mesa/src/glsl/linker.cpp

3901 lines
130 KiB
C++
Raw Normal View History

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file linker.cpp
* GLSL linker implementation
*
* Given a set of shaders that are to be linked to generate a final program,
* there are three distinct stages.
*
* In the first stage shaders are partitioned into groups based on the shader
* type. All shaders of a particular type (e.g., vertex shaders) are linked
* together.
*
* - Undefined references in each shader are resolve to definitions in
* another shader.
* - Types and qualifiers of uniforms, outputs, and global variables defined
* in multiple shaders with the same name are verified to be the same.
* - Initializers for uniforms and global variables defined
* in multiple shaders with the same name are verified to be the same.
*
* The result, in the terminology of the GLSL spec, is a set of shader
* executables for each processing unit.
*
* After the first stage is complete, a series of semantic checks are performed
* on each of the shader executables.
*
* - Each shader executable must define a \c main function.
* - Each vertex shader executable must write to \c gl_Position.
* - Each fragment shader executable must write to either \c gl_FragData or
* \c gl_FragColor.
*
* In the final stage individual shader executables are linked to create a
* complete exectuable.
*
* - Types of uniforms defined in multiple shader stages with the same name
* are verified to be the same.
* - Initializers for uniforms defined in multiple shader stages with the
* same name are verified to be the same.
* - Types and qualifiers of outputs defined in one stage are verified to
* be the same as the types and qualifiers of inputs defined with the same
* name in a later stage.
*
* \author Ian Romanick <ian.d.romanick@intel.com>
*/
#include <ctype.h>
#include "main/core.h"
#include "glsl_symbol_table.h"
#include "glsl_parser_extras.h"
#include "ir.h"
#include "program.h"
#include "program/hash_table.h"
#include "linker.h"
#include "link_varyings.h"
#include "ir_optimization.h"
#include "ir_rvalue_visitor.h"
#include "ir_uniform.h"
#include "main/shaderobj.h"
#include "main/enums.h"
void linker_error(gl_shader_program *, const char *, ...);
namespace {
/**
* Visitor that determines whether or not a variable is ever written.
*/
class find_assignment_visitor : public ir_hierarchical_visitor {
public:
find_assignment_visitor(const char *name)
: name(name), found(false)
{
/* empty */
}
virtual ir_visitor_status visit_enter(ir_assignment *ir)
{
ir_variable *const var = ir->lhs->variable_referenced();
if (strcmp(name, var->name) == 0) {
found = true;
return visit_stop;
}
return visit_continue_with_parent;
}
virtual ir_visitor_status visit_enter(ir_call *ir)
{
foreach_two_lists(formal_node, &ir->callee->parameters,
actual_node, &ir->actual_parameters) {
ir_rvalue *param_rval = (ir_rvalue *) actual_node;
ir_variable *sig_param = (ir_variable *) formal_node;
if (sig_param->data.mode == ir_var_function_out ||
sig_param->data.mode == ir_var_function_inout) {
ir_variable *var = param_rval->variable_referenced();
if (var && strcmp(name, var->name) == 0) {
found = true;
return visit_stop;
}
}
}
if (ir->return_deref != NULL) {
ir_variable *const var = ir->return_deref->variable_referenced();
if (strcmp(name, var->name) == 0) {
found = true;
return visit_stop;
}
}
return visit_continue_with_parent;
}
bool variable_found()
{
return found;
}
private:
const char *name; /**< Find writes to a variable with this name. */
bool found; /**< Was a write to the variable found? */
};
/**
* Visitor that determines whether or not a variable is ever read.
*/
class find_deref_visitor : public ir_hierarchical_visitor {
public:
find_deref_visitor(const char *name)
: name(name), found(false)
{
/* empty */
}
virtual ir_visitor_status visit(ir_dereference_variable *ir)
{
if (strcmp(this->name, ir->var->name) == 0) {
this->found = true;
return visit_stop;
}
return visit_continue;
}
bool variable_found() const
{
return this->found;
}
private:
const char *name; /**< Find writes to a variable with this name. */
bool found; /**< Was a write to the variable found? */
};
class geom_array_resize_visitor : public ir_hierarchical_visitor {
public:
unsigned num_vertices;
gl_shader_program *prog;
geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
{
this->num_vertices = num_vertices;
this->prog = prog;
}
virtual ~geom_array_resize_visitor()
{
/* empty */
}
virtual ir_visitor_status visit(ir_variable *var)
{
if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
return visit_continue;
unsigned size = var->type->length;
/* Generate a link error if the shader has declared this array with an
* incorrect size.
*/
if (size && size != this->num_vertices) {
linker_error(this->prog, "size of array %s declared as %u, "
"but number of input vertices is %u\n",
var->name, size, this->num_vertices);
return visit_continue;
}
/* Generate a link error if the shader attempts to access an input
* array using an index too large for its actual size assigned at link
* time.
*/
if (var->data.max_array_access >= this->num_vertices) {
linker_error(this->prog, "geometry shader accesses element %i of "
"%s, but only %i input vertices\n",
var->data.max_array_access, var->name, this->num_vertices);
return visit_continue;
}
var->type = glsl_type::get_array_instance(var->type->fields.array,
this->num_vertices);
var->data.max_array_access = this->num_vertices - 1;
return visit_continue;
}
/* Dereferences of input variables need to be updated so that their type
* matches the newly assigned type of the variable they are accessing. */
virtual ir_visitor_status visit(ir_dereference_variable *ir)
{
ir->type = ir->var->type;
return visit_continue;
}
/* Dereferences of 2D input arrays need to be updated so that their type
* matches the newly assigned type of the array they are accessing. */
virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
{
const glsl_type *const vt = ir->array->type;
if (vt->is_array())
ir->type = vt->fields.array;
return visit_continue;
}
};
class tess_eval_array_resize_visitor : public ir_hierarchical_visitor {
public:
unsigned num_vertices;
gl_shader_program *prog;
tess_eval_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
{
this->num_vertices = num_vertices;
this->prog = prog;
}
virtual ~tess_eval_array_resize_visitor()
{
/* empty */
}
virtual ir_visitor_status visit(ir_variable *var)
{
if (!var->type->is_array() || var->data.mode != ir_var_shader_in || var->data.patch)
return visit_continue;
var->type = glsl_type::get_array_instance(var->type->fields.array,
this->num_vertices);
var->data.max_array_access = this->num_vertices - 1;
return visit_continue;
}
/* Dereferences of input variables need to be updated so that their type
* matches the newly assigned type of the variable they are accessing. */
virtual ir_visitor_status visit(ir_dereference_variable *ir)
{
ir->type = ir->var->type;
return visit_continue;
}
/* Dereferences of 2D input arrays need to be updated so that their type
* matches the newly assigned type of the array they are accessing. */
virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
{
const glsl_type *const vt = ir->array->type;
if (vt->is_array())
ir->type = vt->fields.array;
return visit_continue;
}
};
class barrier_use_visitor : public ir_hierarchical_visitor {
public:
barrier_use_visitor(gl_shader_program *prog)
: prog(prog), in_main(false), after_return(false), control_flow(0)
{
}
virtual ~barrier_use_visitor()
{
/* empty */
}
virtual ir_visitor_status visit_enter(ir_function *ir)
{
if (strcmp(ir->name, "main") == 0)
in_main = true;
return visit_continue;
}
virtual ir_visitor_status visit_leave(ir_function *ir)
{
in_main = false;
after_return = false;
return visit_continue;
}
virtual ir_visitor_status visit_leave(ir_return *ir)
{
after_return = true;
return visit_continue;
}
virtual ir_visitor_status visit_enter(ir_if *ir)
{
++control_flow;
return visit_continue;
}
virtual ir_visitor_status visit_leave(ir_if *ir)
{
--control_flow;
return visit_continue;
}
virtual ir_visitor_status visit_enter(ir_loop *ir)
{
++control_flow;
return visit_continue;
}
virtual ir_visitor_status visit_leave(ir_loop *ir)
{
--control_flow;
return visit_continue;
}
/* FINISHME: `switch` is not expressed at the IR level -- it's already
* been lowered to a mess of `if`s. We'll correctly disallow any use of
* barrier() in a conditional path within the switch, but not in a path
* which is always hit.
*/
virtual ir_visitor_status visit_enter(ir_call *ir)
{
if (ir->use_builtin && strcmp(ir->callee_name(), "barrier") == 0) {
/* Use of barrier(); determine if it is legal: */
if (!in_main) {
linker_error(prog, "Builtin barrier() may only be used in main");
return visit_stop;
}
if (after_return) {
linker_error(prog, "Builtin barrier() may not be used after return");
return visit_stop;
}
if (control_flow != 0) {
linker_error(prog, "Builtin barrier() may not be used inside control flow");
return visit_stop;
}
}
return visit_continue;
}
private:
gl_shader_program *prog;
bool in_main, after_return;
int control_flow;
};
/**
* Visitor that determines the highest stream id to which a (geometry) shader
* emits vertices. It also checks whether End{Stream}Primitive is ever called.
*/
class find_emit_vertex_visitor : public ir_hierarchical_visitor {
public:
find_emit_vertex_visitor(int max_allowed)
: max_stream_allowed(max_allowed),
invalid_stream_id(0),
invalid_stream_id_from_emit_vertex(false),
end_primitive_found(false),
uses_non_zero_stream(false)
{
/* empty */
}
virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
{
int stream_id = ir->stream_id();
if (stream_id < 0) {
invalid_stream_id = stream_id;
invalid_stream_id_from_emit_vertex = true;
return visit_stop;
}
if (stream_id > max_stream_allowed) {
invalid_stream_id = stream_id;
invalid_stream_id_from_emit_vertex = true;
return visit_stop;
}
if (stream_id != 0)
uses_non_zero_stream = true;
return visit_continue;
}
virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
{
end_primitive_found = true;
int stream_id = ir->stream_id();
if (stream_id < 0) {
invalid_stream_id = stream_id;
invalid_stream_id_from_emit_vertex = false;
return visit_stop;
}
if (stream_id > max_stream_allowed) {
invalid_stream_id = stream_id;
invalid_stream_id_from_emit_vertex = false;
return visit_stop;
}
if (stream_id != 0)
uses_non_zero_stream = true;
return visit_continue;
}
bool error()
{
return invalid_stream_id != 0;
}
const char *error_func()
{
return invalid_stream_id_from_emit_vertex ?
"EmitStreamVertex" : "EndStreamPrimitive";
}
int error_stream()
{
return invalid_stream_id;
}
bool uses_streams()
{
return uses_non_zero_stream;
}
bool uses_end_primitive()
{
return end_primitive_found;
}
private:
int max_stream_allowed;
int invalid_stream_id;
bool invalid_stream_id_from_emit_vertex;
bool end_primitive_found;
bool uses_non_zero_stream;
};
/* Class that finds array derefs and check if indexes are dynamic. */
class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
{
public:
dynamic_sampler_array_indexing_visitor() :
dynamic_sampler_array_indexing(false)
{
}
ir_visitor_status visit_enter(ir_dereference_array *ir)
{
if (!ir->variable_referenced())
return visit_continue;
if (!ir->variable_referenced()->type->contains_sampler())
return visit_continue;
if (!ir->array_index->constant_expression_value()) {
dynamic_sampler_array_indexing = true;
return visit_stop;
}
return visit_continue;
}
bool uses_dynamic_sampler_array_indexing()
{
return dynamic_sampler_array_indexing;
}
private:
bool dynamic_sampler_array_indexing;
};
} /* anonymous namespace */
void
linker_error(gl_shader_program *prog, const char *fmt, ...)
{
va_list ap;
ralloc_strcat(&prog->InfoLog, "error: ");
va_start(ap, fmt);
ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
va_end(ap);
prog->LinkStatus = false;
}
void
linker_warning(gl_shader_program *prog, const char *fmt, ...)
{
va_list ap;
ralloc_strcat(&prog->InfoLog, "warning: ");
va_start(ap, fmt);
ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
va_end(ap);
}
/**
* Given a string identifying a program resource, break it into a base name
* and an optional array index in square brackets.
*
* If an array index is present, \c out_base_name_end is set to point to the
* "[" that precedes the array index, and the array index itself is returned
* as a long.
*
* If no array index is present (or if the array index is negative or
* mal-formed), \c out_base_name_end, is set to point to the null terminator
* at the end of the input string, and -1 is returned.
*
* Only the final array index is parsed; if the string contains other array
* indices (or structure field accesses), they are left in the base name.
*
* No attempt is made to check that the base name is properly formed;
* typically the caller will look up the base name in a hash table, so
* ill-formed base names simply turn into hash table lookup failures.
*/
long
parse_program_resource_name(const GLchar *name,
const GLchar **out_base_name_end)
{
/* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
*
* "When an integer array element or block instance number is part of
* the name string, it will be specified in decimal form without a "+"
* or "-" sign or any extra leading zeroes. Additionally, the name
* string will not include white space anywhere in the string."
*/
const size_t len = strlen(name);
*out_base_name_end = name + len;
if (len == 0 || name[len-1] != ']')
return -1;
/* Walk backwards over the string looking for a non-digit character. This
* had better be the opening bracket for an array index.
*
* Initially, i specifies the location of the ']'. Since the string may
* contain only the ']' charcater, walk backwards very carefully.
*/
unsigned i;
for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
/* empty */ ;
if ((i == 0) || name[i-1] != '[')
return -1;
long array_index = strtol(&name[i], NULL, 10);
if (array_index < 0)
return -1;
/* Check for leading zero */
if (name[i] == '0' && name[i+1] != ']')
return -1;
*out_base_name_end = name + (i - 1);
return array_index;
}
void
link_invalidate_variable_locations(exec_list *ir)
{
foreach_in_list(ir_instruction, node, ir) {
ir_variable *const var = node->as_variable();
if (var == NULL)
continue;
/* Only assign locations for variables that lack an explicit location.
* Explicit locations are set for all built-in variables, generic vertex
* shader inputs (via layout(location=...)), and generic fragment shader
* outputs (also via layout(location=...)).
*/
if (!var->data.explicit_location) {
var->data.location = -1;
var->data.location_frac = 0;
}
/* ir_variable::is_unmatched_generic_inout is used by the linker while
* connecting outputs from one stage to inputs of the next stage.
*
* There are two implicit assumptions here. First, we assume that any
* built-in variable (i.e., non-generic in or out) will have
* explicit_location set. Second, we assume that any generic in or out
* will not have explicit_location set.
