mesa/src/amd/compiler/aco_optimizer_postRA.cpp

894 lines
31 KiB
C++

/*
* Copyright © 2021 Valve Corporation
*
* SPDX-License-Identifier: MIT
*/
#include "aco_builder.h"
#include "aco_ir.h"
#include <algorithm>
#include <array>
#include <bitset>
#include <vector>
namespace aco {
namespace {
constexpr const size_t max_reg_cnt = 512;
constexpr const size_t max_sgpr_cnt = 128;
constexpr const size_t min_vgpr = 256;
constexpr const size_t max_vgpr_cnt = 256;
struct Idx {
bool operator==(const Idx& other) const { return block == other.block && instr == other.instr; }
bool operator!=(const Idx& other) const { return !operator==(other); }
bool found() const { return block != UINT32_MAX; }
uint32_t block;
uint32_t instr;
};
/** Indicates that a register was not yet written in the shader. */
Idx not_written_yet{UINT32_MAX, 0};
/** Indicates that an operand is constant or undefined, not written by any instruction. */
Idx const_or_undef{UINT32_MAX, 2};
/** Indicates that a register was overwritten by different instructions in previous blocks. */
Idx overwritten_untrackable{UINT32_MAX, 3};
/** Indicates that there isn't a clear single writer, for example due to subdword operations. */
Idx overwritten_unknown_instr{UINT32_MAX, 4};
struct pr_opt_ctx {
using Idx_array = std::array<Idx, max_reg_cnt>;
Program* program;
Block* current_block;
uint32_t current_instr_idx;
std::vector<uint16_t> uses;
std::unique_ptr<Idx_array[]> instr_idx_by_regs;
pr_opt_ctx(Program* p)
: program(p), current_block(nullptr), current_instr_idx(0), uses(dead_code_analysis(p)),
instr_idx_by_regs(std::unique_ptr<Idx_array[]>{new Idx_array[p->blocks.size()]})
{}
ALWAYS_INLINE void reset_block_regs(const Block::edge_vec& preds, const unsigned block_index,
const unsigned min_reg, const unsigned num_regs)
{
const unsigned num_preds = preds.size();
const unsigned first_pred = preds[0];
/* Copy information from the first predecessor. */
memcpy(&instr_idx_by_regs[block_index][min_reg], &instr_idx_by_regs[first_pred][min_reg],
num_regs * sizeof(Idx));
/* Mark overwritten if it doesn't match with other predecessors. */
const unsigned until_reg = min_reg + num_regs;
for (unsigned i = 1; i < num_preds; ++i) {
unsigned pred = preds[i];
for (unsigned reg = min_reg; reg < until_reg; ++reg) {
Idx& idx = instr_idx_by_regs[block_index][reg];
if (idx == overwritten_untrackable)
continue;
if (idx != instr_idx_by_regs[pred][reg])
idx = overwritten_untrackable;
}
}
}
void reset_block(Block* block)
{
current_block = block;
current_instr_idx = 0;
if (block->linear_preds.empty()) {
std::fill(instr_idx_by_regs[block->index].begin(), instr_idx_by_regs[block->index].end(),
not_written_yet);
} else if (block->kind & block_kind_loop_header) {
/* Instructions inside the loop may overwrite registers of temporaries that are
* not live inside the loop, but we can't detect that because we haven't processed
* the blocks in the loop yet. As a workaround, mark all registers as untrackable.
* TODO: Consider improving this in the future.
*/
std::fill(instr_idx_by_regs[block->index].begin(), instr_idx_by_regs[block->index].end(),
overwritten_untrackable);
} else {
reset_block_regs(block->linear_preds, block->index, 0, max_sgpr_cnt);
reset_block_regs(block->linear_preds, block->index, 251, 3);
if (!block->logical_preds.empty()) {
/* We assume that VGPRs are only read by blocks which have a logical predecessor,
* ie. any block that reads any VGPR has at least 1 logical predecessor.
