mesa/src/broadcom/vulkan/v3dv_image.c

928 lines
34 KiB
C

/*
* Copyright © 2019 Raspberry Pi Ltd
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "v3dv_private.h"
#include "drm-uapi/drm_fourcc.h"
#include "util/format/u_format.h"
#include "util/u_math.h"
#include "vk_util.h"
#include "vulkan/wsi/wsi_common.h"
#include "vk_android.h"
/**
* Computes the HW's UIFblock padding for a given height/cpp.
*
* The goal of the padding is to keep pages of the same color (bank number) at
* least half a page away from each other vertically when crossing between
* columns of UIF blocks.
*/
static uint32_t
v3d_get_ub_pad(uint32_t cpp, uint32_t height)
{
uint32_t utile_h = v3d_utile_height(cpp);
uint32_t uif_block_h = utile_h * 2;
uint32_t height_ub = height / uif_block_h;
uint32_t height_offset_in_pc = height_ub % PAGE_CACHE_UB_ROWS;
/* For the perfectly-aligned-for-UIF-XOR case, don't add any pad. */
if (height_offset_in_pc == 0)
return 0;
/* Try padding up to where we're offset by at least half a page. */
if (height_offset_in_pc < PAGE_UB_ROWS_TIMES_1_5) {
/* If we fit entirely in the page cache, don't pad. */
if (height_ub < PAGE_CACHE_UB_ROWS)
return 0;
else
return PAGE_UB_ROWS_TIMES_1_5 - height_offset_in_pc;
}
/* If we're close to being aligned to page cache size, then round up
* and rely on XOR.
*/
if (height_offset_in_pc > PAGE_CACHE_MINUS_1_5_UB_ROWS)
return PAGE_CACHE_UB_ROWS - height_offset_in_pc;
/* Otherwise, we're far enough away (top and bottom) to not need any
* padding.
*/
return 0;
}
/**
* Computes the dimension with required padding for mip levels.
*
* This padding is required for width and height dimensions when the mip
* level is greater than 1, and for the depth dimension when the mip level
* is greater than 0. This function expects to be passed a mip level >= 1.
*
* Note: Hardware documentation seems to suggest that the third argument
* should be the utile dimensions, but through testing it was found that
* the block dimension should be used instead.
*/
static uint32_t
v3d_get_dimension_mpad(uint32_t dimension, uint32_t level, uint32_t block_dimension)
{
assert(level >= 1);
uint32_t pot_dim = u_minify(dimension, 1);
pot_dim = util_next_power_of_two(DIV_ROUND_UP(pot_dim, block_dimension));
uint32_t padded_dim = block_dimension * pot_dim;
return u_minify(padded_dim, level - 1);
}
static bool
v3d_setup_plane_slices(struct v3dv_image *image, uint8_t plane,
uint32_t plane_offset,
const VkSubresourceLayout *plane_layouts)
{
assert(image->planes[plane].cpp > 0);
uint32_t width = image->planes[plane].width;
uint32_t height = image->planes[plane].height;
uint32_t depth = image->vk.extent.depth;
uint32_t utile_w = v3d_utile_width(image->planes[plane].cpp);
uint32_t utile_h = v3d_utile_height(image->planes[plane].cpp);
uint32_t uif_block_w = utile_w * 2;
uint32_t uif_block_h = utile_h * 2;
uint32_t block_width = vk_format_get_blockwidth(image->vk.format);
uint32_t block_height = vk_format_get_blockheight(image->vk.format);
/* Note that power-of-two padding is based on level 1. These are not
* equivalent to just util_next_power_of_two(dimension), because at a
* level 0 dimension of 9, the level 1 power-of-two padded value is 4,
* not 8. Additionally the pot padding is based on the block size.
