mesa/src/amd/compiler/aco_assembler.cpp

1742 lines
59 KiB
C++

/*
* Copyright © 2018 Valve Corporation
*
* SPDX-License-Identifier: MIT
*/
#include "aco_builder.h"
#include "aco_ir.h"
#include "common/sid.h"
#include "util/memstream.h"
#include "ac_shader_util.h"
#include <algorithm>
#include <map>
#include <vector>
namespace aco {
struct constaddr_info {
unsigned getpc_end;
unsigned add_literal;
};
struct asm_context {
Program* program;
enum amd_gfx_level gfx_level;
std::vector<std::pair<int, SALU_instruction*>> branches;
std::map<unsigned, constaddr_info> constaddrs;
std::map<unsigned, constaddr_info> resumeaddrs;
std::vector<struct aco_symbol>* symbols;
Block* loop_header = NULL;
const int16_t* opcode;
// TODO: keep track of branch instructions referring blocks
// and, when emitting the block, correct the offset in instr
asm_context(Program* program_, std::vector<struct aco_symbol>* symbols_)
: program(program_), gfx_level(program->gfx_level), symbols(symbols_)
{
if (gfx_level <= GFX7)
opcode = &instr_info.opcode_gfx7[0];
else if (gfx_level <= GFX9)
opcode = &instr_info.opcode_gfx9[0];
else if (gfx_level <= GFX10_3)
opcode = &instr_info.opcode_gfx10[0];
else if (gfx_level <= GFX11_5)
opcode = &instr_info.opcode_gfx11[0];
else
opcode = &instr_info.opcode_gfx12[0];
}
int subvector_begin_pos = -1;
};
unsigned
get_mimg_nsa_dwords(const Instruction* instr)
{
unsigned addr_dwords = instr->operands.size() - 3;
for (unsigned i = 1; i < addr_dwords; i++) {
if (instr->operands[3 + i].physReg() !=
instr->operands[3 + (i - 1)].physReg().advance(instr->operands[3 + (i - 1)].bytes()))
return DIV_ROUND_UP(addr_dwords - 1, 4);
}
return 0;
}
unsigned
get_vopd_opy_start(const Instruction* instr)
{
switch (instr->opcode) {
case aco_opcode::v_dual_fmac_f32:
case aco_opcode::v_dual_fmaak_f32:
case aco_opcode::v_dual_fmamk_f32:
case aco_opcode::v_dual_cndmask_b32:
case aco_opcode::v_dual_dot2acc_f32_f16:
case aco_opcode::v_dual_dot2acc_f32_bf16: return 3;
case aco_opcode::v_dual_mov_b32: return 1;
default: return 2;
}
}
uint32_t
reg(asm_context& ctx, PhysReg reg)
{
if (ctx.gfx_level >= GFX11) {
if (reg == m0)
return sgpr_null.reg();
else if (reg == sgpr_null)
return m0.reg();
}
return reg.reg();
}
ALWAYS_INLINE uint32_t
reg(asm_context& ctx, Operand op, unsigned width = 32)
{
return reg(ctx, op.physReg()) & BITFIELD_MASK(width);
}
ALWAYS_INLINE uint32_t
reg(asm_context& ctx, Definition def, unsigned width = 32)
{
return reg(ctx, def.physReg()) & BITFIELD_MASK(width);
}
bool
needs_vop3_gfx11(asm_context& ctx, Instruction* instr)
{
if (ctx.gfx_level <= GFX10_3)
return false;
uint8_t mask = get_gfx11_true16_mask(instr->opcode);
if (!mask)
return false;
u_foreach_bit (i, mask & 0x3) {
if (instr->operands[i].physReg().reg() >= (256 + 128))
return true;
}
if ((mask & 0x8) && instr->definitions[0].physReg().reg() >= (256 + 128))
return true;
return false;
}
template <typename T>
uint32_t
get_gfx12_cpol(const T& instr)
{
if (instr_info.is_atomic[(int)instr.opcode]) {
return (instr.glc ? 1 /*TH_ATOMIC_RETURN*/ : 0) << 2;
} else {
return (instr.definitions.empty() || instr.glc || instr.slc || instr.dlc) ? 3 /*SCOPE_SYS*/
: 0 /*SCOPE_CU*/;
}
}
void
emit_sop2_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
uint32_t encoding = (0b10 << 30);
encoding |= opcode << 23;
encoding |= !instr->definitions.empty() ? reg(ctx, instr->definitions[0]) << 16 : 0;
encoding |= instr->operands.size() >= 2 ? reg(ctx, instr->operands[1]) << 8 : 0;
encoding |= !instr->operands.empty() ? reg(ctx, instr->operands[0]) : 0;
out.push_back(encoding);
}
void
emit_sopk_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
SALU_instruction& sopk = instr->salu();
assert(sopk.imm <= UINT16_MAX);
if (instr->opcode == aco_opcode::s_subvector_loop_begin) {
assert(ctx.gfx_level >= GFX10);
assert(ctx.subvector_begin_pos == -1);
ctx.subvector_begin_pos = out.size();
} else if (instr->opcode == aco_opcode::s_subvector_loop_end) {
assert(ctx.gfx_level >= GFX10);
assert(ctx.subvector_begin_pos != -1);
/* Adjust s_subvector_loop_begin instruction to the address after the end */
out[ctx.subvector_begin_pos] |= (out.size() - ctx.subvector_begin_pos);
/* Adjust s_subvector_loop_end instruction to the address after the beginning */
sopk.imm = (uint16_t)(ctx.subvector_begin_pos - (int)out.size());
ctx.subvector_begin_pos = -1;
}
uint32_t encoding = (0b1011 << 28);
encoding |= opcode << 23;
encoding |= !instr->definitions.empty() && !(instr->definitions[0].physReg() == scc)
? reg(ctx, instr->definitions[0]) << 16
: !instr->operands.empty() && instr->operands[0].physReg() <= 127
? reg(ctx, instr->operands[0]) << 16
: 0;
encoding |= sopk.imm;
out.push_back(encoding);
}
void
emit_sop1_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
uint32_t encoding = (0b101111101 << 23);
encoding |= !instr->definitions.empty() ? reg(ctx, instr->definitions[0]) << 16 : 0;
encoding |= opcode << 8;
encoding |= !instr->operands.empty() ? reg(ctx, instr->operands[0]) : 0;
out.push_back(encoding);
}
void
emit_sopc_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
uint32_t encoding = (0b101111110 << 23);
encoding |= opcode << 16;
encoding |= instr->operands.size() == 2 ? reg(ctx, instr->operands[1]) << 8 : 0;
encoding |= !instr->operands.empty() ? reg(ctx, instr->operands[0]) : 0;
out.push_back(encoding);
}
void
emit_sopp_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr,
bool force_imm = false)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
SALU_instruction& sopp = instr->salu();
uint32_t encoding = (0b101111111 << 23);
encoding |= opcode << 16;
if (!force_imm && instr_info.classes[(int)instr->opcode] == instr_class::branch) {
sopp.pass_flags = 0;
ctx.branches.emplace_back(out.size(), &sopp);
} else {
assert(sopp.imm <= UINT16_MAX);
encoding |= (uint16_t)sopp.imm;
}
out.push_back(encoding);
}
void
emit_smem_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
SMEM_instruction& smem = instr->smem();
bool soe = instr->operands.size() >= (!instr->definitions.empty() ? 3 : 4);
bool is_load = !instr->definitions.empty();
uint32_t encoding = 0;
if (ctx.gfx_level <= GFX7) {
encoding = (0b11000 << 27);
encoding |= opcode << 22;
encoding |= instr->definitions.size() ? reg(ctx, instr->definitions[0]) << 15 : 0;
encoding |= instr->operands.size() ? (reg(ctx, instr->operands[0]) >> 1) << 9 : 0;
if (instr->operands.size() >= 2) {
if (!instr->operands[1].isConstant()) {
encoding |= reg(ctx, instr->operands[1]);
} else if (instr->operands[1].constantValue() >= 1024) {
encoding |= 255; /* SQ_SRC_LITERAL */
} else {
encoding |= instr->operands[1].constantValue() >> 2;