*
* This second assumption will only be valid until
* GL_ARB_separate_shader_objects is supported. When that extension is
* implemented, this function will need some modifications.
*/
if (!var->data.explicit_location) {
var->data.is_unmatched_generic_inout = 1;
} else {
var->data.is_unmatched_generic_inout = 0;
}
}
}
/**
* Set UsesClipDistance and ClipDistanceArraySize based on the given shader.
*
* Also check for errors based on incorrect usage of gl_ClipVertex and
* gl_ClipDistance.
*
* Return false if an error was reported.
*/
static void
analyze_clip_usage(struct gl_shader_program *prog,
struct gl_shader *shader, GLboolean *UsesClipDistance,
GLuint *ClipDistanceArraySize)
{
*ClipDistanceArraySize = 0;
if (!prog->IsES && prog->Version >= 130) {
/* From section 7.1 (Vertex Shader Special Variables) of the
* GLSL 1.30 spec:
*
* "It is an error for a shader to statically write both
* gl_ClipVertex and gl_ClipDistance."
*
* This does not apply to GLSL ES shaders, since GLSL ES defines neither
* gl_ClipVertex nor gl_ClipDistance.
*/
find_assignment_visitor clip_vertex("gl_ClipVertex");
find_assignment_visitor clip_distance("gl_ClipDistance");
clip_vertex.run(shader->ir);
clip_distance.run(shader->ir);
if (clip_vertex.variable_found() && clip_distance.variable_found()) {
linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
"and `gl_ClipDistance'\n",
_mesa_shader_stage_to_string(shader->Stage));
return;
}
*UsesClipDistance = clip_distance.variable_found();
ir_variable *clip_distance_var =
shader->symbols->get_variable("gl_ClipDistance");
if (clip_distance_var)
*ClipDistanceArraySize = clip_distance_var->type->length;
} else {
*UsesClipDistance = false;
}
}
/**
* Verify that a vertex shader executable meets all semantic requirements.
*
* Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
* as a side effect.
*
* \param shader Vertex shader executable to be verified
*/
void
validate_vertex_shader_executable(struct gl_shader_program *prog,
struct gl_shader *shader)
{
if (shader == NULL)
return;
/* From the GLSL 1.10 spec, page 48:
*
* "The variable gl_Position is available only in the vertex
* language and is intended for writing the homogeneous vertex
* position. All executions of a well-formed vertex shader
* executable must write a value into this variable. [...] The
* variable gl_Position is available only in the vertex
* language and is intended for writing the homogeneous vertex
* position. All executions of a well-formed vertex shader
* executable must write a value into this variable."
*
* while in GLSL 1.40 this text is changed to:
*
* "The variable gl_Position is available only in the vertex
* language and is intended for writing the homogeneous vertex
* position. It can be written at any time during shader
* execution. It may also be read back by a vertex shader
* after being written. This value will be used by primitive
* assembly, clipping, culling, and other fixed functionality
* operations, if present, that operate on primitives after
* vertex processing has occurred. Its value is undefined if
* the vertex shader executable does not write gl_Position."
*
* All GLSL ES Versions are similar to GLSL 1.40--failing to write to
* gl_Position is not an error.
*/
if (prog->Version < (prog->IsES ? 300 : 140)) {
find_assignment_visitor find("gl_Position");
find.run(shader->ir);
if (!find.variable_found()) {
if (prog->IsES) {
linker_warning(prog,
"vertex shader does not write to `gl_Position'."
"It's value is undefined. \n");
} else {
linker_error(prog,
"vertex shader does not write to `gl_Position'. \n");
}
return;
}
}
analyze_clip_usage(prog, shader, &prog->Vert.UsesClipDistance,
&prog->Vert.ClipDistanceArraySize);
}
void
validate_tess_eval_shader_executable(struct gl_shader_program *prog,
struct gl_shader *shader)
{
if (shader == NULL)
return;
analyze_clip_usage(prog, shader, &prog->TessEval.UsesClipDistance,
&prog->TessEval.ClipDistanceArraySize);
}
/**
* Verify that a fragment shader executable meets all semantic requirements
*
* \param shader Fragment shader executable to be verified
*/
void
validate_fragment_shader_executable(struct gl_shader_program *prog,
struct gl_shader *shader)
{
if (shader == NULL)
return;
find_assignment_visitor frag_color("gl_FragColor");
find_assignment_visitor frag_data("gl_FragData");
frag_color.run(shader->ir);
frag_data.run(shader->ir);
if (frag_color.variable_found() && frag_data.variable_found()) {
linker_error(prog, "fragment shader writes to both "
"`gl_FragColor' and `gl_FragData'\n");
}
}
/**
* Verify that a geometry shader executable meets all semantic requirements
*
* Also sets prog->Geom.VerticesIn, prog->Geom.UsesClipDistance, and
* prog->Geom.ClipDistanceArraySize as a side effect.
*
* \param shader Geometry shader executable to be verified
*/
void
validate_geometry_shader_executable(struct gl_shader_program *prog,
struct gl_shader *shader)
{
if (shader == NULL)
return;
unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
prog->Geom.VerticesIn = num_vertices;
analyze_clip_usage(prog, shader, &prog->Geom.UsesClipDistance,
&prog->Geom.ClipDistanceArraySize);
}
/**
* Check if geometry shaders emit to non-zero streams and do corresponding
* validations.
*/
static void
validate_geometry_shader_emissions(struct gl_context *ctx,
struct gl_shader_program *prog)
{
if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
emit_vertex.run(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir);
if (emit_vertex.error()) {
linker_error(prog, "Invalid call %s(%d). Accepted values for the "
"stream parameter are in the range [0, %d].\n",
emit_vertex.error_func(),
emit_vertex.error_stream(),
ctx->Const.MaxVertexStreams - 1);
}
prog->Geom.UsesStreams = emit_vertex.uses_streams();
prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
/* From the ARB_gpu_shader5 spec:
*
* "Multiple vertex streams are supported only if the output primitive
* type is declared to be "points". A program will fail to link if it
* contains a geometry shader calling EmitStreamVertex() or
* EndStreamPrimitive() if its output primitive type is not "points".
*
* However, in the same spec:
*
* "The function EmitVertex() is equivalent to calling EmitStreamVertex()
* with <stream> set to zero."
*
* And:
*
* "The function EndPrimitive() is equivalent to calling
* EndStreamPrimitive() with <stream> set to zero."
*
* Since we can call EmitVertex() and EndPrimitive() when we output
* primitives other than points, calling EmitStreamVertex(0) or
* EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
* does. Currently we only set prog->Geom.UsesStreams to TRUE when
* EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
* stream.
*/
if (prog->Geom.UsesStreams && prog->Geom.OutputType != GL_POINTS) {
linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
"with n>0 requires point output\n");
}
}
}
bool
validate_intrastage_arrays(struct gl_shader_program *prog,
ir_variable *const var,
ir_variable *const existing)
{
/* Consider the types to be "the same" if both types are arrays
* of the same type and one of the arrays is implicitly sized.
* In addition, set the type of the linked variable to the
* explicitly sized array.
*/
if (var->type->is_array() && existing->type->is_array() &&
(var->type->fields.array == existing->type->fields.array) &&
((var->type->length == 0)|| (existing->type->length == 0))) {
if (var->type->length != 0) {
if (var->type->length <= existing->data.max_array_access) {
linker_error(prog, "%s `%s' declared as type "
"`%s' but outermost dimension has an index"
" of `%i'\n",
mode_string(var),
var->name, var->type->name,
existing->data.max_array_access);
}
existing->type = var->type;
return true;
} else if (existing->type->length != 0) {
if(existing->type->length <= var->data.max_array_access) {
linker_error(prog, "%s `%s' declared as type "
"`%s' but outermost dimension has an index"
" of `%i'\n",
mode_string(var),
var->name, existing->type->name,
var->data.max_array_access);
}
return true;
}
}
return false;
}
/**
* Perform validation of global variables used across multiple shaders
*/
void
cross_validate_globals(struct gl_shader_program *prog,
struct gl_shader **shader_list,
unsigned num_shaders,
bool uniforms_only)
{
/* Examine all of the uniforms in all of the shaders and cross validate
* them.
*/
glsl_symbol_table variables;
for (unsigned i = 0; i < num_shaders; i++) {
if (shader_list[i] == NULL)
continue;
foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
ir_variable *const var = node->as_variable();
if (var == NULL)
continue;
if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
continue;
/* don't cross validate subroutine uniforms */
if (var->type->contains_subroutine())
continue;
/* Don't cross validate temporaries that are at global scope. These
* will eventually get pulled into the shaders 'main'.
*/
if (var->data.mode == ir_var_temporary)
continue;
/* If a global with this name has already been seen, verify that the
* new instance has the same type. In addition, if the globals have
* initializers, the values of the initializers must be the same.
*/
ir_variable *const existing = variables.get_variable(var->name);
if (existing != NULL) {
/* Check if types match. Interface blocks have some special
* rules so we handle those elsewhere.
*/
if (var->type != existing->type &&
!var->is_interface_instance()) {
if (!validate_intrastage_arrays(prog, var, existing)) {
if (var->type->is_record() && existing->type->is_record()
&& existing->type->record_compare(var->type)) {
existing->type = var->type;
} else {
linker_error(prog, "%s `%s' declared as type "
"`%s' and type `%s'\n",
mode_string(var),
var->name, var->type->name,
existing->type->name);
return;
}
}
}
if (var->data.explicit_location) {
if (existing->data.explicit_location
&& (var->data.location != existing->data.location)) {
linker_error(prog, "explicit locations for %s "
"`%s' have differing values\n",
mode_string(var), var->name);
return;
}
existing->data.location = var->data.location;
existing->data.explicit_location = true;
}
/* From the GLSL 4.20 specification:
* "A link error will result if two compilation units in a program
* specify different integer-constant bindings for the same
* opaque-uniform name. However, it is not an error to specify a
* binding on some but not all declarations for the same name"
*/
if (var->data.explicit_binding) {
if (existing->data.explicit_binding &&
var->data.binding != existing->data.binding) {
linker_error(prog, "explicit bindings for %s "
"`%s' have differing values\n",
mode_string(var), var->name);
return;
}
existing->data.binding = var->data.binding;
existing->data.explicit_binding = true;
}
if (var->type->contains_atomic() &&
var->data.atomic.offset != existing->data.atomic.offset) {
linker_error(prog, "offset specifications for %s "
"`%s' have differing values\n",
mode_string(var), var->name);
return;
}
/* Validate layout qualifiers for gl_FragDepth.
*
* From the AMD/ARB_conservative_depth specs:
*
* "If gl_FragDepth is redeclared in any fragment shader in a
* program, it must be redeclared in all fragment shaders in
* that program that have static assignments to
* gl_FragDepth. All redeclarations of gl_FragDepth in all
* fragment shaders in a single program must have the same set
* of qualifiers."
*/
if (strcmp(var->name, "gl_FragDepth") == 0) {
bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
bool layout_differs =
var->data.depth_layout != existing->data.depth_layout;
if (layout_declared && layout_differs) {
linker_error(prog,
"All redeclarations of gl_FragDepth in all "
"fragment shaders in a single program must have "
"the same set of qualifiers.\n");
}
if (var->data.used && layout_differs) {
linker_error(prog,
"If gl_FragDepth is redeclared with a layout "
"qualifier in any fragment shader, it must be "
"redeclared with the same layout qualifier in "
"all fragment shaders that have assignments to "
"gl_FragDepth\n");
}
}
2011-10-31 21:31:07 +00:00
/* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
*
* "If a shared global has multiple initializers, the
* initializers must all be constant expressions, and they
* must all have the same value. Otherwise, a link error will
* result. (A shared global having only one initializer does
* not require that initializer to be a constant expression.)"
*
* Previous to 4.20 the GLSL spec simply said that initializers
* must have the same value. In this case of non-constant
* initializers, this was impossible to determine. As a result,
* no vendor actually implemented that behavior. The 4.20
* behavior matches the implemented behavior of at least one other
* vendor, so we'll implement that for all GLSL versions.
*/
2011-10-31 21:31:07 +00:00
if (var->constant_initializer != NULL) {
if (existing->constant_initializer != NULL) {
if (!var->constant_initializer->has_value(existing->constant_initializer)) {
linker_error(prog, "initializers for %s "
"`%s' have differing values\n",
mode_string(var), var->name);
return;
}
2011-10-31 21:31:07 +00:00
} else {
/* If the first-seen instance of a particular uniform did not
* have an initializer but a later instance does, copy the
* initializer to the version stored in the symbol table.
*/
/* FINISHME: This is wrong. The constant_value field should
* FINISHME: not be modified! Imagine a case where a shader
* FINISHME: without an initializer is linked in two different
* FINISHME: programs with shaders that have differing
* FINISHME: initializers. Linking with the first will
* FINISHME: modify the shader, and linking with the second
* FINISHME: will fail.
*/
2011-10-31 21:31:07 +00:00
existing->constant_initializer =
var->constant_initializer->clone(ralloc_parent(existing),
NULL);
}
}
if (var->data.has_initializer) {
if (existing->data.has_initializer
2011-10-31 21:31:07 +00:00
&& (var->constant_initializer == NULL
|| existing->constant_initializer == NULL)) {
linker_error(prog,
"shared global variable `%s' has multiple "
"non-constant initializers.\n",
var->name);
return;
2011-10-31 21:31:07 +00:00
}
/* Some instance had an initializer, so keep track of that. In
* this location, all sorts of initializers (constant or
* otherwise) will propagate the existence to the variable
* stored in the symbol table.
*/
existing->data.has_initializer = true;
}
if (existing->data.invariant != var->data.invariant) {
linker_error(prog, "declarations for %s `%s' have "
"mismatching invariant qualifiers\n",
mode_string(var), var->name);
return;
}
if (existing->data.centroid != var->data.centroid) {
linker_error(prog, "declarations for %s `%s' have "
"mismatching centroid qualifiers\n",
mode_string(var), var->name);
return;
}
if (existing->data.sample != var->data.sample) {
linker_error(prog, "declarations for %s `%s` have "
"mismatching sample qualifiers\n",
mode_string(var), var->name);
return;
}
} else
variables.add_variable(var);
}
}
}
/**
* Perform validation of uniforms used across multiple shader stages
*/
void
cross_validate_uniforms(struct gl_shader_program *prog)
{
cross_validate_globals(prog, prog->_LinkedShaders,
MESA_SHADER_STAGES, true);
}
/**
* Accumulates the array of prog->UniformBlocks and checks that all
* definitons of blocks agree on their contents.
