mesa/src/intel/compiler/brw_eu_validate.c

2436 lines
92 KiB
C

/*
* Copyright © 2015-2019 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file brw_eu_validate.c
*
* This file implements a pass that validates shader assembly.
*
* The restrictions implemented herein are intended to verify that instructions
* in shader assembly do not violate restrictions documented in the graphics
* programming reference manuals.
*
* The restrictions are difficult for humans to quickly verify due to their
* complexity and abundance.
*
* It is critical that this code is thoroughly unit tested because false
* results will lead developers astray, which is worse than having no validator
* at all. Functional changes to this file without corresponding unit tests (in
* test_eu_validate.cpp) will be rejected.
*/
#include <stdlib.h>
#include "brw_eu.h"
#include "brw_disasm_info.h"
/* We're going to do lots of string concatenation, so this should help. */
struct string {
char *str;
size_t len;
};
static void
cat(struct string *dest, const struct string src)
{
dest->str = realloc(dest->str, dest->len + src.len + 1);
memcpy(dest->str + dest->len, src.str, src.len);
dest->str[dest->len + src.len] = '\0';
dest->len = dest->len + src.len;
}
#define CAT(dest, src) cat(&dest, (struct string){src, strlen(src)})
static bool
contains(const struct string haystack, const struct string needle)
{
return haystack.str && memmem(haystack.str, haystack.len,
needle.str, needle.len) != NULL;
}
#define CONTAINS(haystack, needle) \
contains(haystack, (struct string){needle, strlen(needle)})
#define error(str) "\tERROR: " str "\n"
#define ERROR_INDENT "\t "
#define ERROR(msg) ERROR_IF(true, msg)
#define ERROR_IF(cond, msg) \
do { \
if ((cond) && !CONTAINS(error_msg, error(msg))) { \
CAT(error_msg, error(msg)); \
} \
} while(0)
#define CHECK(func, args...) \
do { \
struct string __msg = func(isa, inst, ##args); \
if (__msg.str) { \
cat(&error_msg, __msg); \
free(__msg.str); \
} \
} while (0)
#define STRIDE(stride) (stride != 0 ? 1 << ((stride) - 1) : 0)
#define WIDTH(width) (1 << (width))
static bool
inst_is_send(const struct brw_isa_info *isa, const brw_inst *inst)
{
switch (brw_inst_opcode(isa, inst)) {
case BRW_OPCODE_SEND:
case BRW_OPCODE_SENDC:
case BRW_OPCODE_SENDS:
case BRW_OPCODE_SENDSC:
return true;
default:
return false;
}
}
static bool
inst_is_split_send(const struct brw_isa_info *isa, const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
if (devinfo->ver >= 12) {
return inst_is_send(isa, inst);
} else {
switch (brw_inst_opcode(isa, inst)) {
case BRW_OPCODE_SENDS:
case BRW_OPCODE_SENDSC:
return true;
default:
return false;
}
}
}
static unsigned
signed_type(unsigned type)
{
return brw_type_is_uint(type) ? (type | BRW_TYPE_BASE_SINT) : type;
}
static enum brw_reg_type
inst_dst_type(const struct brw_isa_info *isa, const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
return (devinfo->ver < 12 || !inst_is_send(isa, inst)) ?
brw_inst_dst_type(devinfo, inst) : BRW_TYPE_D;
}
static bool
inst_is_raw_move(const struct brw_isa_info *isa, const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
unsigned dst_type = signed_type(inst_dst_type(isa, inst));
unsigned src_type = signed_type(brw_inst_src0_type(devinfo, inst));
if (brw_inst_src0_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE) {
/* FIXME: not strictly true */
if (brw_inst_src0_type(devinfo, inst) == BRW_TYPE_VF ||
brw_inst_src0_type(devinfo, inst) == BRW_TYPE_UV ||
brw_inst_src0_type(devinfo, inst) == BRW_TYPE_V) {
return false;
}
} else if (brw_inst_src0_negate(devinfo, inst) ||
brw_inst_src0_abs(devinfo, inst)) {
return false;
}
return brw_inst_opcode(isa, inst) == BRW_OPCODE_MOV &&
brw_inst_saturate(devinfo, inst) == 0 &&
dst_type == src_type;
}
static bool
dst_is_null(const struct intel_device_info *devinfo, const brw_inst *inst)
{
return brw_inst_dst_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
brw_inst_dst_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
}
static bool
src0_is_null(const struct intel_device_info *devinfo, const brw_inst *inst)
{
return brw_inst_src0_address_mode(devinfo, inst) == BRW_ADDRESS_DIRECT &&
brw_inst_src0_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
brw_inst_src0_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
}
static bool
src1_is_null(const struct intel_device_info *devinfo, const brw_inst *inst)
{
return brw_inst_src1_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
brw_inst_src1_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
}
static bool
src0_is_acc(const struct intel_device_info *devinfo, const brw_inst *inst)
{
return brw_inst_src0_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
(brw_inst_src0_da_reg_nr(devinfo, inst) & 0xF0) == BRW_ARF_ACCUMULATOR;
}
static bool
src1_is_acc(const struct intel_device_info *devinfo, const brw_inst *inst)
{
return brw_inst_src1_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
(brw_inst_src1_da_reg_nr(devinfo, inst) & 0xF0) == BRW_ARF_ACCUMULATOR;
}
static bool
src0_has_scalar_region(const struct intel_device_info *devinfo,
const brw_inst *inst)
{
return brw_inst_src0_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 &&
brw_inst_src0_width(devinfo, inst) == BRW_WIDTH_1 &&
brw_inst_src0_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0;
}
static bool
src1_has_scalar_region(const struct intel_device_info *devinfo,
const brw_inst *inst)
{
return brw_inst_src1_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 &&
brw_inst_src1_width(devinfo, inst) == BRW_WIDTH_1 &&
brw_inst_src1_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0;
}
static struct string
invalid_values(const struct brw_isa_info *isa, const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
unsigned num_sources = brw_num_sources_from_inst(isa, inst);
struct string error_msg = { .str = NULL, .len = 0 };
switch ((enum brw_execution_size) brw_inst_exec_size(devinfo, inst)) {
case BRW_EXECUTE_1:
case BRW_EXECUTE_2:
case BRW_EXECUTE_4:
case BRW_EXECUTE_8:
case BRW_EXECUTE_16:
case BRW_EXECUTE_32:
break;
default:
ERROR("invalid execution size");
break;
}
if (error_msg.str)
return error_msg;
if (devinfo->ver >= 12) {
unsigned group_size = 1 << brw_inst_exec_size(devinfo, inst);
unsigned qtr_ctrl = brw_inst_qtr_control(devinfo, inst);
unsigned nib_ctrl =
devinfo->ver == 12 ? brw_inst_nib_control(devinfo, inst) : 0;
unsigned chan_off = (qtr_ctrl * 2 + nib_ctrl) << 2;
ERROR_IF(chan_off % group_size != 0,
"The execution size must be a factor of the chosen offset");
}
if (inst_is_send(isa, inst))
return error_msg;
if (error_msg.str)
return error_msg;
if (num_sources == 3) {
if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1) {
if (devinfo->ver >= 10) {
ERROR_IF(brw_inst_3src_a1_dst_type (devinfo, inst) == BRW_TYPE_INVALID ||
brw_inst_3src_a1_src0_type(devinfo, inst) == BRW_TYPE_INVALID ||
brw_inst_3src_a1_src1_type(devinfo, inst) == BRW_TYPE_INVALID ||
brw_inst_3src_a1_src2_type(devinfo, inst) == BRW_TYPE_INVALID,
"invalid register type encoding");
} else {
ERROR("Align1 mode not allowed on Gen < 10");
}
} else {
ERROR_IF(brw_inst_3src_a16_dst_type(devinfo, inst) == BRW_TYPE_INVALID ||
brw_inst_3src_a16_src_type(devinfo, inst) == BRW_TYPE_INVALID,
"invalid register type encoding");
}
} else {
ERROR_IF(brw_inst_dst_type (devinfo, inst) == BRW_TYPE_INVALID ||
(num_sources > 0 &&
brw_inst_src0_type(devinfo, inst) == BRW_TYPE_INVALID) ||
(num_sources > 1 &&
brw_inst_src1_type(devinfo, inst) == BRW_TYPE_INVALID),
"invalid register type encoding");
}
return error_msg;
}
static struct string
sources_not_null(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
unsigned num_sources = brw_num_sources_from_inst(isa, inst);
struct string error_msg = { .str = NULL, .len = 0 };
/* Nothing to test. 3-src instructions can only have GRF sources, and
* there's no bit to control the file.
*/
if (num_sources == 3)
return (struct string){};
/* Nothing to test. Split sends can only encode a file in sources that are
* allowed to be NULL.