encoding |= 1 << 8;
}
}
out.push_back(encoding);
/* SMRD instructions can take a literal on GFX7 */
if (instr->operands.size() >= 2 && instr->operands[1].isConstant() &&
instr->operands[1].constantValue() >= 1024)
out.push_back(instr->operands[1].constantValue() >> 2);
return;
}
if (ctx.gfx_level <= GFX9) {
encoding = (0b110000 << 26);
assert(!smem.dlc); /* Device-level coherent is not supported on GFX9 and lower */
encoding |= smem.nv ? 1 << 15 : 0;
} else {
encoding = (0b111101 << 26);
assert(!smem.nv); /* Non-volatile is not supported on GFX10 */
if (ctx.gfx_level <= GFX11_5)
encoding |= smem.dlc ? 1 << (ctx.gfx_level >= GFX11 ? 13 : 14) : 0;
}
if (ctx.gfx_level <= GFX11_5) {
encoding |= opcode << 18;
encoding |= smem.glc ? 1 << (ctx.gfx_level >= GFX11 ? 14 : 16) : 0;
} else {
encoding |= opcode << 13;
if (is_load)
encoding |= ((smem.glc || smem.dlc) ? 3 /*SCOPE_SYS*/ : 0 /*SCOPE_CU*/) << 21;
}
if (ctx.gfx_level <= GFX9) {
if (instr->operands.size() >= 2)
encoding |= instr->operands[1].isConstant() ? 1 << 17 : 0; /* IMM - immediate enable */
}
if (ctx.gfx_level == GFX9) {
encoding |= soe ? 1 << 14 : 0;
}
if (is_load || instr->operands.size() >= 3) { /* SDATA */
encoding |= (is_load ? reg(ctx, instr->definitions[0]) : reg(ctx, instr->operands[2])) << 6;
}
if (instr->operands.size() >= 1) { /* SBASE */
encoding |= reg(ctx, instr->operands[0]) >> 1;
}
out.push_back(encoding);
encoding = 0;
int32_t offset = 0;
uint32_t soffset =
ctx.gfx_level >= GFX10
? reg(ctx, sgpr_null) /* On GFX10 this is disabled by specifying SGPR_NULL */
: 0; /* On GFX9, it is disabled by the SOE bit (and it's not present on
GFX8 and below) */
if (instr->operands.size() >= 2) {
const Operand& op_off1 = instr->operands[1];
if (ctx.gfx_level <= GFX9) {
offset = op_off1.isConstant() ? op_off1.constantValue() : reg(ctx, op_off1);
} else {
/* GFX10 only supports constants in OFFSET, so put the operand in SOFFSET if it's an
* SGPR */
if (op_off1.isConstant()) {
offset = op_off1.constantValue();
} else {
soffset = reg(ctx, op_off1);
assert(!soe); /* There is no place to put the other SGPR offset, if any */
}
}
if (soe) {
const Operand& op_off2 = instr->operands.back();
assert(ctx.gfx_level >= GFX9); /* GFX8 and below don't support specifying a constant
and an SGPR at the same time */
assert(!op_off2.isConstant());
soffset = reg(ctx, op_off2);
}
}
encoding |= offset;
encoding |= soffset << 25;
out.push_back(encoding);
}
void
emit_vop2_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
VALU_instruction& valu = instr->valu();
uint32_t encoding = 0;
encoding |= opcode << 25;
encoding |= reg(ctx, instr->definitions[0], 8) << 17;
encoding |= (valu.opsel[3] ? 128 : 0) << 17;
encoding |= reg(ctx, instr->operands[1], 8) << 9;
encoding |= (valu.opsel[1] ? 128 : 0) << 9;
encoding |= reg(ctx, instr->operands[0]);
encoding |= valu.opsel[0] ? 128 : 0;
out.push_back(encoding);
}
void
emit_vop1_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
VALU_instruction& valu = instr->valu();
uint32_t encoding = (0b0111111 << 25);
if (!instr->definitions.empty()) {
encoding |= reg(ctx, instr->definitions[0], 8) << 17;
encoding |= (valu.opsel[3] ? 128 : 0) << 17;
}
encoding |= opcode << 9;
if (!instr->operands.empty()) {
encoding |= reg(ctx, instr->operands[0]);
encoding |= valu.opsel[0] ? 128 : 0;
}
out.push_back(encoding);
}
void
emit_vopc_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
VALU_instruction& valu = instr->valu();
uint32_t encoding = (0b0111110 << 25);
encoding |= opcode << 17;
encoding |= reg(ctx, instr->operands[1], 8) << 9;
encoding |= (valu.opsel[1] ? 128 : 0) << 9;
encoding |= reg(ctx, instr->operands[0]);
encoding |= valu.opsel[0] ? 128 : 0;
out.push_back(encoding);
}
void
emit_vintrp_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
VINTRP_instruction& interp = instr->vintrp();
uint32_t encoding = 0;
if (instr->opcode == aco_opcode::v_interp_p1ll_f16 ||
instr->opcode == aco_opcode::v_interp_p1lv_f16 ||
instr->opcode == aco_opcode::v_interp_p2_legacy_f16 ||
instr->opcode == aco_opcode::v_interp_p2_f16 ||
instr->opcode == aco_opcode::v_interp_p2_hi_f16) {
if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) {
encoding = (0b110100 << 26);
} else if (ctx.gfx_level >= GFX10) {
encoding = (0b110101 << 26);
} else {
unreachable("Unknown gfx_level.");
}
unsigned opsel = instr->opcode == aco_opcode::v_interp_p2_hi_f16 ? 0x8 : 0;
encoding |= opcode << 16;
encoding |= opsel << 11;
encoding |= reg(ctx, instr->definitions[0], 8);
out.push_back(encoding);
encoding = 0;
encoding |= interp.attribute;
encoding |= interp.component << 6;
encoding |= interp.high_16bits << 8;
encoding |= reg(ctx, instr->operands[0]) << 9;
if (instr->opcode == aco_opcode::v_interp_p2_f16 ||
instr->opcode == aco_opcode::v_interp_p2_hi_f16 ||
instr->opcode == aco_opcode::v_interp_p2_legacy_f16 ||
instr->opcode == aco_opcode::v_interp_p1lv_f16) {
encoding |= reg(ctx, instr->operands[2]) << 18;
}
out.push_back(encoding);
} else {
if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) {
encoding = (0b110101 << 26); /* Vega ISA doc says 110010 but it's wrong */
} else {
encoding = (0b110010 << 26);
}
assert(encoding);
encoding |= reg(ctx, instr->definitions[0], 8) << 18;
encoding |= opcode << 16;
encoding |= interp.attribute << 10;
encoding |= interp.component << 8;
if (instr->opcode == aco_opcode::v_interp_mov_f32)
encoding |= (0x3 & instr->operands[0].constantValue());
else
encoding |= reg(ctx, instr->operands[0], 8);
out.push_back(encoding);
}
}
void
emit_vinterp_inreg_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
VINTERP_inreg_instruction& interp = instr->vinterp_inreg();
uint32_t encoding = (0b11001101 << 24);
encoding |= reg(ctx, instr->definitions[0], 8);
encoding |= (uint32_t)interp.wait_exp << 8;
encoding |= (uint32_t)interp.opsel << 11;
encoding |= (uint32_t)interp.clamp << 15;
encoding |= opcode << 16;
out.push_back(encoding);
encoding = 0;
for (unsigned i = 0; i < instr->operands.size(); i++)
encoding |= reg(ctx, instr->operands[i]) << (i * 9);
for (unsigned i = 0; i < 3; i++)
encoding |= interp.neg[i] << (29 + i);
out.push_back(encoding);
}
void
emit_vopd_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
VOPD_instruction& vopd = instr->vopd();
uint32_t encoding = (0b110010 << 26);
encoding |= reg(ctx, instr->operands[0]);
if (instr->opcode != aco_opcode::v_dual_mov_b32)
encoding |= reg(ctx, instr->operands[1], 8) << 9;
encoding |= (uint32_t)ctx.opcode[(int)vopd.opy] << 17;
encoding |= opcode << 22;
out.push_back(encoding);
unsigned opy_start = get_vopd_opy_start(instr);
encoding = reg(ctx, instr->operands[opy_start]);
