7 "Assigning Conditional Flags":
*
* * Note that the [post condition signal] bits generated at
* the output of a compute are before the .sat.
*
* Paragraph about post_zero does not mention saturation, but
* testing it on actual GPUs shows that conditional modifiers are
* applied after saturation.
*
* * post_zero bit: This bit reflects whether the final
* result is zero after all the clamping, normalizing,
* or format conversion logic.
*
* For this reason, no additional restrictions are necessary on
* instructions with saturate.
*/
/* Otherwise, try propagating the conditional. */
if (scan_inst->can_do_cmod() &&
((!read_flag && scan_inst->conditional_mod == BRW_CONDITIONAL_NONE) ||
scan_inst->conditional_mod == cond)) {
scan_inst->conditional_mod = cond;
scan_inst->flag_subreg = inst->flag_subreg;
inst->remove(block, true);
progress = true;
}
break;
}
if ((scan_inst->flags_written(devinfo) & flags_written) != 0)
break;
read_flag = read_flag ||
(scan_inst->flags_read(devinfo) & flags_written) != 0;
}
}
/* There is progress if and only if instructions were removed. */
assert(progress == (block->end_ip_delta != 0));
return progress;
}
bool
brw_fs_opt_cmod_propagation(fs_visitor &s)
{
bool progress = false;
foreach_block_reverse(block, s.cfg) {
progress = opt_cmod_propagation_local(s.devinfo, block) || progress;
}
if (progress) {
s.cfg->adjust_block_ips();
s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
}
return progress;
}