*/
static bool
interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
{
unsigned max_num_uniform_blocks = 0;
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (prog->_LinkedShaders[i])
max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
}
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_shader *sh = prog->_LinkedShaders[i];
prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
max_num_uniform_blocks);
for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
prog->UniformBlockStageIndex[i][j] = -1;
if (sh == NULL)
continue;
for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
int index = link_cross_validate_uniform_block(prog,
&prog->UniformBlocks,
&prog->NumUniformBlocks,
&sh->UniformBlocks[j]);
if (index == -1) {
linker_error(prog, "uniform block `%s' has mismatching definitions\n",
sh->UniformBlocks[j].Name);
return false;
}
prog->UniformBlockStageIndex[i][index] = j;
}
}
return true;
}
2010-07-09 22:09:34 +01:00
/**
* Populates a shaders symbol table with all global declarations
*/
static void
populate_symbol_table(gl_shader *sh)
{
sh->symbols = new(sh) glsl_symbol_table;
foreach_in_list(ir_instruction, inst, sh->ir) {
2010-07-09 22:09:34 +01:00
ir_variable *var;
ir_function *func;
if ((func = inst->as_function()) != NULL) {
sh->symbols->add_function(func);
2010-07-09 22:09:34 +01:00
} else if ((var = inst->as_variable()) != NULL) {
if (var->data.mode != ir_var_temporary)
sh->symbols->add_variable(var);
2010-07-09 22:09:34 +01:00
}
}
}
/**
* Remap variables referenced in an instruction tree
*
* This is used when instruction trees are cloned from one shader and placed in
* another. These trees will contain references to \c ir_variable nodes that
* do not exist in the target shader. This function finds these \c ir_variable
* references and replaces the references with matching variables in the target
* shader.
*
* If there is no matching variable in the target shader, a clone of the
* \c ir_variable is made and added to the target shader. The new variable is
* added to \b both the instruction stream and the symbol table.
*
* \param inst IR tree that is to be processed.
* \param symbols Symbol table containing global scope symbols in the
* linked shader.
* \param instructions Instruction stream where new variable declarations
* should be added.
*/
void
remap_variables(ir_instruction *inst, struct gl_shader *target,
hash_table *temps)
{
class remap_visitor : public ir_hierarchical_visitor {
public:
remap_visitor(struct gl_shader *target,
hash_table *temps)
{
this->target = target;
this->symbols = target->symbols;
this->instructions = target->ir;
this->temps = temps;
}
virtual ir_visitor_status visit(ir_dereference_variable *ir)
{
if (ir->var->data.mode == ir_var_temporary) {
ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
assert(var != NULL);
ir->var = var;
return visit_continue;
}
ir_variable *const existing =
this->symbols->get_variable(ir->var->name);
if (existing != NULL)
ir->var = existing;
else {
ir_variable *copy = ir->var->clone(this->target, NULL);
this->symbols->add_variable(copy);
this->instructions->push_head(copy);
ir->var = copy;
}
return visit_continue;
}
private:
struct gl_shader *target;
glsl_symbol_table *symbols;
exec_list *instructions;
hash_table *temps;
};
remap_visitor v(target, temps);
inst->accept(&v);
}
/**
* Move non-declarations from one instruction stream to another
*
* The intended usage pattern of this function is to pass the pointer to the
2010-07-29 21:52:25 +01:00
* head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
* pointer) for \c last and \c false for \c make_copies on the first
* call. Successive calls pass the return value of the previous call for
* \c last and \c true for \c make_copies.
*
* \param instructions Source instruction stream
* \param last Instruction after which new instructions should be
* inserted in the target instruction stream
* \param make_copies Flag selecting whether instructions in \c instructions
* should be copied (via \c ir_instruction::clone) into the
* target list or moved.
*
* \return
* The new "last" instruction in the target instruction stream. This pointer
* is suitable for use as the \c last parameter of a later call to this
* function.
*/
exec_node *
move_non_declarations(exec_list *instructions, exec_node *last,
bool make_copies, gl_shader *target)
{
hash_table *temps = NULL;
if (make_copies)
temps = hash_table_ctor(0, hash_table_pointer_hash,
hash_table_pointer_compare);
foreach_in_list_safe(ir_instruction, inst, instructions) {
if (inst->as_function())
continue;
ir_variable *var = inst->as_variable();
if ((var != NULL) && (var->data.mode != ir_var_temporary))
continue;
assert(inst->as_assignment()
|| inst->as_call()
|| inst->as_if() /* for initializers with the ?: operator */
|| ((var != NULL) && (var->data.mode == ir_var_temporary)));
if (make_copies) {
inst = inst->clone(target, NULL);
if (var != NULL)
hash_table_insert(temps, inst, var);
else
remap_variables(inst, target, temps);
} else {
inst->remove();
}
last->insert_after(inst);
last = inst;
}
if (make_copies)
hash_table_dtor(temps);
return last;
}
/**
* Get the function signature for main from a shader
*/
ir_function_signature *
link_get_main_function_signature(gl_shader *sh)
{
ir_function *const f = sh->symbols->get_function("main");
if (f != NULL) {
exec_list void_parameters;
/* Look for the 'void main()' signature and ensure that it's defined.
* This keeps the linker from accidentally pick a shader that just
* contains a prototype for main.
*
* We don't have to check for multiple definitions of main (in multiple
* shaders) because that would have already been caught above.
*/
ir_function_signature *sig =
f->matching_signature(NULL, &void_parameters, false);
if ((sig != NULL) && sig->is_defined) {
return sig;
}
}
return NULL;
}
/**
* This class is only used in link_intrastage_shaders() below but declaring
* it inside that function leads to compiler warnings with some versions of
* gcc.
*/
class array_sizing_visitor : public ir_hierarchical_visitor {
public:
array_sizing_visitor()
: mem_ctx(ralloc_context(NULL)),
unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
hash_table_pointer_compare))
{
}
~array_sizing_visitor()
{
hash_table_dtor(this->unnamed_interfaces);
ralloc_free(this->mem_ctx);
}
virtual ir_visitor_status visit(ir_variable *var)
{
fixup_type(&var->type, var->data.max_array_access);
if (var->type->is_interface()) {
if (interface_contains_unsized_arrays(var->type)) {
const glsl_type *new_type =
resize_interface_members(var->type,
var->get_max_ifc_array_access());
var->type = new_type;
var->change_interface_type(new_type);
}
} else if (var->type->is_array() &&
var->type->fields.array->is_interface()) {
if (interface_contains_unsized_arrays(var->type->fields.array)) {
const glsl_type *new_type =
resize_interface_members(var->type->fields.array,
var->get_max_ifc_array_access());
var->change_interface_type(new_type);
var->type = update_interface_members_array(var->type, new_type);
}
} else if (const glsl_type *ifc_type = var->get_interface_type()) {
/* Store a pointer to the variable in the unnamed_interfaces
* hashtable.
*/
ir_variable **interface_vars = (ir_variable **)
hash_table_find(this->unnamed_interfaces, ifc_type);
if (interface_vars == NULL) {
interface_vars = rzalloc_array(mem_ctx, ir_variable *,
ifc_type->length);
hash_table_insert(this->unnamed_interfaces, interface_vars,
ifc_type);
}
unsigned index = ifc_type->field_index(var->name);
assert(index < ifc_type->length);
assert(interface_vars[index] == NULL);
interface_vars[index] = var;
}
return visit_continue;
}
/**
* For each unnamed interface block that was discovered while running the
* visitor, adjust the interface type to reflect the newly assigned array
* sizes, and fix up the ir_variable nodes to point to the new interface
* type.
*/
void fixup_unnamed_interface_types()
{
hash_table_call_foreach(this->unnamed_interfaces,
fixup_unnamed_interface_type, NULL);
}
private:
/**
* If the type pointed to by \c type represents an unsized array, replace
* it with a sized array whose size is determined by max_array_access.
*/
static void fixup_type(const glsl_type **type, unsigned max_array_access)
{
if ((*type)->is_unsized_array()) {
*type = glsl_type::get_array_instance((*type)->fields.array,
max_array_access + 1);
assert(*type != NULL);
}
}
static const glsl_type *
update_interface_members_array(const glsl_type *type,
const glsl_type *new_interface_type)
{
const glsl_type *element_type = type->fields.array;
if (element_type->is_array()) {
const glsl_type *new_array_type =
update_interface_members_array(element_type, new_interface_type);
return glsl_type::get_array_instance(new_array_type, type->length);
} else {
return glsl_type::get_array_instance(new_interface_type,
type->length);
}
}
/**
* Determine whether the given interface type contains unsized arrays (if
* it doesn't, array_sizing_visitor doesn't need to process it).
*/
static bool interface_contains_unsized_arrays(const glsl_type *type)
{
for (unsigned i = 0; i < type->length; i++) {
const glsl_type *elem_type = type->fields.structure[i].type;
if (elem_type->is_unsized_array())
return true;
}
return false;
}
/**
* Create a new interface type based on the given type, with unsized arrays
* replaced by sized arrays whose size is determined by
* max_ifc_array_access.
*/
static const glsl_type *
resize_interface_members(const glsl_type *type,
const unsigned *max_ifc_array_access)
{
unsigned num_fields = type->length;
glsl_struct_field *fields = new glsl_struct_field[num_fields];
memcpy(fields, type->fields.structure,
num_fields * sizeof(*fields));
for (unsigned i = 0; i < num_fields; i++) {
fixup_type(&fields[i].type, max_ifc_array_access[i]);
}
glsl_interface_packing packing =
(glsl_interface_packing) type->interface_packing;
const glsl_type *new_ifc_type =
glsl_type::get_interface_instance(fields, num_fields,
packing, type->name);
delete [] fields;
return new_ifc_type;
}
static void fixup_unnamed_interface_type(const void *key, void *data,
void *)
{
const glsl_type *ifc_type = (const glsl_type *) key;
ir_variable **interface_vars = (ir_variable **) data;
unsigned num_fields = ifc_type->length;
glsl_struct_field *fields = new glsl_struct_field[num_fields];
memcpy(fields, ifc_type->fields.structure,
num_fields * sizeof(*fields));
bool interface_type_changed = false;
for (unsigned i = 0; i < num_fields; i++) {
if (interface_vars[i] != NULL &&
fields[i].type != interface_vars[i]->type) {
fields[i].type = interface_vars[i]->type;
interface_type_changed = true;
}
}
if (!interface_type_changed) {
delete [] fields;
return;
}
glsl_interface_packing packing =
(glsl_interface_packing) ifc_type->interface_packing;
const glsl_type *new_ifc_type =
glsl_type::get_interface_instance(fields, num_fields, packing,
ifc_type->name);
delete [] fields;
for (unsigned i = 0; i < num_fields; i++) {
if (interface_vars[i] != NULL)
interface_vars[i]->change_interface_type(new_ifc_type);
}
}
/**
* Memory context used to allocate the data in \c unnamed_interfaces.
*/
void *mem_ctx;
/**
* Hash table from const glsl_type * to an array of ir_variable *'s
* pointing to the ir_variables constituting each unnamed interface block.
*/
hash_table *unnamed_interfaces;
};
/**
* Performs the cross-validation of tessellation control shader vertices and
* layout qualifiers for the attached tessellation control shaders,
* and propagates them to the linked TCS and linked shader program.
*/
static void
link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
struct gl_shader *linked_shader,
struct gl_shader **shader_list,
unsigned num_shaders)
{
linked_shader->TessCtrl.VerticesOut = 0;
if (linked_shader->Stage != MESA_SHADER_TESS_CTRL)
return;
/* From the GLSL 4.0 spec (chapter 4.3.8.2):
*
* "All tessellation control shader layout declarations in a program
* must specify the same output patch vertex count. There must be at
* least one layout qualifier specifying an output patch vertex count
* in any program containing tessellation control shaders; however,
* such a declaration is not required in all tessellation control
* shaders."
*/
for (unsigned i = 0; i < num_shaders; i++) {
struct gl_shader *shader = shader_list[i];
if (shader->TessCtrl.VerticesOut != 0) {
if (linked_shader->TessCtrl.VerticesOut != 0 &&
linked_shader->TessCtrl.VerticesOut != shader->TessCtrl.VerticesOut) {
linker_error(prog, "tessellation control shader defined with "
"conflicting output vertex count (%d and %d)\n",
linked_shader->TessCtrl.VerticesOut,
shader->TessCtrl.VerticesOut);
return;
}
linked_shader->TessCtrl.VerticesOut = shader->TessCtrl.VerticesOut;
}
}
/* Just do the intrastage -> interstage propagation right now,
* since we already know we're in the right type of shader program
* for doing it.
*/
if (linked_shader->TessCtrl.VerticesOut == 0) {
linker_error(prog, "tessellation control shader didn't declare "
"vertices out layout qualifier\n");
return;
}
prog->TessCtrl.VerticesOut = linked_shader->TessCtrl.VerticesOut;
}
/**
* Performs the cross-validation of tessellation evaluation shader
* primitive type, vertex spacing, ordering and point_mode layout qualifiers
* for the attached tessellation evaluation shaders, and propagates them
* to the linked TES and linked shader program.
*/
static void
link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
struct gl_shader *linked_shader,
struct gl_shader **shader_list,
unsigned num_shaders)
{
linked_shader->TessEval.PrimitiveMode = PRIM_UNKNOWN;
linked_shader->TessEval.Spacing = 0;
linked_shader->TessEval.VertexOrder = 0;
linked_shader->TessEval.PointMode = -1;
if (linked_shader->Stage != MESA_SHADER_TESS_EVAL)
return;
/* From the GLSL 4.0 spec (chapter 4.3.8.1):
*
* "At least one tessellation evaluation shader (compilation unit) in
* a program must declare a primitive mode in its input layout.
* Declaration vertex spacing, ordering, and point mode identifiers is
* optional. It is not required that all tessellation evaluation
* shaders in a program declare a primitive mode. If spacing or
* vertex ordering declarations are omitted, the tessellation
* primitive generator will use equal spacing or counter-clockwise
* vertex ordering, respectively. If a point mode declaration is
* omitted, the tessellation primitive generator will produce lines or
* triangles according to the primitive mode."