if (vopd.opy != aco_opcode::v_dual_mov_b32)
encoding |= reg(ctx, instr->operands[opy_start + 1], 8) << 9;
encoding |= (reg(ctx, instr->definitions[1], 8) >> 1) << 17;
encoding |= reg(ctx, instr->definitions[0], 8) << 24;
out.push_back(encoding);
}
void
emit_ds_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
DS_instruction& ds = instr->ds();
uint32_t encoding = (0b110110 << 26);
if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) {
encoding |= opcode << 17;
encoding |= (ds.gds ? 1 : 0) << 16;
} else {
encoding |= opcode << 18;
encoding |= (ds.gds ? 1 : 0) << 17;
}
encoding |= ((0xFF & ds.offset1) << 8);
encoding |= (0xFFFF & ds.offset0);
out.push_back(encoding);
encoding = 0;
if (!instr->definitions.empty())
encoding |= reg(ctx, instr->definitions[0], 8) << 24;
if (instr->operands.size() >= 3 && instr->operands[2].physReg() != m0)
encoding |= reg(ctx, instr->operands[2], 8) << 16;
if (instr->operands.size() >= 2 && instr->operands[1].physReg() != m0)
encoding |= reg(ctx, instr->operands[1], 8) << 8;
if (!instr->operands[0].isUndefined())
encoding |= reg(ctx, instr->operands[0], 8);
out.push_back(encoding);
}
void
emit_ldsdir_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
LDSDIR_instruction& dir = instr->ldsdir();
uint32_t encoding = (0b11001110 << 24);
encoding |= opcode << 20;
encoding |= (uint32_t)dir.wait_vdst << 16;
if (ctx.gfx_level >= GFX12)
encoding |= (uint32_t)dir.wait_vsrc << 23;
encoding |= (uint32_t)dir.attr << 10;
encoding |= (uint32_t)dir.attr_chan << 8;
encoding |= reg(ctx, instr->definitions[0], 8);
out.push_back(encoding);
}
void
emit_mubuf_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
MUBUF_instruction& mubuf = instr->mubuf();
uint32_t encoding = (0b111000 << 26);
if (ctx.gfx_level >= GFX11 && mubuf.lds) /* GFX11 has separate opcodes for LDS loads */
opcode = opcode == 0 ? 0x32 : (opcode + 0x1d);
else
encoding |= (mubuf.lds ? 1 : 0) << 16;
encoding |= opcode << 18;
encoding |= (mubuf.glc ? 1 : 0) << 14;
if (ctx.gfx_level <= GFX10_3)
encoding |= (mubuf.idxen ? 1 : 0) << 13;
assert(!mubuf.addr64 || ctx.gfx_level <= GFX7);
if (ctx.gfx_level == GFX6 || ctx.gfx_level == GFX7)
encoding |= (mubuf.addr64 ? 1 : 0) << 15;
if (ctx.gfx_level <= GFX10_3)
encoding |= (mubuf.offen ? 1 : 0) << 12;
if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) {
assert(!mubuf.dlc); /* Device-level coherent is not supported on GFX9 and lower */
encoding |= (mubuf.slc ? 1 : 0) << 17;
} else if (ctx.gfx_level >= GFX11) {
encoding |= (mubuf.slc ? 1 : 0) << 12;
encoding |= (mubuf.dlc ? 1 : 0) << 13;
} else if (ctx.gfx_level >= GFX10) {
encoding |= (mubuf.dlc ? 1 : 0) << 15;
}
encoding |= 0x0FFF & mubuf.offset;
out.push_back(encoding);
encoding = 0;
if (ctx.gfx_level <= GFX7 || (ctx.gfx_level >= GFX10 && ctx.gfx_level <= GFX10_3)) {
encoding |= (mubuf.slc ? 1 : 0) << 22;
}
encoding |= reg(ctx, instr->operands[2]) << 24;
if (ctx.gfx_level >= GFX11) {
encoding |= (mubuf.tfe ? 1 : 0) << 21;
encoding |= (mubuf.offen ? 1 : 0) << 22;
encoding |= (mubuf.idxen ? 1 : 0) << 23;
} else {
encoding |= (mubuf.tfe ? 1 : 0) << 23;
}
encoding |= (reg(ctx, instr->operands[0]) >> 2) << 16;
if (instr->operands.size() > 3 && !mubuf.lds)
encoding |= reg(ctx, instr->operands[3], 8) << 8;
else if (!mubuf.lds)
encoding |= reg(ctx, instr->definitions[0], 8) << 8;
encoding |= reg(ctx, instr->operands[1], 8);
out.push_back(encoding);
}
void
emit_mubuf_instruction_gfx12(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
MUBUF_instruction& mubuf = instr->mubuf();
assert(!mubuf.lds);
uint32_t encoding = 0b110001 << 26;
encoding |= opcode << 14;
if (instr->operands[2].isConstant()) {
assert(instr->operands[2].constantValue() == 0);
encoding |= reg(ctx, sgpr_null);
} else {
encoding |= reg(ctx, instr->operands[2]);
}
encoding |= (mubuf.tfe ? 1 : 0) << 22;
out.push_back(encoding);
encoding = 0;
if (instr->operands.size() > 3)
encoding |= reg(ctx, instr->operands[3], 8);
else
encoding |= reg(ctx, instr->definitions[0], 8);
encoding |= reg(ctx, instr->operands[0]) << 9;
encoding |= (mubuf.offen ? 1 : 0) << 30;
encoding |= (mubuf.idxen ? 1 : 0) << 31;
encoding |= get_gfx12_cpol(mubuf) << 18;
encoding |= 1 << 23;
out.push_back(encoding);
encoding = 0;
if (!instr->operands[1].isUndefined())
encoding |= reg(ctx, instr->operands[1], 8);
encoding |= (mubuf.offset & 0x00ffffff) << 8;
out.push_back(encoding);
}
void
emit_mtbuf_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
MTBUF_instruction& mtbuf = instr->mtbuf();
uint32_t img_format = ac_get_tbuffer_format(ctx.gfx_level, mtbuf.dfmt, mtbuf.nfmt);
uint32_t encoding = (0b111010 << 26);
assert(img_format <= 0x7F);
assert(!mtbuf.dlc || ctx.gfx_level >= GFX10);
if (ctx.gfx_level >= GFX11) {
encoding |= (mtbuf.slc ? 1 : 0) << 12;
encoding |= (mtbuf.dlc ? 1 : 0) << 13;
} else {
/* DLC bit replaces one bit of the OPCODE on GFX10 */
encoding |= (mtbuf.dlc ? 1 : 0) << 15;
}
if (ctx.gfx_level <= GFX10_3) {
encoding |= (mtbuf.idxen ? 1 : 0) << 13;
encoding |= (mtbuf.offen ? 1 : 0) << 12;
}
encoding |= (mtbuf.glc ? 1 : 0) << 14;
encoding |= 0x0FFF & mtbuf.offset;
encoding |= (img_format << 19); /* Handles both the GFX10 FORMAT and the old NFMT+DFMT */
if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9 || ctx.gfx_level >= GFX11) {
encoding |= opcode << 15;
} else {
encoding |= (opcode & 0x07) << 16; /* 3 LSBs of 4-bit OPCODE */
}
out.push_back(encoding);
encoding = 0;
encoding |= reg(ctx, instr->operands[2]) << 24;
if (ctx.gfx_level >= GFX11) {
encoding |= (mtbuf.tfe ? 1 : 0) << 21;
encoding |= (mtbuf.offen ? 1 : 0) << 22;
encoding |= (mtbuf.idxen ? 1 : 0) << 23;
} else {
encoding |= (mtbuf.tfe ? 1 : 0) << 23;
encoding |= (mtbuf.slc ? 1 : 0) << 22;
}
encoding |= (reg(ctx, instr->operands[0]) >> 2) << 16;
if (instr->operands.size() > 3)
encoding |= reg(ctx, instr->operands[3], 8) << 8;
else
encoding |= reg(ctx, instr->definitions[0], 8) << 8;
encoding |= reg(ctx, instr->operands[1], 8);
if (ctx.gfx_level >= GFX10) {
encoding |= (((opcode & 0x08) >> 3) << 21); /* MSB of 4-bit OPCODE */
}
out.push_back(encoding);
}
void
emit_mtbuf_instruction_gfx12(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
MTBUF_instruction& mtbuf = instr->mtbuf();
uint32_t img_format = ac_get_tbuffer_format(ctx.gfx_level, mtbuf.dfmt, mtbuf.nfmt);
uint32_t encoding = 0b110001 << 26;
encoding |= 0b1000 << 18;
encoding |= opcode << 14;
if (instr->operands[2].isConstant()) {
assert(instr->operands[2].constantValue() == 0);
encoding |= reg(ctx, sgpr_null);
} else {
encoding |= reg(ctx, instr->operands[2]);
}
encoding |= (mtbuf.tfe ? 1 : 0) << 22;
out.push_back(encoding);
encoding = 0;