*/
reset_block_regs(block->logical_preds, block->index, min_vgpr, max_vgpr_cnt);
} else {
/* If a block has no logical predecessors, it is not part of the
* logical CFG and therefore it also won't have any logical successors.
* Such a block does not write any VGPRs ever.
*/
assert(block->logical_succs.empty());
}
}
}
Instruction* get(Idx idx) { return program->blocks[idx.block].instructions[idx.instr].get(); }
};
void
save_reg_writes(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
for (const Definition& def : instr->definitions) {
assert(def.regClass().type() != RegType::sgpr || def.physReg().reg() <= 255);
assert(def.regClass().type() != RegType::vgpr || def.physReg().reg() >= 256);
unsigned dw_size = DIV_ROUND_UP(def.bytes(), 4u);
unsigned r = def.physReg().reg();
Idx idx{ctx.current_block->index, ctx.current_instr_idx};
if (def.regClass().is_subdword())
idx = overwritten_unknown_instr;
assert((r + dw_size) <= max_reg_cnt);
assert(def.size() == dw_size || def.regClass().is_subdword());
std::fill(ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r,
ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r + dw_size, idx);
}
if (instr->isPseudo() && instr->pseudo().needs_scratch_reg) {
if (!instr->pseudo().tmp_in_scc)
ctx.instr_idx_by_regs[ctx.current_block->index][scc] = overwritten_unknown_instr;
ctx.instr_idx_by_regs[ctx.current_block->index][instr->pseudo().scratch_sgpr] =
overwritten_unknown_instr;
}
}
Idx
last_writer_idx(pr_opt_ctx& ctx, PhysReg physReg, RegClass rc)
{
/* Verify that all of the operand's registers are written by the same instruction. */
assert(physReg.reg() < max_reg_cnt);
Idx instr_idx = ctx.instr_idx_by_regs[ctx.current_block->index][physReg.reg()];
unsigned dw_size = DIV_ROUND_UP(rc.bytes(), 4u);
unsigned r = physReg.reg();
bool all_same =
std::all_of(ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r,
ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r + dw_size,
[instr_idx](Idx i) { return i == instr_idx; });
return all_same ? instr_idx : overwritten_untrackable;
}
Idx
last_writer_idx(pr_opt_ctx& ctx, const Operand& op)
{
if (op.isConstant() || op.isUndefined())
return const_or_undef;
return last_writer_idx(ctx, op.physReg(), op.regClass());
}
/**
* Check whether a register has been overwritten since the given location.
* This is an important part of checking whether certain optimizations are
* valid.
* Note that the decision is made based on registers and not on SSA IDs.
*/
bool
is_overwritten_since(pr_opt_ctx& ctx, PhysReg reg, RegClass rc, const Idx& since_idx,
bool inclusive = false)
{
/* If we didn't find an instruction, assume that the register is overwritten. */
if (!since_idx.found())
return true;
/* TODO: We currently can't keep track of subdword registers. */
if (rc.is_subdword())
return true;
unsigned begin_reg = reg.reg();
unsigned end_reg = begin_reg + rc.size();
unsigned current_block_idx = ctx.current_block->index;
for (unsigned r = begin_reg; r < end_reg; ++r) {
Idx& i = ctx.instr_idx_by_regs[current_block_idx][r];
if (i == overwritten_untrackable && current_block_idx > since_idx.block)
return true;
else if (i == overwritten_untrackable || i == not_written_yet)
continue;
else if (i == overwritten_unknown_instr)
return true;
assert(i.found());
bool since_instr = inclusive ? i.instr >= since_idx.instr : i.instr > since_idx.instr;
if (i.block > since_idx.block || (i.block == since_idx.block && since_instr))
return true;
}
return false;
}
bool
is_overwritten_since(pr_opt_ctx& ctx, const Definition& def, const Idx& idx, bool inclusive = false)
{
return is_overwritten_since(ctx, def.physReg(), def.regClass(), idx, inclusive);
}
bool
is_overwritten_since(pr_opt_ctx& ctx, const Operand& op, const Idx& idx, bool inclusive = false)
{
if (op.isConstant())
return false;
return is_overwritten_since(ctx, op.physReg(), op.regClass(), idx, inclusive);
}
void
try_apply_branch_vcc(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
/* We are looking for the following pattern:
*
* vcc = ... ; last_vcc_wr
* sX, scc = s_and_bXX vcc, exec ; op0_instr
* (...vcc and exec must not be overwritten inbetween...)