*/
for (unsigned i = 0; i < num_shaders; i++) {
struct gl_shader *shader = shader_list[i];
if (shader->TessEval.PrimitiveMode != PRIM_UNKNOWN) {
if (linked_shader->TessEval.PrimitiveMode != PRIM_UNKNOWN &&
linked_shader->TessEval.PrimitiveMode != shader->TessEval.PrimitiveMode) {
linker_error(prog, "tessellation evaluation shader defined with "
"conflicting input primitive modes.\n");
return;
}
linked_shader->TessEval.PrimitiveMode = shader->TessEval.PrimitiveMode;
}
if (shader->TessEval.Spacing != 0) {
if (linked_shader->TessEval.Spacing != 0 &&
linked_shader->TessEval.Spacing != shader->TessEval.Spacing) {
linker_error(prog, "tessellation evaluation shader defined with "
"conflicting vertex spacing.\n");
return;
}
linked_shader->TessEval.Spacing = shader->TessEval.Spacing;
}
if (shader->TessEval.VertexOrder != 0) {
if (linked_shader->TessEval.VertexOrder != 0 &&
linked_shader->TessEval.VertexOrder != shader->TessEval.VertexOrder) {
linker_error(prog, "tessellation evaluation shader defined with "
"conflicting ordering.\n");
return;
}
linked_shader->TessEval.VertexOrder = shader->TessEval.VertexOrder;
}
if (shader->TessEval.PointMode != -1) {
if (linked_shader->TessEval.PointMode != -1 &&
linked_shader->TessEval.PointMode != shader->TessEval.PointMode) {
linker_error(prog, "tessellation evaluation shader defined with "
"conflicting point modes.\n");
return;
}
linked_shader->TessEval.PointMode = shader->TessEval.PointMode;
}
}
/* Just do the intrastage -> interstage propagation right now,
* since we already know we're in the right type of shader program
* for doing it.
*/
if (linked_shader->TessEval.PrimitiveMode == PRIM_UNKNOWN) {
linker_error(prog,
"tessellation evaluation shader didn't declare input "
"primitive modes.\n");
return;
}
prog->TessEval.PrimitiveMode = linked_shader->TessEval.PrimitiveMode;
if (linked_shader->TessEval.Spacing == 0)
linked_shader->TessEval.Spacing = GL_EQUAL;
prog->TessEval.Spacing = linked_shader->TessEval.Spacing;
if (linked_shader->TessEval.VertexOrder == 0)
linked_shader->TessEval.VertexOrder = GL_CCW;
prog->TessEval.VertexOrder = linked_shader->TessEval.VertexOrder;
if (linked_shader->TessEval.PointMode == -1)
linked_shader->TessEval.PointMode = GL_FALSE;
prog->TessEval.PointMode = linked_shader->TessEval.PointMode;
}
/**
* Performs the cross-validation of layout qualifiers specified in
* redeclaration of gl_FragCoord for the attached fragment shaders,
* and propagates them to the linked FS and linked shader program.
*/
static void
link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
struct gl_shader *linked_shader,
struct gl_shader **shader_list,
unsigned num_shaders)
{
linked_shader->redeclares_gl_fragcoord = false;
linked_shader->uses_gl_fragcoord = false;
linked_shader->origin_upper_left = false;
linked_shader->pixel_center_integer = false;
if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
(prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
return;
for (unsigned i = 0; i < num_shaders; i++) {
struct gl_shader *shader = shader_list[i];
/* From the GLSL 1.50 spec, page 39:
*
* "If gl_FragCoord is redeclared in any fragment shader in a program,
* it must be redeclared in all the fragment shaders in that program
* that have a static use gl_FragCoord."
*/
if ((linked_shader->redeclares_gl_fragcoord
&& !shader->redeclares_gl_fragcoord
&& shader->uses_gl_fragcoord)
|| (shader->redeclares_gl_fragcoord
&& !linked_shader->redeclares_gl_fragcoord
&& linked_shader->uses_gl_fragcoord)) {
linker_error(prog, "fragment shader defined with conflicting "
"layout qualifiers for gl_FragCoord\n");
}
/* From the GLSL 1.50 spec, page 39:
*
* "All redeclarations of gl_FragCoord in all fragment shaders in a
* single program must have the same set of qualifiers."
*/
if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
&& (shader->origin_upper_left != linked_shader->origin_upper_left
|| shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
linker_error(prog, "fragment shader defined with conflicting "
"layout qualifiers for gl_FragCoord\n");
}
/* Update the linked shader state. Note that uses_gl_fragcoord should
* accumulate the results. The other values should replace. If there
* are multiple redeclarations, all the fields except uses_gl_fragcoord
* are already known to be the same.
*/
if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
linked_shader->redeclares_gl_fragcoord =
shader->redeclares_gl_fragcoord;
linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
|| shader->uses_gl_fragcoord;
linked_shader->origin_upper_left = shader->origin_upper_left;
linked_shader->pixel_center_integer = shader->pixel_center_integer;
}
linked_shader->EarlyFragmentTests |= shader->EarlyFragmentTests;
}
}
/**
* Performs the cross-validation of geometry shader max_vertices and
* primitive type layout qualifiers for the attached geometry shaders,
* and propagates them to the linked GS and linked shader program.
*/
static void
link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
struct gl_shader *linked_shader,
struct gl_shader **shader_list,
unsigned num_shaders)
{
linked_shader->Geom.VerticesOut = 0;
linked_shader->Geom.Invocations = 0;
linked_shader->Geom.InputType = PRIM_UNKNOWN;
linked_shader->Geom.OutputType = PRIM_UNKNOWN;
/* No in/out qualifiers defined for anything but GLSL 1.50+
* geometry shaders so far.
*/
if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
return;
/* From the GLSL 1.50 spec, page 46:
*
* "All geometry shader output layout declarations in a program
* must declare the same layout and same value for
* max_vertices. There must be at least one geometry output
* layout declaration somewhere in a program, but not all
* geometry shaders (compilation units) are required to
* declare it."
*/
for (unsigned i = 0; i < num_shaders; i++) {
struct gl_shader *shader = shader_list[i];
if (shader->Geom.InputType != PRIM_UNKNOWN) {
if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
linked_shader->Geom.InputType != shader->Geom.InputType) {
linker_error(prog, "geometry shader defined with conflicting "
"input types\n");
return;
}
linked_shader->Geom.InputType = shader->Geom.InputType;
}
if (shader->Geom.OutputType != PRIM_UNKNOWN) {
if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
linked_shader->Geom.OutputType != shader->Geom.OutputType) {
linker_error(prog, "geometry shader defined with conflicting "
"output types\n");
return;
}
linked_shader->Geom.OutputType = shader->Geom.OutputType;
}
if (shader->Geom.VerticesOut != 0) {
if (linked_shader->Geom.VerticesOut != 0 &&
linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
linker_error(prog, "geometry shader defined with conflicting "
"output vertex count (%d and %d)\n",
linked_shader->Geom.VerticesOut,
shader->Geom.VerticesOut);
return;
}
linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
}
if (shader->Geom.Invocations != 0) {
if (linked_shader->Geom.Invocations != 0 &&
linked_shader->Geom.Invocations != shader->Geom.Invocations) {
linker_error(prog, "geometry shader defined with conflicting "
"invocation count (%d and %d)\n",
linked_shader->Geom.Invocations,
shader->Geom.Invocations);
return;
}
linked_shader->Geom.Invocations = shader->Geom.Invocations;
}
}
/* Just do the intrastage -> interstage propagation right now,
* since we already know we're in the right type of shader program
* for doing it.
*/
if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
linker_error(prog,
"geometry shader didn't declare primitive input type\n");
return;
}
prog->Geom.InputType = linked_shader->Geom.InputType;
if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
linker_error(prog,
"geometry shader didn't declare primitive output type\n");
return;
}
prog->Geom.OutputType = linked_shader->Geom.OutputType;
if (linked_shader->Geom.VerticesOut == 0) {
linker_error(prog,
"geometry shader didn't declare max_vertices\n");
return;
}
prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
if (linked_shader->Geom.Invocations == 0)
linked_shader->Geom.Invocations = 1;
prog->Geom.Invocations = linked_shader->Geom.Invocations;
}
/**
* Perform cross-validation of compute shader local_size_{x,y,z} layout
* qualifiers for the attached compute shaders, and propagate them to the
* linked CS and linked shader program.
*/
static void
link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
struct gl_shader *linked_shader,
struct gl_shader **shader_list,
unsigned num_shaders)
{
for (int i = 0; i < 3; i++)
linked_shader->Comp.LocalSize[i] = 0;
/* This function is called for all shader stages, but it only has an effect
* for compute shaders.
*/
if (linked_shader->Stage != MESA_SHADER_COMPUTE)
return;
/* From the ARB_compute_shader spec, in the section describing local size
* declarations:
*
* If multiple compute shaders attached to a single program object
* declare local work-group size, the declarations must be identical;
* otherwise a link-time error results. Furthermore, if a program
* object contains any compute shaders, at least one must contain an
* input layout qualifier specifying the local work sizes of the
* program, or a link-time error will occur.
*/
for (unsigned sh = 0; sh < num_shaders; sh++) {
struct gl_shader *shader = shader_list[sh];
if (shader->Comp.LocalSize[0] != 0) {
if (linked_shader->Comp.LocalSize[0] != 0) {
for (int i = 0; i < 3; i++) {
if (linked_shader->Comp.LocalSize[i] !=
shader->Comp.LocalSize[i]) {
linker_error(prog, "compute shader defined with conflicting "
"local sizes\n");
return;
}
}
}
for (int i = 0; i < 3; i++)
linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
}
}
/* Just do the intrastage -> interstage propagation right now,
* since we already know we're in the right type of shader program
* for doing it.
*/
if (linked_shader->Comp.LocalSize[0] == 0) {
linker_error(prog, "compute shader didn't declare local size\n");
return;
}
for (int i = 0; i < 3; i++)
prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
}
2010-07-09 22:09:34 +01:00
/**
* Combine a group of shaders for a single stage to generate a linked shader
*
* \note
* If this function is supplied a single shader, it is cloned, and the new
* shader is returned.
*/
static struct gl_shader *
link_intrastage_shaders(void *mem_ctx,
struct gl_context *ctx,
struct gl_shader_program *prog,
2010-07-09 22:09:34 +01:00
struct gl_shader **shader_list,
unsigned num_shaders)
{
struct gl_uniform_block *uniform_blocks = NULL;
/* Check that global variables defined in multiple shaders are consistent.
*/
cross_validate_globals(prog, shader_list, num_shaders, false);
if (!prog->LinkStatus)
return NULL;
/* Check that interface blocks defined in multiple shaders are consistent.
*/
validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
num_shaders);
if (!prog->LinkStatus)
return NULL;
/* Link up uniform blocks defined within this stage. */
const unsigned num_uniform_blocks =
link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
&uniform_blocks);
if (!prog->LinkStatus)
return NULL;
/* Check that there is only a single definition of each function signature
* across all shaders.
*/
for (unsigned i = 0; i < (num_shaders - 1); i++) {
foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
ir_function *const f = node->as_function();
if (f == NULL)
continue;
for (unsigned j = i + 1; j < num_shaders; j++) {
ir_function *const other =
shader_list[j]->symbols->get_function(f->name);
/* If the other shader has no function (and therefore no function
* signatures) with the same name, skip to the next shader.
*/
if (other == NULL)
continue;
foreach_in_list(ir_function_signature, sig, &f->signatures) {
if (!sig->is_defined || sig->is_builtin())
continue;
ir_function_signature *other_sig =
other->exact_matching_signature(NULL, &sig->parameters);
if ((other_sig != NULL) && other_sig->is_defined
&& !other_sig->is_builtin()) {
linker_error(prog, "function `%s' is multiply defined\n",
f->name);
return NULL;
}
}
}
}
}
/* Find the shader that defines main, and make a clone of it.
*
* Starting with the clone, search for undefined references. If one is
* found, find the shader that defines it. Clone the reference and add
* it to the shader. Repeat until there are no undefined references or
* until a reference cannot be resolved.
*/
gl_shader *main = NULL;
for (unsigned i = 0; i < num_shaders; i++) {
if (link_get_main_function_signature(shader_list[i]) != NULL) {
main = shader_list[i];
break;
}
}
if (main == NULL) {
linker_error(prog, "%s shader lacks `main'\n",
_mesa_shader_stage_to_string(shader_list[0]->Stage));
return NULL;
}
gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
2010-07-09 22:09:34 +01:00
linked->ir = new(linked) exec_list;
clone_ir_list(mem_ctx, linked->ir, main->ir);
2010-07-09 22:09:34 +01:00
linked->UniformBlocks = uniform_blocks;
linked->NumUniformBlocks = num_uniform_blocks;
ralloc_steal(linked, linked->UniformBlocks);
link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
link_tcs_out_layout_qualifiers(prog, linked, shader_list, num_shaders);
link_tes_in_layout_qualifiers(prog, linked, shader_list, num_shaders);
link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2010-07-09 22:09:34 +01:00
populate_symbol_table(linked);
/* The pointer to the main function in the final linked shader (i.e., the
* copy of the original shader that contained the main function).
*/
ir_function_signature *const main_sig =
link_get_main_function_signature(linked);
/* Move any instructions other than variable declarations or function
* declarations into main.
*/
exec_node *insertion_point =
move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
linked);
for (unsigned i = 0; i < num_shaders; i++) {
if (shader_list[i] == main)
continue;
insertion_point = move_non_declarations(shader_list[i]->ir,
insertion_point, true, linked);
}
/* Check if any shader needs built-in functions. */
bool need_builtins = false;
for (unsigned i = 0; i < num_shaders; i++) {
if (shader_list[i]->uses_builtin_functions) {
need_builtins = true;
break;
}
}
bool ok;
if (need_builtins) {
/* Make a temporary array one larger than shader_list, which will hold
* the built-in function shader as well.
*/
gl_shader **linking_shaders = (gl_shader **)
calloc(num_shaders + 1, sizeof(gl_shader *));
ok = linking_shaders != NULL;
if (ok) {
memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
free(linking_shaders);
} else {
_mesa_error_no_memory(__func__);
}
} else {
ok = link_function_calls(prog, linked, shader_list, num_shaders);
}
if (!ok) {
ctx->Driver.DeleteShader(ctx, linked);
return NULL;
}
/* At this point linked should contain all of the linked IR, so
* validate it to make sure nothing went wrong.