*/
if (inst_is_split_send(isa, inst))
return (struct string){};
if (num_sources >= 1 && brw_inst_opcode(isa, inst) != BRW_OPCODE_SYNC)
ERROR_IF(src0_is_null(devinfo, inst), "src0 is null");
if (num_sources == 2)
ERROR_IF(src1_is_null(devinfo, inst), "src1 is null");
return error_msg;
}
static struct string
alignment_supported(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
struct string error_msg = { .str = NULL, .len = 0 };
ERROR_IF(devinfo->ver >= 11 && brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16,
"Align16 not supported");
return error_msg;
}
static bool
inst_uses_src_acc(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
/* Check instructions that use implicit accumulator sources */
switch (brw_inst_opcode(isa, inst)) {
case BRW_OPCODE_MAC:
case BRW_OPCODE_MACH:
case BRW_OPCODE_SADA2:
return true;
default:
break;
}
/* FIXME: support 3-src instructions */
unsigned num_sources = brw_num_sources_from_inst(isa, inst);
assert(num_sources < 3);
return src0_is_acc(devinfo, inst) || (num_sources > 1 && src1_is_acc(devinfo, inst));
}
static struct string
send_restrictions(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
struct string error_msg = { .str = NULL, .len = 0 };
if (inst_is_split_send(isa, inst)) {
ERROR_IF(brw_inst_send_src1_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
brw_inst_send_src1_reg_nr(devinfo, inst) != BRW_ARF_NULL,
"src1 of split send must be a GRF or NULL");
ERROR_IF(brw_inst_eot(devinfo, inst) &&
brw_inst_src0_da_reg_nr(devinfo, inst) < 112,
"send with EOT must use g112-g127");
ERROR_IF(brw_inst_eot(devinfo, inst) &&
brw_inst_send_src1_reg_file(devinfo, inst) == BRW_GENERAL_REGISTER_FILE &&
brw_inst_send_src1_reg_nr(devinfo, inst) < 112,
"send with EOT must use g112-g127");
if (brw_inst_send_src0_reg_file(devinfo, inst) == BRW_GENERAL_REGISTER_FILE &&
brw_inst_send_src1_reg_file(devinfo, inst) == BRW_GENERAL_REGISTER_FILE) {
/* Assume minimums if we don't know */
unsigned mlen = 1;
if (!brw_inst_send_sel_reg32_desc(devinfo, inst)) {
const uint32_t desc = brw_inst_send_desc(devinfo, inst);
mlen = brw_message_desc_mlen(devinfo, desc) / reg_unit(devinfo);
}
unsigned ex_mlen = 1;
if (!brw_inst_send_sel_reg32_ex_desc(devinfo, inst)) {
const uint32_t ex_desc = brw_inst_sends_ex_desc(devinfo, inst);
ex_mlen = brw_message_ex_desc_ex_mlen(devinfo, ex_desc) /
reg_unit(devinfo);
}
const unsigned src0_reg_nr = brw_inst_src0_da_reg_nr(devinfo, inst);
const unsigned src1_reg_nr = brw_inst_send_src1_reg_nr(devinfo, inst);
ERROR_IF((src0_reg_nr <= src1_reg_nr &&
src1_reg_nr < src0_reg_nr + mlen) ||
(src1_reg_nr <= src0_reg_nr &&
src0_reg_nr < src1_reg_nr + ex_mlen),
"split send payloads must not overlap");
}
} else if (inst_is_send(isa, inst)) {
ERROR_IF(brw_inst_src0_address_mode(devinfo, inst) != BRW_ADDRESS_DIRECT,
"send must use direct addressing");
ERROR_IF(brw_inst_send_src0_reg_file(devinfo, inst) != BRW_GENERAL_REGISTER_FILE,
"send from non-GRF");
ERROR_IF(brw_inst_eot(devinfo, inst) &&
brw_inst_src0_da_reg_nr(devinfo, inst) < 112,
"send with EOT must use g112-g127");
ERROR_IF(!dst_is_null(devinfo, inst) &&
(brw_inst_dst_da_reg_nr(devinfo, inst) +
brw_inst_rlen(devinfo, inst) > 127) &&
(brw_inst_src0_da_reg_nr(devinfo, inst) +
brw_inst_mlen(devinfo, inst) >
brw_inst_dst_da_reg_nr(devinfo, inst)),
"r127 must not be used for return address when there is "
"a src and dest overlap");
}
return error_msg;
}
static bool
is_unsupported_inst(const struct brw_isa_info *isa,
const brw_inst *inst)
{
return brw_inst_opcode(isa, inst) == BRW_OPCODE_ILLEGAL;
}
/**
* Returns whether a combination of two types would qualify as mixed float
* operation mode
*/
static inline bool
types_are_mixed_float(enum brw_reg_type t0, enum brw_reg_type t1)
{
return (t0 == BRW_TYPE_F && t1 == BRW_TYPE_HF) ||
(t1 == BRW_TYPE_F && t0 == BRW_TYPE_HF);
}
static enum brw_reg_type
execution_type_for_type(enum brw_reg_type type)
{
switch (type) {
case BRW_TYPE_DF:
case BRW_TYPE_F:
case BRW_TYPE_HF:
return type;
case BRW_TYPE_VF:
return BRW_TYPE_F;
case BRW_TYPE_Q:
case BRW_TYPE_UQ:
return BRW_TYPE_Q;
case BRW_TYPE_D:
case BRW_TYPE_UD:
return BRW_TYPE_D;
case BRW_TYPE_W:
case BRW_TYPE_UW:
case BRW_TYPE_B:
case BRW_TYPE_UB:
case BRW_TYPE_V:
case BRW_TYPE_UV:
return BRW_TYPE_W;
default:
unreachable("invalid type");
}
}
/**
* Returns the execution type of an instruction \p inst
*/
static enum brw_reg_type
execution_type(const struct brw_isa_info *isa, const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
unsigned num_sources = brw_num_sources_from_inst(isa, inst);
enum brw_reg_type src0_exec_type, src1_exec_type;
/* Execution data type is independent of destination data type, except in
* mixed F/HF instructions.
*/
enum brw_reg_type dst_exec_type = inst_dst_type(isa, inst);
src0_exec_type = execution_type_for_type(brw_inst_src0_type(devinfo, inst));
if (num_sources == 1) {
if (src0_exec_type == BRW_TYPE_HF)
return dst_exec_type;
return src0_exec_type;
}
src1_exec_type = execution_type_for_type(brw_inst_src1_type(devinfo, inst));
if (types_are_mixed_float(src0_exec_type, src1_exec_type) ||
types_are_mixed_float(src0_exec_type, dst_exec_type) ||
types_are_mixed_float(src1_exec_type, dst_exec_type)) {
return BRW_TYPE_F;
}
if (src0_exec_type == src1_exec_type)
return src0_exec_type;
if (src0_exec_type == BRW_TYPE_Q ||
src1_exec_type == BRW_TYPE_Q)
return BRW_TYPE_Q;
if (src0_exec_type == BRW_TYPE_D ||
src1_exec_type == BRW_TYPE_D)
return BRW_TYPE_D;
if (src0_exec_type == BRW_TYPE_W ||
src1_exec_type == BRW_TYPE_W)
return BRW_TYPE_W;
if (src0_exec_type == BRW_TYPE_DF ||
src1_exec_type == BRW_TYPE_DF)
return BRW_TYPE_DF;
unreachable("not reached");
}
/**
* Returns whether a region is packed
*
* A region is packed if its elements are adjacent in memory, with no
* intervening space, no overlap, and no replicated values.
*/
static bool
is_packed(unsigned vstride, unsigned width, unsigned hstride)
{
if (vstride == width) {
if (vstride == 1) {
return hstride == 0;
} else {
return hstride == 1;
}
}
return false;
}
/**
* Returns whether a region is linear
*
* A region is linear if its elements do not overlap and are not replicated.
* Unlike a packed region, intervening space (i.e. strided values) is allowed.
*/
static bool
is_linear(unsigned vstride, unsigned width, unsigned hstride)
{
return vstride == width * hstride ||
(hstride == 0 && width == 1);
}
/**
* Returns whether an instruction is an explicit or implicit conversion
* to/from half-float.
*/
static bool
is_half_float_conversion(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
unsigned num_sources = brw_num_sources_from_inst(isa, inst);
enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
if (dst_type != src0_type &&
(dst_type == BRW_TYPE_HF || src0_type == BRW_TYPE_HF)) {
return true;
} else if (num_sources > 1) {
enum brw_reg_type src1_type = brw_inst_src1_type(devinfo, inst);
return dst_type != src1_type &&
(dst_type == BRW_TYPE_HF ||
src1_type == BRW_TYPE_HF);
}
return false;
}
/*
* Returns whether an instruction is using mixed float operation mode
*/
static bool
is_mixed_float(const struct brw_isa_info *isa, const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
if (inst_is_send(isa, inst))
return false;
unsigned opcode = brw_inst_opcode(isa, inst);
const struct opcode_desc *desc = brw_opcode_desc(isa, opcode);
if (desc->ndst == 0)
return false;
/* FIXME: support 3-src instructions */
unsigned num_sources = brw_num_sources_from_inst(isa, inst);
assert(num_sources < 3);
enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
if (num_sources == 1)
return types_are_mixed_float(src0_type, dst_type);
enum brw_reg_type src1_type = brw_inst_src1_type(devinfo, inst);
return types_are_mixed_float(src0_type, src1_type) ||
types_are_mixed_float(src0_type, dst_type) ||
types_are_mixed_float(src1_type, dst_type);
}
/**
* Returns whether an instruction is an explicit or implicit conversion
* to/from byte.
*/
static bool
is_byte_conversion(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
unsigned num_sources = brw_num_sources_from_inst(isa, inst);
enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
if (dst_type != src0_type &&
(brw_type_size_bytes(dst_type) == 1 ||
brw_type_size_bytes(src0_type) == 1)) {
return true;
} else if (num_sources > 1) {
enum brw_reg_type src1_type = brw_inst_src1_type(devinfo, inst);
return dst_type != src1_type &&
(brw_type_size_bytes(dst_type) == 1 ||
brw_type_size_bytes(src1_type) == 1);
}
return false;
}
/**
* Checks restrictions listed in "General Restrictions Based on Operand Types"
* in the "Register Region Restrictions" section.
*/
static struct string
general_restrictions_based_on_operand_types(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
const struct opcode_desc *desc =
brw_opcode_desc(isa, brw_inst_opcode(isa, inst));
unsigned num_sources = brw_num_sources_from_inst(isa, inst);
unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
struct string error_msg = { .str = NULL, .len = 0 };
if (inst_is_send(isa, inst))
return error_msg;
if (devinfo->ver >= 11) {
/* A register type of B or UB for DPAS actually means 4 bytes packed into
* a D or UD, so it is allowed.