* s_cbranch_XX scc ; instr
*
* If possible, the above is optimized into:
*
* vcc = ... ; last_vcc_wr
* s_cbranch_XX vcc ; instr modified to use vcc
*/
/* Don't try to optimize this on GFX6-7 because SMEM may corrupt the vccz bit. */
if (ctx.program->gfx_level < GFX8)
return;
if (instr->format != Format::PSEUDO_BRANCH || instr->operands.size() == 0 ||
instr->operands[0].physReg() != scc)
return;
Idx op0_instr_idx = last_writer_idx(ctx, instr->operands[0]);
Idx last_vcc_wr_idx = last_writer_idx(ctx, vcc, ctx.program->lane_mask);
/* We need to make sure:
* - the instructions that wrote the operand register and VCC are both found
* - the operand register used by the branch, and VCC were both written in the current block
* - EXEC hasn't been overwritten since the last VCC write
* - VCC hasn't been overwritten since the operand register was written
* (ie. the last VCC writer precedes the op0 writer)
*/
if (!op0_instr_idx.found() || !last_vcc_wr_idx.found() ||
op0_instr_idx.block != ctx.current_block->index ||
last_vcc_wr_idx.block != ctx.current_block->index ||
is_overwritten_since(ctx, exec, ctx.program->lane_mask, last_vcc_wr_idx) ||
is_overwritten_since(ctx, vcc, ctx.program->lane_mask, op0_instr_idx))
return;
Instruction* op0_instr = ctx.get(op0_instr_idx);
Instruction* last_vcc_wr = ctx.get(last_vcc_wr_idx);
if ((op0_instr->opcode != aco_opcode::s_and_b64 /* wave64 */ &&
op0_instr->opcode != aco_opcode::s_and_b32 /* wave32 */) ||
op0_instr->operands[0].physReg() != vcc || op0_instr->operands[1].physReg() != exec ||
!last_vcc_wr->isVOPC())
return;
assert(last_vcc_wr->definitions[0].tempId() == op0_instr->operands[0].tempId());
/* Reduce the uses of the SCC def */
ctx.uses[instr->operands[0].tempId()]--;
/* Use VCC instead of SCC in the branch */
instr->operands[0] = op0_instr->operands[0];
}
void
try_optimize_scc_nocompare(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
/* We are looking for the following pattern:
*
* s_bfe_u32 s0, s3, 0x40018 ; outputs SGPR and SCC if the SGPR != 0
* s_cmp_eq_i32 s0, 0 ; comparison between the SGPR and 0
* s_cbranch_scc0 BB3 ; use the result of the comparison, eg. branch or cselect
*
* If possible, the above is optimized into:
*
* s_bfe_u32 s0, s3, 0x40018 ; original instruction
* s_cbranch_scc1 BB3 ; modified to use SCC directly rather than the SGPR with comparison
*
*/
if (!instr->isSALU() && !instr->isBranch())
return;
if (instr->isSOPC() &&
(instr->opcode == aco_opcode::s_cmp_eq_u32 || instr->opcode == aco_opcode::s_cmp_eq_i32 ||
instr->opcode == aco_opcode::s_cmp_lg_u32 || instr->opcode == aco_opcode::s_cmp_lg_i32 ||
instr->opcode == aco_opcode::s_cmp_eq_u64 || instr->opcode == aco_opcode::s_cmp_lg_u64) &&
