mesa/src/asahi/lib/agx_nir_lower_texture.c

812 lines
27 KiB
C

/*
* Copyright 2023 Valve Corporation
* Copyright 2021 Alyssa Rosenzweig
* Copyright 2020 Collabora Ltd.
* Copyright 2016 Broadcom
* SPDX-License-Identifier: MIT
*/
#include "compiler/nir/nir.h"
#include "compiler/nir/nir_builder.h"
#include "agx_internal_formats.h"
#include "agx_nir_passes.h"
#include "glsl_types.h"
#include "libagx_shaders.h"
#include "nir_builtin_builder.h"
#include "nir_intrinsics.h"
#include "nir_intrinsics_indices.h"
#include "shader_enums.h"
static bool
fence_image(struct nir_builder *b, nir_intrinsic_instr *intr, void *data)
{
b->cursor = nir_after_instr(&intr->instr);
/* If the image is write-only, there is no fencing needed */
if (nir_intrinsic_has_access(intr) &&
(nir_intrinsic_access(intr) & ACCESS_NON_READABLE)) {
return false;
}
switch (intr->intrinsic) {
case nir_intrinsic_image_store:
case nir_intrinsic_bindless_image_store:
nir_fence_pbe_to_tex_agx(b);
return true;
case nir_intrinsic_image_atomic:
case nir_intrinsic_bindless_image_atomic:
case nir_intrinsic_image_atomic_swap:
case nir_intrinsic_bindless_image_atomic_swap:
nir_fence_mem_to_tex_agx(b);
return true;
default:
return false;
}
}
static nir_def *
texture_descriptor_ptr(nir_builder *b, nir_tex_instr *tex)
{
int handle_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_handle);
assert(handle_idx >= 0 && "must be bindless");
return nir_load_from_texture_handle_agx(b, tex->src[handle_idx].src.ssa);
}
static bool
has_nonzero_lod(nir_tex_instr *tex)
{
int idx = nir_tex_instr_src_index(tex, nir_tex_src_lod);
if (idx < 0)
return false;
nir_src src = tex->src[idx].src;
return !(nir_src_is_const(src) && nir_src_as_uint(src) == 0);
}
static bool
lower_tex_crawl(nir_builder *b, nir_instr *instr, UNUSED void *data)
{
if (instr->type != nir_instr_type_tex)
return false;
nir_tex_instr *tex = nir_instr_as_tex(instr);
b->cursor = nir_before_instr(instr);
if (tex->op != nir_texop_txs && tex->op != nir_texop_texture_samples &&
tex->op != nir_texop_query_levels)
return false;
nir_def *ptr = texture_descriptor_ptr(b, tex);
unsigned nr_comps = tex->def.num_components;
assert(nr_comps <= 3);
int lod_idx = nir_tex_instr_src_index(tex, nir_tex_src_lod);
nir_def *lod = lod_idx >= 0 ? nir_u2u16(b, tex->src[lod_idx].src.ssa)
: nir_imm_intN_t(b, 0, 16);
nir_def *res;
if (tex->op == nir_texop_txs) {
res =
libagx_txs(b, ptr, lod, nir_imm_int(b, nr_comps),
nir_imm_bool(b, tex->sampler_dim == GLSL_SAMPLER_DIM_BUF),
nir_imm_bool(b, tex->sampler_dim == GLSL_SAMPLER_DIM_1D),
nir_imm_bool(b, tex->sampler_dim == GLSL_SAMPLER_DIM_2D),
nir_imm_bool(b, tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE),
nir_imm_bool(b, tex->is_array));
} else if (tex->op == nir_texop_query_levels) {
res = libagx_texture_levels(b, ptr);
} else {
res = libagx_texture_samples(b, ptr);
}
nir_def_rewrite_uses(&tex->def, nir_trim_vector(b, res, nr_comps));
nir_instr_remove(instr);
return true;
}
/*
* Given a 1D buffer texture coordinate, calculate the 2D coordinate vector that
* will be used to access the linear 2D texture bound to the buffer.
*/
static nir_def *
coords_for_buffer_texture(nir_builder *b, nir_def *coord)
{
return nir_vec2(b, nir_iand_imm(b, coord, BITFIELD_MASK(10)),
nir_ushr_imm(b, coord, 10));
}
/*
* Buffer textures are lowered to 2D (1024xN) textures in the driver to access
* more storage. When lowering, we need to fix up the coordinate accordingly.