*/
validate_ir_tree(linked->ir);
/* Set the size of geometry shader input arrays */
if (linked->Stage == MESA_SHADER_GEOMETRY) {
unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
foreach_in_list(ir_instruction, ir, linked->ir) {
ir->accept(&input_resize_visitor);
}
}
if (ctx->Const.VertexID_is_zero_based)
lower_vertex_id(linked);
/* Validate correct usage of barrier() in the tess control shader */
if (linked->Stage == MESA_SHADER_TESS_CTRL) {
barrier_use_visitor visitor(prog);
foreach_in_list(ir_instruction, ir, linked->ir) {
ir->accept(&visitor);
}
}
/* Make a pass over all variable declarations to ensure that arrays with
* unspecified sizes have a size specified. The size is inferred from the
* max_array_access field.
*/
array_sizing_visitor v;
v.run(linked->ir);
v.fixup_unnamed_interface_types();
2010-07-09 22:09:34 +01:00
return linked;
}
/**
* Update the sizes of linked shader uniform arrays to the maximum
* array index used.
*
* From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
*
* If one or more elements of an array are active,
* GetActiveUniform will return the name of the array in name,
* subject to the restrictions listed above. The type of the array
* is returned in type. The size parameter contains the highest
* array element index used, plus one. The compiler or linker
* determines the highest index used. There will be only one
* active uniform reported by the GL per uniform array.
*/
static void
update_array_sizes(struct gl_shader_program *prog)
{
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
ir_variable *const var = node->as_variable();
if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
!var->type->is_array())
continue;
/* GL_ARB_uniform_buffer_object says that std140 uniforms
* will not be eliminated. Since we always do std140, just
* don't resize arrays in UBOs.
*
* Atomic counters are supposed to get deterministic
* locations assigned based on the declaration ordering and
* sizes, array compaction would mess that up.
*
* Subroutine uniforms are not removed.
*/
if (var->is_in_buffer_block() || var->type->contains_atomic() ||
var->type->contains_subroutine())
continue;
unsigned int size = var->data.max_array_access;
for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
if (prog->_LinkedShaders[j] == NULL)
continue;
foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
ir_variable *other_var = node2->as_variable();
if (!other_var)
continue;
if (strcmp(var->name, other_var->name) == 0 &&
other_var->data.max_array_access > size) {
size = other_var->data.max_array_access;
}
}
}
if (size + 1 != var->type->length) {
/* If this is a built-in uniform (i.e., it's backed by some
* fixed-function state), adjust the number of state slots to
* match the new array size. The number of slots per array entry
2011-04-24 01:29:15 +01:00
* is not known. It seems safe to assume that the total number of
* slots is an integer multiple of the number of array elements.
* Determine the number of slots per array element by dividing by
* the old (total) size.
*/
const unsigned num_slots = var->get_num_state_slots();
if (num_slots > 0) {
var->set_num_state_slots((size + 1)
* (num_slots / var->type->length));
}
var->type = glsl_type::get_array_instance(var->type->fields.array,
size + 1);
/* FINISHME: We should update the types of array
* dereferences of this variable now.
*/
}
}
}
}
/**
* Resize tessellation evaluation per-vertex inputs to the size of
* tessellation control per-vertex outputs.
*/
static void
resize_tes_inputs(struct gl_context *ctx,
struct gl_shader_program *prog)
{
if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
return;
gl_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
gl_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
/* If no control shader is present, then the TES inputs are statically
* sized to MaxPatchVertices; the actual size of the arrays won't be
* known until draw time.
*/
const int num_vertices = tcs
? tcs->TessCtrl.VerticesOut
: ctx->Const.MaxPatchVertices;
tess_eval_array_resize_visitor input_resize_visitor(num_vertices, prog);
foreach_in_list(ir_instruction, ir, tes->ir) {
ir->accept(&input_resize_visitor);
}
}
/**
2011-04-24 01:29:15 +01:00
* Find a contiguous set of available bits in a bitmask.
*
* \param used_mask Bits representing used (1) and unused (0) locations
* \param needed_count Number of contiguous bits needed.
*
* \return
* Base location of the available bits on success or -1 on failure.
*/
int
find_available_slots(unsigned used_mask, unsigned needed_count)
{
unsigned needed_mask = (1 << needed_count) - 1;
const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
/* The comparison to 32 is redundant, but without it GCC emits "warning:
* cannot optimize possibly infinite loops" for the loop below.
*/
if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
return -1;
for (int i = 0; i <= max_bit_to_test; i++) {
if ((needed_mask & ~used_mask) == needed_mask)
return i;
needed_mask <<= 1;
}
return -1;
}
/**
* Assign locations for either VS inputs or FS outputs
*
* \param prog Shader program whose variables need locations assigned
* \param constants Driver specific constant values for the program.
* \param target_index Selector for the program target to receive location
* assignmnets. Must be either \c MESA_SHADER_VERTEX or
* \c MESA_SHADER_FRAGMENT.
*
* \return
* If locations are successfully assigned, true is returned. Otherwise an
* error is emitted to the shader link log and false is returned.
*/
bool
assign_attribute_or_color_locations(gl_shader_program *prog,
struct gl_constants *constants,
unsigned target_index)
{
/* Maximum number of generic locations. This corresponds to either the
* maximum number of draw buffers or the maximum number of generic
* attributes.
*/
unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
constants->Program[target_index].MaxAttribs :
MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
/* Mark invalid locations as being used.
*/
unsigned used_locations = (max_index >= 32)
? ~0 : ~((1 << max_index) - 1);
assert((target_index == MESA_SHADER_VERTEX)
|| (target_index == MESA_SHADER_FRAGMENT));
gl_shader *const sh = prog->_LinkedShaders[target_index];
if (sh == NULL)
return true;
/* Operate in a total of four passes.
*
* 1. Invalidate the location assignments for all vertex shader inputs.
*
* 2. Assign locations for inputs that have user-defined (via
* glBindVertexAttribLocation) locations and outputs that have
* user-defined locations (via glBindFragDataLocation).
*
* 3. Sort the attributes without assigned locations by number of slots
* required in decreasing order. Fragmentation caused by attribute
* locations assigned by the application may prevent large attributes
* from having enough contiguous space.
*
* 4. Assign locations to any inputs without assigned locations.
*/
const int generic_base = (target_index == MESA_SHADER_VERTEX)
2011-07-07 23:47:59 +01:00
? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
const enum ir_variable_mode direction =
(target_index == MESA_SHADER_VERTEX)
? ir_var_shader_in : ir_var_shader_out;
/* Temporary storage for the set of attributes that need locations assigned.
*/
struct temp_attr {
unsigned slots;
ir_variable *var;
/* Used below in the call to qsort. */
static int compare(const void *a, const void *b)
{
const temp_attr *const l = (const temp_attr *) a;
const temp_attr *const r = (const temp_attr *) b;
/* Reversed because we want a descending order sort below. */
return r->slots - l->slots;
}
} to_assign[16];
unsigned num_attr = 0;
unsigned total_attribs_size = 0;
foreach_in_list(ir_instruction, node, sh->ir) {
ir_variable *const var = node->as_variable();
if ((var == NULL) || (var->data.mode != (unsigned) direction))
continue;
if (var->data.explicit_location) {
if ((var->data.location >= (int)(max_index + generic_base))
|| (var->data.location < 0)) {
linker_error(prog,
"invalid explicit location %d specified for `%s'\n",
(var->data.location < 0)
? var->data.location
: var->data.location - generic_base,
var->name);
return false;
}
} else if (target_index == MESA_SHADER_VERTEX) {
unsigned binding;
if (prog->AttributeBindings->get(binding, var->name)) {
assert(binding >= VERT_ATTRIB_GENERIC0);
var->data.location = binding;
var->data.is_unmatched_generic_inout = 0;
}
} else if (target_index == MESA_SHADER_FRAGMENT) {
unsigned binding;
unsigned index;
if (prog->FragDataBindings->get(binding, var->name)) {
assert(binding >= FRAG_RESULT_DATA0);
var->data.location = binding;
var->data.is_unmatched_generic_inout = 0;
if (prog->FragDataIndexBindings->get(index, var->name)) {
var->data.index = index;
}
}
}
/* From GL4.5 core spec, section 15.2 (Shader Execution):
*
* "Output binding assignments will cause LinkProgram to fail:
* ...
* If the program has an active output assigned to a location greater
* than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
* an active output assigned an index greater than or equal to one;"
*/
if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
var->data.location - generic_base >=
(int) constants->MaxDualSourceDrawBuffers) {
linker_error(prog,
"output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
"with index %u for %s\n",
var->data.location - generic_base, var->data.index,
var->name);
return false;
}
const unsigned slots = var->type->count_attribute_slots();
/* From GL4.5 core spec, section 11.1.1 (Vertex Attributes):
*
* "A program with more than the value of MAX_VERTEX_ATTRIBS active
* attribute variables may fail to link, unless device-dependent
* optimizations are able to make the program fit within available
* hardware resources. For the purposes of this test, attribute variables
* of the type dvec3, dvec4, dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3,
* and dmat4 may count as consuming twice as many attributes as equivalent
* single-precision types. While these types use the same number of
* generic attributes as their single-precision equivalents,
* implementations are permitted to consume two single-precision vectors
* of internal storage for each three- or four-component double-precision
* vector."
* Until someone has a good reason in Mesa, enforce that now.
*/
if (target_index == MESA_SHADER_VERTEX) {
total_attribs_size += slots;
if (var->type->without_array() == glsl_type::dvec3_type ||
var->type->without_array() == glsl_type::dvec4_type ||
var->type->without_array() == glsl_type::dmat2x3_type ||
var->type->without_array() == glsl_type::dmat2x4_type ||
var->type->without_array() == glsl_type::dmat3_type ||
var->type->without_array() == glsl_type::dmat3x4_type ||
var->type->without_array() == glsl_type::dmat4x3_type ||
var->type->without_array() == glsl_type::dmat4_type)
total_attribs_size += slots;
}
/* If the variable is not a built-in and has a location statically
* assigned in the shader (presumably via a layout qualifier), make sure
* that it doesn't collide with other assigned locations. Otherwise,
* add it to the list of variables that need linker-assigned locations.
*/
if (var->data.location != -1) {
if (var->data.location >= generic_base && var->data.index < 1) {
/* From page 61 of the OpenGL 4.0 spec:
*
* "LinkProgram will fail if the attribute bindings assigned
* by BindAttribLocation do not leave not enough space to
* assign a location for an active matrix attribute or an
* active attribute array, both of which require multiple
* contiguous generic attributes."
*
* I think above text prohibits the aliasing of explicit and
* automatic assignments. But, aliasing is allowed in manual
* assignments of attribute locations. See below comments for
* the details.
*
* From OpenGL 4.0 spec, page 61:
*
* "It is possible for an application to bind more than one
* attribute name to the same location. This is referred to as
* aliasing. This will only work if only one of the aliased
* attributes is active in the executable program, or if no
* path through the shader consumes more than one attribute of
* a set of attributes aliased to the same location. A link
* error can occur if the linker determines that every path
* through the shader consumes multiple aliased attributes,
* but implementations are not required to generate an error
* in this case."
*
* From GLSL 4.30 spec, page 54:
*
* "A program will fail to link if any two non-vertex shader
* input variables are assigned to the same location. For
* vertex shaders, multiple input variables may be assigned
* to the same location using either layout qualifiers or via
* the OpenGL API. However, such aliasing is intended only to
* support vertex shaders where each execution path accesses
* at most one input per each location. Implementations are
* permitted, but not required, to generate link-time errors
* if they detect that every path through the vertex shader
* executable accesses multiple inputs assigned to any single
* location. For all shader types, a program will fail to link
* if explicit location assignments leave the linker unable
* to find space for other variables without explicit
* assignments."
*
* From OpenGL ES 3.0 spec, page 56:
*
* "Binding more than one attribute name to the same location
* is referred to as aliasing, and is not permitted in OpenGL
* ES Shading Language 3.00 vertex shaders. LinkProgram will
* fail when this condition exists. However, aliasing is
* possible in OpenGL ES Shading Language 1.00 vertex shaders.
* This will only work if only one of the aliased attributes
* is active in the executable program, or if no path through
* the shader consumes more than one attribute of a set of
* attributes aliased to the same location. A link error can
* occur if the linker determines that every path through the
* shader consumes multiple aliased attributes, but implemen-
* tations are not required to generate an error in this case."
*
* After looking at above references from OpenGL, OpenGL ES and
* GLSL specifications, we allow aliasing of vertex input variables
* in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
*
* NOTE: This is not required by the spec but its worth mentioning
* here that we're not doing anything to make sure that no path
* through the vertex shader executable accesses multiple inputs
* assigned to any single location.
*/
/* Mask representing the contiguous slots that will be used by
* this attribute.
*/
const unsigned attr = var->data.location - generic_base;
const unsigned use_mask = (1 << slots) - 1;
const char *const string = (target_index == MESA_SHADER_VERTEX)
? "vertex shader input" : "fragment shader output";
/* Generate a link error if the requested locations for this
* attribute exceed the maximum allowed attribute location.
*/
if (attr + slots > max_index) {
linker_error(prog,
"insufficient contiguous locations "
"available for %s `%s' %d %d %d\n", string,
var->name, used_locations, use_mask, attr);
return false;
}
/* Generate a link error if the set of bits requested for this
* attribute overlaps any previously allocated bits.
*/
if ((~(use_mask << attr) & used_locations) != used_locations) {
if (target_index == MESA_SHADER_FRAGMENT ||
(prog->IsES && prog->Version >= 300)) {
linker_error(prog,
"overlapping location is assigned "
"to %s `%s' %d %d %d\n", string,
var->name, used_locations, use_mask, attr);
return false;
} else {
linker_warning(prog,
"overlapping location is assigned "
"to %s `%s' %d %d %d\n", string,
var->name, used_locations, use_mask, attr);
}
}
used_locations |= (use_mask << attr);
}
continue;
}
to_assign[num_attr].slots = slots;
to_assign[num_attr].var = var;
num_attr++;
}
if (target_index == MESA_SHADER_VERTEX) {
if (total_attribs_size > max_index) {
linker_error(prog,
"attempt to use %d vertex attribute slots only %d available ",
total_attribs_size, max_index);
return false;
}
}
/* If all of the attributes were assigned locations by the application (or
* are built-in attributes with fixed locations), return early. This should
* be the common case.
*/
if (num_attr == 0)
return true;
qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
if (target_index == MESA_SHADER_VERTEX) {
/* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
* only be explicitly assigned by via glBindAttribLocation. Mark it as
* reserved to prevent it from being automatically allocated below.