*/
if (num_sources == 3 && brw_inst_opcode(isa, inst) != BRW_OPCODE_DPAS) {
ERROR_IF(brw_type_size_bytes(brw_inst_3src_a1_src1_type(devinfo, inst)) == 1 ||
brw_type_size_bytes(brw_inst_3src_a1_src2_type(devinfo, inst)) == 1,
"Byte data type is not supported for src1/2 register regioning. This includes "
"byte broadcast as well.");
}
if (num_sources == 2) {
ERROR_IF(brw_type_size_bytes(brw_inst_src1_type(devinfo, inst)) == 1,
"Byte data type is not supported for src1 register regioning. This includes "
"byte broadcast as well.");
}
}
enum brw_reg_type dst_type;
if (num_sources == 3) {
if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1)
dst_type = brw_inst_3src_a1_dst_type(devinfo, inst);
else
dst_type = brw_inst_3src_a16_dst_type(devinfo, inst);
} else {
dst_type = inst_dst_type(isa, inst);
}
ERROR_IF(dst_type == BRW_TYPE_DF &&
!devinfo->has_64bit_float,
"64-bit float destination, but platform does not support it");
ERROR_IF((dst_type == BRW_TYPE_Q ||
dst_type == BRW_TYPE_UQ) &&
!devinfo->has_64bit_int,
"64-bit int destination, but platform does not support it");
for (unsigned s = 0; s < num_sources; s++) {
enum brw_reg_type src_type;
if (num_sources == 3) {
if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1) {
switch (s) {
case 0: src_type = brw_inst_3src_a1_src0_type(devinfo, inst); break;
case 1: src_type = brw_inst_3src_a1_src1_type(devinfo, inst); break;
case 2: src_type = brw_inst_3src_a1_src2_type(devinfo, inst); break;
default: unreachable("invalid src");
}
} else {
src_type = brw_inst_3src_a16_src_type(devinfo, inst);
}
} else {
switch (s) {
case 0: src_type = brw_inst_src0_type(devinfo, inst); break;
case 1: src_type = brw_inst_src1_type(devinfo, inst); break;
default: unreachable("invalid src");
}
}
ERROR_IF(src_type == BRW_TYPE_DF &&
!devinfo->has_64bit_float,
"64-bit float source, but platform does not support it");
ERROR_IF((src_type == BRW_TYPE_Q ||
src_type == BRW_TYPE_UQ) &&
!devinfo->has_64bit_int,
"64-bit int source, but platform does not support it");
if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16 &&
num_sources == 3 && brw_type_size_bytes(src_type) > 4) {
/* From the Broadwell PRM, Volume 7 "3D Media GPGPU", page 944:
*
* "This is applicable to 32b datatypes and 16b datatype. 64b
* datatypes cannot use the replicate control."
*/
switch (s) {
case 0:
ERROR_IF(brw_inst_3src_a16_src0_rep_ctrl(devinfo, inst),
"RepCtrl must be zero for 64-bit source 0");
break;
case 1:
ERROR_IF(brw_inst_3src_a16_src1_rep_ctrl(devinfo, inst),
"RepCtrl must be zero for 64-bit source 1");
break;
case 2:
ERROR_IF(brw_inst_3src_a16_src2_rep_ctrl(devinfo, inst),
"RepCtrl must be zero for 64-bit source 2");
break;
default: unreachable("invalid src");
}
}
}
if (num_sources == 3)
return error_msg;
if (exec_size == 1)
return error_msg;
if (desc->ndst == 0)
return error_msg;
if (brw_inst_opcode(isa, inst) == BRW_OPCODE_MATH &&
intel_needs_workaround(devinfo, 22016140776)) {
/* Wa_22016140776:
*
* Scalar broadcast on HF math (packed or unpacked) must not be
* used. Compiler must use a mov instruction to expand the scalar
* value to a vector before using in a HF (packed or unpacked)
* math operation.
*/
ERROR_IF(brw_inst_src0_type(devinfo, inst) == BRW_TYPE_HF &&
src0_has_scalar_region(devinfo, inst),
"Scalar broadcast on HF math (packed or unpacked) must not "
"be used.");
if (num_sources > 1) {
ERROR_IF(brw_inst_src1_type(devinfo, inst) == BRW_TYPE_HF &&
src1_has_scalar_region(devinfo, inst),
"Scalar broadcast on HF math (packed or unpacked) must not "
"be used.");
}
}
/* The PRMs say:
*
* Where n is the largest element size in bytes for any source or
* destination operand type, ExecSize * n must be <= 64.
*
* But we do not attempt to enforce it, because it is implied by other
* rules:
*
* - that the destination stride must match the execution data type
* - sources may not span more than two adjacent GRF registers
* - destination may not span more than two adjacent GRF registers
*
* In fact, checking it would weaken testing of the other rules.
*/
unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
bool dst_type_is_byte =
inst_dst_type(isa, inst) == BRW_TYPE_B ||
inst_dst_type(isa, inst) == BRW_TYPE_UB;
if (dst_type_is_byte) {
if (is_packed(exec_size * dst_stride, exec_size, dst_stride)) {
if (!inst_is_raw_move(isa, inst))
ERROR("Only raw MOV supports a packed-byte destination");
return error_msg;
}
}
unsigned exec_type = execution_type(isa, inst);
unsigned exec_type_size = brw_type_size_bytes(exec_type);
unsigned dst_type_size = brw_type_size_bytes(dst_type);
if (is_byte_conversion(isa, inst)) {
/* From the BDW+ PRM, Volume 2a, Command Reference, Instructions - MOV:
*
* "There is no direct conversion from B/UB to DF or DF to B/UB.
* There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB."
*
* Even if these restrictions are listed for the MOV instruction, we
* validate this more generally, since there is the possibility
* of implicit conversions from other instructions.
*/
enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
enum brw_reg_type src1_type = num_sources > 1 ?
brw_inst_src1_type(devinfo, inst) : 0;
ERROR_IF(brw_type_size_bytes(dst_type) == 1 &&
(brw_type_size_bytes(src0_type) == 8 ||
(num_sources > 1 && brw_type_size_bytes(src1_type) == 8)),
"There are no direct conversions between 64-bit types and B/UB");
ERROR_IF(brw_type_size_bytes(dst_type) == 8 &&
(brw_type_size_bytes(src0_type) == 1 ||
(num_sources > 1 && brw_type_size_bytes(src1_type) == 1)),
"There are no direct conversions between 64-bit types and B/UB");
}
if (is_half_float_conversion(isa, inst)) {
/**
* A helper to validate used in the validation of the following restriction
* from the BDW+ PRM, Volume 2a, Command Reference, Instructions - MOV:
*
* "There is no direct conversion from HF to DF or DF to HF.
* There is no direct conversion from HF to Q/UQ or Q/UQ to HF."
*
* Even if these restrictions are listed for the MOV instruction, we
* validate this more generally, since there is the possibility
* of implicit conversions from other instructions, such us implicit
* conversion from integer to HF with the ADD instruction in SKL+.
*/
enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
enum brw_reg_type src1_type = num_sources > 1 ?
brw_inst_src1_type(devinfo, inst) : 0;
ERROR_IF(dst_type == BRW_TYPE_HF &&
(brw_type_size_bytes(src0_type) == 8 ||
(num_sources > 1 && brw_type_size_bytes(src1_type) == 8)),
"There are no direct conversions between 64-bit types and HF");
ERROR_IF(brw_type_size_bytes(dst_type) == 8 &&
(src0_type == BRW_TYPE_HF ||
(num_sources > 1 && src1_type == BRW_TYPE_HF)),
"There are no direct conversions between 64-bit types and HF");
/* From the BDW+ PRM:
*
* "Conversion between Integer and HF (Half Float) must be
* DWord-aligned and strided by a DWord on the destination."
*
* Also, the above restrictions seems to be expanded on CHV and SKL+ by:
*
* "There is a relaxed alignment rule for word destinations. When
* the destination type is word (UW, W, HF), destination data types
* can be aligned to either the lowest word or the second lowest
* word of the execution channel. This means the destination data
* words can be either all in the even word locations or all in the
* odd word locations."
*
* We do not implement the second rule as is though, since empirical
* testing shows inconsistencies:
* - It suggests that packed 16-bit is not allowed, which is not true.
* - It suggests that conversions from Q/DF to W (which need to be
* 64-bit aligned on the destination) are not possible, which is
* not true.
*
* So from this rule we only validate the implication that conversions
* from F to HF need to be DWord strided (except in Align1 mixed
* float mode where packed fp16 destination is allowed so long as the
* destination is oword-aligned).
*
* Finally, we only validate this for Align1 because Align16 always
* requires packed destinations, so these restrictions can't possibly
* apply to Align16 mode.
*/
if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1) {
if ((dst_type == BRW_TYPE_HF &&
(brw_type_is_int(src0_type) ||
(num_sources > 1 && brw_type_is_int(src1_type)))) ||
(brw_type_is_int(dst_type) &&
(src0_type == BRW_TYPE_HF ||
(num_sources > 1 && src1_type == BRW_TYPE_HF)))) {
ERROR_IF(dst_stride * dst_type_size != 4,
"Conversions between integer and half-float must be "
"strided by a DWord on the destination");
unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
ERROR_IF(subreg % 4 != 0,
"Conversions between integer and half-float must be "
"aligned to a DWord on the destination");
} else if (dst_type == BRW_TYPE_HF) {
unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
ERROR_IF(dst_stride != 2 &&
!(is_mixed_float(isa, inst) &&
dst_stride == 1 && subreg % 16 == 0),
"Conversions to HF must have either all words in even "
"word locations or all words in odd word locations or "
"be mixed-float with Oword-aligned packed destination");
}
}
}
/* There are special regioning rules for mixed-float mode in CHV and SKL that
* override the general rule for the ratio of sizes of the destination type
* and the execution type. We will add validation for those in a later patch.
*/
bool validate_dst_size_and_exec_size_ratio = !is_mixed_float(isa, inst);
if (validate_dst_size_and_exec_size_ratio &&
exec_type_size > dst_type_size) {
if (!(dst_type_is_byte && inst_is_raw_move(isa, inst))) {
ERROR_IF(dst_stride * dst_type_size != exec_type_size,
"Destination stride must be equal to the ratio of the sizes "
"of the execution data type to the destination type");
}
unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 &&
brw_inst_dst_address_mode(devinfo, inst) == BRW_ADDRESS_DIRECT) {
/* The i965 PRM says:
*
* Implementation Restriction: The relaxed alignment rule for byte
* destination (#10.5) is not supported.
*/
if (dst_type_is_byte) {
ERROR_IF(subreg % exec_type_size != 0 &&
subreg % exec_type_size != 1,
"Destination subreg must be aligned to the size of the "
"execution data type (or to the next lowest byte for byte "
"destinations)");
} else {
ERROR_IF(subreg % exec_type_size != 0,
"Destination subreg must be aligned to the size of the "
"execution data type");
}
}
}
return error_msg;
}
/**
* Checks restrictions listed in "General Restrictions on Regioning Parameters"
* in the "Register Region Restrictions" section.