*
* Furthermore, RGB32 formats are emulated by lowering to global memory access,
* so to read a buffer texture we generate code that looks like:
*
* if (descriptor->format == RGB32)
* return ((uint32_t *) descriptor->address)[x];
* else
* return txf(texture_as_2d, vec2(x % 1024, x / 1024));
*/
static bool
lower_buffer_texture(nir_builder *b, nir_tex_instr *tex)
{
nir_def *coord = nir_steal_tex_src(tex, nir_tex_src_coord);
/* The OpenGL ES 3.2 specification says on page 187:
*
* When a buffer texture is accessed in a shader, the results of a texel
* fetch are undefined if the specified texel coordinate is negative, or
* greater than or equal to the clamped number of texels in the texture
* image.
*
* However, faulting would be undesirable for robustness, so clamp.
*/
nir_def *size = nir_get_texture_size(b, tex);
coord = nir_umin(b, coord, nir_iadd_imm(b, size, -1));
nir_def *desc = texture_descriptor_ptr(b, tex);
bool is_float = nir_alu_type_get_base_type(tex->dest_type) == nir_type_float;
/* Lower RGB32 reads if the format requires */
nir_if *nif = nir_push_if(b, libagx_texture_is_rgb32(b, desc));
nir_def *rgb32 = nir_trim_vector(
b, libagx_texture_load_rgb32(b, desc, coord, nir_imm_bool(b, is_float)),
nir_tex_instr_dest_size(tex));
nir_push_else(b, nif);
/* Otherwise, lower the texture instruction to read from 2D */
assert(coord->num_components == 1 && "buffer textures are 1D");
tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
nir_def *coord2d = coords_for_buffer_texture(b, coord);
nir_instr_remove(&tex->instr);
nir_builder_instr_insert(b, &tex->instr);
nir_tex_instr_add_src(tex, nir_tex_src_backend1, coord2d);
nir_steal_tex_src(tex, nir_tex_src_sampler_handle);
nir_steal_tex_src(tex, nir_tex_src_sampler_offset);
nir_block *else_block = nir_cursor_current_block(b->cursor);
nir_pop_if(b, nif);
/* Put it together with a phi */
nir_def *phi = nir_if_phi(b, rgb32, &tex->def);
nir_def_rewrite_uses(&tex->def, phi);
nir_phi_instr *phi_instr = nir_instr_as_phi(phi->parent_instr);
nir_phi_src *else_src = nir_phi_get_src_from_block(phi_instr, else_block);
nir_src_rewrite(&else_src->src, &tex->def);
return true;
}
/*
* NIR indexes into array textures with unclamped floats (integer for txf). AGX
* requires the index to be a clamped integer. Lower tex_src_coord into
* tex_src_backend1 for array textures by type-converting and clamping.
*/
static bool
lower_regular_texture(nir_builder *b, nir_instr *instr, UNUSED void *data)
{
if (instr->type != nir_instr_type_tex)
return false;
nir_tex_instr *tex = nir_instr_as_tex(instr);
b->cursor = nir_before_instr(instr);
if (nir_tex_instr_is_query(tex) && tex->op != nir_texop_lod)
return false;
if (tex->sampler_dim == GLSL_SAMPLER_DIM_BUF)
return lower_buffer_texture(b, tex);
/* Don't lower twice */
if (nir_tex_instr_src_index(tex, nir_tex_src_backend1) >= 0)
return false;
/* Get the coordinates */
nir_def *coord = nir_steal_tex_src(tex, nir_tex_src_coord);
nir_def *ms_idx = nir_steal_tex_src(tex, nir_tex_src_ms_index);
/* Apply txf workaround, see libagx_lower_txf_robustness */
bool is_txf = ((tex->op == nir_texop_txf) || (tex->op == nir_texop_txf_ms));
if (is_txf && (has_nonzero_lod(tex) || tex->is_array) &&
!(tex->backend_flags & AGX_TEXTURE_FLAG_NO_CLAMP)) {
int lod_idx = nir_tex_instr_src_index(tex, nir_tex_src_lod);
nir_def *lod =
lod_idx >= 0 ? tex->src[lod_idx].src.ssa : nir_undef(b, 1, 16);
unsigned lidx = coord->num_components - 1;
nir_def *layer = nir_channel(b, coord, lidx);
nir_def *replaced = libagx_lower_txf_robustness(
b, texture_descriptor_ptr(b, tex),
nir_imm_bool(b, has_nonzero_lod(tex)), lod,
nir_imm_bool(b, tex->is_array), layer, nir_channel(b, coord, 0));
coord = nir_vector_insert_imm(b, coord, replaced, 0);
}
/* The layer is always the last component of the NIR coordinate, split it off
* because we'll need to swizzle.