(instr->operands[0].constantEquals(0) || instr->operands[1].constantEquals(0)) &&
(instr->operands[0].isTemp() || instr->operands[1].isTemp())) {
/* Make sure the constant is always in operand 1 */
if (instr->operands[0].isConstant())
std::swap(instr->operands[0], instr->operands[1]);
/* Find the writer instruction of Operand 0. */
Idx wr_idx = last_writer_idx(ctx, instr->operands[0]);
if (!wr_idx.found())
return;
Instruction* wr_instr = ctx.get(wr_idx);
if (!wr_instr->isSALU() || wr_instr->definitions.size() < 2 ||
wr_instr->definitions[1].physReg() != scc)
return;
/* Look for instructions which set SCC := (D != 0) */
switch (wr_instr->opcode) {
case aco_opcode::s_bfe_i32:
case aco_opcode::s_bfe_i64:
case aco_opcode::s_bfe_u32:
case aco_opcode::s_bfe_u64:
case aco_opcode::s_and_b32:
case aco_opcode::s_and_b64:
case aco_opcode::s_andn2_b32:
case aco_opcode::s_andn2_b64:
case aco_opcode::s_or_b32:
case aco_opcode::s_or_b64:
case aco_opcode::s_orn2_b32:
case aco_opcode::s_orn2_b64:
case aco_opcode::s_xor_b32:
case aco_opcode::s_xor_b64:
case aco_opcode::s_not_b32:
case aco_opcode::s_not_b64:
case aco_opcode::s_nor_b32:
case aco_opcode::s_nor_b64:
case aco_opcode::s_xnor_b32:
case aco_opcode::s_xnor_b64:
case aco_opcode::s_nand_b32:
case aco_opcode::s_nand_b64:
case aco_opcode::s_lshl_b32:
case aco_opcode::s_lshl_b64:
case aco_opcode::s_lshr_b32:
case aco_opcode::s_lshr_b64:
case aco_opcode::s_ashr_i32:
case aco_opcode::s_ashr_i64:
case aco_opcode::s_abs_i32:
case aco_opcode::s_absdiff_i32: break;
default: return;
}
/* Check whether both SCC and Operand 0 are written by the same instruction. */
Idx sccwr_idx = last_writer_idx(ctx, scc, s1);
if (wr_idx != sccwr_idx) {
/* Check whether the current instruction is the only user of its first operand. */
if (ctx.uses[wr_instr->definitions[1].tempId()] ||
ctx.uses[wr_instr->definitions[0].tempId()] > 1)
return;
/* Check whether the operands of the writer are overwritten. */
for (const Operand& op : wr_instr->operands) {
if (is_overwritten_since(ctx, op, wr_idx))
return;
}
aco_opcode pulled_opcode = wr_instr->opcode;
if (instr->opcode == aco_opcode::s_cmp_eq_u32 ||
instr->opcode == aco_opcode::s_cmp_eq_i32 ||
instr->opcode == aco_opcode::s_cmp_eq_u64) {
/* When s_cmp_eq is used, it effectively inverts the SCC def.
* However, we can't simply invert the opcodes here because that
* would change the meaning of the program.
*/
return;
}
Definition scc_def = instr->definitions[0];
ctx.uses[wr_instr->definitions[0].tempId()]--;
/* Copy the writer instruction, but use SCC from the current instr.
* This means that the original instruction will be eliminated.