*/
find_deref_visitor find("gl_Vertex");
find.run(sh->ir);
if (find.variable_found())
used_locations |= (1 << 0);
}
for (unsigned i = 0; i < num_attr; i++) {
/* Mask representing the contiguous slots that will be used by this
* attribute.
*/
const unsigned use_mask = (1 << to_assign[i].slots) - 1;
int location = find_available_slots(used_locations, to_assign[i].slots);
if (location < 0) {
const char *const string = (target_index == MESA_SHADER_VERTEX)
? "vertex shader input" : "fragment shader output";
linker_error(prog,
"insufficient contiguous locations "
"available for %s `%s'\n",
string, to_assign[i].var->name);
return false;
}
to_assign[i].var->data.location = generic_base + location;
to_assign[i].var->data.is_unmatched_generic_inout = 0;
used_locations |= (use_mask << location);
}
return true;
}
/**
* Demote shader inputs and outputs that are not used in other stages
*/
void
demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
{
foreach_in_list(ir_instruction, node, sh->ir) {
ir_variable *const var = node->as_variable();
if ((var == NULL) || (var->data.mode != int(mode)))
continue;
/* A shader 'in' or 'out' variable is only really an input or output if
* its value is used by other shader stages. This will cause the variable
* to have a location assigned.
*/
if (var->data.is_unmatched_generic_inout) {
assert(var->data.mode != ir_var_temporary);
var->data.mode = ir_var_auto;
}
}
}
/**
* Store the gl_FragDepth layout in the gl_shader_program struct.
*/
static void
store_fragdepth_layout(struct gl_shader_program *prog)
{
if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
return;
}
struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
/* We don't look up the gl_FragDepth symbol directly because if
* gl_FragDepth is not used in the shader, it's removed from the IR.
* However, the symbol won't be removed from the symbol table.
*
* We're only interested in the cases where the variable is NOT removed
* from the IR.
*/
foreach_in_list(ir_instruction, node, ir) {
ir_variable *const var = node->as_variable();
if (var == NULL || var->data.mode != ir_var_shader_out) {
continue;
}
if (strcmp(var->name, "gl_FragDepth") == 0) {
switch (var->data.depth_layout) {
case ir_depth_layout_none:
prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
return;
case ir_depth_layout_any:
prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
return;
case ir_depth_layout_greater:
prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
return;
case ir_depth_layout_less:
prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
return;
case ir_depth_layout_unchanged:
prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
return;
default:
assert(0);
return;
}
}
}
}
/**
* Validate the resources used by a program versus the implementation limits
*/
static void
check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
{
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_shader *sh = prog->_LinkedShaders[i];
if (sh == NULL)
continue;
if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
linker_error(prog, "Too many %s shader texture samplers\n",
_mesa_shader_stage_to_string(i));
}
if (sh->num_uniform_components >
ctx->Const.Program[i].MaxUniformComponents) {
if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
linker_warning(prog, "Too many %s shader default uniform block "
"components, but the driver will try to optimize "
"them out; this is non-portable out-of-spec "
"behavior\n",
_mesa_shader_stage_to_string(i));
} else {
linker_error(prog, "Too many %s shader default uniform block "
"components\n",
_mesa_shader_stage_to_string(i));
}
}
if (sh->num_combined_uniform_components >
ctx->Const.Program[i].MaxCombinedUniformComponents) {
if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
linker_warning(prog, "Too many %s shader uniform components, "
"but the driver will try to optimize them out; "
"this is non-portable out-of-spec behavior\n",
_mesa_shader_stage_to_string(i));
} else {
linker_error(prog, "Too many %s shader uniform components\n",
_mesa_shader_stage_to_string(i));
}
}
}
unsigned blocks[MESA_SHADER_STAGES] = {0};
unsigned total_uniform_blocks = 0;
for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
if (prog->UniformBlocks[i].UniformBufferSize > ctx->Const.MaxUniformBlockSize) {
linker_error(prog, "Uniform block %s too big (%d/%d)\n",
prog->UniformBlocks[i].Name,
prog->UniformBlocks[i].UniformBufferSize,
ctx->Const.MaxUniformBlockSize);
}
for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
if (prog->UniformBlockStageIndex[j][i] != -1) {
blocks[j]++;
total_uniform_blocks++;
}
}
if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
prog->NumUniformBlocks,
ctx->Const.MaxCombinedUniformBlocks);
} else {
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
const unsigned max_uniform_blocks =
ctx->Const.Program[i].MaxUniformBlocks;
if (blocks[i] > max_uniform_blocks) {
linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
_mesa_shader_stage_to_string(i),
blocks[i],
max_uniform_blocks);
break;
}
}
}
}
}
static void
link_calculate_subroutine_compat(struct gl_context *ctx, struct gl_shader_program *prog)
{
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_shader *sh = prog->_LinkedShaders[i];
int count;
if (!sh)
continue;
for (unsigned j = 0; j < sh->NumSubroutineUniformRemapTable; j++) {
struct gl_uniform_storage *uni = sh->SubroutineUniformRemapTable[j];
if (!uni)
continue;
count = 0;
for (unsigned f = 0; f < sh->NumSubroutineFunctions; f++) {
struct gl_subroutine_function *fn = &sh->SubroutineFunctions[f];
for (int k = 0; k < fn->num_compat_types; k++) {
if (fn->types[k] == uni->type) {
count++;
break;
}
}
}
uni->num_compatible_subroutines = count;
}
}
}
static void
check_subroutine_resources(struct gl_context *ctx, struct gl_shader_program *prog)
{
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_shader *sh = prog->_LinkedShaders[i];
if (sh) {
if (sh->NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS)
linker_error(prog, "Too many %s shader subroutine uniforms\n",
_mesa_shader_stage_to_string(i));
}
}
}
/**
* Validate shader image resources.
*/
static void
check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
{
unsigned total_image_units = 0;
unsigned fragment_outputs = 0;
if (!ctx->Extensions.ARB_shader_image_load_store)
return;
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_shader *sh = prog->_LinkedShaders[i];
if (sh) {
if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
_mesa_shader_stage_to_string(i), sh->NumImages,
ctx->Const.Program[i].MaxImageUniforms);
total_image_units += sh->NumImages;
if (i == MESA_SHADER_FRAGMENT) {
foreach_in_list(ir_instruction, node, sh->ir) {
ir_variable *var = node->as_variable();
if (var && var->data.mode == ir_var_shader_out)
fragment_outputs += var->type->count_attribute_slots();
}
}
}
}
if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
linker_error(prog, "Too many combined image uniforms\n");
if (total_image_units + fragment_outputs >
ctx->Const.MaxCombinedShaderOutputResources)
linker_error(prog, "Too many combined image uniforms and fragment outputs\n");
}
/**
* Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
* for a variable, checks for overlaps between other uniforms using explicit
* locations.
*/
static bool
reserve_explicit_locations(struct gl_shader_program *prog,
string_to_uint_map *map, ir_variable *var)
{
unsigned slots = var->type->uniform_locations();
unsigned max_loc = var->data.location + slots - 1;
/* Resize remap table if locations do not fit in the current one. */
if (max_loc + 1 > prog->NumUniformRemapTable) {
prog->UniformRemapTable =
reralloc(prog, prog->UniformRemapTable,
gl_uniform_storage *,
max_loc + 1);
if (!prog->UniformRemapTable) {
linker_error(prog, "Out of memory during linking.\n");
return false;
}
/* Initialize allocated space. */
for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
prog->UniformRemapTable[i] = NULL;
prog->NumUniformRemapTable = max_loc + 1;
}
for (unsigned i = 0; i < slots; i++) {
unsigned loc = var->data.location + i;
/* Check if location is already used. */
if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
/* Possibly same uniform from a different stage, this is ok. */
unsigned hash_loc;
if (map->get(hash_loc, var->name) && hash_loc == loc - i)
continue;
/* ARB_explicit_uniform_location specification states:
*
* "No two default-block uniform variables in the program can have
* the same location, even if they are unused, otherwise a compiler
* or linker error will be generated."
*/
linker_error(prog,
"location qualifier for uniform %s overlaps "
"previously used location\n",
var->name);
return false;
}
/* Initialize location as inactive before optimization
* rounds and location assignment.
*/
prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
}
/* Note, base location used for arrays. */
map->put(var->data.location, var->name);
return true;
}
static bool
reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
struct gl_shader *sh,
ir_variable *var)
{
unsigned slots = var->type->uniform_locations();
unsigned max_loc = var->data.location + slots - 1;
/* Resize remap table if locations do not fit in the current one. */
if (max_loc + 1 > sh->NumSubroutineUniformRemapTable) {
sh->SubroutineUniformRemapTable =
reralloc(sh, sh->SubroutineUniformRemapTable,
gl_uniform_storage *,
max_loc + 1);
if (!sh->SubroutineUniformRemapTable) {
linker_error(prog, "Out of memory during linking.\n");
return false;
}
/* Initialize allocated space. */
for (unsigned i = sh->NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
sh->SubroutineUniformRemapTable[i] = NULL;
sh->NumSubroutineUniformRemapTable = max_loc + 1;
}
for (unsigned i = 0; i < slots; i++) {
unsigned loc = var->data.location + i;
/* Check if location is already used. */
if (sh->SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
/* ARB_explicit_uniform_location specification states:
* "No two subroutine uniform variables can have the same location
* in the same shader stage, otherwise a compiler or linker error
* will be generated."
*/
linker_error(prog,
"location qualifier for uniform %s overlaps "
"previously used location\n",
var->name);
return false;
}
/* Initialize location as inactive before optimization
* rounds and location assignment.
*/
sh->SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
}
return true;
}
/**
* Check and reserve all explicit uniform locations, called before
* any optimizations happen to handle also inactive uniforms and
* inactive array elements that may get trimmed away.
*/
static void
check_explicit_uniform_locations(struct gl_context *ctx,
struct gl_shader_program *prog)
{
if (!ctx->Extensions.ARB_explicit_uniform_location)
return;
/* This map is used to detect if overlapping explicit locations
* occur with the same uniform (from different stage) or a different one.
*/
string_to_uint_map *uniform_map = new string_to_uint_map;
if (!uniform_map) {
linker_error(prog, "Out of memory during linking.\n");
return;
}
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_shader *sh = prog->_LinkedShaders[i];
if (!sh)
continue;
foreach_in_list(ir_instruction, node, sh->ir) {
ir_variable *var = node->as_variable();
if (var && (var->data.mode == ir_var_uniform || var->data.mode == ir_var_shader_storage) &&
var->data.explicit_location) {
bool ret;
if (var->type->is_subroutine())
ret = reserve_subroutine_explicit_locations(prog, sh, var);
else
ret = reserve_explicit_locations(prog, uniform_map, var);
if (!ret) {
delete uniform_map;
return;
}
}
}
}
delete uniform_map;
}
static bool
add_program_resource(struct gl_shader_program *prog, GLenum type,
const void *data, uint8_t stages)
{
assert(data);
/* If resource already exists, do not add it again. */
for (unsigned i = 0; i < prog->NumProgramResourceList; i++)
if (prog->ProgramResourceList[i].Data == data)
return true;
prog->ProgramResourceList =
reralloc(prog,
prog->ProgramResourceList,
gl_program_resource,
prog->NumProgramResourceList + 1);
if (!prog->ProgramResourceList) {
linker_error(prog, "Out of memory during linking.\n");
return false;
}
struct gl_program_resource *res =
&prog->ProgramResourceList[prog->NumProgramResourceList];
res->Type = type;
res->Data = data;
res->StageReferences = stages;
prog->NumProgramResourceList++;
return true;
}
/**
* Function builds a stage reference bitmask from variable name.
*/
static uint8_t
build_stageref(struct gl_shader_program *shProg, const char *name,
unsigned mode)
{
uint8_t stages = 0;
/* Note, that we assume MAX 8 stages, if there will be more stages, type
* used for reference mask in gl_program_resource will need to be changed.
*/
assert(MESA_SHADER_STAGES < 8);
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_shader *sh = shProg->_LinkedShaders[i];
if (!sh)
continue;
/* Shader symbol table may contain variables that have
* been optimized away. Search IR for the variable instead.
*/
foreach_in_list(ir_instruction, node, sh->ir) {
ir_variable *var = node->as_variable();
if (var) {
unsigned baselen = strlen(var->name);
/* Type needs to match if specified, otherwise we might
* pick a variable with same name but different interface.
*/
if (var->data.mode != mode)
continue;
if (strncmp(var->name, name, baselen) == 0) {
/* Check for exact name matches but also check for arrays and
* structs.
*/
if (name[baselen] == '\0' ||
name[baselen] == '[' ||
name[baselen] == '.') {
stages |= (1 << i);
break;
}
}
}
}
}
return stages;
}
static bool
add_interface_variables(struct gl_shader_program *shProg,
struct gl_shader *sh, GLenum programInterface)
{
foreach_in_list(ir_instruction, node, sh->ir) {
ir_variable *var = node->as_variable();
uint8_t mask = 0;
if (!var)
continue;
switch (var->data.mode) {
/* From GL 4.3 core spec, section 11.1.1 (Vertex Attributes):
* "For GetActiveAttrib, all active vertex shader input variables
* are enumerated, including the special built-in inputs gl_VertexID
* and gl_InstanceID."
*/
case ir_var_system_value:
if (var->data.location != SYSTEM_VALUE_VERTEX_ID &&
var->data.location != SYSTEM_VALUE_VERTEX_ID_ZERO_BASE &&
var->data.location != SYSTEM_VALUE_INSTANCE_ID)
continue;
/* Mark special built-in inputs referenced by the vertex stage so
* that they are considered active by the shader queries.
*/
mask = (1 << (MESA_SHADER_VERTEX));
/* FALLTHROUGH */
case ir_var_shader_in:
if (programInterface != GL_PROGRAM_INPUT)
continue;
break;
case ir_var_shader_out:
if (programInterface != GL_PROGRAM_OUTPUT)
continue;
break;
default:
continue;
};
if (!add_program_resource(shProg, programInterface, var,
build_stageref(shProg, var->name,
var->data.mode) | mask))
return false;
}
return true;
}
/**
* Builds up a list of program resources that point to existing
* resource data.
