mesa/glsl_types.cpp

660 lines
19 KiB
C++
Raw Normal View History

2010-02-22 21:19:34 +00:00
/*
* Copyright © 2009 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <cstdio>
2010-02-22 21:19:34 +00:00
#include <stdlib.h>
#include "glsl_symbol_table.h"
2010-02-22 21:19:34 +00:00
#include "glsl_parser_extras.h"
#include "glsl_types.h"
#include "builtin_types.h"
#include "hash_table.h"
2010-02-22 21:19:34 +00:00
hash_table *glsl_type::array_types = NULL;
2010-02-22 21:19:34 +00:00
static void
add_types_to_symbol_table(glsl_symbol_table *symtab,
2010-02-22 21:19:34 +00:00
const struct glsl_type *types,
unsigned num_types, bool warn)
2010-02-22 21:19:34 +00:00
{
(void) warn;
2010-02-22 21:19:34 +00:00
for (unsigned i = 0; i < num_types; i++) {
symtab->add_type(types[i].name, & types[i]);
2010-02-22 21:19:34 +00:00
}
}
static void
generate_110_types(glsl_symbol_table *symtab)
2010-02-22 21:19:34 +00:00
{
add_types_to_symbol_table(symtab, builtin_core_types,
Elements(builtin_core_types),
false);
2010-02-22 21:19:34 +00:00
add_types_to_symbol_table(symtab, builtin_structure_types,
Elements(builtin_structure_types),
false);
2010-02-22 21:19:34 +00:00
add_types_to_symbol_table(symtab, builtin_110_deprecated_structure_types,
Elements(builtin_110_deprecated_structure_types),
false);
add_types_to_symbol_table(symtab, & void_type, 1, false);
2010-02-22 21:19:34 +00:00
}
static void
generate_120_types(glsl_symbol_table *symtab)
2010-02-22 21:19:34 +00:00
{
generate_110_types(symtab);
add_types_to_symbol_table(symtab, builtin_120_types,
Elements(builtin_120_types), false);
2010-02-22 21:19:34 +00:00
}
static void
generate_130_types(glsl_symbol_table *symtab)
2010-02-22 21:19:34 +00:00
{
generate_120_types(symtab);
add_types_to_symbol_table(symtab, builtin_130_types,
Elements(builtin_130_types), false);
}
static void
generate_ARB_texture_rectangle_types(glsl_symbol_table *symtab, bool warn)
{
add_types_to_symbol_table(symtab, builtin_ARB_texture_rectangle_types,
Elements(builtin_ARB_texture_rectangle_types),
warn);
2010-02-22 21:19:34 +00:00
}
void
_mesa_glsl_initialize_types(struct _mesa_glsl_parse_state *state)
{
switch (state->language_version) {
case 110:
generate_110_types(state->symbols);
break;
case 120:
generate_120_types(state->symbols);
break;
case 130:
generate_130_types(state->symbols);
break;
default:
/* error */
break;
}
if (state->ARB_texture_rectangle_enable) {
generate_ARB_texture_rectangle_types(state->symbols,
state->ARB_texture_rectangle_warn);
}
2010-02-22 21:19:34 +00:00
}
const glsl_type *glsl_type::get_base_type() const
{
switch (base_type) {
case GLSL_TYPE_UINT:
return uint_type;
case GLSL_TYPE_INT:
return int_type;
case GLSL_TYPE_FLOAT:
return float_type;
case GLSL_TYPE_BOOL:
return bool_type;
default:
return error_type;
}
}
ir_function *
glsl_type::generate_constructor_prototype(glsl_symbol_table *symtab) const
{
/* FINISHME: Add support for non-array types. */
assert(base_type == GLSL_TYPE_ARRAY);
/* Generate the function name and add it to the symbol table.
*/
ir_function *const f = new ir_function(name);
bool added = symtab->add_function(name, f);
assert(added);
ir_function_signature *const sig = new ir_function_signature(this);
f->add_signature(sig);
for (unsigned i = 0; i < length; i++) {
char *const param_name = (char *) malloc(10);
snprintf(param_name, 10, "p%08X", i);
ir_variable *var = new ir_variable(fields.array, param_name);
var->mode = ir_var_in;
sig->parameters.push_tail(var);
}
return f;
}
/**
* Generate the function intro for a constructor
*
* \param type Data type to be constructed
* \param count Number of parameters to this concrete constructor. Most
* types have at least two constructors. One will take a
* single scalar parameter and the other will take "N"
* scalar parameters.
* \param parameters Storage for the list of parameters. These are
* typically stored in an \c ir_function_signature.