if (instr->operands.size() > 3)
encoding |= reg(ctx, instr->operands[3], 8);
else
encoding |= reg(ctx, instr->definitions[0], 8);
encoding |= reg(ctx, instr->operands[0]) << 9;
encoding |= (mtbuf.offen ? 1 : 0) << 30;
encoding |= (mtbuf.idxen ? 1 : 0) << 31;
encoding |= get_gfx12_cpol(mtbuf) << 18;
encoding |= img_format << 23;
out.push_back(encoding);
encoding = 0;
encoding |= reg(ctx, instr->operands[1], 8);
encoding |= (mtbuf.offset & 0x00ffffff) << 8;
out.push_back(encoding);
}
void
emit_mimg_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
MIMG_instruction& mimg = instr->mimg();
unsigned nsa_dwords = get_mimg_nsa_dwords(instr);
assert(!nsa_dwords || ctx.gfx_level >= GFX10);
uint32_t encoding = (0b111100 << 26);
if (ctx.gfx_level >= GFX11) { /* GFX11: rearranges most fields */
assert(nsa_dwords <= 1);
encoding |= nsa_dwords;
encoding |= mimg.dim << 2;
encoding |= mimg.unrm ? 1 << 7 : 0;
encoding |= (0xF & mimg.dmask) << 8;
encoding |= mimg.slc ? 1 << 12 : 0;
encoding |= mimg.dlc ? 1 << 13 : 0;
encoding |= mimg.glc ? 1 << 14 : 0;
encoding |= mimg.r128 ? 1 << 15 : 0;
encoding |= mimg.a16 ? 1 << 16 : 0;
encoding |= mimg.d16 ? 1 << 17 : 0;
encoding |= (opcode & 0xFF) << 18;
} else {
encoding |= mimg.slc ? 1 << 25 : 0;
encoding |= (opcode & 0x7f) << 18;
encoding |= (opcode >> 7) & 1;
encoding |= mimg.lwe ? 1 << 17 : 0;
encoding |= mimg.tfe ? 1 << 16 : 0;
encoding |= mimg.glc ? 1 << 13 : 0;
encoding |= mimg.unrm ? 1 << 12 : 0;
if (ctx.gfx_level <= GFX9) {
assert(!mimg.dlc); /* Device-level coherent is not supported on GFX9 and lower */
assert(!mimg.r128);
encoding |= mimg.a16 ? 1 << 15 : 0;
encoding |= mimg.da ? 1 << 14 : 0;
} else {
encoding |= mimg.r128 ? 1 << 15
: 0; /* GFX10: A16 moved to 2nd word, R128 replaces it in 1st word */
encoding |= nsa_dwords << 1;
encoding |= mimg.dim << 3; /* GFX10: dimensionality instead of declare array */
encoding |= mimg.dlc ? 1 << 7 : 0;
}
encoding |= (0xF & mimg.dmask) << 8;
}
out.push_back(encoding);
encoding = reg(ctx, instr->operands[3], 8); /* VADDR */
if (!instr->definitions.empty()) {
encoding |= reg(ctx, instr->definitions[0], 8) << 8; /* VDATA */
} else if (!instr->operands[2].isUndefined()) {
encoding |= reg(ctx, instr->operands[2], 8) << 8; /* VDATA */
}
encoding |= (0x1F & (reg(ctx, instr->operands[0]) >> 2)) << 16; /* T# (resource) */
assert(!mimg.d16 || ctx.gfx_level >= GFX9);
if (ctx.gfx_level >= GFX11) {
if (!instr->operands[1].isUndefined())
encoding |= (0x1F & (reg(ctx, instr->operands[1]) >> 2)) << 26; /* sampler */
encoding |= mimg.tfe ? 1 << 21 : 0;
encoding |= mimg.lwe ? 1 << 22 : 0;
} else {
if (!instr->operands[1].isUndefined())
encoding |= (0x1F & (reg(ctx, instr->operands[1]) >> 2)) << 21; /* sampler */
encoding |= mimg.d16 ? 1 << 31 : 0;
if (ctx.gfx_level >= GFX10) {
/* GFX10: A16 still exists, but is in a different place */
encoding |= mimg.a16 ? 1 << 30 : 0;
}
}
out.push_back(encoding);
if (nsa_dwords) {
out.resize(out.size() + nsa_dwords);
std::vector<uint32_t>::iterator nsa = std::prev(out.end(), nsa_dwords);
for (unsigned i = 0; i < instr->operands.size() - 4u; i++)
nsa[i / 4] |= reg(ctx, instr->operands[4 + i], 8) << (i % 4 * 8);
}
}
void
emit_mimg_instruction_gfx12(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
MIMG_instruction& mimg = instr->mimg();
bool vsample = !instr->operands[1].isUndefined() || instr->opcode == aco_opcode::image_msaa_load;
uint32_t encoding = opcode << 14;
if (vsample) {
encoding |= 0b111001 << 26;
encoding |= mimg.tfe << 3;
encoding |= mimg.unrm << 13;
} else {
encoding |= 0b110100 << 26;
}
encoding |= mimg.dim;
encoding |= mimg.r128 << 4;
encoding |= mimg.d16 << 5;
encoding |= mimg.a16 << 6;
encoding |= (mimg.dmask & 0xf) << 22;
out.push_back(encoding);
uint8_t vaddr[5] = {0, 0, 0, 0, 0};
for (unsigned i = 3; i < instr->operands.size(); i++)
vaddr[i - 3] = reg(ctx, instr->operands[i], 8);
unsigned num_vaddr = instr->operands.size() - 3;
for (unsigned i = 0; i < MIN2(instr->operands.back().size() - 1, 5 - num_vaddr); i++)
vaddr[num_vaddr + i] = reg(ctx, instr->operands.back(), 8) + i + 1;
encoding = 0;
if (!instr->definitions.empty())
encoding |= reg(ctx, instr->definitions[0], 8); /* VDATA */
else if (!instr->operands[2].isUndefined())
encoding |= reg(ctx, instr->operands[2], 8); /* VDATA */
encoding |= reg(ctx, instr->operands[0]) << 9; /* T# (resource) */
if (vsample) {
encoding |= mimg.lwe << 8;
if (instr->opcode != aco_opcode::image_msaa_load)
encoding |= reg(ctx, instr->operands[1]) << 23; /* sampler */
} else {
encoding |= mimg.tfe << 23;
encoding |= vaddr[4] << 24;
}
encoding |= get_gfx12_cpol(mimg) << 18;
out.push_back(encoding);
encoding = 0;
for (unsigned i = 0; i < 4; i++)
encoding |= vaddr[i] << (i * 8);
out.push_back(encoding);
}
void
emit_flatlike_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
FLAT_instruction& flat = instr->flatlike();
uint32_t encoding = (0b110111 << 26);
encoding |= opcode << 18;
if (ctx.gfx_level == GFX9 || ctx.gfx_level >= GFX11) {
if (instr->isFlat())
assert(flat.offset <= 0xfff);
else
assert(flat.offset >= -4096 && flat.offset < 4096);
encoding |= flat.offset & 0x1fff;
} else if (ctx.gfx_level <= GFX8 || instr->isFlat()) {
/* GFX10 has a 12-bit immediate OFFSET field,
* but it has a hw bug: it ignores the offset, called FlatSegmentOffsetBug
*/
assert(flat.offset == 0);
} else {
assert(flat.offset >= -2048 && flat.offset <= 2047);
encoding |= flat.offset & 0xfff;
}
if (instr->isScratch())
encoding |= 1 << (ctx.gfx_level >= GFX11 ? 16 : 14);
else if (instr->isGlobal())
encoding |= 2 << (ctx.gfx_level >= GFX11 ? 16 : 14);
encoding |= flat.lds ? 1 << 13 : 0;
encoding |= flat.glc ? 1 << (ctx.gfx_level >= GFX11 ? 14 : 16) : 0;
encoding |= flat.slc ? 1 << (ctx.gfx_level >= GFX11 ? 15 : 17) : 0;
if (ctx.gfx_level >= GFX10) {
assert(!flat.nv);
encoding |= flat.dlc ? 1 << (ctx.gfx_level >= GFX11 ? 13 : 12) : 0;
} else {
assert(!flat.dlc);
}
out.push_back(encoding);
encoding = reg(ctx, instr->operands[0], 8);
if (!instr->definitions.empty())
encoding |= reg(ctx, instr->definitions[0], 8) << 24;
if (instr->operands.size() >= 3)
encoding |= reg(ctx, instr->operands[2], 8) << 8;
if (!instr->operands[1].isUndefined()) {
assert(ctx.gfx_level >= GFX10 || instr->operands[1].physReg() != 0x7F);
assert(instr->format != Format::FLAT);
encoding |= reg(ctx, instr->operands[1], 8) << 16;
} else if (instr->format != Format::FLAT ||
ctx.gfx_level >= GFX10) { /* SADDR is actually used with FLAT on GFX10 */
/* For GFX10.3 scratch, 0x7F disables both ADDR and SADDR, unlike sgpr_null, which only
* disables SADDR. On GFX11, this was replaced with SVE.