*/
static struct string
general_restrictions_on_region_parameters(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
const struct opcode_desc *desc =
brw_opcode_desc(isa, brw_inst_opcode(isa, inst));
unsigned num_sources = brw_num_sources_from_inst(isa, inst);
unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
struct string error_msg = { .str = NULL, .len = 0 };
if (num_sources == 3)
return (struct string){};
/* Split sends don't have the bits in the instruction to encode regions so
* there's nothing to check.
*/
if (inst_is_split_send(isa, inst))
return (struct string){};
if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16) {
if (desc->ndst != 0 && !dst_is_null(devinfo, inst))
ERROR_IF(brw_inst_dst_hstride(devinfo, inst) != BRW_HORIZONTAL_STRIDE_1,
"Destination Horizontal Stride must be 1");
if (num_sources >= 1) {
ERROR_IF(brw_inst_src0_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_2 &&
brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
"In Align16 mode, only VertStride of 0, 2, or 4 is allowed");
}
if (num_sources == 2) {
ERROR_IF(brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_2 &&
brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
"In Align16 mode, only VertStride of 0, 2, or 4 is allowed");
}
return error_msg;
}
for (unsigned i = 0; i < num_sources; i++) {
unsigned vstride, width, hstride, element_size, subreg;
enum brw_reg_type type;
#define DO_SRC(n) \
if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \
BRW_IMMEDIATE_VALUE) \
continue; \
\
vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \
width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \
hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \
type = brw_inst_src ## n ## _type(devinfo, inst); \
element_size = brw_type_size_bytes(type); \
subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst)
if (i == 0) {
DO_SRC(0);
} else {
DO_SRC(1);
}
#undef DO_SRC
/* ExecSize must be greater than or equal to Width. */
ERROR_IF(exec_size < width, "ExecSize must be greater than or equal "
"to Width");
/* If ExecSize = Width and HorzStride ≠ 0,
* VertStride must be set to Width * HorzStride.
*/
if (exec_size == width && hstride != 0) {
ERROR_IF(vstride != width * hstride,
"If ExecSize = Width and HorzStride ≠ 0, "
"VertStride must be set to Width * HorzStride");
}
/* If Width = 1, HorzStride must be 0 regardless of the values of
* ExecSize and VertStride.
*/
if (width == 1) {
ERROR_IF(hstride != 0,
"If Width = 1, HorzStride must be 0 regardless "
"of the values of ExecSize and VertStride");
}
/* If ExecSize = Width = 1, both VertStride and HorzStride must be 0. */
if (exec_size == 1 && width == 1) {
ERROR_IF(vstride != 0 || hstride != 0,
"If ExecSize = Width = 1, both VertStride "
"and HorzStride must be 0");
}
/* If VertStride = HorzStride = 0, Width must be 1 regardless of the
* value of ExecSize.
*/
if (vstride == 0 && hstride == 0) {
ERROR_IF(width != 1,
"If VertStride = HorzStride = 0, Width must be "
"1 regardless of the value of ExecSize");
}
/* VertStride must be used to cross GRF register boundaries. This rule
* implies that elements within a 'Width' cannot cross GRF boundaries.
*/
const uint64_t mask = (1ULL << element_size) - 1;
unsigned rowbase = subreg;
for (int y = 0; y < exec_size / width; y++) {
uint64_t access_mask = 0;
unsigned offset = rowbase;
for (int x = 0; x < width; x++) {
access_mask |= mask << (offset % 64);
offset += hstride * element_size;
}
rowbase += vstride * element_size;
if ((uint32_t)access_mask != 0 && (access_mask >> 32) != 0) {
ERROR("VertStride must be used to cross GRF register boundaries");
break;
}
}
}
/* Dst.HorzStride must not be 0. */
if (desc->ndst != 0 && !dst_is_null(devinfo, inst)) {
ERROR_IF(brw_inst_dst_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0,
"Destination Horizontal Stride must not be 0");
}
return error_msg;
}
static struct string
special_restrictions_for_mixed_float_mode(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
struct string error_msg = { .str = NULL, .len = 0 };
const unsigned opcode = brw_inst_opcode(isa, inst);
const unsigned num_sources = brw_num_sources_from_inst(isa, inst);
if (num_sources >= 3)
return error_msg;
if (!is_mixed_float(isa, inst))
return error_msg;
unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
bool is_align16 = brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16;
enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
enum brw_reg_type src1_type = num_sources > 1 ?
brw_inst_src1_type(devinfo, inst) : 0;
enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
bool dst_is_packed = is_packed(exec_size * dst_stride, exec_size, dst_stride);
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "Indirect addressing on source is not supported when source and
* destination data types are mixed float."
*/
ERROR_IF(brw_inst_src0_address_mode(devinfo, inst) != BRW_ADDRESS_DIRECT ||
(num_sources > 1 &&
brw_inst_src1_address_mode(devinfo, inst) != BRW_ADDRESS_DIRECT),
"Indirect addressing on source is not supported when source and "
"destination data types are mixed float");
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "No SIMD16 in mixed mode when destination is f32. Instruction
* execution size must be no more than 8."
*/
ERROR_IF(exec_size > 8 && devinfo->ver < 20 &&
dst_type == BRW_TYPE_F &&
opcode != BRW_OPCODE_MOV,
"Mixed float mode with 32-bit float destination is limited "
"to SIMD8");
if (is_align16) {
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "In Align16 mode, when half float and float data types are mixed
* between source operands OR between source and destination operands,
* the register content are assumed to be packed."
*
* Since Align16 doesn't have a concept of horizontal stride (or width),
* it means that vertical stride must always be 4, since 0 and 2 would
* lead to replicated data, and any other value is disallowed in Align16.
*/
ERROR_IF(brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
"Align16 mixed float mode assumes packed data (vstride must be 4");
ERROR_IF(num_sources >= 2 &&
brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
"Align16 mixed float mode assumes packed data (vstride must be 4");
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "For Align16 mixed mode, both input and output packed f16 data
* must be oword aligned, no oword crossing in packed f16."
*
* The previous rule requires that Align16 operands are always packed,
* and since there is only one bit for Align16 subnr, which represents
* offsets 0B and 16B, this rule is always enforced and we don't need to
* validate it.
*/
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "No SIMD16 in mixed mode when destination is packed f16 for both
* Align1 and Align16."
*
* And:
*
* "In Align16 mode, when half float and float data types are mixed
* between source operands OR between source and destination operands,
* the register content are assumed to be packed."
*
* Which implies that SIMD16 is not available in Align16. This is further
* confirmed by:
*
* "For Align16 mixed mode, both input and output packed f16 data
* must be oword aligned, no oword crossing in packed f16"
*
* Since oword-aligned packed f16 data would cross oword boundaries when
* the execution size is larger than 8.
*/
ERROR_IF(exec_size > 8, "Align16 mixed float mode is limited to SIMD8");
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "No accumulator read access for Align16 mixed float."
*/
ERROR_IF(inst_uses_src_acc(isa, inst),
"No accumulator read access for Align16 mixed float");
} else {
assert(!is_align16);
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "No SIMD16 in mixed mode when destination is packed f16 for both
* Align1 and Align16."
*/
ERROR_IF(exec_size > 8 && dst_is_packed &&
dst_type == BRW_TYPE_HF &&
opcode != BRW_OPCODE_MOV,
"Align1 mixed float mode is limited to SIMD8 when destination "
"is packed half-float");
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "Math operations for mixed mode:
* - In Align1, f16 inputs need to be strided"
*/
if (opcode == BRW_OPCODE_MATH) {
if (src0_type == BRW_TYPE_HF) {
ERROR_IF(STRIDE(brw_inst_src0_hstride(devinfo, inst)) <= 1,
"Align1 mixed mode math needs strided half-float inputs");
}
if (num_sources >= 2 && src1_type == BRW_TYPE_HF) {
ERROR_IF(STRIDE(brw_inst_src1_hstride(devinfo, inst)) <= 1,
"Align1 mixed mode math needs strided half-float inputs");
}
}
if (dst_type == BRW_TYPE_HF && dst_stride == 1) {
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "In Align1, destination stride can be smaller than execution
* type. When destination is stride of 1, 16 bit packed data is
* updated on the destination. However, output packed f16 data
* must be oword aligned, no oword crossing in packed f16."
*
* The requirement of not crossing oword boundaries for 16-bit oword
* aligned data means that execution size is limited to 8.
*/
unsigned subreg;
if (brw_inst_dst_address_mode(devinfo, inst) == BRW_ADDRESS_DIRECT)
subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
else
subreg = brw_inst_dst_ia_subreg_nr(devinfo, inst);
ERROR_IF(subreg % 16 != 0,
"Align1 mixed mode packed half-float output must be "
"oword aligned");
ERROR_IF(exec_size > 8,
"Align1 mixed mode packed half-float output must not "
"cross oword boundaries (max exec size is 8)");
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "When source is float or half float from accumulator register and
* destination is half float with a stride of 1, the source must
* register aligned. i.e., source must have offset zero."
*
* Align16 mixed float mode doesn't allow accumulator access on sources,
* so we only need to check this for Align1.
*/
if (src0_is_acc(devinfo, inst) &&
(src0_type == BRW_TYPE_F ||
src0_type == BRW_TYPE_HF)) {
ERROR_IF(brw_inst_src0_da1_subreg_nr(devinfo, inst) != 0,
"Mixed float mode requires register-aligned accumulator "
"source reads when destination is packed half-float");
}
if (num_sources > 1 &&
src1_is_acc(devinfo, inst) &&
(src1_type == BRW_TYPE_F ||
src1_type == BRW_TYPE_HF)) {
ERROR_IF(brw_inst_src1_da1_subreg_nr(devinfo, inst) != 0,
"Mixed float mode requires register-aligned accumulator "
"source reads when destination is packed half-float");
}
}
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "No swizzle is allowed when an accumulator is used as an implicit
* source or an explicit source in an instruction. i.e. when
* destination is half float with an implicit accumulator source,
* destination stride needs to be 2."
*
* FIXME: it is not quite clear what the first sentence actually means
* or its link to the implication described after it, so we only
* validate the explicit implication, which is clearly described.