*/
uint32_t pot_width = 2 * v3d_get_dimension_mpad(width,
1,
block_width);
uint32_t pot_height = 2 * v3d_get_dimension_mpad(height,
1,
block_height);
uint32_t pot_depth = 2 * v3d_get_dimension_mpad(depth,
1,
1);
assert(image->vk.samples == VK_SAMPLE_COUNT_1_BIT ||
image->vk.samples == VK_SAMPLE_COUNT_4_BIT);
bool msaa = image->vk.samples != VK_SAMPLE_COUNT_1_BIT;
bool uif_top = msaa;
assert(image->vk.array_layers > 0);
assert(depth > 0);
assert(image->vk.mip_levels >= 1);
/* Texture Base Address needs to be 64-byte aligned. If we have an explicit
* plane layout we will return false to fail image creation with appropriate
* error code.
*/
uint32_t offset;
if (plane_layouts) {
offset = plane_layouts[plane].offset;
if (offset % 64 != 0)
return false;
} else {
offset = plane_offset;
}
assert(plane_offset % 64 == 0);
for (int32_t i = image->vk.mip_levels - 1; i >= 0; i--) {
struct v3d_resource_slice *slice = &image->planes[plane].slices[i];
slice->width = u_minify(width, i);
slice->height = u_minify(height, i);
uint32_t level_width, level_height, level_depth;
if (i < 2) {
level_width = slice->width;
level_height = slice->height;
} else {
level_width = u_minify(pot_width, i);
level_height = u_minify(pot_height, i);
}
if (i < 1)
level_depth = u_minify(depth, i);
else
level_depth = u_minify(pot_depth, i);
if (msaa) {
level_width *= 2;
level_height *= 2;
}
level_width = DIV_ROUND_UP(level_width, block_width);
level_height = DIV_ROUND_UP(level_height, block_height);
if (!image->tiled) {
slice->tiling = V3D_TILING_RASTER;
if (image->vk.image_type == VK_IMAGE_TYPE_1D)
level_width = align(level_width, 64 / image->planes[plane].cpp);
} else {
if ((i != 0 || !uif_top) &&
(level_width <= utile_w || level_height <= utile_h)) {
slice->tiling = V3D_TILING_LINEARTILE;
level_width = align(level_width, utile_w);
level_height = align(level_height, utile_h);
} else if ((i != 0 || !uif_top) && level_width <= uif_block_w) {
slice->tiling = V3D_TILING_UBLINEAR_1_COLUMN;
level_width = align(level_width, uif_block_w);
level_height = align(level_height, uif_block_h);
} else if ((i != 0 || !uif_top) && level_width <= 2 * uif_block_w) {
slice->tiling = V3D_TILING_UBLINEAR_2_COLUMN;
level_width = align(level_width, 2 * uif_block_w);
level_height = align(level_height, uif_block_h);
} else {
/* We align the width to a 4-block column of UIF blocks, but we
* only align height to UIF blocks.
*/
level_width = align(level_width, 4 * uif_block_w);
level_height = align(level_height, uif_block_h);
slice->ub_pad = v3d_get_ub_pad(image->planes[plane].cpp,
level_height);
level_height += slice->ub_pad * uif_block_h;
/* If the padding set us to to be aligned to the page cache size,
* then the HW will use the XOR bit on odd columns to get us
* perfectly misaligned.
*/
if ((level_height / uif_block_h) %
(V3D_PAGE_CACHE_SIZE / V3D_UIFBLOCK_ROW_SIZE) == 0) {
slice->tiling = V3D_TILING_UIF_XOR;
} else {
slice->tiling = V3D_TILING_UIF_NO_XOR;
}
}
}
slice->offset = offset;
slice->stride = level_width * image->planes[plane].cpp;
/* We assume that rowPitch in the plane layout refers to level 0 */
if (plane_layouts && i == 0) {
if (plane_layouts[plane].rowPitch < slice->stride)
return false;
if (plane_layouts[plane].rowPitch % image->planes[plane].cpp)
return false;
if (image->tiled && (plane_layouts[plane].rowPitch % (4 * uif_block_w)))
return false;
slice->stride = plane_layouts[plane].rowPitch;
}
slice->padded_height = level_height;
if (slice->tiling == V3D_TILING_UIF_NO_XOR ||
slice->tiling == V3D_TILING_UIF_XOR) {
slice->padded_height_of_output_image_in_uif_blocks =
slice->padded_height /
(2 * v3d_utile_height(image->planes[plane].cpp));
}
slice->size = level_height * slice->stride;
uint32_t slice_total_size = slice->size * level_depth;
/* The HW aligns level 1's base to a page if any of level 1 or
* below could be UIF XOR. The lower levels then inherit the
* alignment for as long as necessary, thanks to being power of
* two aligned.