* \param declarations Pointers to the variable declarations for the function
* parameters. These are used later to avoid having to use
* the symbol table.
*/
static ir_function_signature *
generate_constructor_intro(const glsl_type *type, unsigned parameter_count,
ir_variable **declarations)
{
/* Names of parameters used in vector and matrix constructors
*/
static const char *const names[] = {
"a", "b", "c", "d", "e", "f", "g", "h",
"i", "j", "k", "l", "m", "n", "o", "p",
};
assert(parameter_count <= Elements(names));
const glsl_type *const parameter_type = type->get_base_type();
ir_function_signature *const signature = new ir_function_signature(type);
for (unsigned i = 0; i < parameter_count; i++) {
ir_variable *var = new ir_variable(parameter_type, names[i]);
var->mode = ir_var_in;
signature->parameters.push_tail(var);
declarations[i] = var;
}
ir_variable *retval = new ir_variable(type, "__retval");
signature->body.push_tail(retval);
declarations[16] = retval;
return signature;
}
/**
* Generate the body of a vector constructor that takes a single scalar
*/
static void
generate_vec_body_from_scalar(exec_list *instructions,
ir_variable **declarations)
{
ir_instruction *inst;
/* Generate a single assignment of the parameter to __retval.x and return
* __retval.xxxx for however many vector components there are.
*/
ir_dereference *const lhs_ref = new ir_dereference(declarations[16]);
ir_dereference *const rhs = new ir_dereference(declarations[0]);
ir_swizzle *lhs = new ir_swizzle(lhs_ref, 0, 0, 0, 0, 1);
inst = new ir_assignment(lhs, rhs, NULL);
instructions->push_tail(inst);
ir_dereference *const retref = new ir_dereference(declarations[16]);
ir_swizzle *retval = new ir_swizzle(retref, 0, 0, 0, 0,
declarations[16]->type->vector_elements);
inst = new ir_return(retval);
instructions->push_tail(inst);
}
/**
* Generate the body of a vector constructor that takes multiple scalars
*/
static void
generate_vec_body_from_N_scalars(exec_list *instructions,
ir_variable **declarations)
{
ir_instruction *inst;
const glsl_type *const vec_type = declarations[16]->type;
/* Generate an assignment of each parameter to a single component of
* __retval.x and return __retval.
*/
for (unsigned i = 0; i < vec_type->vector_elements; i++) {
ir_dereference *const lhs_ref = new ir_dereference(declarations[16]);
ir_dereference *const rhs = new ir_dereference(declarations[i]);
ir_swizzle *lhs = new ir_swizzle(lhs_ref, i, 0, 0, 0, 1);
inst = new ir_assignment(lhs, rhs, NULL);
instructions->push_tail(inst);
}
ir_dereference *retval = new ir_dereference(declarations[16]);
inst = new ir_return(retval);
instructions->push_tail(inst);
}
/**
* Generate the body of a matrix constructor that takes a single scalar
*/
static void
generate_mat_body_from_scalar(exec_list *instructions,
ir_variable **declarations)
{
ir_instruction *inst;
/* Generate an assignment of the parameter to the X component of a
* temporary vector. Set the remaining fields of the vector to 0. The
* size of the vector is equal to the number of rows of the matrix.
*
* Set each column of the matrix to a successive "rotation" of the
* temporary vector. This fills the matrix with 0s, but writes the single
* scalar along the matrix's diagonal.
*
* For a mat4x3, this is equivalent to:
*
* vec3 tmp;
* mat4x3 __retval;
* tmp.x = a;
* tmp.y = 0.0;
* tmp.z = 0.0;
* __retval[0] = tmp.xyy;
* __retval[1] = tmp.yxy;
* __retval[2] = tmp.yyx;
* __retval[3] = tmp.yyy;
*/
const glsl_type *const column_type = declarations[16]->type->column_type();
const glsl_type *const row_type = declarations[16]->type->row_type();
ir_variable *const column = new ir_variable(column_type, "v");
instructions->push_tail(column);
ir_dereference *const lhs_ref = new ir_dereference(column);
ir_dereference *const rhs = new ir_dereference(declarations[0]);
ir_swizzle *lhs = new ir_swizzle(lhs_ref, 0, 0, 0, 0, 1);
inst = new ir_assignment(lhs, rhs, NULL);
instructions->push_tail(inst);
const float z = 0.0f;
ir_constant *const zero = new ir_constant(glsl_type::float_type, &z);
for (unsigned i = 1; i < column_type->vector_elements; i++) {
ir_dereference *const lhs_ref = new ir_dereference(column);
ir_swizzle *lhs = new ir_swizzle(lhs_ref, i, 0, 0, 0, 1);
inst = new ir_assignment(lhs, zero, NULL);
instructions->push_tail(inst);
}
for (unsigned i = 0; i < row_type->vector_elements; i++) {
static const unsigned swiz[] = { 1, 1, 1, 0, 1, 1, 1 };
ir_dereference *const rhs_ref = new ir_dereference(column);
/* This will be .xyyy when i=0, .yxyy when i=1, etc.