*/
if (dst_type == BRW_TYPE_HF &&
inst_uses_src_acc(isa, inst)) {
ERROR_IF(dst_stride != 2,
"Mixed float mode with implicit/explicit accumulator "
"source and half-float destination requires a stride "
"of 2 on the destination");
}
}
return error_msg;
}
/**
* Creates an \p access_mask for an \p exec_size, \p element_size, and a region
*
* An \p access_mask is a 32-element array of uint64_t, where each uint64_t is
* a bitmask of bytes accessed by the region.
*
* For instance the access mask of the source gX.1<4,2,2>F in an exec_size = 4
* instruction would be
*
* access_mask[0] = 0x00000000000000F0
* access_mask[1] = 0x000000000000F000
* access_mask[2] = 0x0000000000F00000
* access_mask[3] = 0x00000000F0000000
* access_mask[4-31] = 0
*
* because the first execution channel accesses bytes 7-4 and the second
* execution channel accesses bytes 15-12, etc.
*/
static void
align1_access_mask(uint64_t access_mask[static 32],
unsigned exec_size, unsigned element_size, unsigned subreg,
unsigned vstride, unsigned width, unsigned hstride)
{
const uint64_t mask = (1ULL << element_size) - 1;
unsigned rowbase = subreg;
unsigned element = 0;
for (int y = 0; y < exec_size / width; y++) {
unsigned offset = rowbase;
for (int x = 0; x < width; x++) {
access_mask[element++] = mask << (offset % 64);
offset += hstride * element_size;
}
rowbase += vstride * element_size;
}
assert(element == 0 || element == exec_size);
}
/**
* Returns the number of registers accessed according to the \p access_mask
*/
static int
registers_read(const uint64_t access_mask[static 32])
{
int regs_read = 0;
for (unsigned i = 0; i < 32; i++) {
if (access_mask[i] > 0xFFFFFFFF) {
return 2;
} else if (access_mask[i]) {
regs_read = 1;
}
}
return regs_read;
}
/**
* Checks restrictions listed in "Region Alignment Rules" in the "Register
* Region Restrictions" section.
*/
static struct string
region_alignment_rules(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
const struct opcode_desc *desc =
brw_opcode_desc(isa, brw_inst_opcode(isa, inst));
unsigned num_sources = brw_num_sources_from_inst(isa, inst);
unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
uint64_t dst_access_mask[32], src0_access_mask[32], src1_access_mask[32];
struct string error_msg = { .str = NULL, .len = 0 };
if (num_sources == 3)
return (struct string){};
if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16)
return (struct string){};
if (inst_is_send(isa, inst))
return (struct string){};
memset(dst_access_mask, 0, sizeof(dst_access_mask));
memset(src0_access_mask, 0, sizeof(src0_access_mask));
memset(src1_access_mask, 0, sizeof(src1_access_mask));
for (unsigned i = 0; i < num_sources; i++) {
unsigned vstride, width, hstride, element_size, subreg;
enum brw_reg_type type;
/* In Direct Addressing mode, a source cannot span more than 2 adjacent
* GRF registers.
*/
#define DO_SRC(n) \
if (brw_inst_src ## n ## _address_mode(devinfo, inst) != \
BRW_ADDRESS_DIRECT) \
continue; \
\
if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \
BRW_IMMEDIATE_VALUE) \
continue; \
\
vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \
width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \
hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \
type = brw_inst_src ## n ## _type(devinfo, inst); \
element_size = brw_type_size_bytes(type); \
subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \
align1_access_mask(src ## n ## _access_mask, \
exec_size, element_size, subreg, \
vstride, width, hstride)
if (i == 0) {
DO_SRC(0);
} else {
DO_SRC(1);
}
#undef DO_SRC
unsigned num_vstride = exec_size / width;
unsigned num_hstride = width;
unsigned vstride_elements = (num_vstride - 1) * vstride;
unsigned hstride_elements = (num_hstride - 1) * hstride;
unsigned offset = (vstride_elements + hstride_elements) * element_size +
subreg;
ERROR_IF(offset >= 64 * reg_unit(devinfo),
"A source cannot span more than 2 adjacent GRF registers");
}
if (desc->ndst == 0 || dst_is_null(devinfo, inst))
return error_msg;
unsigned stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
enum brw_reg_type dst_type = inst_dst_type(isa, inst);
unsigned element_size = brw_type_size_bytes(dst_type);
unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
unsigned offset = ((exec_size - 1) * stride * element_size) + subreg;
ERROR_IF(offset >= 64 * reg_unit(devinfo),
"A destination cannot span more than 2 adjacent GRF registers");
if (error_msg.str)
return error_msg;
align1_access_mask(dst_access_mask, exec_size, element_size, subreg,
exec_size == 1 ? 0 : exec_size * stride,
exec_size == 1 ? 1 : exec_size,
exec_size == 1 ? 0 : stride);
unsigned dst_regs = registers_read(dst_access_mask);
/* The SKL PRM says:
*
* When destination of MATH instruction spans two registers, the
* destination elements must be evenly split between the two registers.
*
* It is not known whether this restriction applies to KBL other Gens after
* SKL.
*/
if (brw_inst_opcode(isa, inst) == BRW_OPCODE_MATH) {
if (dst_regs == 2) {
unsigned upper_reg_writes = 0, lower_reg_writes = 0;
for (unsigned i = 0; i < exec_size; i++) {
if (dst_access_mask[i] > 0xFFFFFFFF) {
upper_reg_writes++;
} else {
assert(dst_access_mask[i] != 0);
lower_reg_writes++;
}
}
ERROR_IF(upper_reg_writes != lower_reg_writes,
"Writes must be evenly split between the two "
"destination registers");
}
}
return error_msg;
}
static struct string
vector_immediate_restrictions(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
unsigned num_sources = brw_num_sources_from_inst(isa, inst);
struct string error_msg = { .str = NULL, .len = 0 };
if (num_sources == 3 || num_sources == 0 ||
(devinfo->ver >= 12 && inst_is_send(isa, inst)))
return (struct string){};
unsigned file = num_sources == 1 ?
brw_inst_src0_reg_file(devinfo, inst) :
brw_inst_src1_reg_file(devinfo, inst);
if (file != BRW_IMMEDIATE_VALUE)
return (struct string){};
enum brw_reg_type dst_type = inst_dst_type(isa, inst);
unsigned dst_type_size = brw_type_size_bytes(dst_type);
unsigned dst_subreg = brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 ?
brw_inst_dst_da1_subreg_nr(devinfo, inst) : 0;
unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
enum brw_reg_type type = num_sources == 1 ?
brw_inst_src0_type(devinfo, inst) :
brw_inst_src1_type(devinfo, inst);
/* The PRMs say:
*
* When an immediate vector is used in an instruction, the destination
* must be 128-bit aligned with destination horizontal stride equivalent
* to a word for an immediate integer vector (v) and equivalent to a
* DWord for an immediate float vector (vf).
*
* The text has not been updated for the addition of the immediate unsigned
* integer vector type (uv) on SNB, but presumably the same restriction
* applies.
*/
switch (type) {
case BRW_TYPE_V:
case BRW_TYPE_UV:
case BRW_TYPE_VF:
ERROR_IF(dst_subreg % (128 / 8) != 0,
"Destination must be 128-bit aligned in order to use immediate "
"vector types");
if (type == BRW_TYPE_VF) {
ERROR_IF(dst_type_size * dst_stride != 4,
"Destination must have stride equivalent to dword in order "
"to use the VF type");
} else {
ERROR_IF(dst_type_size * dst_stride != 2,
"Destination must have stride equivalent to word in order "
"to use the V or UV type");
}
break;
default:
break;
}
return error_msg;
}
static struct string
special_requirements_for_handling_double_precision_data_types(
const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
unsigned num_sources = brw_num_sources_from_inst(isa, inst);
struct string error_msg = { .str = NULL, .len = 0 };
if (num_sources == 3 || num_sources == 0)
return (struct string){};
/* Split sends don't have types so there's no doubles there. */
if (inst_is_split_send(isa, inst))
return (struct string){};
enum brw_reg_type exec_type = execution_type(isa, inst);
unsigned exec_type_size = brw_type_size_bytes(exec_type);
enum brw_reg_file dst_file = brw_inst_dst_reg_file(devinfo, inst);
enum brw_reg_type dst_type = inst_dst_type(isa, inst);
unsigned dst_type_size = brw_type_size_bytes(dst_type);
unsigned dst_hstride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
unsigned dst_reg = brw_inst_dst_da_reg_nr(devinfo, inst);
unsigned dst_subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
unsigned dst_address_mode = brw_inst_dst_address_mode(devinfo, inst);
bool is_integer_dword_multiply =
brw_inst_opcode(isa, inst) == BRW_OPCODE_MUL &&
(brw_inst_src0_type(devinfo, inst) == BRW_TYPE_D ||
brw_inst_src0_type(devinfo, inst) == BRW_TYPE_UD) &&
(brw_inst_src1_type(devinfo, inst) == BRW_TYPE_D ||
brw_inst_src1_type(devinfo, inst) == BRW_TYPE_UD);
const bool is_double_precision =
dst_type_size == 8 || exec_type_size == 8 || is_integer_dword_multiply;
for (unsigned i = 0; i < num_sources; i++) {
unsigned vstride, width, hstride, type_size, reg, subreg, address_mode;
bool is_scalar_region;
enum brw_reg_file file;
enum brw_reg_type type;
#define DO_SRC(n) \
if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \
BRW_IMMEDIATE_VALUE) \
continue; \
\
is_scalar_region = src ## n ## _has_scalar_region(devinfo, inst); \
vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \
width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \
hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \
file = brw_inst_src ## n ## _reg_file(devinfo, inst); \
type = brw_inst_src ## n ## _type(devinfo, inst); \
type_size = brw_type_size_bytes(type); \
reg = brw_inst_src ## n ## _da_reg_nr(devinfo, inst); \
subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \
address_mode = brw_inst_src ## n ## _address_mode(devinfo, inst)
if (i == 0) {
DO_SRC(0);
} else {
DO_SRC(1);
}
#undef DO_SRC
const unsigned src_stride = (hstride ? hstride : vstride) * type_size;
const unsigned dst_stride = dst_hstride * dst_type_size;
/* The PRMs say that for CHV, BXT:
*
* When source or destination datatype is 64b or operation is integer
* DWord multiply, regioning in Align1 must follow these rules:
*
* 1. Source and Destination horizontal stride must be aligned to the
* same qword.