*/
if (wr_instr->format == Format::SOP2) {
instr.reset(create_instruction(pulled_opcode, Format::SOP2, 2, 2));
instr->operands[1] = wr_instr->operands[1];
} else if (wr_instr->format == Format::SOP1) {
instr.reset(create_instruction(pulled_opcode, Format::SOP1, 1, 2));
}
instr->definitions[0] = wr_instr->definitions[0];
instr->definitions[1] = scc_def;
instr->operands[0] = wr_instr->operands[0];
return;
}
/* Use the SCC def from wr_instr */
ctx.uses[instr->operands[0].tempId()]--;
instr->operands[0] = Operand(wr_instr->definitions[1].getTemp(), scc);
ctx.uses[instr->operands[0].tempId()]++;
/* Set the opcode and operand to 32-bit */
instr->operands[1] = Operand::zero();
instr->opcode =
(instr->opcode == aco_opcode::s_cmp_eq_u32 || instr->opcode == aco_opcode::s_cmp_eq_i32 ||
instr->opcode == aco_opcode::s_cmp_eq_u64)
? aco_opcode::s_cmp_eq_u32
: aco_opcode::s_cmp_lg_u32;
} else if ((instr->format == Format::PSEUDO_BRANCH && instr->operands.size() == 1 &&
instr->operands[0].physReg() == scc) ||
instr->opcode == aco_opcode::s_cselect_b32 ||
instr->opcode == aco_opcode::s_cselect_b64) {
/* For cselect, operand 2 is the SCC condition */
unsigned scc_op_idx = 0;
if (instr->opcode == aco_opcode::s_cselect_b32 ||
instr->opcode == aco_opcode::s_cselect_b64) {
scc_op_idx = 2;
}
Idx wr_idx = last_writer_idx(ctx, instr->operands[scc_op_idx]);
if (!wr_idx.found())
return;
Instruction* wr_instr = ctx.get(wr_idx);
/* Check if we found the pattern above. */
if (wr_instr->opcode != aco_opcode::s_cmp_eq_u32 &&
wr_instr->opcode != aco_opcode::s_cmp_lg_u32)
return;
if (wr_instr->operands[0].physReg() != scc)
return;
if (!wr_instr->operands[1].constantEquals(0))
return;
/* The optimization can be unsafe when there are other users. */
if (ctx.uses[instr->operands[scc_op_idx].tempId()] > 1)
return;
if (wr_instr->opcode == aco_opcode::s_cmp_eq_u32) {
/* Flip the meaning of the instruction to correctly use the SCC. */
if (instr->format == Format::PSEUDO_BRANCH)
instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz
: aco_opcode::p_cbranch_z;
else if (instr->opcode == aco_opcode::s_cselect_b32 ||
instr->opcode == aco_opcode::s_cselect_b64)
std::swap(instr->operands[0], instr->operands[1]);
else
unreachable(
"scc_nocompare optimization is only implemented for p_cbranch and s_cselect");
}
/* Use the SCC def from the original instruction, not the comparison */
ctx.uses[instr->operands[scc_op_idx].tempId()]--;
instr->operands[scc_op_idx] = wr_instr->operands[0];
}
}
static bool
is_scc_copy(const Instruction* instr)
{
return instr->opcode == aco_opcode::p_parallelcopy && instr->operands.size() == 1 &&
instr->operands[0].isTemp() && instr->operands[0].physReg().reg() == scc;
}
void
save_scc_copy_producer(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
if (!is_scc_copy(instr.get()))
return;
Idx wr_idx = last_writer_idx(ctx, instr->operands[0]);
if (wr_idx.found() && wr_idx.block == ctx.current_block->index)
instr->pass_flags = wr_idx.instr;
else
instr->pass_flags = UINT32_MAX;
}
void
try_eliminate_scc_copy(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
/* Try to eliminate an SCC copy by duplicating the instruction that produced the SCC. */
if (instr->opcode != aco_opcode::p_parallelcopy || instr->definitions.size() != 1 ||
instr->definitions[0].physReg().reg() != scc)
return;
/* Find the instruction that copied SCC into an SGPR. */
Idx wr_idx = last_writer_idx(ctx, instr->operands[0]);
if (!wr_idx.found())
return;
const Instruction* wr_instr = ctx.get(wr_idx);
if (!is_scc_copy(wr_instr) || wr_instr->pass_flags == UINT32_MAX)
return;
Idx producer_idx = {wr_idx.block, wr_instr->pass_flags};
Instruction* producer_instr = ctx.get(producer_idx);
if (!producer_instr || !producer_instr->isSALU())
return;
/* Verify that the operands of the producer instruction haven't been overwritten. */
for (const Operand& op : producer_instr->operands) {
if (is_overwritten_since(ctx, op, producer_idx, true))
return;
}
/* Verify that the definitions (except SCC) of the producer haven't been overwritten. */
for (const Definition& def : producer_instr->definitions) {
if (def.physReg().reg() == scc)
continue;
if (is_overwritten_since(ctx, def, producer_idx))
return;
}
/* Duplicate the original producer of the SCC */
instr.reset(create_instruction(producer_instr->opcode, producer_instr->format,
producer_instr->operands.size(),
producer_instr->definitions.size()));
instr->salu().imm = producer_instr->salu().imm;
/* The copy is no longer needed. */
if (--ctx.uses[wr_instr->definitions[0].tempId()] == 0)
ctx.uses[wr_instr->operands[0].tempId()]--;
/* Copy the operands of the original producer. */
for (unsigned i = 0; i < producer_instr->operands.size(); ++i) {
instr->operands[i] = producer_instr->operands[i];
if (producer_instr->operands[i].isTemp() && !is_dead(ctx.uses, producer_instr))
ctx.uses[producer_instr->operands[i].tempId()]++;
}
/* Copy the definitions of the original producer,
* but mark them as non-temp to keep SSA quasi-intact.