*/
void
build_program_resource_list(struct gl_context *ctx,
struct gl_shader_program *shProg)
{
/* Rebuild resource list. */
if (shProg->ProgramResourceList) {
ralloc_free(shProg->ProgramResourceList);
shProg->ProgramResourceList = NULL;
shProg->NumProgramResourceList = 0;
}
int input_stage = MESA_SHADER_STAGES, output_stage = 0;
/* Determine first input and final output stage. These are used to
* detect which variables should be enumerated in the resource list
* for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
*/
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (!shProg->_LinkedShaders[i])
continue;
if (input_stage == MESA_SHADER_STAGES)
input_stage = i;
output_stage = i;
}
/* Empty shader, no resources. */
if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
return;
/* Add inputs and outputs to the resource list. */
if (!add_interface_variables(shProg, shProg->_LinkedShaders[input_stage],
GL_PROGRAM_INPUT))
return;
if (!add_interface_variables(shProg, shProg->_LinkedShaders[output_stage],
GL_PROGRAM_OUTPUT))
return;
/* Add transform feedback varyings. */
if (shProg->LinkedTransformFeedback.NumVarying > 0) {
for (int i = 0; i < shProg->LinkedTransformFeedback.NumVarying; i++) {
if (!add_program_resource(shProg, GL_TRANSFORM_FEEDBACK_VARYING,
&shProg->LinkedTransformFeedback.Varyings[i],
0))
return;
}
}
/* Add uniforms from uniform storage. */
for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
/* Do not add uniforms internally used by Mesa. */
if (shProg->UniformStorage[i].hidden)
continue;
uint8_t stageref =
build_stageref(shProg, shProg->UniformStorage[i].name,
ir_var_uniform);
/* Add stagereferences for uniforms in a uniform block. */
int block_index = shProg->UniformStorage[i].block_index;
if (block_index != -1) {
for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
if (shProg->UniformBlockStageIndex[j][block_index] != -1)
stageref |= (1 << j);
}
}
if (!add_program_resource(shProg, GL_UNIFORM,
&shProg->UniformStorage[i], stageref))
return;
}
/* Add program uniform blocks. */
for (unsigned i = 0; i < shProg->NumUniformBlocks; i++) {
if (!add_program_resource(shProg, GL_UNIFORM_BLOCK,
&shProg->UniformBlocks[i], 0))
return;
}
/* Add atomic counter buffers. */
for (unsigned i = 0; i < shProg->NumAtomicBuffers; i++) {
if (!add_program_resource(shProg, GL_ATOMIC_COUNTER_BUFFER,
&shProg->AtomicBuffers[i], 0))
return;
}
for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
GLenum type;
if (!shProg->UniformStorage[i].hidden)
continue;
for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
if (!shProg->UniformStorage[i].subroutine[j].active)
continue;
type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
/* add shader subroutines */
if (!add_program_resource(shProg, type, &shProg->UniformStorage[i], 0))
return;
}
}
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_shader *sh = shProg->_LinkedShaders[i];
GLuint type;
if (!sh)
continue;
type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
if (!add_program_resource(shProg, type, &sh->SubroutineFunctions[j], 0))
return;
}
}
/* TODO - following extensions will require more resource types:
*
* GL_ARB_shader_storage_buffer_object
*/
}
/**
* This check is done to make sure we allow only constant expression
* indexing and "constant-index-expression" (indexing with an expression
* that includes loop induction variable).
*/
static bool
validate_sampler_array_indexing(struct gl_context *ctx,
struct gl_shader_program *prog)
{
dynamic_sampler_array_indexing_visitor v;
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
bool no_dynamic_indexing =
ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
/* Search for array derefs in shader. */
v.run(prog->_LinkedShaders[i]->ir);
if (v.uses_dynamic_sampler_array_indexing()) {
const char *msg = "sampler arrays indexed with non-constant "
"expressions is forbidden in GLSL %s %u";
/* Backend has indicated that it has no dynamic indexing support. */
if (no_dynamic_indexing) {
linker_error(prog, msg, prog->IsES ? "ES" : "", prog->Version);
return false;
} else {
linker_warning(prog, msg, prog->IsES ? "ES" : "", prog->Version);
}
}
}
return true;
}
void
link_assign_subroutine_types(struct gl_context *ctx,
struct gl_shader_program *prog)
{
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
gl_shader *sh = prog->_LinkedShaders[i];
if (sh == NULL)
continue;
foreach_in_list(ir_instruction, node, sh->ir) {
ir_function *fn = node->as_function();
if (!fn)
continue;
if (fn->is_subroutine)
sh->NumSubroutineUniformTypes++;
if (!fn->num_subroutine_types)
continue;
sh->SubroutineFunctions = reralloc(sh, sh->SubroutineFunctions,
struct gl_subroutine_function,
sh->NumSubroutineFunctions + 1);
sh->SubroutineFunctions[sh->NumSubroutineFunctions].name = ralloc_strdup(sh, fn->name);
sh->SubroutineFunctions[sh->NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
sh->SubroutineFunctions[sh->NumSubroutineFunctions].types =
ralloc_array(sh, const struct glsl_type *,
fn->num_subroutine_types);
for (int j = 0; j < fn->num_subroutine_types; j++)
sh->SubroutineFunctions[sh->NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
sh->NumSubroutineFunctions++;
}
}
}
void
link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
{
tfeedback_decl *tfeedback_decls = NULL;
unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
void *mem_ctx = ralloc_context(NULL); // temporary linker context
prog->LinkStatus = true; /* All error paths will set this to false */
prog->Validated = false;
prog->_Used = false;
prog->ARB_fragment_coord_conventions_enable = false;
/* Separate the shaders into groups based on their type.
*/
struct gl_shader **shader_list[MESA_SHADER_STAGES];
unsigned num_shaders[MESA_SHADER_STAGES];
for (int i = 0; i < MESA_SHADER_STAGES; i++) {
shader_list[i] = (struct gl_shader **)
calloc(prog->NumShaders, sizeof(struct gl_shader *));
num_shaders[i] = 0;
}
unsigned min_version = UINT_MAX;
unsigned max_version = 0;
const bool is_es_prog =
(prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
for (unsigned i = 0; i < prog->NumShaders; i++) {
min_version = MIN2(min_version, prog->Shaders[i]->Version);
max_version = MAX2(max_version, prog->Shaders[i]->Version);
if (prog->Shaders[i]->IsES != is_es_prog) {
linker_error(prog, "all shaders must use same shading "
"language version\n");
goto done;
}
if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
prog->ARB_fragment_coord_conventions_enable = true;
}
gl_shader_stage shader_type = prog->Shaders[i]->Stage;
shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
num_shaders[shader_type]++;
}
/* In desktop GLSL, different shader versions may be linked together. In
* GLSL ES, all shader versions must be the same.
*/
if (is_es_prog && min_version != max_version) {
linker_error(prog, "all shaders must use same shading "
"language version\n");
goto done;
}
prog->Version = max_version;
prog->IsES = is_es_prog;
/* Some shaders have to be linked with some other shaders present.
*/
if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
num_shaders[MESA_SHADER_VERTEX] == 0 &&
!prog->SeparateShader) {
linker_error(prog, "Geometry shader must be linked with "
"vertex shader\n");
goto done;
}
if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
num_shaders[MESA_SHADER_VERTEX] == 0 &&
!prog->SeparateShader) {
linker_error(prog, "Tessellation evaluation shader must be linked with "
"vertex shader\n");
goto done;
}
if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
num_shaders[MESA_SHADER_VERTEX] == 0 &&
!prog->SeparateShader) {
linker_error(prog, "Tessellation control shader must be linked with "
"vertex shader\n");
goto done;
}
/* The spec is self-contradictory here. It allows linking without a tess
* eval shader, but that can only be used with transform feedback and
* rasterization disabled. However, transform feedback isn't allowed
* with GL_PATCHES, so it can't be used.
*
* More investigation showed that the idea of transform feedback after
* a tess control shader was dropped, because some hw vendors couldn't
* support tessellation without a tess eval shader, but the linker section
* wasn't updated to reflect that.
*
* All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
* spec bug.
*
* Do what's reasonable and always require a tess eval shader if a tess
* control shader is present.
*/
if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
num_shaders[MESA_SHADER_TESS_EVAL] == 0 &&
!prog->SeparateShader) {
linker_error(prog, "Tessellation control shader must be linked with "
"tessellation evaluation shader\n");
goto done;
}
/* Compute shaders have additional restrictions. */
if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
linker_error(prog, "Compute shaders may not be linked with any other "
"type of shader\n");
}
for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
if (prog->_LinkedShaders[i] != NULL)
ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
prog->_LinkedShaders[i] = NULL;
}
/* Link all shaders for a particular stage and validate the result.
*/
for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
if (num_shaders[stage] > 0) {
gl_shader *const sh =
link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
num_shaders[stage]);
if (!prog->LinkStatus) {
if (sh)
ctx->Driver.DeleteShader(ctx, sh);
goto done;
}
2010-07-09 22:09:34 +01:00
switch (stage) {
case MESA_SHADER_VERTEX:
validate_vertex_shader_executable(prog, sh);
break;
case MESA_SHADER_TESS_CTRL:
/* nothing to be done */
break;
case MESA_SHADER_TESS_EVAL:
validate_tess_eval_shader_executable(prog, sh);
break;
case MESA_SHADER_GEOMETRY:
validate_geometry_shader_executable(prog, sh);
break;
case MESA_SHADER_FRAGMENT:
validate_fragment_shader_executable(prog, sh);
break;
}
if (!prog->LinkStatus) {
if (sh)
ctx->Driver.DeleteShader(ctx, sh);
goto done;
}
2010-07-09 22:09:34 +01:00
_mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
}
}
if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
else if (num_shaders[MESA_SHADER_TESS_EVAL] > 0)
prog->LastClipDistanceArraySize = prog->TessEval.ClipDistanceArraySize;
else if (num_shaders[MESA_SHADER_VERTEX] > 0)
prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
else
prog->LastClipDistanceArraySize = 0; /* Not used */
/* Here begins the inter-stage linking phase. Some initial validation is
* performed, then locations are assigned for uniforms, attributes, and
* varyings.
*/
cross_validate_uniforms(prog);
if (!prog->LinkStatus)
goto done;
unsigned prev;
for (prev = 0; prev <= MESA_SHADER_FRAGMENT; prev++) {
if (prog->_LinkedShaders[prev] != NULL)
break;
}
check_explicit_uniform_locations(ctx, prog);
link_assign_subroutine_types(ctx, prog);
if (!prog->LinkStatus)
goto done;
resize_tes_inputs(ctx, prog);
/* Validate the inputs of each stage with the output of the preceding
* stage.
*/
for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
prog->_LinkedShaders[i]);
if (!prog->LinkStatus)
goto done;
cross_validate_outputs_to_inputs(prog,
prog->_LinkedShaders[prev],
prog->_LinkedShaders[i]);
if (!prog->LinkStatus)
goto done;
prev = i;
}
/* Cross-validate uniform blocks between shader stages */
validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
MESA_SHADER_STAGES);
if (!prog->LinkStatus)
goto done;
for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
if (prog->_LinkedShaders[i] != NULL)
lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
}
/* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
* it before optimization because we want most of the checks to get
* dropped thanks to constant propagation.
*
* This rule also applies to GLSL ES 3.00.
*/
if (max_version >= (is_es_prog ? 300 : 130)) {
struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
if (sh) {
lower_discard_flow(sh->ir);
}
}
if (!interstage_cross_validate_uniform_blocks(prog))
goto done;
/* Do common optimization before assigning storage for attributes,
* uniforms, and varyings. Later optimization could possibly make
* some of that unused.
*/
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
if (!prog->LinkStatus)
goto done;
if (ctx->Const.ShaderCompilerOptions[i].LowerClipDistance) {
lower_clip_distance(prog->_LinkedShaders[i]);
}
if (ctx->Const.LowerTessLevel) {
lower_tess_level(prog->_LinkedShaders[i]);
}
while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
&ctx->Const.ShaderCompilerOptions[i],
ctx->Const.NativeIntegers))
;
glsl: Lower constant arrays to uniform arrays. Consider GLSL code such as: const ivec2 offsets[] = ivec2[](ivec2(-1, -1), ivec2(-1, 0), ivec2(-1, 1), ivec2(0, -1), ivec2(0, 0), ivec2(0, 1), ivec2(1, -1), ivec2(1, 0), ivec2(1, 1)); ivec2 offset = offsets[<non-constant expression>]; Both i965 and nv50 currently handle this very poorly. On i965, this becomes a pile of MOVs to load the immediate constants into registers, a pile of scratch writes to move the whole array to memory, and one scratch read to actually access the value - effectively the same as if it were a non-constant array. We'd much rather upload large blocks of constant data as uniform data, so drivers can simply upload the data via constbufs, and not have to populate it via shader instructions. This is currently non-optional because both i965 and nouveau benefit from it, and according to Marek radeonsi would benefit today as well. (According to Tom, radeonsi may want to handle this itself in the long term, but we can always add a flag when it becomes useful.) Improves performance in a terrain rendering microbenchmark by about 2x, and cuts the number of instructions in about half. Helps a lot of "Natural Selection 2" shaders, as well as one "HOARD" shader. total instructions in shared programs: 5473459 -> 5471765 (-0.03%) instructions in affected programs: 5880 -> 4186 (-28.81%) v2: Use ir_var_hidden to avoid exposing the new uniform via the GL uniform introspection API. v3: Alphabetize Makefile.sources properly. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=77957 Signed-off-by: Kenneth Graunke <kenneth@whitecape.org>
2014-04-26 08:18:54 +01:00
lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir);
}
/* Validation for special cases where we allow sampler array indexing
* with loop induction variable. This check emits a warning or error
* depending if backend can handle dynamic indexing.