* 2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.
* 3. Source and Destination offset must be the same, except the case
* of scalar source.
*
* We assume that the restriction applies to GLK as well.
*/
if (is_double_precision &&
brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 &&
intel_device_info_is_9lp(devinfo)) {
ERROR_IF(!is_scalar_region &&
(src_stride % 8 != 0 ||
dst_stride % 8 != 0 ||
src_stride != dst_stride),
"Source and destination horizontal stride must equal and a "
"multiple of a qword when the execution type is 64-bit");
ERROR_IF(vstride != width * hstride,
"Vstride must be Width * Hstride when the execution type is "
"64-bit");
ERROR_IF(!is_scalar_region && dst_subreg != subreg,
"Source and destination offset must be the same when the "
"execution type is 64-bit");
}
/* The PRMs say that for CHV, BXT:
*
* When source or destination datatype is 64b or operation is integer
* DWord multiply, indirect addressing must not be used.
*
* We assume that the restriction applies to GLK as well.
*/
if (is_double_precision &&
intel_device_info_is_9lp(devinfo)) {
ERROR_IF(BRW_ADDRESS_REGISTER_INDIRECT_REGISTER == address_mode ||
BRW_ADDRESS_REGISTER_INDIRECT_REGISTER == dst_address_mode,
"Indirect addressing is not allowed when the execution type "
"is 64-bit");
}
/* The PRMs say that for CHV, BXT:
*
* ARF registers must never be used with 64b datatype or when
* operation is integer DWord multiply.
*
* We assume that the restriction applies to GLK as well.
*
* We assume that the restriction does not apply to the null register.
*/
if (is_double_precision &&
intel_device_info_is_9lp(devinfo)) {
ERROR_IF(brw_inst_opcode(isa, inst) == BRW_OPCODE_MAC ||
brw_inst_acc_wr_control(devinfo, inst) ||
(BRW_ARCHITECTURE_REGISTER_FILE == file &&
reg != BRW_ARF_NULL) ||
(BRW_ARCHITECTURE_REGISTER_FILE == dst_file &&
dst_reg != BRW_ARF_NULL),
"Architecture registers cannot be used when the execution "
"type is 64-bit");
}
/* From the hardware spec section "Register Region Restrictions":
*
* There are two rules:
*
* "In case of all floating point data types used in destination:" and
*
* "In case where source or destination datatype is 64b or operation is
* integer DWord multiply:"
*
* both of which list the same restrictions:
*
* "1. Register Regioning patterns where register data bit location
* of the LSB of the channels are changed between source and
* destination are not supported on Src0 and Src1 except for
* broadcast of a scalar.
*
* 2. Explicit ARF registers except null and accumulator must not be
* used."
*/
if (devinfo->verx10 >= 125 &&
(brw_type_is_float(dst_type) ||
is_double_precision)) {
ERROR_IF(!is_scalar_region &&
BRW_ADDRESS_REGISTER_INDIRECT_REGISTER != address_mode &&
(!is_linear(vstride, width, hstride) ||
src_stride != dst_stride ||
subreg != dst_subreg),
"Register Regioning patterns where register data bit "
"location of the LSB of the channels are changed between "
"source and destination are not supported except for "
"broadcast of a scalar.");
ERROR_IF((address_mode == BRW_ADDRESS_DIRECT && file == BRW_ARCHITECTURE_REGISTER_FILE &&
reg != BRW_ARF_NULL && !(reg >= BRW_ARF_ACCUMULATOR && reg < BRW_ARF_FLAG)) ||
(dst_file == BRW_ARCHITECTURE_REGISTER_FILE &&
dst_reg != BRW_ARF_NULL && (dst_reg & 0xF0) != BRW_ARF_ACCUMULATOR),
"Explicit ARF registers except null and accumulator must not "
"be used.");
}
/* From the hardware spec section "Register Region Restrictions":
*
* "Vx1 and VxH indirect addressing for Float, Half-Float, Double-Float and
* Quad-Word data must not be used."
*/
if (devinfo->verx10 >= 125 &&
(brw_type_is_float(type) || brw_type_size_bytes(type) == 8)) {
ERROR_IF(address_mode == BRW_ADDRESS_REGISTER_INDIRECT_REGISTER &&
vstride == BRW_VERTICAL_STRIDE_ONE_DIMENSIONAL,
"Vx1 and VxH indirect addressing for Float, Half-Float, "
"Double-Float and Quad-Word data must not be used");
}
}
/* The PRMs say that for BDW, SKL:
*
* If Align16 is required for an operation with QW destination and non-QW
* source datatypes, the execution size cannot exceed 2.
*
* We assume that the restriction applies to all Gfx8+ parts.
*/
if (is_double_precision) {
enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
enum brw_reg_type src1_type =
num_sources > 1 ? brw_inst_src1_type(devinfo, inst) : src0_type;
unsigned src0_type_size = brw_type_size_bytes(src0_type);
unsigned src1_type_size = brw_type_size_bytes(src1_type);
ERROR_IF(brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16 &&
dst_type_size == 8 &&
(src0_type_size != 8 || src1_type_size != 8) &&
brw_inst_exec_size(devinfo, inst) > BRW_EXECUTE_2,
"In Align16 exec size cannot exceed 2 with a QWord destination "
"and a non-QWord source");
}
/* The PRMs say that for CHV, BXT:
*
* When source or destination datatype is 64b or operation is integer
* DWord multiply, DepCtrl must not be used.
*
* We assume that the restriction applies to GLK as well.
*/
if (is_double_precision &&
intel_device_info_is_9lp(devinfo)) {
ERROR_IF(brw_inst_no_dd_check(devinfo, inst) ||
brw_inst_no_dd_clear(devinfo, inst),
"DepCtrl is not allowed when the execution type is 64-bit");
}
return error_msg;
}
static struct string
instruction_restrictions(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
struct string error_msg = { .str = NULL, .len = 0 };
/* From Wa_1604601757:
*
* "When multiplying a DW and any lower precision integer, source modifier
* is not supported."
*/
if (devinfo->ver >= 12 &&
brw_inst_opcode(isa, inst) == BRW_OPCODE_MUL) {
enum brw_reg_type exec_type = execution_type(isa, inst);
const bool src0_valid =
brw_type_size_bytes(brw_inst_src0_type(devinfo, inst)) == 4 ||
brw_inst_src0_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE ||
!(brw_inst_src0_negate(devinfo, inst) ||
brw_inst_src0_abs(devinfo, inst));
const bool src1_valid =
brw_type_size_bytes(brw_inst_src1_type(devinfo, inst)) == 4 ||
brw_inst_src1_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE ||
!(brw_inst_src1_negate(devinfo, inst) ||
brw_inst_src1_abs(devinfo, inst));
ERROR_IF(!brw_type_is_float(exec_type) &&
brw_type_size_bytes(exec_type) == 4 &&
!(src0_valid && src1_valid),
"When multiplying a DW and any lower precision integer, source "
"modifier is not supported.");
}
if (brw_inst_opcode(isa, inst) == BRW_OPCODE_CMP ||
brw_inst_opcode(isa, inst) == BRW_OPCODE_CMPN) {
ERROR_IF(brw_inst_cond_modifier(devinfo, inst) == BRW_CONDITIONAL_NONE,
"CMP (or CMPN) must have a condition.");
}
if (brw_inst_opcode(isa, inst) == BRW_OPCODE_SEL) {
ERROR_IF((brw_inst_cond_modifier(devinfo, inst) != BRW_CONDITIONAL_NONE) ==
(brw_inst_pred_control(devinfo, inst) != BRW_PREDICATE_NONE),
"SEL must either be predicated or have a condition modifiers");
}
if (brw_inst_opcode(isa, inst) == BRW_OPCODE_MUL) {
const enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
const enum brw_reg_type src1_type = brw_inst_src1_type(devinfo, inst);
const enum brw_reg_type dst_type = inst_dst_type(isa, inst);
/* Page 966 (page 982 of the PDF) of Broadwell PRM volume 2a says:
*
* When multiplying a DW and any lower precision integer, the DW
* operand must on src0.
*
* Ivy Bridge, Haswell, Skylake, and Ice Lake PRMs contain the same
* text.
*/
ERROR_IF(brw_type_is_int(src1_type) &&
brw_type_size_bytes(src0_type) < 4 &&
brw_type_size_bytes(src1_type) == 4,
"When multiplying a DW and any lower precision integer, the "
"DW operand must be src0.");
/* Page 971 (page 987 of the PDF), section "Accumulator
* Restrictions," of the Broadwell PRM volume 7 says:
*
* Integer source operands cannot be accumulators.
*
* The Skylake and Ice Lake PRMs contain the same text.
*/
ERROR_IF((src0_is_acc(devinfo, inst) &&
brw_type_is_int(src0_type)) ||
(src1_is_acc(devinfo, inst) &&
brw_type_is_int(src1_type)),
"Integer source operands cannot be accumulators.");
/* Page 935 (page 951 of the PDF) of the Ice Lake PRM volume 2a says:
*
* When multiplying integer data types, if one of the sources is a
* DW, the resulting full precision data is stored in the
* accumulator. However, if the destination data type is either W or
* DW, the low bits of the result are written to the destination
* register and the remaining high bits are discarded. This results
* in undefined Overflow and Sign flags. Therefore, conditional
* modifiers and saturation (.sat) cannot be used in this case.
*
* Similar text appears in every version of the PRM.
*
* The wording of the last sentence is not very clear. It could either
* be interpreted as "conditional modifiers combined with saturation
* cannot be used" or "neither conditional modifiers nor saturation can
* be used." I have interpreted it as the latter primarily because that
* is the more restrictive interpretation.
*/
ERROR_IF((src0_type == BRW_TYPE_UD ||
src0_type == BRW_TYPE_D ||
src1_type == BRW_TYPE_UD ||
src1_type == BRW_TYPE_D) &&
(dst_type == BRW_TYPE_UD ||
dst_type == BRW_TYPE_D ||
dst_type == BRW_TYPE_UW ||
dst_type == BRW_TYPE_W) &&
(brw_inst_saturate(devinfo, inst) != 0 ||
brw_inst_cond_modifier(devinfo, inst) != BRW_CONDITIONAL_NONE),
"Neither Saturate nor conditional modifier allowed with DW "
"integer multiply.");
}
if (brw_inst_opcode(isa, inst) == BRW_OPCODE_MATH) {
unsigned math_function = brw_inst_math_function(devinfo, inst);
switch (math_function) {
case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER:
case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT:
case BRW_MATH_FUNCTION_INT_DIV_REMAINDER: {
/* Page 442 of the Broadwell PRM Volume 2a "Extended Math Function" says:
* INT DIV function does not support source modifiers.