*/
if (i == 1 &&
level_width > 4 * uif_block_w &&
level_height > PAGE_CACHE_MINUS_1_5_UB_ROWS * uif_block_h) {
slice_total_size = align(slice_total_size, V3D_UIFCFG_PAGE_SIZE);
}
offset += slice_total_size;
}
image->planes[plane].size = offset - plane_offset;
/* UIF/UBLINEAR levels need to be aligned to UIF-blocks, and LT only
* needs to be aligned to utile boundaries. Since tiles are laid out
* from small to big in memory, we need to align the later UIF slices
* to UIF blocks, if they were preceded by non-UIF-block-aligned LT
* slices.
*
* We additionally align to 4k, which improves UIF XOR performance.
*
* Finally, because the Texture Base Address field must be 64-byte aligned,
* we also need to align linear images to 64 if the image is going to be
* used for transfer.
*/
if (image->tiled) {
image->planes[plane].alignment = 4096;
} else {
image->planes[plane].alignment =
(image->vk.usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) ?
64 : image->planes[plane].cpp;
}
uint32_t align_offset =
align(image->planes[plane].slices[0].offset,
image->planes[plane].alignment) -
image->planes[plane].slices[0].offset;
if (align_offset) {
image->planes[plane].size += align_offset;
for (int i = 0; i < image->vk.mip_levels; i++)
image->planes[plane].slices[i].offset += align_offset;
}
/* Arrays and cube textures have a stride which is the distance from
* one full mipmap tree to the next (64b aligned). For 3D textures,
* we need to program the stride between slices of miplevel 0.
*/
if (image->vk.image_type != VK_IMAGE_TYPE_3D) {
image->planes[plane].cube_map_stride =
align(image->planes[plane].slices[0].offset +
image->planes[plane].slices[0].size, 64);
if (plane_layouts && image->vk.array_layers > 1) {
if (plane_layouts[plane].arrayPitch % 64 != 0)
return false;
if (plane_layouts[plane].arrayPitch <
image->planes[plane].cube_map_stride) {
return false;
}
image->planes[plane].cube_map_stride = plane_layouts[plane].arrayPitch;
}
image->planes[plane].size += image->planes[plane].cube_map_stride *
(image->vk.array_layers - 1);
} else {
image->planes[plane].cube_map_stride = image->planes[plane].slices[0].size;
if (plane_layouts) {
/* We assume that depthPitch in the plane layout refers to level 0 */
if (plane_layouts[plane].depthPitch !=
image->planes[plane].slices[0].size) {
return false;
}
}
}
return true;
}
static VkResult
v3d_setup_slices(struct v3dv_image *image, bool disjoint,
const VkSubresourceLayout *plane_layouts)
{
if (disjoint && image->plane_count == 1)
disjoint = false;
uint64_t offset = 0;
for (uint8_t plane = 0; plane < image->plane_count; plane++) {
offset = disjoint ? 0 : offset;
if (!v3d_setup_plane_slices(image, plane, offset, plane_layouts)) {
assert(plane_layouts);
return VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT;
}
offset += align64(image->planes[plane].size, 64);
}
/* From the Vulkan spec:
*
* "If the size of the resultant image would exceed maxResourceSize, then
* vkCreateImage must fail and return VK_ERROR_OUT_OF_DEVICE_MEMORY. This
* failure may occur even when all image creation parameters satisfy their
* valid usage requirements."