*/
if (ctx.gfx_level <= GFX9 ||
(instr->isScratch() && instr->operands[0].isUndefined() && ctx.gfx_level < GFX11))
encoding |= 0x7F << 16;
else
encoding |= reg(ctx, sgpr_null) << 16;
}
if (ctx.gfx_level >= GFX11 && instr->isScratch())
encoding |= !instr->operands[0].isUndefined() ? 1 << 23 : 0;
else
encoding |= flat.nv ? 1 << 23 : 0;
out.push_back(encoding);
}
void
emit_flatlike_instruction_gfx12(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
FLAT_instruction& flat = instr->flatlike();
assert(!flat.lds);
uint32_t encoding = opcode << 14;
encoding |= 0b111011 << 26;
if (!instr->operands[1].isUndefined()) {
assert(!instr->isFlat());
encoding |= reg(ctx, instr->operands[1]);
} else {
encoding |= reg(ctx, sgpr_null);
}
if (instr->isScratch())
encoding |= 1 << 24;
else if (instr->isGlobal())
encoding |= 2 << 24;
out.push_back(encoding);
encoding = 0;
if (!instr->definitions.empty())
encoding |= reg(ctx, instr->definitions[0], 8);
if (instr->isScratch())
encoding |= !instr->operands[0].isUndefined() ? 1 << 17 : 0;
encoding |= get_gfx12_cpol(flat) << 18;
if (instr->operands.size() >= 3)
encoding |= reg(ctx, instr->operands[2], 8) << 23;
out.push_back(encoding);
encoding = 0;
if (!instr->operands[0].isUndefined())
encoding |= reg(ctx, instr->operands[0], 8);
encoding |= (flat.offset & 0x00ffffff) << 8;
out.push_back(encoding);
}
void
emit_exp_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
Export_instruction& exp = instr->exp();
uint32_t encoding;
if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) {
encoding = (0b110001 << 26);
} else {
encoding = (0b111110 << 26);
}
if (ctx.gfx_level >= GFX11) {
encoding |= exp.row_en ? 0b1 << 13 : 0;
} else {
encoding |= exp.valid_mask ? 0b1 << 12 : 0;
encoding |= exp.compressed ? 0b1 << 10 : 0;
}
encoding |= exp.done ? 0b1 << 11 : 0;
encoding |= exp.dest << 4;
encoding |= exp.enabled_mask;
out.push_back(encoding);
encoding = reg(ctx, exp.operands[0], 8);
encoding |= reg(ctx, exp.operands[1], 8) << 8;
encoding |= reg(ctx, exp.operands[2], 8) << 16;
encoding |= reg(ctx, exp.operands[3], 8) << 24;
out.push_back(encoding);
}
void emit_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr);
void
emit_dpp16_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
assert(ctx.gfx_level >= GFX8);
DPP16_instruction& dpp = instr->dpp16();
/* first emit the instruction without the DPP operand */
Operand dpp_op = instr->operands[0];
instr->operands[0] = Operand(PhysReg{250}, v1);
instr->format = (Format)((uint16_t)instr->format & ~(uint16_t)Format::DPP16);
emit_instruction(ctx, out, instr);
uint32_t encoding = (0xF & dpp.row_mask) << 28;
encoding |= (0xF & dpp.bank_mask) << 24;
encoding |= dpp.abs[1] << 23;
encoding |= dpp.neg[1] << 22;
encoding |= dpp.abs[0] << 21;
encoding |= dpp.neg[0] << 20;
encoding |= dpp.fetch_inactive << 18;
encoding |= dpp.bound_ctrl << 19;
encoding |= dpp.dpp_ctrl << 8;
encoding |= reg(ctx, dpp_op, 8);
encoding |= dpp.opsel[0] && !instr->isVOP3() ? 128 : 0;
out.push_back(encoding);
}
void
emit_dpp8_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
assert(ctx.gfx_level >= GFX10);
DPP8_instruction& dpp = instr->dpp8();
/* first emit the instruction without the DPP operand */
Operand dpp_op = instr->operands[0];
instr->operands[0] = Operand(PhysReg{233u + dpp.fetch_inactive}, v1);
instr->format = (Format)((uint16_t)instr->format & ~(uint16_t)Format::DPP8);
emit_instruction(ctx, out, instr);
uint32_t encoding = reg(ctx, dpp_op, 8);
encoding |= dpp.opsel[0] && !instr->isVOP3() ? 128 : 0;
encoding |= dpp.lane_sel << 8;
out.push_back(encoding);
}
void
emit_vop3_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
VALU_instruction& vop3 = instr->valu();
if (instr->isVOP2()) {
opcode = opcode + 0x100;
} else if (instr->isVOP1()) {
if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9)
opcode = opcode + 0x140;
else
opcode = opcode + 0x180;
} else if (instr->isVOPC()) {
opcode = opcode + 0x0;
} else if (instr->isVINTRP()) {
opcode = opcode + 0x270;
}
uint32_t encoding;
if (ctx.gfx_level <= GFX9) {
encoding = (0b110100 << 26);
} else if (ctx.gfx_level >= GFX10) {
encoding = (0b110101 << 26);
} else {
unreachable("Unknown gfx_level.");
}
if (ctx.gfx_level <= GFX7) {
encoding |= opcode << 17;
encoding |= (vop3.clamp ? 1 : 0) << 11;
} else {
encoding |= opcode << 16;
encoding |= (vop3.clamp ? 1 : 0) << 15;
}
encoding |= vop3.opsel << 11;
for (unsigned i = 0; i < 3; i++)
encoding |= vop3.abs[i] << (8 + i);
/* On GFX9 and older, v_cmpx implicitly writes exec besides writing an SGPR pair.
* On GFX10 and newer, v_cmpx always writes just exec.