*/
for (unsigned i = 0; i < producer_instr->definitions.size(); ++i)
instr->definitions[i] = Definition(producer_instr->definitions[i].physReg(),
producer_instr->definitions[i].regClass());
}
void
try_combine_dpp(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
/* We are looking for the following pattern:
*
* v_mov_dpp vA, vB, ... ; move instruction with DPP
* v_xxx vC, vA, ... ; current instr that uses the result from the move
*
* If possible, the above is optimized into:
*
* v_xxx_dpp vC, vB, ... ; current instr modified to use DPP directly
*
*/
if (!instr->isVALU() || instr->isDPP())
return;
for (unsigned i = 0; i < instr->operands.size(); i++) {
Idx op_instr_idx = last_writer_idx(ctx, instr->operands[i]);
if (!op_instr_idx.found())
continue;
/* is_overwritten_since only considers active lanes when the register could possibly
* have been overwritten from inactive lanes. Restrict this optimization to at most
* one block so that there is no possibility for clobbered inactive lanes.
*/
if (ctx.current_block->index - op_instr_idx.block > 1)
continue;
const Instruction* mov = ctx.get(op_instr_idx);
if (mov->opcode != aco_opcode::v_mov_b32 || !mov->isDPP())
continue;
/* If we aren't going to remove the v_mov_b32, we have to ensure that it doesn't overwrite
* it's own operand before we use it.
*/
if (mov->definitions[0].physReg() == mov->operands[0].physReg() &&
(!mov->definitions[0].tempId() || ctx.uses[mov->definitions[0].tempId()] > 1))
continue;
/* Don't propagate DPP if the source register is overwritten since the move. */
if (is_overwritten_since(ctx, mov->operands[0], op_instr_idx))
continue;
bool dpp8 = mov->isDPP8();
/* Fetch-inactive means exec is ignored, which allows us to combine across exec changes. */
if (!(dpp8 ? mov->dpp8().fetch_inactive : mov->dpp16().fetch_inactive) &&
is_overwritten_since(ctx, Operand(exec, ctx.program->lane_mask), op_instr_idx))
continue;
/* We won't eliminate the DPP mov if the operand is used twice */
bool op_used_twice = false;
for (unsigned j = 0; j < instr->operands.size(); j++)
op_used_twice |= i != j && instr->operands[i] == instr->operands[j];
if (op_used_twice)
continue;
bool input_mods = can_use_input_modifiers(ctx.program->gfx_level, instr->opcode, i) &&
get_operand_size(instr, i) == 32;
bool mov_uses_mods = mov->valu().neg[0] || mov->valu().abs[0];
if (((dpp8 && ctx.program->gfx_level < GFX11) || !input_mods) && mov_uses_mods)
continue;
if (i != 0) {
if (!can_swap_operands(instr, &instr->opcode, 0, i))
continue;
instr->valu().swapOperands(0, i);
}
if (!can_use_DPP(ctx.program->gfx_level, instr, dpp8))
continue;
if (!dpp8) /* anything else doesn't make sense in SSA */
assert(mov->dpp16().row_mask == 0xf && mov->dpp16().bank_mask == 0xf);
if (--ctx.uses[mov->definitions[0].tempId()])
ctx.uses[mov->operands[0].tempId()]++;
convert_to_DPP(ctx.program->gfx_level, instr, dpp8);
instr->operands[0] = mov->operands[0];
if (dpp8) {
DPP8_instruction* dpp = &instr->dpp8();
dpp->lane_sel = mov->dpp8().lane_sel;
dpp->fetch_inactive = mov->dpp8().fetch_inactive;
if (mov_uses_mods)
instr->format = asVOP3(instr->format);
} else {
DPP16_instruction* dpp = &instr->dpp16();
dpp->dpp_ctrl = mov->dpp16().dpp_ctrl;
dpp->bound_ctrl = true;