*/
nir_def *layer = NULL;
if (tex->is_array && tex->op != nir_texop_lod) {
unsigned lidx = coord->num_components - 1;
nir_def *unclamped_layer = nir_channel(b, coord, lidx);
coord = nir_trim_vector(b, coord, lidx);
/* Round layer to nearest even */
if (!is_txf)
unclamped_layer = nir_f2u32(b, nir_fround_even(b, unclamped_layer));
/* For a cube array, the layer is zero-indexed component 3 of the
* coordinate but the number of layers is component 2 of the txs result.
*/
if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
assert(lidx == 3 && "4 components");
lidx = 2;
}
/* Clamp to max layer = (# of layers - 1) for out-of-bounds handling.
* Layer must be 16-bits for the hardware, drop top bits after clamping.
*
* For txf, we drop out-of-bounds components rather than clamp, see the
* above txf robustness workaround.
*/
if (!(tex->backend_flags & AGX_TEXTURE_FLAG_NO_CLAMP) && !is_txf) {
nir_def *txs = nir_get_texture_size(b, tex);
nir_def *nr_layers = nir_channel(b, txs, lidx);
nir_def *max_layer = nir_iadd_imm(b, nr_layers, -1);
layer = nir_umin(b, unclamped_layer, max_layer);
} else {
layer = unclamped_layer;
}
layer = nir_u2u16(b, layer);
}
/* Combine layer and multisample index into 32-bit so we don't need a vec5 or
* vec6 16-bit coordinate tuple, which would be inconvenient in NIR for
* little benefit (a minor optimization, I guess).
*/
nir_def *sample_array = (ms_idx && layer)
? nir_pack_32_2x16_split(b, ms_idx, layer)
: ms_idx ? nir_u2u32(b, ms_idx)
: layer ? nir_u2u32(b, layer)
: NULL;
/* Combine into the final 32-bit tuple */
if (sample_array != NULL) {
unsigned end = coord->num_components;
coord = nir_pad_vector(b, coord, end + 1);
coord = nir_vector_insert_imm(b, coord, sample_array, end);
}
nir_tex_instr_add_src(tex, nir_tex_src_backend1, coord);
/* Furthermore, if there is an offset vector, it must be packed */
nir_def *offset = nir_steal_tex_src(tex, nir_tex_src_offset);
if (offset != NULL) {
nir_def *packed = NULL;
for (unsigned c = 0; c < offset->num_components; ++c) {
nir_def *nibble = nir_iand_imm(b, nir_channel(b, offset, c), 0xF);
nir_def *shifted = nir_ishl_imm(b, nibble, 4 * c);
if (packed != NULL)
packed = nir_ior(b, packed, shifted);
else
packed = shifted;
}
nir_tex_instr_add_src(tex, nir_tex_src_backend2, packed);
}
/* We reserve bound sampler #0, so we offset bound samplers by 1 and
* otherwise map bound samplers as-is.