*/
if (instr->definitions.size() == 2 && instr->isVOPC())
assert(ctx.gfx_level <= GFX9 && instr->definitions[1].physReg() == exec);
else if (instr->definitions.size() == 2 && instr->opcode != aco_opcode::v_swap_b16)
encoding |= reg(ctx, instr->definitions[1]) << 8;
encoding |= reg(ctx, instr->definitions[0], 8);
out.push_back(encoding);
encoding = 0;
unsigned num_ops = instr->operands.size();
/* Encoding implicit sources works fine with hardware but breaks some disassemblers. */
if (instr->opcode == aco_opcode::v_writelane_b32_e64)
num_ops = 2;
else if (instr->opcode == aco_opcode::v_swap_b16)
num_ops = 1;
for (unsigned i = 0; i < num_ops; i++)
encoding |= reg(ctx, instr->operands[i]) << (i * 9);
encoding |= vop3.omod << 27;
for (unsigned i = 0; i < 3; i++)
encoding |= vop3.neg[i] << (29 + i);
out.push_back(encoding);
}
void
emit_vop3p_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t opcode = ctx.opcode[(int)instr->opcode];
VALU_instruction& vop3 = instr->valu();
uint32_t encoding;
if (ctx.gfx_level == GFX9) {
encoding = (0b110100111 << 23);
} else if (ctx.gfx_level >= GFX10) {
encoding = (0b110011 << 26);
} else {
unreachable("Unknown gfx_level.");
}
encoding |= opcode << 16;
encoding |= (vop3.clamp ? 1 : 0) << 15;
encoding |= vop3.opsel_lo << 11;
encoding |= ((vop3.opsel_hi & 0x4) ? 1 : 0) << 14;
for (unsigned i = 0; i < 3; i++)
encoding |= vop3.neg_hi[i] << (8 + i);
encoding |= reg(ctx, instr->definitions[0], 8);
out.push_back(encoding);
encoding = 0;
for (unsigned i = 0; i < instr->operands.size(); i++)
encoding |= reg(ctx, instr->operands[i]) << (i * 9);
encoding |= (vop3.opsel_hi & 0x3) << 27;
for (unsigned i = 0; i < 3; i++)
encoding |= vop3.neg_lo[i] << (29 + i);
out.push_back(encoding);
}
void
emit_sdwa_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
assert(ctx.gfx_level >= GFX8 && ctx.gfx_level < GFX11);
SDWA_instruction& sdwa = instr->sdwa();
/* first emit the instruction without the SDWA operand */
Operand sdwa_op = instr->operands[0];
instr->operands[0] = Operand(PhysReg{249}, v1);
instr->format = (Format)((uint16_t)instr->format & ~(uint16_t)Format::SDWA);
emit_instruction(ctx, out, instr);
uint32_t encoding = 0;
if (instr->isVOPC()) {
if (instr->definitions[0].physReg() !=
(ctx.gfx_level >= GFX10 && is_cmpx(instr->opcode) ? exec : vcc)) {
encoding |= reg(ctx, instr->definitions[0]) << 8;
encoding |= 1 << 15;
}
encoding |= (sdwa.clamp ? 1 : 0) << 13;
} else {
encoding |= sdwa.dst_sel.to_sdwa_sel(instr->definitions[0].physReg().byte()) << 8;
uint32_t dst_u = sdwa.dst_sel.sign_extend() ? 1 : 0;
if (instr->definitions[0].bytes() < 4) /* dst_preserve */
dst_u = 2;
encoding |= dst_u << 11;
encoding |= (sdwa.clamp ? 1 : 0) << 13;
encoding |= sdwa.omod << 14;
}
encoding |= sdwa.sel[0].to_sdwa_sel(sdwa_op.physReg().byte()) << 16;
encoding |= sdwa.sel[0].sign_extend() ? 1 << 19 : 0;
encoding |= sdwa.abs[0] << 21;
encoding |= sdwa.neg[0] << 20;
if (instr->operands.size() >= 2) {
encoding |= sdwa.sel[1].to_sdwa_sel(instr->operands[1].physReg().byte()) << 24;
encoding |= sdwa.sel[1].sign_extend() ? 1 << 27 : 0;
encoding |= sdwa.abs[1] << 29;
encoding |= sdwa.neg[1] << 28;
}
encoding |= reg(ctx, sdwa_op, 8);
encoding |= (sdwa_op.physReg() < 256) << 23;
if (instr->operands.size() >= 2)
encoding |= (instr->operands[1].physReg() < 256) << 31;
out.push_back(encoding);
}
void
emit_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
/* lower remaining pseudo-instructions */
if (instr->opcode == aco_opcode::p_constaddr_getpc) {
ctx.constaddrs[instr->operands[0].constantValue()].getpc_end = out.size() + 1;
instr->opcode = aco_opcode::s_getpc_b64;
instr->operands.pop_back();
} else if (instr->opcode == aco_opcode::p_constaddr_addlo) {
ctx.constaddrs[instr->operands[2].constantValue()].add_literal = out.size() + 1;
instr->opcode = aco_opcode::s_add_u32;
instr->operands.pop_back();
assert(instr->operands[1].isConstant());
/* in case it's an inline constant, make it a literal */
instr->operands[1] = Operand::literal32(instr->operands[1].constantValue());
} else if (instr->opcode == aco_opcode::p_resumeaddr_getpc) {
ctx.resumeaddrs[instr->operands[0].constantValue()].getpc_end = out.size() + 1;
instr->opcode = aco_opcode::s_getpc_b64;
instr->operands.pop_back();
} else if (instr->opcode == aco_opcode::p_resumeaddr_addlo) {
ctx.resumeaddrs[instr->operands[2].constantValue()].add_literal = out.size() + 1;
instr->opcode = aco_opcode::s_add_u32;
instr->operands.pop_back();
assert(instr->operands[1].isConstant());
/* in case it's an inline constant, make it a literal */
instr->operands[1] = Operand::literal32(instr->operands[1].constantValue());
} else if (instr->opcode == aco_opcode::p_load_symbol) {
assert(instr->operands[0].isConstant());
assert(ctx.symbols);
struct aco_symbol info;
info.id = (enum aco_symbol_id)instr->operands[0].constantValue();
info.offset = out.size() + 1;
ctx.symbols->push_back(info);
instr->opcode = aco_opcode::s_mov_b32;
/* in case it's an inline constant, make it a literal */
instr->operands[0] = Operand::literal32(0);
}
/* Promote VOP12C to VOP3 if necessary. */
if ((instr->isVOP1() || instr->isVOP2() || instr->isVOPC()) && !instr->isVOP3() &&
needs_vop3_gfx11(ctx, instr)) {
instr->format = asVOP3(instr->format);
if (instr->opcode == aco_opcode::v_fmaak_f16) {
instr->opcode = aco_opcode::v_fma_f16;
instr->format = (Format)((uint32_t)instr->format & ~(uint32_t)Format::VOP2);
} else if (instr->opcode == aco_opcode::v_fmamk_f16) {
instr->valu().swapOperands(1, 2);
instr->opcode = aco_opcode::v_fma_f16;
instr->format = (Format)((uint32_t)instr->format & ~(uint32_t)Format::VOP2);
}
}
uint32_t opcode = ctx.opcode[(int)instr->opcode];
if (opcode == (uint32_t)-1) {
char* outmem;
size_t outsize;
struct u_memstream mem;
u_memstream_open(&mem, &outmem, &outsize);
FILE* const memf = u_memstream_get(&mem);
fprintf(memf, "Unsupported opcode: ");
aco_print_instr(ctx.gfx_level, instr, memf);
u_memstream_close(&mem);