dpp->fetch_inactive = mov->dpp16().fetch_inactive;
}
instr->valu().neg[0] ^= mov->valu().neg[0] && !instr->valu().abs[0];
instr->valu().abs[0] |= mov->valu().abs[0];
return;
}
}
unsigned
num_encoded_alu_operands(const aco_ptr<Instruction>& instr)
{
if (instr->isSALU()) {
if (instr->isSOP2() || instr->isSOPC())
return 2;
else if (instr->isSOP1())
return 1;
return 0;
}
if (instr->isVALU()) {
if (instr->isVOP1())
return 1;
else if (instr->isVOPC() || instr->isVOP2())
return 2;
else if (instr->opcode == aco_opcode::v_writelane_b32_e64 ||
instr->opcode == aco_opcode::v_writelane_b32)
return 2; /* potentially VOP3, but reads VDST as SRC2 */
else if (instr->isVOP3() || instr->isVOP3P() || instr->isVINTERP_INREG())
return instr->operands.size();
}
return 0;
}
void
try_reassign_split_vector(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
/* Any unused split_vector definition can always use the same register
* as the operand. This avoids creating unnecessary copies.
*/
if (instr->opcode == aco_opcode::p_split_vector) {
Operand& op = instr->operands[0];
if (!op.isTemp() || op.isKill())
return;
PhysReg reg = op.physReg();
for (Definition& def : instr->definitions) {
if (def.getTemp().type() == op.getTemp().type() && def.isKill())
def.setFixed(reg);
reg = reg.advance(def.bytes());
}
return;
}
/* We are looking for the following pattern:
*
* sA, sB = p_split_vector s[X:Y]
* ... X and Y not overwritten here ...
* use sA or sB <--- current instruction
*
* If possible, we propagate the registers from the p_split_vector
* operand into the current instruction and the above is optimized into:
*
* use sX or sY
*
* Thereby, we might violate register assignment rules.
* This optimization exists because it's too difficult to solve it
* in RA, and should be removed after we solved this in RA.
*/
if (!instr->isVALU() && !instr->isSALU())
return;
for (unsigned i = 0; i < num_encoded_alu_operands(instr); i++) {
/* Find the instruction that writes the current operand. */
const Operand& op = instr->operands[i];
Idx op_instr_idx = last_writer_idx(ctx, op);
if (!op_instr_idx.found())
continue;
/* Check if the operand is written by p_split_vector. */
Instruction* split_vec = ctx.get(op_instr_idx);
if (split_vec->opcode != aco_opcode::p_split_vector &&
split_vec->opcode != aco_opcode::p_extract_vector)
continue;
Operand& split_op = split_vec->operands[0];
/* Don't do anything if the p_split_vector operand is not a temporary
* or is killed by the p_split_vector.
* In this case the definitions likely already reuse the same registers as the operand.
*/
if (!split_op.isTemp() || split_op.isKill())
continue;
/* Only propagate operands of the same type */
if (split_op.getTemp().type() != op.getTemp().type())
continue;
/* Check if the p_split_vector operand's registers are overwritten. */
if (is_overwritten_since(ctx, split_op, op_instr_idx))
continue;
PhysReg reg = split_op.physReg();
if (split_vec->opcode == aco_opcode::p_extract_vector) {
reg =
reg.advance(split_vec->definitions[0].bytes() * split_vec->operands[1].constantValue());
}
for (Definition& def : split_vec->definitions) {
if (def.getTemp() != op.getTemp()) {
reg = reg.advance(def.bytes());
continue;
}
/* Don't propagate misaligned SGPRs.