*/
ir_swizzle *rhs = new ir_swizzle(rhs_ref, swiz[3 - i], swiz[4 - i],
swiz[5 - i], swiz[6 - i],
column_type->vector_elements);
ir_constant *const idx = new ir_constant(glsl_type::int_type, &i);
ir_dereference *const lhs = new ir_dereference(declarations[16], idx);
inst = new ir_assignment(lhs, rhs, NULL);
instructions->push_tail(inst);
}
ir_dereference *const retval = new ir_dereference(declarations[16]);
inst = new ir_return(retval);
instructions->push_tail(inst);
}
/**
* Generate the body of a vector constructor that takes multiple scalars
*/
static void
generate_mat_body_from_N_scalars(exec_list *instructions,
ir_variable **declarations)
{
ir_instruction *inst;
const glsl_type *const row_type = declarations[16]->type->row_type();
const glsl_type *const column_type = declarations[16]->type->column_type();
/* Generate an assignment of each parameter to a single component of
* of a particular column of __retval and return __retval.
*/
for (unsigned i = 0; i < column_type->vector_elements; i++) {
for (unsigned j = 0; j < row_type->vector_elements; j++) {
ir_constant *row_index = new ir_constant(glsl_type::int_type, &i);
ir_dereference *const row_access =
new ir_dereference(declarations[16], row_index);
ir_swizzle *component_access = new ir_swizzle(row_access,
j, 0, 0, 0, 1);
const unsigned param = (i * row_type->vector_elements) + j;
ir_dereference *const rhs = new ir_dereference(declarations[param]);
inst = new ir_assignment(component_access, rhs, NULL);
instructions->push_tail(inst);
}
}
ir_dereference *retval = new ir_dereference(declarations[16]);
inst = new ir_return(retval);
instructions->push_tail(inst);
}
/**
* Generate the constructors for a set of GLSL types
*
* Constructor implementations are added to \c instructions, and the symbols
* are added to \c symtab.
*/
static void
generate_constructor(glsl_symbol_table *symtab, const struct glsl_type *types,
unsigned num_types, exec_list *instructions)
{
ir_variable *declarations[17];
for (unsigned i = 0; i < num_types; i++) {
/* Only numeric and boolean vectors and matrices get constructors here.
* Structures need to be handled elsewhere. It is expected that scalar
* constructors are never actually called, so they are not generated.
*/
if (!types[i].is_numeric() && !types[i].is_boolean())
continue;
if (types[i].is_scalar())
continue;
/* Generate the function block, add it to the symbol table, and emit it.
*/
ir_function *const f = new ir_function(types[i].name);
bool added = symtab->add_function(types[i].name, f);
assert(added);
instructions->push_tail(f);
/* Each type has several basic constructors. The total number of forms
* depends on the derived type.
*
* Vectors: 1 scalar, N scalars
* Matrices: 1 scalar, NxM scalars
*
* Several possible types of constructors are not included in this list.
*
* Scalar constructors are not included. The expectation is that the
* IR generator won't actually generate these as constructor calls. The
* expectation is that it will just generate the necessary type
* conversion.
*
* Matrix contructors from matrices are also not included. The
* expectation is that the IR generator will generate a call to the
* appropriate from-scalars constructor.