aco_err(ctx.program, outmem);
free(outmem);
abort();
}
switch (instr->format) {
case Format::SOP2: {
emit_sop2_instruction(ctx, out, instr);
break;
}
case Format::SOPK: {
emit_sopk_instruction(ctx, out, instr);
break;
}
case Format::SOP1: {
emit_sop1_instruction(ctx, out, instr);
break;
}
case Format::SOPC: {
emit_sopc_instruction(ctx, out, instr);
break;
}
case Format::SOPP: {
emit_sopp_instruction(ctx, out, instr);
break;
}
case Format::SMEM: {
emit_smem_instruction(ctx, out, instr);
return;
}
case Format::VOP2: {
emit_vop2_instruction(ctx, out, instr);
break;
}
case Format::VOP1: {
emit_vop1_instruction(ctx, out, instr);
break;
}
case Format::VOPC: {
emit_vopc_instruction(ctx, out, instr);
break;
}
case Format::VINTRP: {
emit_vintrp_instruction(ctx, out, instr);
break;
}
case Format::VINTERP_INREG: {
emit_vinterp_inreg_instruction(ctx, out, instr);
break;
}
case Format::VOPD: {
emit_vopd_instruction(ctx, out, instr);
break;
}
case Format::DS: {
emit_ds_instruction(ctx, out, instr);
break;
}
case Format::LDSDIR: {
emit_ldsdir_instruction(ctx, out, instr);
break;
}
case Format::MUBUF: {
if (ctx.gfx_level >= GFX12)
emit_mubuf_instruction_gfx12(ctx, out, instr);
else
emit_mubuf_instruction(ctx, out, instr);
break;
}
case Format::MTBUF: {
if (ctx.gfx_level >= GFX12)
emit_mtbuf_instruction_gfx12(ctx, out, instr);
else
emit_mtbuf_instruction(ctx, out, instr);
break;
}
case Format::MIMG: {
if (ctx.gfx_level >= GFX12)
emit_mimg_instruction_gfx12(ctx, out, instr);
else
emit_mimg_instruction(ctx, out, instr);
break;
}
case Format::FLAT:
case Format::SCRATCH:
case Format::GLOBAL: {
if (ctx.gfx_level >= GFX12)
emit_flatlike_instruction_gfx12(ctx, out, instr);
else
emit_flatlike_instruction(ctx, out, instr);
break;
}
case Format::EXP: {
emit_exp_instruction(ctx, out, instr);
break;
}
case Format::PSEUDO:
case Format::PSEUDO_BARRIER:
if (instr->opcode != aco_opcode::p_unit_test)
unreachable("Pseudo instructions should be lowered before assembly.");
break;
default:
if (instr->isDPP16()) {
emit_dpp16_instruction(ctx, out, instr);
return;
} else if (instr->isDPP8()) {
emit_dpp8_instruction(ctx, out, instr);
return;
} else if (instr->isVOP3()) {
emit_vop3_instruction(ctx, out, instr);
} else if (instr->isVOP3P()) {
emit_vop3p_instruction(ctx, out, instr);
} else if (instr->isSDWA()) {
emit_sdwa_instruction(ctx, out, instr);
} else {
unreachable("unimplemented instruction format");
}
break;
}
/* append literal dword */
for (const Operand& op : instr->operands) {
if (op.isLiteral()) {
out.push_back(op.constantValue());
break;
}
}
}
void
emit_block(asm_context& ctx, std::vector<uint32_t>& out, Block& block)
{
for (aco_ptr<Instruction>& instr : block.instructions) {
#if 0
int start_idx = out.size();
std::cerr << "Encoding:\t" << std::endl;
aco_print_instr(&*instr, stderr);
std::cerr << std::endl;
#endif
emit_instruction(ctx, out, instr.get());
#if 0
for (int i = start_idx; i < out.size(); i++)
std::cerr << "encoding: " << "0x" << std::setfill('0') << std::setw(8) << std::hex << out[i] << std::endl;
#endif
}
}
void
fix_exports(asm_context& ctx, std::vector<uint32_t>& out, Program* program)
{
bool exported = false;
for (Block& block : program->blocks) {
if (!(block.kind & block_kind_export_end))
continue;
std::vector<aco_ptr<Instruction>>::reverse_iterator it = block.instructions.rbegin();
while (it != block.instructions.rend()) {
if ((*it)->isEXP()) {
Export_instruction& exp = (*it)->exp();
if (program->stage.hw == AC_HW_VERTEX_SHADER ||
program->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER) {
if (exp.dest >= V_008DFC_SQ_EXP_POS && exp.dest <= (V_008DFC_SQ_EXP_POS + 3)) {
exp.done = true;
exported = true;
break;
}
} else {
exp.done = true;
exp.valid_mask = true;
exported = true;
break;
}
} else if ((*it)->definitions.size() && (*it)->definitions[0].physReg() == exec) {
break;
}
++it;
}
}
/* GFX10+ FS may not export anything if no discard is used. */
bool may_skip_export = program->stage.hw == AC_HW_PIXEL_SHADER && program->gfx_level >= GFX10;
if (!exported && !may_skip_export) {
/* Abort in order to avoid a GPU hang. */
bool is_vertex_or_ngg = (program->stage.hw == AC_HW_VERTEX_SHADER ||
program->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER);
aco_err(program,
"Missing export in %s shader:", is_vertex_or_ngg ? "vertex or NGG" : "fragment");
aco_print_program(program, stderr);
abort();
}
}
static void
insert_code(asm_context& ctx, std::vector<uint32_t>& out, unsigned insert_before,
unsigned insert_count, const uint32_t* insert_data)
{
out.insert(out.begin() + insert_before, insert_data, insert_data + insert_count);
/* Update the offset of each affected block */
for (Block& block : ctx.program->blocks) {
if (block.offset >= insert_before)
block.offset += insert_count;
}
/* Find first branch after the inserted code */
auto branch_it = std::find_if(ctx.branches.begin(), ctx.branches.end(),
[insert_before](const auto& branch) -> bool
{ return (unsigned)branch.first >= insert_before; });
/* Update the locations of branches */
for (; branch_it != ctx.branches.end(); ++branch_it)
branch_it->first += insert_count;
/* Update the locations of p_constaddr instructions */
for (auto& constaddr : ctx.constaddrs) {
constaddr_info& info = constaddr.second;
if (info.getpc_end >= insert_before)
info.getpc_end += insert_count;
if (info.add_literal >= insert_before)
info.add_literal += insert_count;
}
for (auto& constaddr : ctx.resumeaddrs) {
constaddr_info& info = constaddr.second;
if (info.getpc_end >= insert_before)
info.getpc_end += insert_count;
if (info.add_literal >= insert_before)
info.add_literal += insert_count;
}
if (ctx.symbols) {
for (auto& symbol : *ctx.symbols) {
if (symbol.offset >= insert_before)
symbol.offset += insert_count;
}
}
}
static void
fix_branches_gfx10(asm_context& ctx, std::vector<uint32_t>& out)
{
/* Branches with an offset of 0x3f are buggy on GFX10,
* we workaround by inserting NOPs if needed.