*/
nir_def *sampler = nir_steal_tex_src(tex, nir_tex_src_sampler_offset);
if (!sampler)
sampler = nir_imm_intN_t(b, tex->sampler_index, 16);
if (!is_txf &&
nir_tex_instr_src_index(tex, nir_tex_src_sampler_handle) < 0) {
nir_tex_instr_add_src(tex, nir_tex_src_sampler_handle,
nir_iadd_imm(b, nir_u2u16(b, sampler), 1));
}
return true;
}
static nir_def *
bias_for_tex(nir_builder *b, nir_tex_instr *tex)
{
nir_instr *instr = nir_get_texture_size(b, tex)->parent_instr;
nir_tex_instr *query = nir_instr_as_tex(instr);
query->op = nir_texop_lod_bias_agx;
query->dest_type = nir_type_float16;
nir_def_init(instr, &query->def, 1, 16);
return &query->def;
}
static bool
lower_sampler_bias(nir_builder *b, nir_instr *instr, UNUSED void *data)
{
if (instr->type != nir_instr_type_tex)
return false;
nir_tex_instr *tex = nir_instr_as_tex(instr);
b->cursor = nir_before_instr(instr);
switch (tex->op) {
case nir_texop_tex: {
tex->op = nir_texop_txb;
nir_tex_instr_add_src(tex, nir_tex_src_bias, bias_for_tex(b, tex));
return true;
}
case nir_texop_txb:
case nir_texop_txl: {
nir_tex_src_type src =
tex->op == nir_texop_txl ? nir_tex_src_lod : nir_tex_src_bias;
nir_def *orig = nir_steal_tex_src(tex, src);
assert(orig != NULL && "invalid NIR");
if (orig->bit_size != 16)
orig = nir_f2f16(b, orig);
nir_tex_instr_add_src(tex, src, nir_fadd(b, orig, bias_for_tex(b, tex)));
return true;
}
case nir_texop_txd: {
/* For txd, the computed level-of-detail is log2(rho)
* where rho should scale proportionally to all
* derivatives. So scale derivatives by exp2(bias) to
* get level-of-detail log2(exp2(bias) * rho) = bias + log2(rho).
*/
nir_def *scale = nir_fexp2(b, nir_f2f32(b, bias_for_tex(b, tex)));
nir_tex_src_type src[] = {nir_tex_src_ddx, nir_tex_src_ddy};
for (unsigned s = 0; s < ARRAY_SIZE(src); ++s) {
nir_def *orig = nir_steal_tex_src(tex, src[s]);
assert(orig != NULL && "invalid");
nir_def *scaled = nir_fmul(b, nir_f2f32(b, orig), scale);
nir_tex_instr_add_src(tex, src[s], scaled);
}
return true;
}
case nir_texop_lod: {
nir_tex_instr_add_src(tex, nir_tex_src_bias, bias_for_tex(b, tex));
return true;
}
case nir_texop_txf:
case nir_texop_txf_ms:
case nir_texop_txs:
case nir_texop_tg4:
case nir_texop_texture_samples:
case nir_texop_samples_identical:
case nir_texop_query_levels:
/* These operations do not use a sampler */
return false;
default:
unreachable("Unhandled texture operation");
}
}
static bool
legalize_image_lod(nir_builder *b, nir_intrinsic_instr *intr, UNUSED void *data)
{
nir_src *src;
#define CASE(op, idx) \
case nir_intrinsic_##op: \
case nir_intrinsic_bindless_##op: \
src = &intr->src[idx]; \
break;
switch (intr->intrinsic) {
CASE(image_load, 3)
CASE(image_store, 4)
CASE(image_size, 1)
default:
return false;
}
#undef CASE
if (src->ssa->bit_size == 16)
return false;
b->cursor = nir_before_instr(&intr->instr);
nir_src_rewrite(src, nir_i2i16(b, src->ssa));
return true;
}
static nir_def *
txs_for_image(nir_builder *b, nir_intrinsic_instr *intr,
unsigned num_components, unsigned bit_size, bool query_samples)
{
nir_tex_instr *tex = nir_tex_instr_create(b->shader, query_samples ? 1 : 2);
tex->op = query_samples ? nir_texop_texture_samples : nir_texop_txs;
tex->is_array = nir_intrinsic_image_array(intr);
tex->dest_type = nir_type_uint32;
tex->sampler_dim = nir_intrinsic_image_dim(intr);
tex->src[0] =
nir_tex_src_for_ssa(nir_tex_src_texture_handle, intr->src[0].ssa);
if (!query_samples)
tex->src[1] = nir_tex_src_for_ssa(nir_tex_src_lod, intr->src[1].ssa);
nir_def_init(&tex->instr, &tex->def, num_components, bit_size);
nir_builder_instr_insert(b, &tex->instr);
nir_def *res = &tex->def;
/* Cube images are implemented as 2D arrays, so we need to divide here. */
if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE && res->num_components > 2 &&
!query_samples) {
nir_def *divided = nir_udiv_imm(b, nir_channel(b, res, 2), 6);
res = nir_vector_insert_imm(b, res, divided, 2);
}
return res;
}
static nir_def *
image_texel_address(nir_builder *b, nir_intrinsic_instr *intr,
bool return_index)
{
/* First, calculate the address of the PBE descriptor */
nir_def *desc_address =
nir_load_from_texture_handle_agx(b, intr->src[0].ssa);
nir_def *coord = intr->src[1].ssa;
/* For atomics, we always infer the format. We only go down this path with
* formatless intrinsics when lowering multisampled image stores, but that
* uses the return_index path that ignores the block size.