*/
if (offset > 0xffffffff)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
image->non_disjoint_size = disjoint ? 0 : offset;
return VK_SUCCESS;
}
uint32_t
v3dv_layer_offset(const struct v3dv_image *image, uint32_t level, uint32_t layer,
uint8_t plane)
{
const struct v3d_resource_slice *slice = &image->planes[plane].slices[level];
if (image->vk.image_type == VK_IMAGE_TYPE_3D)
return image->planes[plane].mem_offset + slice->offset + layer * slice->size;
else
return image->planes[plane].mem_offset + slice->offset +
layer * image->planes[plane].cube_map_stride;
}
VkResult
v3dv_update_image_layout(struct v3dv_device *device,
struct v3dv_image *image,
uint64_t modifier,
bool disjoint,
const VkImageDrmFormatModifierExplicitCreateInfoEXT *explicit_mod_info)
{
assert(!explicit_mod_info ||
image->plane_count == explicit_mod_info->drmFormatModifierPlaneCount);
assert(!explicit_mod_info ||
modifier == explicit_mod_info->drmFormatModifier);
image->tiled = modifier != DRM_FORMAT_MOD_LINEAR;
image->vk.drm_format_mod = modifier;
return v3d_setup_slices(image, disjoint,
explicit_mod_info ? explicit_mod_info->pPlaneLayouts :
NULL);
}
VkResult
v3dv_image_init(struct v3dv_device *device,
const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
struct v3dv_image *image)
{
/* When using the simulator the WSI common code will see that our
* driver wsi device doesn't match the display device and because of that
* it will not attempt to present directly from the swapchain images,
* instead it will use the prime blit path (use_buffer_blit flag in
* struct wsi_swapchain), where it copies the contents of the swapchain
* images to a linear buffer with appropriate row stride for presentation.
* As a result, on that path, swapchain images do not have any special
* requirements and are not created with the pNext structs below.
*/
VkImageTiling tiling = pCreateInfo->tiling;
uint64_t modifier = DRM_FORMAT_MOD_INVALID;
const VkImageDrmFormatModifierListCreateInfoEXT *mod_info = NULL;
const VkImageDrmFormatModifierExplicitCreateInfoEXT *explicit_mod_info = NULL;
/* This section is removed by the optimizer for non-ANDROID builds */
VkImageDrmFormatModifierExplicitCreateInfoEXT eci;
VkSubresourceLayout a_plane_layouts[V3DV_MAX_PLANE_COUNT];
if (vk_image_is_android_native_buffer(&image->vk)) {
VkResult result = vk_android_get_anb_layout(
pCreateInfo, &eci, a_plane_layouts, V3DV_MAX_PLANE_COUNT);
if (result != VK_SUCCESS)
return result;
explicit_mod_info = &eci;
modifier = eci.drmFormatModifier;
}
if (tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
mod_info =
vk_find_struct_const(pCreateInfo->pNext,
IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT);
explicit_mod_info =
vk_find_struct_const(pCreateInfo->pNext,
IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT);
assert(mod_info || explicit_mod_info);
if (mod_info) {
for (uint32_t i = 0; i < mod_info->drmFormatModifierCount; i++) {
switch (mod_info->pDrmFormatModifiers[i]) {
case DRM_FORMAT_MOD_LINEAR:
if (modifier == DRM_FORMAT_MOD_INVALID)
modifier = DRM_FORMAT_MOD_LINEAR;
break;
case DRM_FORMAT_MOD_BROADCOM_UIF:
modifier = DRM_FORMAT_MOD_BROADCOM_UIF;
break;
}
}
} else {
modifier = explicit_mod_info->drmFormatModifier;
}
assert(modifier == DRM_FORMAT_MOD_LINEAR ||
modifier == DRM_FORMAT_MOD_BROADCOM_UIF);
} else if (pCreateInfo->imageType == VK_IMAGE_TYPE_1D ||