*/
ir_function_signature *const sig =
generate_constructor_intro(&types[i], 1, declarations);
f->add_signature(sig);
if (types[i].is_vector()) {
generate_vec_body_from_scalar(&sig->body, declarations);
ir_function_signature *const vec_sig =
generate_constructor_intro(&types[i], types[i].vector_elements,
declarations);
f->add_signature(vec_sig);
generate_vec_body_from_N_scalars(&vec_sig->body, declarations);
} else {
assert(types[i].is_matrix());
generate_mat_body_from_scalar(&sig->body, declarations);
ir_function_signature *const mat_sig =
generate_constructor_intro(&types[i],
(types[i].vector_elements
* types[i].matrix_columns),
declarations);
f->add_signature(mat_sig);
generate_mat_body_from_N_scalars(&mat_sig->body, declarations);
}
}
}
void
generate_110_constructors(glsl_symbol_table *symtab, exec_list *instructions)
{
generate_constructor(symtab, builtin_core_types,
Elements(builtin_core_types), instructions);
}
void
generate_120_constructors(glsl_symbol_table *symtab, exec_list *instructions)
{
generate_110_constructors(symtab, instructions);
generate_constructor(symtab, builtin_120_types,
Elements(builtin_120_types), instructions);
}
void
generate_130_constructors(glsl_symbol_table *symtab, exec_list *instructions)
{
generate_120_constructors(symtab, instructions);
generate_constructor(symtab, builtin_130_types,
Elements(builtin_130_types), instructions);
}
void
_mesa_glsl_initialize_constructors(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
switch (state->language_version) {
case 110:
generate_110_constructors(state->symbols, instructions);
break;
case 120:
generate_120_constructors(state->symbols, instructions);
break;
case 130:
generate_130_constructors(state->symbols, instructions);
break;
default:
/* error */
break;
}
}
glsl_type::glsl_type(const glsl_type *array, unsigned length) :
base_type(GLSL_TYPE_ARRAY),
sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
sampler_type(0),
vector_elements(0), matrix_columns(0),
name(NULL), length(length)
{
this->fields.array = array;
/* Allow a maximum of 10 characters for the array size. This is enough
* for 32-bits of ~0. The extra 3 are for the '[', ']', and terminating
* NUL.
*/
const unsigned name_length = strlen(array->name) + 10 + 3;
char *const n = (char *) malloc(name_length);
if (length == 0)
snprintf(n, name_length, "%s[]", array->name);
else
snprintf(n, name_length, "%s[%u]", array->name, length);
this->name = n;
}
const glsl_type *
glsl_type::get_instance(unsigned base_type, unsigned rows, unsigned columns)
{
if (base_type == GLSL_TYPE_VOID)
return &void_type;
if ((rows < 1) || (rows > 4) || (columns < 1) || (columns > 4))
return error_type;
/* Treat GLSL vectors as Nx1 matrices.
*/
if (columns == 1) {
switch (base_type) {
case GLSL_TYPE_UINT:
return uint_type + (rows - 1);
case GLSL_TYPE_INT:
return int_type + (rows - 1);
case GLSL_TYPE_FLOAT:
return float_type + (rows - 1);
case GLSL_TYPE_BOOL:
return bool_type + (rows - 1);
default:
return error_type;
}
} else {
if ((base_type != GLSL_TYPE_FLOAT) || (rows == 1))
return error_type;
/* GLSL matrix types are named mat{COLUMNS}x{ROWS}. Only the following
* combinations are valid:
*
* 1 2 3 4
* 1
* 2 x x x
* 3 x x x
* 4 x x x
*/
#define IDX(c,r) (((c-1)*3) + (r-1))
switch (IDX(columns, rows)) {
case IDX(2,2): return mat2_type;
case IDX(2,3): return mat2x3_type;
case IDX(2,4): return mat2x4_type;
case IDX(3,2): return mat3x2_type;
case IDX(3,3): return mat3_type;
case IDX(3,4): return mat3x4_type;
case IDX(4,2): return mat4x2_type;
case IDX(4,3): return mat4x3_type;
case IDX(4,4): return mat4_type;
default: return error_type;
}
}
assert(!"Should not get here.");
return error_type;
}
int
glsl_type::array_key_compare(const void *a, const void *b)
{
const glsl_type *const key1 = (glsl_type *) a;
const glsl_type *const key2 = (glsl_type *) b;
/* Return zero is the types match (there is zero difference) or non-zero
* otherwise.
*/
return ((key1->fields.array == key2->fields.array)
&& (key1->length == key2->length)) ? 0 : 1;
}
unsigned
glsl_type::array_key_hash(const void *a)
{
const glsl_type *const key = (glsl_type *) a;
const struct {
const glsl_type *t;
unsigned l;
char nul;
} hash_key = {
key->fields.array,
key->length,
'\0'
};
return hash_table_string_hash(& hash_key);
}
const glsl_type *
glsl_type::get_array_instance(const glsl_type *base, unsigned array_size)
{
const glsl_type key(base, array_size);
if (array_types == NULL) {
array_types = hash_table_ctor(64, array_key_hash, array_key_compare);
}
const glsl_type *t = (glsl_type *) hash_table_find(array_types, & key);
if (t == NULL) {
t = new glsl_type(base, array_size);
hash_table_insert(array_types, (void *) t, t);
}
assert(t->base_type == GLSL_TYPE_ARRAY);
assert(t->length == array_size);
assert(t->fields.array == base);
return t;
}