*/
enum pipe_format format = nir_intrinsic_format(intr);
assert(return_index || format != PIPE_FORMAT_NONE);
nir_def *blocksize_B = nir_imm_int(b, util_format_get_blocksize(format));
enum glsl_sampler_dim dim = nir_intrinsic_image_dim(intr);
bool layered = nir_intrinsic_image_array(intr) ||
(dim == GLSL_SAMPLER_DIM_CUBE) ||
(dim == GLSL_SAMPLER_DIM_3D);
if (dim == GLSL_SAMPLER_DIM_BUF && return_index) {
return nir_channel(b, coord, 0);
} else if (dim == GLSL_SAMPLER_DIM_BUF) {
return libagx_buffer_texel_address(b, desc_address, coord, blocksize_B);
} else {
return libagx_image_texel_address(
b, desc_address, coord, nir_u2u32(b, intr->src[2].ssa), blocksize_B,
nir_imm_bool(b, dim == GLSL_SAMPLER_DIM_1D),
nir_imm_bool(b, dim == GLSL_SAMPLER_DIM_MS), nir_imm_bool(b, layered),
nir_imm_bool(b, return_index));
}
}
static void
lower_buffer_image(nir_builder *b, nir_intrinsic_instr *intr)
{
nir_def *coord_vector = intr->src[1].ssa;
nir_def *coord = nir_channel(b, coord_vector, 0);
/* Lower the buffer load/store to a 2D image load/store, matching the 2D
* texture/PBE descriptor the driver supplies for buffer images.
*/
nir_def *coord2d = coords_for_buffer_texture(b, coord);
nir_src_rewrite(&intr->src[1], nir_pad_vector(b, coord2d, 4));
nir_intrinsic_set_image_dim(intr, GLSL_SAMPLER_DIM_2D);
}
static void
lower_1d_image(nir_builder *b, nir_intrinsic_instr *intr)
{
nir_def *coord = intr->src[1].ssa;
bool is_array = nir_intrinsic_image_array(intr);
nir_def *zero = nir_imm_intN_t(b, 0, coord->bit_size);
if (is_array) {
assert(coord->num_components >= 2);
coord =
nir_vec3(b, nir_channel(b, coord, 0), zero, nir_channel(b, coord, 1));
} else {
assert(coord->num_components >= 1);
coord = nir_vec2(b, coord, zero);
}
nir_src_rewrite(&intr->src[1], nir_pad_vector(b, coord, 4));
nir_intrinsic_set_image_dim(intr, GLSL_SAMPLER_DIM_2D);
}
/*
* Just like for txf, we need special handling around layers (and LODs, but we
* don't support mipmapped images yet) for robust image_loads. See
* libagx_lower_txf_robustness for more info.
*/
static bool
lower_image_load_robustness(nir_builder *b, nir_intrinsic_instr *intr)
{
if (nir_intrinsic_access(intr) & ACCESS_IN_BOUNDS_AGX)
return false;
/* We only need to worry about array-like loads */
enum glsl_sampler_dim dim = nir_intrinsic_image_dim(intr);
if (!nir_intrinsic_image_array(intr) && dim != GLSL_SAMPLER_DIM_CUBE)
return false;
/* Determine the coordinate component of the layer. Cubes and cube arrays
* keep their array in their last non-array coordinate component, other
* arrays are immediately after.