image->vk.wsi_legacy_scanout) {
tiling = VK_IMAGE_TILING_LINEAR;
}
if (modifier == DRM_FORMAT_MOD_INVALID)
modifier = (tiling == VK_IMAGE_TILING_OPTIMAL) ? DRM_FORMAT_MOD_BROADCOM_UIF
: DRM_FORMAT_MOD_LINEAR;
const struct v3dv_format *format =
v3dv_X(device, get_format)(image->vk.format);
v3dv_assert(format != NULL && format->plane_count);
assert(pCreateInfo->samples == VK_SAMPLE_COUNT_1_BIT ||
pCreateInfo->samples == VK_SAMPLE_COUNT_4_BIT);
image->format = format;
image->plane_count = vk_format_get_plane_count(image->vk.format);
const struct vk_format_ycbcr_info *ycbcr_info =
vk_format_get_ycbcr_info(image->vk.format);
for (uint8_t plane = 0; plane < image->plane_count; plane++) {
VkFormat plane_format =
vk_format_get_plane_format(image->vk.format, plane);
image->planes[plane].cpp =
vk_format_get_blocksize(plane_format);
image->planes[plane].vk_format = plane_format;
image->planes[plane].width = image->vk.extent.width;
image->planes[plane].height = image->vk.extent.height;
if (ycbcr_info) {
image->planes[plane].width /=
ycbcr_info->planes[plane].denominator_scales[0];
image->planes[plane].height /=
ycbcr_info->planes[plane].denominator_scales[1];
}
}
/* Our meta paths can create image views with compatible formats for any
* image, so always set this flag to keep the common Vulkan image code
* happy.
*/
image->vk.create_flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;
/* At this time, an AHB handle is not yet provided.
* Image layout will be filled up during vkBindImageMemory2
* This section is removed by the optimizer for non-ANDROID builds
*/
if (vk_image_is_android_hardware_buffer(&image->vk))
return VK_SUCCESS;
bool disjoint = image->vk.create_flags & VK_IMAGE_CREATE_DISJOINT_BIT;
return v3dv_update_image_layout(device, image, modifier, disjoint,
explicit_mod_info);
}
static VkResult
create_image(struct v3dv_device *device,
const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImage *pImage)
{
VkResult result;
struct v3dv_image *image = NULL;
image = vk_image_create(&device->vk, pCreateInfo, pAllocator, sizeof(*image));
if (image == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
result = v3dv_image_init(device, pCreateInfo, pAllocator, image);
if (result != VK_SUCCESS)
goto fail;
/* This section is removed by the optimizer for non-ANDROID builds */
if (vk_image_is_android_native_buffer(&image->vk)) {
result = vk_android_import_anb(&device->vk, pCreateInfo, pAllocator,
&image->vk);
if (result != VK_SUCCESS)
goto fail;
}
*pImage = v3dv_image_to_handle(image);
return VK_SUCCESS;
fail:
vk_image_destroy(&device->vk, pAllocator, &image->vk);
return result;
}
static VkResult
create_image_from_swapchain(struct v3dv_device *device,
const VkImageCreateInfo *pCreateInfo,
const VkImageSwapchainCreateInfoKHR *swapchain_info,
const VkAllocationCallbacks *pAllocator,
VkImage *pImage)
{
struct v3dv_image *swapchain_image =
v3dv_wsi_get_image_from_swapchain(swapchain_info->swapchain, 0);
assert(swapchain_image);
VkImageCreateInfo local_create_info = *pCreateInfo;
local_create_info.pNext = NULL;
/* Added by wsi code. */
local_create_info.usage |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
/* The spec requires TILING_OPTIMAL as input, but the swapchain image may
* privately use a different tiling. See spec anchor
* #swapchain-wsi-image-create-info .