*/
if ((!prog->IsES && prog->Version < 130) ||
(prog->IsES && prog->Version < 300)) {
if (!validate_sampler_array_indexing(ctx, prog))
goto done;
}
/* Check and validate stream emissions in geometry shaders */
validate_geometry_shader_emissions(ctx, prog);
/* Mark all generic shader inputs and outputs as unpaired. */
for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
if (prog->_LinkedShaders[i] != NULL) {
link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
}
}
if (!assign_attribute_or_color_locations(prog, &ctx->Const,
MESA_SHADER_VERTEX)) {
goto done;
}
if (!assign_attribute_or_color_locations(prog, &ctx->Const,
MESA_SHADER_FRAGMENT)) {
goto done;
}
unsigned first, last;
first = MESA_SHADER_STAGES;
last = 0;
/* Determine first and last stage. */
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (!prog->_LinkedShaders[i])
continue;
if (first == MESA_SHADER_STAGES)
first = i;
last = i;
}
if (num_tfeedback_decls != 0) {
/* From GL_EXT_transform_feedback:
* A program will fail to link if:
*
* * the <count> specified by TransformFeedbackVaryingsEXT is
* non-zero, but the program object has no vertex or geometry
* shader;
*/
if (first == MESA_SHADER_FRAGMENT) {
linker_error(prog, "Transform feedback varyings specified, but "
"no vertex or geometry shader is present.\n");
goto done;
}
tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
prog->TransformFeedback.NumVarying);
if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
prog->TransformFeedback.VaryingNames,
tfeedback_decls))
goto done;
}
/* Linking the stages in the opposite order (from fragment to vertex)
* ensures that inter-shader outputs written to in an earlier stage are
* eliminated if they are (transitively) not used in a later stage.
*/
int next;
if (first < MESA_SHADER_FRAGMENT) {
gl_shader *const sh = prog->_LinkedShaders[last];
if (first == MESA_SHADER_GEOMETRY) {
/* There was no vertex shader, but we still have to assign varying
* locations for use by geometry shader inputs in SSO.
*
* If the shader is not separable (i.e., prog->SeparateShader is
* false), linking will have already failed when first is
* MESA_SHADER_GEOMETRY.
*/
if (!assign_varying_locations(ctx, mem_ctx, prog,
NULL, prog->_LinkedShaders[first],
num_tfeedback_decls, tfeedback_decls))
goto done;
}
if (last != MESA_SHADER_FRAGMENT &&
(num_tfeedback_decls != 0 || prog->SeparateShader)) {
/* There was no fragment shader, but we still have to assign varying
* locations for use by transform feedback.
*/
if (!assign_varying_locations(ctx, mem_ctx, prog,
sh, NULL,
num_tfeedback_decls, tfeedback_decls))
goto done;
}
do_dead_builtin_varyings(ctx, sh, NULL,
num_tfeedback_decls, tfeedback_decls);
if (!prog->SeparateShader)
demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
linker: Eliminate more dead code after demoting shader inputs and outputs Consider the following vertex shader and fragment shader: // vertex shader varying vec4 v; uniform vec4 u; void main() { gl_Position = vec4(0.0); v = u; } // fragment shader void main() { gl_FragColor = vec4(0.0); } Since the fragment shader does not use 'v', it is demoted from a varying to a simple global variable. Once that happens, the assignment to 'v' is useless, and it should be removed. In addition, 'u' is no longer active, and it should also be removed. Performing extra dead code elimination after demoting shader inputs and outputs takes care of this. This elimination must occur before assigning uniform locations, or the declaration of 'u' cannot be removed. This change *breaks* the piglit test getuniform-01, but that test is already incorrect. The test uses a vertex shader that assigns to a user-defined varying, but it has no fragment shader. Since Mesa does not support ARB_separate_shader_objects (we only support the EXT version), the linker correctly eliminates the user-defined varying. The cascading effect is that the uniform queried by the C code of the test is also (correctly) eliminated. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=41980 Tested-by: Brian Paul <brianp@vmware.com> Cc: Bryan Cain <bryancain3@gmail.com> Cc: Vinson Lee <vlee@vmware.com> Cc: José Fonseca <jfonseca@vmware.com> Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
2011-10-21 19:21:02 +01:00
/* Eliminate code that is now dead due to unused outputs being demoted.
linker: Eliminate more dead code after demoting shader inputs and outputs Consider the following vertex shader and fragment shader: // vertex shader varying vec4 v; uniform vec4 u; void main() { gl_Position = vec4(0.0); v = u; } // fragment shader void main() { gl_FragColor = vec4(0.0); } Since the fragment shader does not use 'v', it is demoted from a varying to a simple global variable. Once that happens, the assignment to 'v' is useless, and it should be removed. In addition, 'u' is no longer active, and it should also be removed. Performing extra dead code elimination after demoting shader inputs and outputs takes care of this. This elimination must occur before assigning uniform locations, or the declaration of 'u' cannot be removed. This change *breaks* the piglit test getuniform-01, but that test is already incorrect. The test uses a vertex shader that assigns to a user-defined varying, but it has no fragment shader. Since Mesa does not support ARB_separate_shader_objects (we only support the EXT version), the linker correctly eliminates the user-defined varying. The cascading effect is that the uniform queried by the C code of the test is also (correctly) eliminated. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=41980 Tested-by: Brian Paul <brianp@vmware.com> Cc: Bryan Cain <bryancain3@gmail.com> Cc: Vinson Lee <vlee@vmware.com> Cc: José Fonseca <jfonseca@vmware.com> Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
2011-10-21 19:21:02 +01:00
*/
while (do_dead_code(sh->ir, false))
;
}
else if (first == MESA_SHADER_FRAGMENT) {
/* If the program only contains a fragment shader...
*/
gl_shader *const sh = prog->_LinkedShaders[first];
do_dead_builtin_varyings(ctx, NULL, sh,
num_tfeedback_decls, tfeedback_decls);
if (prog->SeparateShader) {
if (!assign_varying_locations(ctx, mem_ctx, prog,
NULL /* producer */,
sh /* consumer */,
0 /* num_tfeedback_decls */,
NULL /* tfeedback_decls */))
goto done;
} else
demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
linker: Eliminate more dead code after demoting shader inputs and outputs Consider the following vertex shader and fragment shader: // vertex shader varying vec4 v; uniform vec4 u; void main() { gl_Position = vec4(0.0); v = u; } // fragment shader void main() { gl_FragColor = vec4(0.0); } Since the fragment shader does not use 'v', it is demoted from a varying to a simple global variable. Once that happens, the assignment to 'v' is useless, and it should be removed. In addition, 'u' is no longer active, and it should also be removed. Performing extra dead code elimination after demoting shader inputs and outputs takes care of this. This elimination must occur before assigning uniform locations, or the declaration of 'u' cannot be removed. This change *breaks* the piglit test getuniform-01, but that test is already incorrect. The test uses a vertex shader that assigns to a user-defined varying, but it has no fragment shader. Since Mesa does not support ARB_separate_shader_objects (we only support the EXT version), the linker correctly eliminates the user-defined varying. The cascading effect is that the uniform queried by the C code of the test is also (correctly) eliminated. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=41980 Tested-by: Brian Paul <brianp@vmware.com> Cc: Bryan Cain <bryancain3@gmail.com> Cc: Vinson Lee <vlee@vmware.com> Cc: José Fonseca <jfonseca@vmware.com> Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
2011-10-21 19:21:02 +01:00
while (do_dead_code(sh->ir, false))
;
}
next = last;
for (int i = next - 1; i >= 0; i--) {
if (prog->_LinkedShaders[i] == NULL)
continue;
gl_shader *const sh_i = prog->_LinkedShaders[i];
gl_shader *const sh_next = prog->_LinkedShaders[next];
linker: Eliminate more dead code after demoting shader inputs and outputs Consider the following vertex shader and fragment shader: // vertex shader varying vec4 v; uniform vec4 u; void main() { gl_Position = vec4(0.0); v = u; } // fragment shader void main() { gl_FragColor = vec4(0.0); } Since the fragment shader does not use 'v', it is demoted from a varying to a simple global variable. Once that happens, the assignment to 'v' is useless, and it should be removed. In addition, 'u' is no longer active, and it should also be removed. Performing extra dead code elimination after demoting shader inputs and outputs takes care of this. This elimination must occur before assigning uniform locations, or the declaration of 'u' cannot be removed. This change *breaks* the piglit test getuniform-01, but that test is already incorrect. The test uses a vertex shader that assigns to a user-defined varying, but it has no fragment shader. Since Mesa does not support ARB_separate_shader_objects (we only support the EXT version), the linker correctly eliminates the user-defined varying. The cascading effect is that the uniform queried by the C code of the test is also (correctly) eliminated. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=41980 Tested-by: Brian Paul <brianp@vmware.com> Cc: Bryan Cain <bryancain3@gmail.com> Cc: Vinson Lee <vlee@vmware.com> Cc: José Fonseca <jfonseca@vmware.com> Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
2011-10-21 19:21:02 +01:00
if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
tfeedback_decls))
goto done;
do_dead_builtin_varyings(ctx, sh_i, sh_next,
next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
tfeedback_decls);
demote_shader_inputs_and_outputs(sh_i, ir_var_shader_out);
demote_shader_inputs_and_outputs(sh_next, ir_var_shader_in);
/* Eliminate code that is now dead due to unused outputs being demoted.
linker: Eliminate more dead code after demoting shader inputs and outputs Consider the following vertex shader and fragment shader: // vertex shader varying vec4 v; uniform vec4 u; void main() { gl_Position = vec4(0.0); v = u; } // fragment shader void main() { gl_FragColor = vec4(0.0); } Since the fragment shader does not use 'v', it is demoted from a varying to a simple global variable. Once that happens, the assignment to 'v' is useless, and it should be removed. In addition, 'u' is no longer active, and it should also be removed. Performing extra dead code elimination after demoting shader inputs and outputs takes care of this. This elimination must occur before assigning uniform locations, or the declaration of 'u' cannot be removed. This change *breaks* the piglit test getuniform-01, but that test is already incorrect. The test uses a vertex shader that assigns to a user-defined varying, but it has no fragment shader. Since Mesa does not support ARB_separate_shader_objects (we only support the EXT version), the linker correctly eliminates the user-defined varying. The cascading effect is that the uniform queried by the C code of the test is also (correctly) eliminated. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=41980 Tested-by: Brian Paul <brianp@vmware.com> Cc: Bryan Cain <bryancain3@gmail.com> Cc: Vinson Lee <vlee@vmware.com> Cc: José Fonseca <jfonseca@vmware.com> Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
2011-10-21 19:21:02 +01:00
*/
while (do_dead_code(sh_i->ir, false))
;
while (do_dead_code(sh_next->ir, false))
;
/* This must be done after all dead varyings are eliminated. */
if (!check_against_output_limit(ctx, prog, sh_i))
goto done;
if (!check_against_input_limit(ctx, prog, sh_next))
goto done;
next = i;
}
if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
goto done;
linker: Eliminate more dead code after demoting shader inputs and outputs Consider the following vertex shader and fragment shader: // vertex shader varying vec4 v; uniform vec4 u; void main() { gl_Position = vec4(0.0); v = u; } // fragment shader void main() { gl_FragColor = vec4(0.0); } Since the fragment shader does not use 'v', it is demoted from a varying to a simple global variable. Once that happens, the assignment to 'v' is useless, and it should be removed. In addition, 'u' is no longer active, and it should also be removed. Performing extra dead code elimination after demoting shader inputs and outputs takes care of this. This elimination must occur before assigning uniform locations, or the declaration of 'u' cannot be removed. This change *breaks* the piglit test getuniform-01, but that test is already incorrect. The test uses a vertex shader that assigns to a user-defined varying, but it has no fragment shader. Since Mesa does not support ARB_separate_shader_objects (we only support the EXT version), the linker correctly eliminates the user-defined varying. The cascading effect is that the uniform queried by the C code of the test is also (correctly) eliminated. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=41980 Tested-by: Brian Paul <brianp@vmware.com> Cc: Bryan Cain <bryancain3@gmail.com> Cc: Vinson Lee <vlee@vmware.com> Cc: José Fonseca <jfonseca@vmware.com> Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
2011-10-21 19:21:02 +01:00
update_array_sizes(prog);
link_assign_uniform_locations(prog, ctx->Const.UniformBooleanTrue);
link_assign_atomic_counter_resources(ctx, prog);
store_fragdepth_layout(prog);
linker: Eliminate more dead code after demoting shader inputs and outputs Consider the following vertex shader and fragment shader: // vertex shader varying vec4 v; uniform vec4 u; void main() { gl_Position = vec4(0.0); v = u; } // fragment shader void main() { gl_FragColor = vec4(0.0); } Since the fragment shader does not use 'v', it is demoted from a varying to a simple global variable. Once that happens, the assignment to 'v' is useless, and it should be removed. In addition, 'u' is no longer active, and it should also be removed. Performing extra dead code elimination after demoting shader inputs and outputs takes care of this. This elimination must occur before assigning uniform locations, or the declaration of 'u' cannot be removed. This change *breaks* the piglit test getuniform-01, but that test is already incorrect. The test uses a vertex shader that assigns to a user-defined varying, but it has no fragment shader. Since Mesa does not support ARB_separate_shader_objects (we only support the EXT version), the linker correctly eliminates the user-defined varying. The cascading effect is that the uniform queried by the C code of the test is also (correctly) eliminated. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=41980 Tested-by: Brian Paul <brianp@vmware.com> Cc: Bryan Cain <bryancain3@gmail.com> Cc: Vinson Lee <vlee@vmware.com> Cc: José Fonseca <jfonseca@vmware.com> Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
2011-10-21 19:21:02 +01:00
link_calculate_subroutine_compat(ctx, prog);
check_resources(ctx, prog);
check_subroutine_resources(ctx, prog);
check_image_resources(ctx, prog);
link_check_atomic_counter_resources(ctx, prog);
if (!prog->LinkStatus)
goto done;
/* OpenGL ES requires that a vertex shader and a fragment shader both be
* present in a linked program. GL_ARB_ES2_compatibility doesn't say
* anything about shader linking when one of the shaders (vertex or
* fragment shader) is absent. So, the extension shouldn't change the
* behavior specified in GLSL specification.
*/
if (!prog->SeparateShader && ctx->API == API_OPENGLES2) {
if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
linker_error(prog, "program lacks a vertex shader\n");
} else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
linker_error(prog, "program lacks a fragment shader\n");
}
}
/* FINISHME: Assign fragment shader output locations. */
done:
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
free(shader_list[i]);
if (prog->_LinkedShaders[i] == NULL)
continue;
/* Do a final validation step to make sure that the IR wasn't
* invalidated by any modifications performed after intrastage linking.
*/
validate_ir_tree(prog->_LinkedShaders[i]->ir);
/* Retain any live IR, but trash the rest. */
reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
/* The symbol table in the linked shaders may contain references to
* variables that were removed (e.g., unused uniforms). Since it may
* contain junk, there is no possible valid use. Delete it and set the
* pointer to NULL.
*/
delete prog->_LinkedShaders[i]->symbols;
prog->_LinkedShaders[i]->symbols = NULL;
}
ralloc_free(mem_ctx);
}