* Note: No ALU instruction can take a variable larger than 64bit.
*/
if (op.regClass() == s2 && reg.reg() % 2 != 0)
break;
/* Sub dword operands might need updates to SDWA/opsel,
* but we only track full register writes at the moment.
*/
assert(op.physReg().byte() == reg.byte());
/* If there is only one use (left), recolor the split_vector definition */
if (ctx.uses[op.tempId()] == 1)
def.setFixed(reg);
else
ctx.uses[op.tempId()]--;
/* Use the p_split_vector operand register directly.
*
* Note: this might violate register assignment rules to some extend
* in case the definition does not get recolored, eventually.
*/
instr->operands[i].setFixed(reg);
break;
}
}
}
void
try_convert_fma_to_vop2(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
/* We convert v_fma_f32 with inline constant to fmamk/fmaak.
* This is only benefical if it allows more VOPD.
*/
if (ctx.program->gfx_level < GFX11 || ctx.program->wave_size != 32 ||
instr->opcode != aco_opcode::v_fma_f32 || instr->usesModifiers())
return;
int constant_idx = -1;
int vgpr_idx = -1;
for (int i = 0; i < 3; i++) {
const Operand& op = instr->operands[i];
if (op.isConstant() && !op.isLiteral())
constant_idx = i;
else if (op.isOfType(RegType::vgpr))
vgpr_idx = i;
else
return;
}
if (constant_idx < 0 || vgpr_idx < 0)
return;
std::swap(instr->operands[constant_idx], instr->operands[2]);
if (constant_idx == 0 || vgpr_idx == 0)
std::swap(instr->operands[0], instr->operands[1]);
instr->operands[2] = Operand::literal32(instr->operands[2].constantValue());
instr->opcode = constant_idx == 2 ? aco_opcode::v_fmaak_f32 : aco_opcode::v_fmamk_f32;
instr->format = Format::VOP2;
}
void
process_instruction(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
/* Don't try to optimize instructions which are already dead. */
if (!instr || is_dead(ctx.uses, instr.get())) {
instr.reset();
ctx.current_instr_idx++;
return;
}
try_apply_branch_vcc(ctx, instr);
try_optimize_scc_nocompare(ctx, instr);
try_combine_dpp(ctx, instr);
try_reassign_split_vector(ctx, instr);
try_convert_fma_to_vop2(ctx, instr);
try_eliminate_scc_copy(ctx, instr);
save_scc_copy_producer(ctx, instr);
save_reg_writes(ctx, instr);
ctx.current_instr_idx++;
}
} // namespace
void
optimize_postRA(Program* program)
{
pr_opt_ctx ctx(program);
/* Forward pass
* Goes through each instruction exactly once, and can transform
* instructions or adjust the use counts of temps.
*/
for (auto& block : program->blocks) {
ctx.reset_block(&block);
for (aco_ptr<Instruction>& instr : block.instructions)
process_instruction(ctx, instr);
/* SCC might get overwritten by copies or swaps from parallelcopies
* inserted by SSA-elimination for linear phis.
*/
if (!block.scc_live_out)
ctx.instr_idx_by_regs[block.index][scc] = overwritten_unknown_instr;
}
/* Cleanup pass
* Gets rid of instructions which are manually deleted or
* no longer have any uses.
*/
for (auto& block : program->blocks) {
std::vector<aco_ptr<Instruction>> instructions;
instructions.reserve(block.instructions.size());
for (aco_ptr<Instruction>& instr : block.instructions) {
if (!instr || is_dead(ctx.uses, instr.get()))
continue;
instructions.emplace_back(std::move(instr));
}
block.instructions = std::move(instructions);
}
}
} // namespace aco