*/
bool gfx10_3f_bug = false;
do {
auto buggy_branch_it = std::find_if(
ctx.branches.begin(), ctx.branches.end(),
[&ctx](const auto& branch) -> bool {
return ((int)ctx.program->blocks[branch.second->imm].offset - branch.first - 1) == 0x3f;
});
gfx10_3f_bug = buggy_branch_it != ctx.branches.end();
if (gfx10_3f_bug) {
/* Insert an s_nop after the branch */
constexpr uint32_t s_nop_0 = 0xbf800000u;
insert_code(ctx, out, buggy_branch_it->first + 1, 1, &s_nop_0);
}
} while (gfx10_3f_bug);
}
void
emit_long_jump(asm_context& ctx, SALU_instruction* branch, bool backwards,
std::vector<uint32_t>& out)
{
Builder bld(ctx.program);
Definition def;
if (branch->definitions.empty()) {
assert(ctx.program->blocks[branch->imm].kind & block_kind_discard_early_exit);
def = Definition(PhysReg(0), s2); /* The discard early exit block doesn't use SGPRs. */
} else {
def = branch->definitions[0];
}
Definition def_tmp_lo(def.physReg(), s1);
Operand op_tmp_lo(def.physReg(), s1);
Definition def_tmp_hi(def.physReg().advance(4), s1);
Operand op_tmp_hi(def.physReg().advance(4), s1);
aco_ptr<Instruction> instr;
if (branch->opcode != aco_opcode::s_branch) {
/* for conditional branches, skip the long jump if the condition is false */
aco_opcode inv;
switch (branch->opcode) {
case aco_opcode::s_cbranch_scc0: inv = aco_opcode::s_cbranch_scc1; break;
case aco_opcode::s_cbranch_scc1: inv = aco_opcode::s_cbranch_scc0; break;
case aco_opcode::s_cbranch_vccz: inv = aco_opcode::s_cbranch_vccnz; break;
case aco_opcode::s_cbranch_vccnz: inv = aco_opcode::s_cbranch_vccz; break;
case aco_opcode::s_cbranch_execz: inv = aco_opcode::s_cbranch_execnz; break;
case aco_opcode::s_cbranch_execnz: inv = aco_opcode::s_cbranch_execz; break;
default: unreachable("Unhandled long jump.");
}
unsigned size = ctx.gfx_level >= GFX12 ? 7 : 6;
instr.reset(bld.sopp(inv, size));
emit_sopp_instruction(ctx, out, instr.get(), true);
}
/* create the new PC and stash SCC in the LSB */
instr.reset(bld.sop1(aco_opcode::s_getpc_b64, def).instr);
emit_instruction(ctx, out, instr.get());
if (ctx.gfx_level >= GFX12) {
instr.reset(bld.sop1(aco_opcode::s_sext_i32_i16, def_tmp_hi, op_tmp_hi).instr);
emit_instruction(ctx, out, instr.get());
}
instr.reset(
bld.sop2(aco_opcode::s_addc_u32, def_tmp_lo, op_tmp_lo, Operand::literal32(0)).instr);
emit_instruction(ctx, out, instr.get());
branch->pass_flags = out.size();
/* s_addc_u32 for high 32 bits not needed because the program is in a 32-bit VA range */
/* restore SCC and clear the LSB of the new PC */
instr.reset(bld.sopc(aco_opcode::s_bitcmp1_b32, def_tmp_lo, op_tmp_lo, Operand::zero()).instr);
emit_instruction(ctx, out, instr.get());
instr.reset(bld.sop1(aco_opcode::s_bitset0_b32, def_tmp_lo, Operand::zero()).instr);
emit_instruction(ctx, out, instr.get());
/* create the s_setpc_b64 to jump */
instr.reset(bld.sop1(aco_opcode::s_setpc_b64, Operand(def.physReg(), s2)).instr);
emit_instruction(ctx, out, instr.get());
}
void
fix_branches(asm_context& ctx, std::vector<uint32_t>& out)
{
bool repeat = false;
do {
repeat = false;
if (ctx.gfx_level == GFX10)
fix_branches_gfx10(ctx, out);
for (std::pair<int, SALU_instruction*>& branch : ctx.branches) {
int offset = (int)ctx.program->blocks[branch.second->imm].offset - branch.first - 1;
if ((offset < INT16_MIN || offset > INT16_MAX) && !branch.second->pass_flags) {
std::vector<uint32_t> long_jump;
bool backwards =
ctx.program->blocks[branch.second->imm].offset < (unsigned)branch.first;
emit_long_jump(ctx, branch.second, backwards, long_jump);
out[branch.first] = long_jump[0];
insert_code(ctx, out, branch.first + 1, long_jump.size() - 1, long_jump.data() + 1);
repeat = true;
break;
}
if (branch.second->pass_flags) {
int after_getpc = branch.first + branch.second->pass_flags - 2;
offset = (int)ctx.program->blocks[branch.second->imm].offset - after_getpc;
out[branch.first + branch.second->pass_flags - 1] = offset * 4;
} else {
out[branch.first] &= 0xffff0000u;
out[branch.first] |= (uint16_t)offset;
}
}
} while (repeat);
}
void
fix_constaddrs(asm_context& ctx, std::vector<uint32_t>& out)
{
for (auto& constaddr : ctx.constaddrs) {
constaddr_info& info = constaddr.second;
out[info.add_literal] += (out.size() - info.getpc_end) * 4u;
if (ctx.symbols) {
struct aco_symbol sym;
sym.id = aco_symbol_const_data_addr;
sym.offset = info.add_literal;
ctx.symbols->push_back(sym);
}
}
for (auto& addr : ctx.resumeaddrs) {
constaddr_info& info = addr.second;
const Block& block = ctx.program->blocks[out[info.add_literal]];
assert(block.kind & block_kind_resume);
out[info.add_literal] = (block.offset - info.getpc_end) * 4u;
}
}
void
align_block(asm_context& ctx, std::vector<uint32_t>& code, Block& block)
{
/* Blocks with block_kind_loop_exit might be eliminated after jump threading, so we instead find
* loop exits using loop_nest_depth.
*/
if (ctx.loop_header && !block.linear_preds.empty() &&
block.loop_nest_depth < ctx.loop_header->loop_nest_depth) {
Block* loop_header = ctx.loop_header;
ctx.loop_header = NULL;
std::vector<uint32_t> nops;
const unsigned loop_num_cl = DIV_ROUND_UP(block.offset - loop_header->offset, 16);
/* On GFX10.3+, change the prefetch mode if the loop fits into 2 or 3 cache lines.
* Don't use the s_inst_prefetch instruction on GFX10 as it might cause hangs.
*/
const bool change_prefetch = ctx.program->gfx_level >= GFX10_3 &&
ctx.program->gfx_level <= GFX11 && loop_num_cl > 1 &&
loop_num_cl <= 3;
if (change_prefetch) {
Builder bld(ctx.program);
int16_t prefetch_mode = loop_num_cl == 3 ? 0x1 : 0x2;
aco_ptr<Instruction> instr(bld.sopp(aco_opcode::s_inst_prefetch, prefetch_mode));
emit_instruction(ctx, nops, instr.get());
insert_code(ctx, code, loop_header->offset, nops.size(), nops.data());
/* Change prefetch mode back to default (0x3). */
instr->salu().imm = 0x3;
emit_instruction(ctx, code, instr.get());
}
const unsigned loop_start_cl = loop_header->offset >> 4;
const unsigned loop_end_cl = (block.offset - 1) >> 4;
/* Align the loop if it fits into the fetched cache lines or if we can
* reduce the number of cache lines with less than 8 NOPs.
*/
const bool align_loop = loop_end_cl - loop_start_cl >= loop_num_cl &&
(loop_num_cl == 1 || change_prefetch || loop_header->offset % 16 > 8);
if (align_loop) {
nops.clear();
nops.resize(16 - (loop_header->offset % 16), 0xbf800000u);
insert_code(ctx, code, loop_header->offset, nops.size(), nops.data());
}
}
if (block.kind & block_kind_loop_header) {
/* In case of nested loops, only handle the inner-most loops in order
* to not break the alignment of inner loops by handling outer loops.
* Also ignore loops without back-edge.
*/
ctx.loop_header = block.linear_preds.size() > 1 ? &block : NULL;
}
/* align resume shaders with cache line */
if (block.kind & block_kind_resume) {
size_t cache_aligned = align(code.size(), 16);
code.resize(cache_aligned, 0xbf800000u); /* s_nop 0 */
block.offset = code.size();
}
}
unsigned
emit_program(Program* program, std::vector<uint32_t>& code, std::vector<struct aco_symbol>* symbols,
bool append_endpgm)
{
asm_context ctx(program, symbols);
bool is_separately_compiled_ngg_vs_or_es =
(program->stage.sw == SWStage::VS || program->stage.sw == SWStage::TES) &&
program->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER &&
program->info.merged_shader_compiled_separately;
/* Prolog has no exports. */
if (!program->is_prolog && !program->info.has_epilog && !is_separately_compiled_ngg_vs_or_es &&
(program->stage.hw == AC_HW_VERTEX_SHADER || program->stage.hw == AC_HW_PIXEL_SHADER ||
program->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER))
fix_exports(ctx, code, program);
for (Block& block : program->blocks) {
block.offset = code.size();
align_block(ctx, code, block);
emit_block(ctx, code, block);
}
fix_branches(ctx, code);
unsigned exec_size = code.size() * sizeof(uint32_t);
/* Add end-of-code markers for the UMR disassembler. */
if (append_endpgm)
code.resize(code.size() + 5, 0xbf9f0000u);
fix_constaddrs(ctx, code);
while (program->constant_data.size() % 4u)
program->constant_data.push_back(0);
/* Copy constant data */
code.insert(code.end(), (uint32_t*)program->constant_data.data(),
(uint32_t*)(program->constant_data.data() + program->constant_data.size()));
program->config->scratch_bytes_per_wave =
align(program->config->scratch_bytes_per_wave, program->dev.scratch_alloc_granule);
return exec_size;
}
} // namespace aco