mesa/src/amd/compiler/aco_reduce_assign.cpp

183 lines
7.2 KiB
C++

/*
* Copyright © 2018 Valve Corporation
* Copyright © 2018 Google
*
* SPDX-License-Identifier: MIT
*/
#include "aco_builder.h"
#include "aco_ir.h"
#include <vector>
/*
* Insert p_linear_start instructions right before RA to correctly allocate
* temporaries for reductions that have to disrespect EXEC by executing in
* WWM.
*/
namespace aco {
void
setup_reduce_temp(Program* program)
{
unsigned last_top_level_block_idx = 0;
unsigned maxSize = 0;
std::vector<bool> hasReductions(program->blocks.size());
for (Block& block : program->blocks) {
for (aco_ptr<Instruction>& instr : block.instructions) {
if (instr->opcode == aco_opcode::p_interp_gfx11 ||
instr->opcode == aco_opcode::p_bpermute_permlane) {
maxSize = MAX2(maxSize, 1);
hasReductions[block.index] = true;
} else if (instr->format == Format::PSEUDO_REDUCTION) {
maxSize = MAX2(maxSize, instr->operands[0].size());
hasReductions[block.index] = true;
}
}
}
if (maxSize == 0)
return;
assert(maxSize == 1 || maxSize == 2);
Temp reduceTmp(0, RegClass(RegType::vgpr, maxSize).as_linear());
Temp vtmp(0, RegClass(RegType::vgpr, maxSize).as_linear());
int inserted_at = -1;
int vtmp_inserted_at = -1;
for (Block& block : program->blocks) {
if (block.kind & block_kind_top_level) {
last_top_level_block_idx = block.index;
/* TODO: this could be improved in this case:
* start_linear_vgpr
* if (...) {
* use_linear_vgpr
* }
* end_linear_vgpr
* Here, the linear vgpr is used before any phi copies, so this isn't necessary.
*/
if (inserted_at >= 0) {
aco_ptr<Instruction> end{create_instruction(
aco_opcode::p_end_linear_vgpr, Format::PSEUDO, vtmp_inserted_at >= 0 ? 2 : 1, 0)};
end->operands[0] = Operand(reduceTmp);
end->operands[0].setLateKill(true);
if (vtmp_inserted_at >= 0) {
end->operands[1] = Operand(vtmp);
end->operands[1].setLateKill(true);
}
/* insert after the phis of the block */
std::vector<aco_ptr<Instruction>>::iterator it = block.instructions.begin();
while ((*it)->opcode == aco_opcode::p_linear_phi || (*it)->opcode == aco_opcode::p_phi)
++it;
block.instructions.insert(it, std::move(end));
inserted_at = vtmp_inserted_at = -1;
}
}
if (!hasReductions[block.index])
continue;
std::vector<aco_ptr<Instruction>>::iterator it;
for (it = block.instructions.begin(); it != block.instructions.end(); ++it) {
Instruction* instr = (*it).get();
if (instr->format != Format::PSEUDO_REDUCTION &&
instr->opcode != aco_opcode::p_interp_gfx11 &&
instr->opcode != aco_opcode::p_bpermute_permlane)
continue;
if ((int)last_top_level_block_idx != inserted_at) {
reduceTmp = program->allocateTmp(reduceTmp.regClass());
aco_ptr<Instruction> create{
create_instruction(aco_opcode::p_start_linear_vgpr, Format::PSEUDO, 0, 1)};
create->definitions[0] = Definition(reduceTmp);
/* find the right place to insert this definition */
if (last_top_level_block_idx == block.index) {
/* insert right before the current instruction */
it = block.instructions.insert(it, std::move(create));
it++;
/* inserted_at is intentionally not updated here, so later blocks
* would insert at the end instead of using this one. */
} else {
assert(last_top_level_block_idx < block.index);
/* insert after p_logical_end of the last top-level block */
std::vector<aco_ptr<Instruction>>& instructions =
program->blocks[last_top_level_block_idx].instructions;
auto insert_point =
std::find_if(instructions.rbegin(), instructions.rend(),
[](const auto& iter) {
return iter->opcode == aco_opcode::p_logical_end;
})
.base();
instructions.insert(insert_point, std::move(create));
inserted_at = last_top_level_block_idx;
}
}
/* same as before, except for the vector temporary instead of the reduce temporary */
bool need_vtmp = false;
if (instr->isReduction()) {
ReduceOp op = instr->reduction().reduce_op;
unsigned cluster_size = instr->reduction().cluster_size;
need_vtmp = op == imul32 || op == fadd64 || op == fmul64 || op == fmin64 ||
op == fmax64 || op == umin64 || op == umax64 || op == imin64 ||
op == imax64 || op == imul64;
bool gfx10_need_vtmp = op == imul8 || op == imax8 || op == imin8 || op == umin8 ||
op == imul16 || op == imax16 || op == imin16 || op == umin16 ||
op == iadd64;
if (program->gfx_level >= GFX10 && cluster_size == 64)
need_vtmp = true;
if (program->gfx_level >= GFX10 && gfx10_need_vtmp)
need_vtmp = true;
if (program->gfx_level <= GFX7)
need_vtmp = true;
need_vtmp |= cluster_size == 32;
}
if (need_vtmp && (int)last_top_level_block_idx != vtmp_inserted_at) {
vtmp = program->allocateTmp(vtmp.regClass());
aco_ptr<Instruction> create{
create_instruction(aco_opcode::p_start_linear_vgpr, Format::PSEUDO, 0, 1)};
create->definitions[0] = Definition(vtmp);
if (last_top_level_block_idx == block.index) {
it = block.instructions.insert(it, std::move(create));
it++;
} else {
assert(last_top_level_block_idx < block.index);
std::vector<aco_ptr<Instruction>>& instructions =
program->blocks[last_top_level_block_idx].instructions;
auto insert_point =
std::find_if(instructions.rbegin(), instructions.rend(),
[](const auto& iter) {
return iter->opcode == aco_opcode::p_logical_end;
})
.base();
instructions.insert(insert_point, std::move(create));
vtmp_inserted_at = last_top_level_block_idx;
}
}
if (instr->isReduction()) {
instr->operands[1] = Operand(reduceTmp);
instr->operands[1].setLateKill(true);
if (need_vtmp) {
instr->operands[2] = Operand(vtmp);
instr->operands[2].setLateKill(true);
}
} else {
assert(instr->opcode == aco_opcode::p_interp_gfx11 ||
instr->opcode == aco_opcode::p_bpermute_permlane);
instr->operands[0] = Operand(reduceTmp);
instr->operands[0].setLateKill(true);
}
}
}
}
}; // namespace aco