* Bspec 6647 extends it back to Ivy Bridge.
*/
bool src0_valid = !brw_inst_src0_negate(devinfo, inst) &&
!brw_inst_src0_abs(devinfo, inst);
bool src1_valid = !brw_inst_src1_negate(devinfo, inst) &&
!brw_inst_src1_abs(devinfo, inst);
ERROR_IF(!src0_valid || !src1_valid,
"INT DIV function does not support source modifiers.");
break;
}
default:
break;
}
}
if (brw_inst_opcode(isa, inst) == BRW_OPCODE_DP4A) {
/* Page 396 (page 412 of the PDF) of the DG1 PRM volume 2a says:
*
* Only one of src0 or src1 operand may be an the (sic) accumulator
* register (acc#).
*/
ERROR_IF(src0_is_acc(devinfo, inst) && src1_is_acc(devinfo, inst),
"Only one of src0 or src1 operand may be an accumulator "
"register (acc#).");
}
if (brw_inst_opcode(isa, inst) == BRW_OPCODE_ADD3) {
const enum brw_reg_type dst_type = inst_dst_type(isa, inst);
ERROR_IF(dst_type != BRW_TYPE_D &&
dst_type != BRW_TYPE_UD &&
dst_type != BRW_TYPE_W &&
dst_type != BRW_TYPE_UW,
"Destination must be integer D, UD, W, or UW type.");
for (unsigned i = 0; i < 3; i++) {
enum brw_reg_type src_type;
switch (i) {
case 0: src_type = brw_inst_3src_a1_src0_type(devinfo, inst); break;
case 1: src_type = brw_inst_3src_a1_src1_type(devinfo, inst); break;
case 2: src_type = brw_inst_3src_a1_src2_type(devinfo, inst); break;
default: unreachable("invalid src");
}
ERROR_IF(src_type != BRW_TYPE_D &&
src_type != BRW_TYPE_UD &&
src_type != BRW_TYPE_W &&
src_type != BRW_TYPE_UW,
"Source must be integer D, UD, W, or UW type.");
if (i == 0) {
if (brw_inst_3src_a1_src0_is_imm(devinfo, inst)) {
ERROR_IF(src_type != BRW_TYPE_W &&
src_type != BRW_TYPE_UW,
"Immediate source must be integer W or UW type.");
}
} else if (i == 2) {
if (brw_inst_3src_a1_src2_is_imm(devinfo, inst)) {
ERROR_IF(src_type != BRW_TYPE_W &&
src_type != BRW_TYPE_UW,
"Immediate source must be integer W or UW type.");
}
}
}
}
if (brw_inst_opcode(isa, inst) == BRW_OPCODE_OR ||
brw_inst_opcode(isa, inst) == BRW_OPCODE_AND ||
brw_inst_opcode(isa, inst) == BRW_OPCODE_XOR ||
brw_inst_opcode(isa, inst) == BRW_OPCODE_NOT) {
/* While the behavior of the negate source modifier is defined as
* logical not, the behavior of abs source modifier is not
* defined. Disallow it to be safe.
*/
ERROR_IF(brw_inst_src0_abs(devinfo, inst),
"Behavior of abs source modifier in logic ops is undefined.");
ERROR_IF(brw_inst_opcode(isa, inst) != BRW_OPCODE_NOT &&
brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
brw_inst_src1_abs(devinfo, inst),
"Behavior of abs source modifier in logic ops is undefined.");
/* Page 479 (page 495 of the PDF) of the Broadwell PRM volume 2a says:
*
* Source modifier is not allowed if source is an accumulator.
*
* The same text also appears for OR, NOT, and XOR instructions.
*/
ERROR_IF((brw_inst_src0_abs(devinfo, inst) ||
brw_inst_src0_negate(devinfo, inst)) &&
src0_is_acc(devinfo, inst),
"Source modifier is not allowed if source is an accumulator.");
ERROR_IF(brw_num_sources_from_inst(isa, inst) > 1 &&
(brw_inst_src1_abs(devinfo, inst) ||
brw_inst_src1_negate(devinfo, inst)) &&
src1_is_acc(devinfo, inst),
"Source modifier is not allowed if source is an accumulator.");
/* Page 479 (page 495 of the PDF) of the Broadwell PRM volume 2a says:
*
* This operation does not produce sign or overflow conditions. Only
* the .e/.z or .ne/.nz conditional modifiers should be used.
*
* The same text also appears for OR, NOT, and XOR instructions.
*
* Per the comment around nir_op_imod in brw_fs_nir.cpp, we have
* determined this to not be true. The only conditions that seem
* absolutely sketchy are O, R, and U. Some OpenGL shaders from Doom
* 2016 have been observed to generate and.g and operate correctly.
*/
const enum brw_conditional_mod cmod =
brw_inst_cond_modifier(devinfo, inst);
ERROR_IF(cmod == BRW_CONDITIONAL_O ||
cmod == BRW_CONDITIONAL_R ||
cmod == BRW_CONDITIONAL_U,
"O, R, and U conditional modifiers should not be used.");
}
if (brw_inst_opcode(isa, inst) == BRW_OPCODE_BFI2) {
ERROR_IF(brw_inst_cond_modifier(devinfo, inst) != BRW_CONDITIONAL_NONE,
"BFI2 cannot have conditional modifier");
ERROR_IF(brw_inst_saturate(devinfo, inst),
"BFI2 cannot have saturate modifier");
enum brw_reg_type dst_type;
if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1)
dst_type = brw_inst_3src_a1_dst_type(devinfo, inst);
else
dst_type = brw_inst_3src_a16_dst_type(devinfo, inst);
ERROR_IF(dst_type != BRW_TYPE_D &&
dst_type != BRW_TYPE_UD,
"BFI2 destination type must be D or UD");
for (unsigned s = 0; s < 3; s++) {
enum brw_reg_type src_type;
if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1) {
switch (s) {
case 0: src_type = brw_inst_3src_a1_src0_type(devinfo, inst); break;
case 1: src_type = brw_inst_3src_a1_src1_type(devinfo, inst); break;
case 2: src_type = brw_inst_3src_a1_src2_type(devinfo, inst); break;
default: unreachable("invalid src");
}
} else {
src_type = brw_inst_3src_a16_src_type(devinfo, inst);
}
ERROR_IF(src_type != dst_type,
"BFI2 source type must match destination type");
}
}
if (brw_inst_opcode(isa, inst) == BRW_OPCODE_CSEL) {
ERROR_IF(brw_inst_pred_control(devinfo, inst) != BRW_PREDICATE_NONE,
"CSEL cannot be predicated");
/* CSEL is CMP and SEL fused into one. The condition modifier, which
* does not actually modify the flags, controls the built-in comparison.
*/
ERROR_IF(brw_inst_cond_modifier(devinfo, inst) == BRW_CONDITIONAL_NONE,
"CSEL must have a condition.");
enum brw_reg_type dst_type;
if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1)
dst_type = brw_inst_3src_a1_dst_type(devinfo, inst);
else
dst_type = brw_inst_3src_a16_dst_type(devinfo, inst);
if (devinfo->ver == 9) {
ERROR_IF(dst_type != BRW_TYPE_F,
"CSEL destination type must be F");
} else {
ERROR_IF(dst_type != BRW_TYPE_F &&
dst_type != BRW_TYPE_HF &&
dst_type != BRW_TYPE_D &&
dst_type != BRW_TYPE_W,
"CSEL destination type must be F, HF, D, or W");
}
for (unsigned s = 0; s < 3; s++) {
enum brw_reg_type src_type;
if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1) {
switch (s) {
case 0: src_type = brw_inst_3src_a1_src0_type(devinfo, inst); break;
case 1: src_type = brw_inst_3src_a1_src1_type(devinfo, inst); break;
case 2: src_type = brw_inst_3src_a1_src2_type(devinfo, inst); break;
default: unreachable("invalid src");
}
} else {
src_type = brw_inst_3src_a16_src_type(devinfo, inst);
}
if (devinfo->ver == 9) {
ERROR_IF(src_type != BRW_TYPE_F,
"CSEL source type must be F");
} else {
ERROR_IF(src_type != BRW_TYPE_F && src_type != BRW_TYPE_HF &&
src_type != BRW_TYPE_D && src_type != BRW_TYPE_UD &&
src_type != BRW_TYPE_W && src_type != BRW_TYPE_UW,
"CSEL source type must be F, HF, *D, or *W");
ERROR_IF(brw_type_is_float(src_type) != brw_type_is_float(dst_type),
"CSEL cannot mix float and integer types.");
ERROR_IF(brw_type_size_bytes(src_type) !=
brw_type_size_bytes(dst_type),
"CSEL cannot mix different type sizes.");
}
}
}
if (brw_inst_opcode(isa, inst) == BRW_OPCODE_DPAS) {
ERROR_IF(brw_inst_dpas_3src_sdepth(devinfo, inst) != BRW_SYSTOLIC_DEPTH_8,
"Systolic depth must be 8.");
const unsigned sdepth = 8;
const enum brw_reg_type dst_type =
brw_inst_dpas_3src_dst_type(devinfo, inst);
const enum brw_reg_type src0_type =
brw_inst_dpas_3src_src0_type(devinfo, inst);
const enum brw_reg_type src1_type =
brw_inst_dpas_3src_src1_type(devinfo, inst);
const enum brw_reg_type src2_type =
brw_inst_dpas_3src_src2_type(devinfo, inst);
const enum gfx12_sub_byte_precision src1_sub_byte =
brw_inst_dpas_3src_src1_subbyte(devinfo, inst);
if (src1_type != BRW_TYPE_B && src1_type != BRW_TYPE_UB) {
ERROR_IF(src1_sub_byte != BRW_SUB_BYTE_PRECISION_NONE,
"Sub-byte precision must be None for source type larger than Byte.");
} else {
ERROR_IF(src1_sub_byte != BRW_SUB_BYTE_PRECISION_NONE &&
src1_sub_byte != BRW_SUB_BYTE_PRECISION_4BIT &&
src1_sub_byte != BRW_SUB_BYTE_PRECISION_2BIT,
"Invalid sub-byte precision.");
}
const enum gfx12_sub_byte_precision src2_sub_byte =
brw_inst_dpas_3src_src2_subbyte(devinfo, inst);
if (src2_type != BRW_TYPE_B && src2_type != BRW_TYPE_UB) {
ERROR_IF(src2_sub_byte != BRW_SUB_BYTE_PRECISION_NONE,
"Sub-byte precision must be None.");
} else {
ERROR_IF(src2_sub_byte != BRW_SUB_BYTE_PRECISION_NONE &&
src2_sub_byte != BRW_SUB_BYTE_PRECISION_4BIT &&
src2_sub_byte != BRW_SUB_BYTE_PRECISION_2BIT,
"Invalid sub-byte precision.");
}
const unsigned src1_bits_per_element =
brw_type_size_bits(src1_type) >>
brw_inst_dpas_3src_src1_subbyte(devinfo, inst);
const unsigned src2_bits_per_element =
brw_type_size_bits(src2_type) >>
brw_inst_dpas_3src_src2_subbyte(devinfo, inst);
/* The MAX2(1, ...) is just to prevent possible division by 0 later. */
const unsigned ops_per_chan =
MAX2(1, 32 / MAX2(src1_bits_per_element, src2_bits_per_element));
if (devinfo->ver < 20) {
ERROR_IF(brw_inst_exec_size(devinfo, inst) != BRW_EXECUTE_8,
"DPAS execution size must be 8.");
} else {
ERROR_IF(brw_inst_exec_size(devinfo, inst) != BRW_EXECUTE_16,
"DPAS execution size must be 16.");
}
const unsigned exec_size = devinfo->ver < 20 ? 8 : 16;
const unsigned dst_subnr = brw_inst_dpas_3src_dst_subreg_nr(devinfo, inst);
const unsigned src0_subnr = brw_inst_dpas_3src_src0_subreg_nr(devinfo, inst);
const unsigned src1_subnr = brw_inst_dpas_3src_src1_subreg_nr(devinfo, inst);
const unsigned src2_subnr = brw_inst_dpas_3src_src2_subreg_nr(devinfo, inst);
/* Until HF is supported as dst type, this is effectively subnr == 0. */
ERROR_IF(dst_subnr % exec_size != 0,
"Destination subregister offset must be a multiple of ExecSize.");
/* Until HF is supported as src0 type, this is effectively subnr == 0. */
ERROR_IF(src0_subnr % exec_size != 0,
"Src0 subregister offset must be a multiple of ExecSize.");
ERROR_IF(src1_subnr != 0,
"Src1 subregister offsets must be 0.");
/* In nearly all cases, this effectively requires that src2.subnr be
* 0. It is only when src1 is 8 bits and src2 is 2 or 4 bits that the
* ops_per_chan value can allow non-zero src2.subnr.