*/
assert(local_create_info.tiling == VK_IMAGE_TILING_OPTIMAL);
local_create_info.tiling = swapchain_image->vk.tiling;
VkImageDrmFormatModifierListCreateInfoEXT local_modifier_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT,
.drmFormatModifierCount = 1,
.pDrmFormatModifiers = &swapchain_image->vk.drm_format_mod,
};
if (swapchain_image->vk.drm_format_mod != DRM_FORMAT_MOD_INVALID)
__vk_append_struct(&local_create_info, &local_modifier_info);
assert(swapchain_image->vk.image_type == local_create_info.imageType);
assert(swapchain_image->vk.format == local_create_info.format);
assert(swapchain_image->vk.extent.width == local_create_info.extent.width);
assert(swapchain_image->vk.extent.height == local_create_info.extent.height);
assert(swapchain_image->vk.extent.depth == local_create_info.extent.depth);
assert(swapchain_image->vk.array_layers == local_create_info.arrayLayers);
assert(swapchain_image->vk.samples == local_create_info.samples);
assert(swapchain_image->vk.tiling == local_create_info.tiling);
assert((swapchain_image->vk.usage & local_create_info.usage) ==
local_create_info.usage);
return create_image(device, &local_create_info, pAllocator, pImage);
}
VKAPI_ATTR VkResult VKAPI_CALL
v3dv_CreateImage(VkDevice _device,
const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImage *pImage)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
#if DETECT_OS_ANDROID
/* VkImageSwapchainCreateInfoKHR is not useful at all */
const VkImageSwapchainCreateInfoKHR *swapchain_info = NULL;
#else
const VkImageSwapchainCreateInfoKHR *swapchain_info =
vk_find_struct_const(pCreateInfo->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR);
#endif
if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE)
return create_image_from_swapchain(device, pCreateInfo, swapchain_info,
pAllocator, pImage);
return create_image(device, pCreateInfo, pAllocator, pImage);
}
VKAPI_ATTR void VKAPI_CALL
v3dv_GetImageSubresourceLayout(VkDevice device,
VkImage _image,
const VkImageSubresource *subresource,
VkSubresourceLayout *layout)
{
V3DV_FROM_HANDLE(v3dv_image, image, _image);
uint8_t plane = v3dv_plane_from_aspect(subresource->aspectMask);
const struct v3d_resource_slice *slice =
&image->planes[plane].slices[subresource->mipLevel];
/* About why the offset below works for both disjoint and non-disjoint
* cases, from the Vulkan spec:
*
* "If the image is disjoint, then the offset is relative to the base
* address of the plane."
*
* "If the image is non-disjoint, then the offset is relative to the base
* address of the image."
*
* In our case, the per-plane mem_offset for non-disjoint images is the
* same for all planes and matches the base address of the image.
*/
layout->offset =
v3dv_layer_offset(image, subresource->mipLevel, subresource->arrayLayer,
plane) - image->planes[plane].mem_offset;
layout->rowPitch = slice->stride;
layout->depthPitch = image->vk.image_type == VK_IMAGE_TYPE_3D ?
image->planes[plane].cube_map_stride : 0;
layout->arrayPitch = image->vk.array_layers > 1 ?
image->planes[plane].cube_map_stride : 0;
if (image->vk.image_type != VK_IMAGE_TYPE_3D) {
layout->size = slice->size;
} else {
/* For 3D images, the size of the slice represents the size of a 2D slice
* in the 3D image, so we have to multiply by the depth extent of the
* miplevel. For levels other than the first, we just compute the size
* as the distance between consecutive levels (notice that mip levels are
* arranged in memory from last to first).
*/
if (subresource->mipLevel == 0) {
layout->size = slice->size * image->vk.extent.depth;
} else {
const struct v3d_resource_slice *prev_slice =
&image->planes[plane].slices[subresource->mipLevel - 1];
layout->size = prev_slice->offset - slice->offset;
}
}
}
VKAPI_ATTR void VKAPI_CALL
v3dv_DestroyImage(VkDevice _device,
VkImage _image,
const VkAllocationCallbacks* pAllocator)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
V3DV_FROM_HANDLE(v3dv_image, image, _image);
if (image == NULL)
return;
/* If we have created a shadow tiled image for this image we must also free
* it (along with its memory allocation).