*/
unsigned lidx = glsl_get_sampler_dim_coordinate_components(dim);
if (dim == GLSL_SAMPLER_DIM_CUBE)
lidx--;
nir_def *coord = intr->src[1].ssa;
nir_def *lod = nir_undef(b, 1, 16);
nir_def *layer = nir_channel(b, coord, lidx);
/* image_load is effectively the same as txf, reuse the txf lower */
nir_def *replaced = libagx_lower_txf_robustness(
b, nir_load_from_texture_handle_agx(b, intr->src[0].ssa),
nir_imm_bool(b, false /* lower LOD */), lod,
nir_imm_bool(b, true /* lower layer */), layer, nir_channel(b, coord, 0));
nir_src_rewrite(&intr->src[1], nir_vector_insert_imm(b, coord, replaced, 0));
return true;
}
static bool
lower_images(nir_builder *b, nir_intrinsic_instr *intr, UNUSED void *data)
{
b->cursor = nir_before_instr(&intr->instr);
switch (intr->intrinsic) {
case nir_intrinsic_image_load:
case nir_intrinsic_image_store:
case nir_intrinsic_bindless_image_load:
case nir_intrinsic_bindless_image_store: {
/* Legalize MSAA index */
nir_src_rewrite(&intr->src[2], nir_u2u16(b, intr->src[2].ssa));
if (intr->intrinsic == nir_intrinsic_image_load ||
intr->intrinsic == nir_intrinsic_bindless_image_load) {
lower_image_load_robustness(b, intr);
}
switch (nir_intrinsic_image_dim(intr)) {
case GLSL_SAMPLER_DIM_1D:
lower_1d_image(b, intr);
return true;
case GLSL_SAMPLER_DIM_BUF:
lower_buffer_image(b, intr);
return true;
default:
return true;
}
}
case nir_intrinsic_bindless_image_size:
case nir_intrinsic_bindless_image_samples:
nir_def_rewrite_uses(
&intr->def,
txs_for_image(
b, intr, intr->def.num_components, intr->def.bit_size,
intr->intrinsic == nir_intrinsic_bindless_image_samples));
return true;
case nir_intrinsic_bindless_image_texel_address:
nir_def_rewrite_uses(&intr->def, image_texel_address(b, intr, false));
return true;
case nir_intrinsic_image_size:
case nir_intrinsic_image_texel_address:
unreachable("should've been lowered");
default:
return false;
}
}
/*
* Early texture lowering passes, called by the driver before lowering
* descriptor bindings. That means these passes operate on texture derefs. The
* purpose is to make descriptor crawls explicit in the NIR, so that the driver
* can accurately lower descriptors after this pass but before calling
* the full agx_nir_lower_texture.
*/
bool
agx_nir_lower_texture_early(nir_shader *s, bool support_lod_bias)
{
bool progress = false;
nir_lower_tex_options lower_tex_options = {
.lower_txp = ~0,
.lower_invalid_implicit_lod = true,
.lower_tg4_offsets = true,
.lower_index_to_offset = true,
/* Unclear if/how mipmapped 1D textures work in the hardware. */
.lower_1d = true,
/* XXX: Metal seems to handle just like 3D txd, so why doesn't it work?
* TODO: Stop using this lowering
*/
.lower_txd_cube_map = true,
};
NIR_PASS(progress, s, nir_lower_tex, &lower_tex_options);
/* Lower bias after nir_lower_tex (to get rid of txd) but before
* lower_regular_texture (which will shuffle around the sources)
*/
if (support_lod_bias) {
NIR_PASS(progress, s, nir_shader_instructions_pass, lower_sampler_bias,
nir_metadata_block_index | nir_metadata_dominance, NULL);
}
return progress;
}
bool
agx_nir_lower_texture(nir_shader *s)
{
bool progress = false;
nir_tex_src_type_constraints tex_constraints = {
[nir_tex_src_lod] = {true, 16},
[nir_tex_src_bias] = {true, 16},
[nir_tex_src_ms_index] = {true, 16},
[nir_tex_src_texture_offset] = {true, 16},
[nir_tex_src_sampler_offset] = {true, 16},
};
/* Insert fences before lowering image atomics, since image atomics need
* different fencing than other image operations.