*/
ERROR_IF(src2_subnr % (sdepth * ops_per_chan) != 0,
"Src2 subregister offset must be a multiple of SystolicDepth "
"times OPS_PER_CHAN.");
ERROR_IF(dst_subnr * brw_type_size_bytes(dst_type) >= REG_SIZE,
"Destination subregister specifies next register.");
ERROR_IF(src0_subnr * brw_type_size_bytes(src0_type) >= REG_SIZE,
"Src0 subregister specifies next register.");
ERROR_IF((src1_subnr * brw_type_size_bytes(src1_type) * src1_bits_per_element) / 8 >= REG_SIZE,
"Src1 subregister specifies next register.");
ERROR_IF((src2_subnr * brw_type_size_bytes(src2_type) * src2_bits_per_element) / 8 >= REG_SIZE,
"Src2 subregister specifies next register.");
if (brw_inst_3src_atomic_control(devinfo, inst)) {
/* FINISHME: When we start emitting DPAS with Atomic set, figure out
* a way to validate it. Also add a test in test_eu_validate.cpp.
*/
ERROR_IF(true,
"When instruction option Atomic is used it must be follwed by a "
"DPAS instruction.");
}
if (brw_inst_dpas_3src_exec_type(devinfo, inst) ==
BRW_ALIGN1_3SRC_EXEC_TYPE_FLOAT) {
ERROR_IF(dst_type != BRW_TYPE_F,
"DPAS destination type must be F.");
ERROR_IF(src0_type != BRW_TYPE_F,
"DPAS src0 type must be F.");
ERROR_IF(src1_type != BRW_TYPE_HF,
"DPAS src1 type must be HF.");
ERROR_IF(src2_type != BRW_TYPE_HF,
"DPAS src2 type must be HF.");
} else {
ERROR_IF(dst_type != BRW_TYPE_D &&
dst_type != BRW_TYPE_UD,
"DPAS destination type must be D or UD.");
ERROR_IF(src0_type != BRW_TYPE_D &&
src0_type != BRW_TYPE_UD,
"DPAS src0 type must be D or UD.");
ERROR_IF(src1_type != BRW_TYPE_B &&
src1_type != BRW_TYPE_UB,
"DPAS src1 base type must be B or UB.");
ERROR_IF(src2_type != BRW_TYPE_B &&
src2_type != BRW_TYPE_UB,
"DPAS src2 base type must be B or UB.");
if (brw_type_is_uint(dst_type)) {
ERROR_IF(!brw_type_is_uint(src0_type) ||
!brw_type_is_uint(src1_type) ||
!brw_type_is_uint(src2_type),
"If any source datatype is signed, destination datatype "
"must be signed.");
}
}
/* FINISHME: Additional restrictions mentioned in the Bspec that are not
* yet enforced here:
*
* - General Accumulator registers access is not supported. This is
* currently enforced in brw_dpas_three_src (brw_eu_emit.c).
*
* - Given any combination of datatypes in the sources of a DPAS
* instructions, the boundaries of a register should not be crossed.
*/
}
return error_msg;
}
static struct string
send_descriptor_restrictions(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
struct string error_msg = { .str = NULL, .len = 0 };
if (inst_is_split_send(isa, inst)) {
/* We can only validate immediate descriptors */
if (brw_inst_send_sel_reg32_desc(devinfo, inst))
return error_msg;
} else if (inst_is_send(isa, inst)) {
/* We can only validate immediate descriptors */
if (brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE)
return error_msg;
} else {
return error_msg;
}
const uint32_t desc = brw_inst_send_desc(devinfo, inst);
switch (brw_inst_sfid(devinfo, inst)) {
case BRW_SFID_URB:
if (devinfo->ver < 20)
break;
FALLTHROUGH;
case GFX12_SFID_TGM:
case GFX12_SFID_SLM:
case GFX12_SFID_UGM:
ERROR_IF(!devinfo->has_lsc, "Platform does not support LSC");
ERROR_IF(lsc_opcode_has_transpose(lsc_msg_desc_opcode(devinfo, desc)) &&
lsc_msg_desc_transpose(devinfo, desc) &&
brw_inst_exec_size(devinfo, inst) != BRW_EXECUTE_1,
"Transposed vectors are restricted to Exec_Mask = 1.");
break;
default:
break;
}
if (brw_inst_sfid(devinfo, inst) == BRW_SFID_URB && devinfo->ver < 20) {
ERROR_IF(!brw_inst_header_present(devinfo, inst),
"Header must be present for all URB messages.");
switch (brw_inst_urb_opcode(devinfo, inst)) {
case GFX7_URB_OPCODE_ATOMIC_INC:
case GFX7_URB_OPCODE_ATOMIC_MOV:
case GFX8_URB_OPCODE_ATOMIC_ADD:
case GFX8_URB_OPCODE_SIMD8_WRITE:
break;
case GFX8_URB_OPCODE_SIMD8_READ:
ERROR_IF(brw_inst_rlen(devinfo, inst) == 0,
"URB SIMD8 read message must read some data.");
break;
case GFX125_URB_OPCODE_FENCE:
ERROR_IF(devinfo->verx10 < 125,
"URB fence message only valid on gfx >= 12.5");
break;
default:
ERROR_IF(true, "Invalid URB message");
break;
}
}
return error_msg;
}
bool
brw_validate_instruction(const struct brw_isa_info *isa,
const brw_inst *inst, int offset,
unsigned inst_size,
struct disasm_info *disasm)
{
struct string error_msg = { .str = NULL, .len = 0 };
if (is_unsupported_inst(isa, inst)) {
ERROR("Instruction not supported on this Gen");
} else {
CHECK(invalid_values);
if (error_msg.str == NULL) {
CHECK(sources_not_null);
CHECK(send_restrictions);
CHECK(alignment_supported);
CHECK(general_restrictions_based_on_operand_types);
CHECK(general_restrictions_on_region_parameters);
CHECK(special_restrictions_for_mixed_float_mode);
CHECK(region_alignment_rules);
CHECK(vector_immediate_restrictions);
CHECK(special_requirements_for_handling_double_precision_data_types);
CHECK(instruction_restrictions);
CHECK(send_descriptor_restrictions);
}
}
if (error_msg.str && disasm) {
disasm_insert_error(disasm, offset, inst_size, error_msg.str);
}
free(error_msg.str);
return error_msg.len == 0;
}
bool
brw_validate_instructions(const struct brw_isa_info *isa,
const void *assembly, int start_offset, int end_offset,
struct disasm_info *disasm)
{
const struct intel_device_info *devinfo = isa->devinfo;
bool valid = true;
for (int src_offset = start_offset; src_offset < end_offset;) {
const brw_inst *inst = assembly + src_offset;
bool is_compact = brw_inst_cmpt_control(devinfo, inst);
unsigned inst_size = is_compact ? sizeof(brw_compact_inst)
: sizeof(brw_inst);
brw_inst uncompacted;
if (is_compact) {
brw_compact_inst *compacted = (void *)inst;
brw_uncompact_instruction(isa, &uncompacted, compacted);
inst = &uncompacted;
}
bool v = brw_validate_instruction(isa, inst, src_offset,
inst_size, disasm);
valid = valid && v;
src_offset += inst_size;
}
return valid;
}