*/
if (image->shadow) {
bool disjoint = image->vk.create_flags & VK_IMAGE_CREATE_DISJOINT_BIT;
for (int i = 0; i < (disjoint ? image->plane_count : 1); i++) {
if (image->shadow->planes[i].mem) {
v3dv_FreeMemory(_device,
v3dv_device_memory_to_handle(image->shadow->planes[i].mem),
pAllocator);
}
}
v3dv_DestroyImage(_device, v3dv_image_to_handle(image->shadow),
pAllocator);
image->shadow = NULL;
}
vk_image_destroy(&device->vk, pAllocator, &image->vk);
}
VkImageViewType
v3dv_image_type_to_view_type(VkImageType type)
{
switch (type) {
case VK_IMAGE_TYPE_1D: return VK_IMAGE_VIEW_TYPE_1D;
case VK_IMAGE_TYPE_2D: return VK_IMAGE_VIEW_TYPE_2D;
case VK_IMAGE_TYPE_3D: return VK_IMAGE_VIEW_TYPE_3D;
default:
unreachable("Invalid image type");
}
}
static VkResult
create_image_view(struct v3dv_device *device,
bool driver_internal,
const VkImageViewCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImageView *pView)
{
V3DV_FROM_HANDLE(v3dv_image, image, pCreateInfo->image);
struct v3dv_image_view *iview;
iview = vk_image_view_create(&device->vk, driver_internal, pCreateInfo,
pAllocator, sizeof(*iview));
if (iview == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
const VkImageAspectFlagBits any_plane_aspect =
VK_IMAGE_ASPECT_PLANE_0_BIT |
VK_IMAGE_ASPECT_PLANE_1_BIT |
VK_IMAGE_ASPECT_PLANE_2_BIT;
if (image->vk.aspects & any_plane_aspect) {
assert((image->vk.aspects & ~any_plane_aspect) == 0);
iview->plane_count = 0;
static const VkImageAspectFlagBits plane_aspects[]= {
VK_IMAGE_ASPECT_PLANE_0_BIT,
VK_IMAGE_ASPECT_PLANE_1_BIT,
VK_IMAGE_ASPECT_PLANE_2_BIT
};
for (uint8_t plane = 0; plane < V3DV_MAX_PLANE_COUNT; plane++) {
if (iview->vk.aspects & plane_aspects[plane])
iview->planes[iview->plane_count++].image_plane = plane;
}
} else {
iview->plane_count = 1;
iview->planes[0].image_plane = 0;
}
/* At this point we should have at least one plane */
assert(iview->plane_count > 0);
const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange;
/* If we have D24S8 format but the view only selects the stencil aspect
* we want to re-interpret the format as RGBA8_UINT, then map our stencil
* data reads to the R component and ignore the GBA channels that contain
* the depth aspect data.
*
* FIXME: thwe code belows calls vk_component_mapping_to_pipe_swizzle
* only so it can then call util_format_compose_swizzles later. Maybe it
* makes sense to implement swizzle composition using VkSwizzle directly.
*/
VkFormat format;
if (image->vk.format == VK_FORMAT_D24_UNORM_S8_UINT &&
range->aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) {
format = VK_FORMAT_R8G8B8A8_UINT;
uint8_t stencil_aspect_swizzle[4] = {
PIPE_SWIZZLE_X, PIPE_SWIZZLE_0, PIPE_SWIZZLE_0, PIPE_SWIZZLE_1,
};
uint8_t view_swizzle[4];
vk_component_mapping_to_pipe_swizzle(iview->vk.swizzle, view_swizzle);
util_format_compose_swizzles(stencil_aspect_swizzle, view_swizzle,
iview->view_swizzle);
} else {
format = iview->vk.format;
vk_component_mapping_to_pipe_swizzle(iview->vk.swizzle,
iview->view_swizzle);
}
iview->vk.view_format = format;
iview->format = v3dv_X(device, get_format)(format);
assert(iview->format && iview->format->plane_count);
for (uint8_t plane = 0; plane < iview->plane_count; plane++) {
iview->planes[plane].offset = v3dv_layer_offset(image,
iview->vk.base_mip_level,
iview->vk.base_array_layer,
plane);
if (vk_format_is_depth_or_stencil(iview->vk.view_format)) {
iview->planes[plane].internal_type =
v3dv_X(device, get_internal_depth_type)(iview->vk.view_format);
} else {
v3dv_X(device, get_internal_type_bpp_for_output_format)
(iview->format->planes[plane].rt_type,