*/
NIR_PASS(progress, s, nir_shader_intrinsics_pass, fence_image,
nir_metadata_block_index | nir_metadata_dominance, NULL);
NIR_PASS(progress, s, nir_lower_image_atomics_to_global);
NIR_PASS(progress, s, nir_shader_intrinsics_pass, legalize_image_lod,
nir_metadata_block_index | nir_metadata_dominance, NULL);
NIR_PASS(progress, s, nir_shader_intrinsics_pass, lower_images,
nir_metadata_block_index | nir_metadata_dominance, NULL);
NIR_PASS(progress, s, nir_legalize_16bit_sampler_srcs, tex_constraints);
/* Fold constants after nir_legalize_16bit_sampler_srcs so we can detect 0 in
* lower_regular_texture. This is required for correctness.
*/
NIR_PASS(progress, s, nir_opt_constant_folding);
/* Lower texture sources after legalizing types (as the lowering depends on
* 16-bit multisample indices) but before lowering queries (as the lowering
* generates txs for array textures).
*/
NIR_PASS(progress, s, nir_shader_instructions_pass, lower_regular_texture,
nir_metadata_none, NULL);
NIR_PASS(progress, s, nir_shader_instructions_pass, lower_tex_crawl,
nir_metadata_block_index | nir_metadata_dominance, NULL);
return progress;
}
static bool
lower_multisampled_store(nir_builder *b, nir_intrinsic_instr *intr,
UNUSED void *data)
{
b->cursor = nir_before_instr(&intr->instr);
if (intr->intrinsic != nir_intrinsic_bindless_image_store)
return false;
if (nir_intrinsic_image_dim(intr) != GLSL_SAMPLER_DIM_MS)
return false;
nir_def *index_px = nir_u2u32(b, image_texel_address(b, intr, true));
nir_def *coord2d = coords_for_buffer_texture(b, index_px);
nir_src_rewrite(&intr->src[1], nir_pad_vector(b, coord2d, 4));
nir_src_rewrite(&intr->src[2], nir_imm_int(b, 0));
nir_intrinsic_set_image_dim(intr, GLSL_SAMPLER_DIM_2D);
nir_intrinsic_set_image_array(intr, false);
return true;
}
bool
agx_nir_lower_multisampled_image_store(nir_shader *s)
{
return nir_shader_intrinsics_pass(
s, lower_multisampled_store,
nir_metadata_block_index | nir_metadata_dominance, NULL);
}
/*
* Given a non-bindless instruction, return whether agx_nir_lower_texture will
* lower it to something involving a descriptor crawl. This requires the driver
* to lower the instruction to bindless before calling agx_nir_lower_texture.
* The implementation just enumerates the cases handled in this file.
*/
bool
agx_nir_needs_texture_crawl(nir_instr *instr)
{
if (instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
switch (intr->intrinsic) {
/* Queries, atomics always become a crawl */
case nir_intrinsic_image_size:
case nir_intrinsic_image_deref_size:
case nir_intrinsic_image_samples:
case nir_intrinsic_image_deref_samples:
case nir_intrinsic_image_atomic:
case nir_intrinsic_image_deref_atomic:
case nir_intrinsic_image_atomic_swap:
case nir_intrinsic_image_deref_atomic_swap:
return true;
/* Multisampled stores need a crawl, others do not */
case nir_intrinsic_image_store:
case nir_intrinsic_image_deref_store:
return nir_intrinsic_image_dim(intr) == GLSL_SAMPLER_DIM_MS;
/* Array loads need a crawl, other load do not */
case nir_intrinsic_image_load:
return nir_intrinsic_image_array(intr) ||
nir_intrinsic_image_dim(intr) == GLSL_SAMPLER_DIM_CUBE;
default:
return false;
}
} else if (instr->type == nir_instr_type_tex) {
nir_tex_instr *tex = nir_instr_as_tex(instr);
/* Array textures get clamped to their size via txs */
if (tex->is_array && !(tex->backend_flags & AGX_TEXTURE_FLAG_NO_CLAMP))
return true;
switch (tex->op) {
/* Queries always become a crawl */
case nir_texop_txs:
case nir_texop_texture_samples:
case nir_texop_query_levels:
return true;
/* Buffer textures need their format read and txf needs its LOD/layer
* clamped. Buffer textures are only read through txf.
*/
case nir_texop_txf:
case nir_texop_txf_ms:
return has_nonzero_lod(tex) || tex->is_array ||
tex->sampler_dim == GLSL_SAMPLER_DIM_BUF;
default:
return false;
}
}
return false;
}