&iview->planes[plane].internal_type,
&iview->planes[plane].internal_bpp);
}
const uint8_t *format_swizzle =
v3dv_get_format_swizzle(device, format, plane);
util_format_compose_swizzles(format_swizzle, iview->view_swizzle,
iview->planes[plane].swizzle);
iview->planes[plane].swap_rb = v3dv_format_swizzle_needs_rb_swap(format_swizzle);
iview->planes[plane].channel_reverse = v3dv_format_swizzle_needs_reverse(format_swizzle);
}
v3dv_X(device, pack_texture_shader_state)(device, iview);
*pView = v3dv_image_view_to_handle(iview);
return VK_SUCCESS;
}
VkResult
v3dv_create_image_view(struct v3dv_device *device,
const VkImageViewCreateInfo *pCreateInfo,
VkImageView *pView)
{
return create_image_view(device, true, pCreateInfo, NULL, pView);
}
VKAPI_ATTR VkResult VKAPI_CALL
v3dv_CreateImageView(VkDevice _device,
const VkImageViewCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImageView *pView)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
return create_image_view(device, false, pCreateInfo, pAllocator, pView);
}
VKAPI_ATTR void VKAPI_CALL
v3dv_DestroyImageView(VkDevice _device,
VkImageView imageView,
const VkAllocationCallbacks* pAllocator)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
V3DV_FROM_HANDLE(v3dv_image_view, image_view, imageView);
if (image_view == NULL)
return;
if (image_view->shadow) {
v3dv_DestroyImageView(_device,
v3dv_image_view_to_handle(image_view->shadow),
pAllocator);
image_view->shadow = NULL;
}
vk_image_view_destroy(&device->vk, pAllocator, &image_view->vk);
}
VKAPI_ATTR VkResult VKAPI_CALL
v3dv_CreateBufferView(VkDevice _device,
const VkBufferViewCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkBufferView *pView)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
struct v3dv_buffer *buffer =
v3dv_buffer_from_handle(pCreateInfo->buffer);
struct v3dv_buffer_view *view =
vk_object_zalloc(&device->vk, pAllocator, sizeof(*view),
VK_OBJECT_TYPE_BUFFER_VIEW);
if (!view)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
uint32_t range;
if (pCreateInfo->range == VK_WHOLE_SIZE)
range = buffer->size - pCreateInfo->offset;
else
range = pCreateInfo->range;
enum pipe_format pipe_format = vk_format_to_pipe_format(pCreateInfo->format);
uint32_t num_elements = range / util_format_get_blocksize(pipe_format);
view->buffer = buffer;
view->offset = pCreateInfo->offset;
view->size = view->offset + range;
view->num_elements = num_elements;
view->vk_format = pCreateInfo->format;
view->format = v3dv_X(device, get_format)(view->vk_format);
/* We don't support multi-plane formats for buffer views */
assert(view->format->plane_count == 1);
v3dv_X(device, get_internal_type_bpp_for_output_format)
(view->format->planes[0].rt_type, &view->internal_type, &view->internal_bpp);
const VkBufferUsageFlags2CreateInfoKHR *flags2 =
vk_find_struct_const(pCreateInfo->pNext,
BUFFER_USAGE_FLAGS_2_CREATE_INFO_KHR);
VkBufferUsageFlags2KHR usage;
if (flags2)
usage = flags2->usage;
else
usage = buffer->usage;
if (usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT ||
usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT)
v3dv_X(device, pack_texture_shader_state_from_buffer_view)(device, view);
*pView = v3dv_buffer_view_to_handle(view);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL
v3dv_DestroyBufferView(VkDevice _device,
VkBufferView bufferView,
const VkAllocationCallbacks *pAllocator)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
V3DV_FROM_HANDLE(v3dv_buffer_view, buffer_view, bufferView);
if (buffer_view == NULL)
return;
vk_object_free(&device->vk, pAllocator, buffer_view);
}