dxvk/src/dxbc/dxbc_compiler.cpp

7932 lines
270 KiB
C++

#include "dxbc_compiler.h"
namespace dxvk {
constexpr uint32_t Icb_BindingSlotId = 14;
constexpr uint32_t Icb_MaxBakedDwords = 16;
constexpr uint32_t PerVertex_Position = 0;
constexpr uint32_t PerVertex_CullDist = 1;
constexpr uint32_t PerVertex_ClipDist = 2;
DxbcCompiler::DxbcCompiler(
const std::string& fileName,
const DxbcModuleInfo& moduleInfo,
const DxbcProgramInfo& programInfo,
const Rc<DxbcIsgn>& isgn,
const Rc<DxbcIsgn>& osgn,
const Rc<DxbcIsgn>& psgn,
const DxbcAnalysisInfo& analysis)
: m_moduleInfo (moduleInfo),
m_programInfo(programInfo),
m_module (spvVersion(1, 6)),
m_isgn (isgn),
m_osgn (osgn),
m_psgn (psgn),
m_analysis (&analysis) {
// Declare an entry point ID. We'll need it during the
// initialization phase where the execution mode is set.
m_entryPointId = m_module.allocateId();
// Set the shader name so that we recognize it in renderdoc
m_module.setDebugSource(
spv::SourceLanguageUnknown, 0,
m_module.addDebugString(fileName.c_str()),
nullptr);
if (Logger::logLevel() <= LogLevel::Debug) {
if (m_isgn != nullptr) {
Logger::debug(str::format("Input Signature for - ", fileName.c_str(), "\n"));
m_isgn->printEntries();
}
if (m_osgn != nullptr) {
Logger::debug(str::format("Output Signature for - ", fileName.c_str(), "\n"));
m_osgn->printEntries();
}
if (m_psgn != nullptr) {
Logger::debug(str::format("Patch Constant Signature for - ", fileName.c_str(), "\n"));
m_psgn->printEntries();
}
}
// Set the memory model. This is the same for all shaders.
m_module.enableCapability(
spv::CapabilityVulkanMemoryModel);
m_module.setMemoryModel(
spv::AddressingModelLogical,
spv::MemoryModelVulkan);
// Make sure our interface registers are clear
for (uint32_t i = 0; i < DxbcMaxInterfaceRegs; i++) {
m_vRegs.at(i) = DxbcRegisterPointer { };
m_oRegs.at(i) = DxbcRegisterPointer { };
}
this->emitInit();
}
DxbcCompiler::~DxbcCompiler() {
}
void DxbcCompiler::processInstruction(const DxbcShaderInstruction& ins) {
m_lastOp = m_currOp;
m_currOp = ins.op;
switch (ins.opClass) {
case DxbcInstClass::Declaration:
return this->emitDcl(ins);
case DxbcInstClass::CustomData:
return this->emitCustomData(ins);
case DxbcInstClass::Atomic:
return this->emitAtomic(ins);
case DxbcInstClass::AtomicCounter:
return this->emitAtomicCounter(ins);
case DxbcInstClass::Barrier:
return this->emitBarrier(ins);
case DxbcInstClass::BitExtract:
return this->emitBitExtract(ins);
case DxbcInstClass::BitInsert:
return this->emitBitInsert(ins);
case DxbcInstClass::BitScan:
return this->emitBitScan(ins);
case DxbcInstClass::BufferQuery:
return this->emitBufferQuery(ins);
case DxbcInstClass::BufferLoad:
return this->emitBufferLoad(ins);
case DxbcInstClass::BufferStore:
return this->emitBufferStore(ins);
case DxbcInstClass::ConvertFloat16:
return this->emitConvertFloat16(ins);
case DxbcInstClass::ConvertFloat64:
return this->emitConvertFloat64(ins);
case DxbcInstClass::ControlFlow:
return this->emitControlFlow(ins);
case DxbcInstClass::GeometryEmit:
return this->emitGeometryEmit(ins);
case DxbcInstClass::HullShaderPhase:
return this->emitHullShaderPhase(ins);
case DxbcInstClass::HullShaderInstCnt:
return this->emitHullShaderInstCnt(ins);
case DxbcInstClass::Interpolate:
return this->emitInterpolate(ins);
case DxbcInstClass::NoOperation:
return;
case DxbcInstClass::SparseCheckAccess:
return this->emitSparseCheckAccess(ins);
case DxbcInstClass::TextureQuery:
return this->emitTextureQuery(ins);
case DxbcInstClass::TextureQueryLod:
return this->emitTextureQueryLod(ins);
case DxbcInstClass::TextureQueryMs:
return this->emitTextureQueryMs(ins);
case DxbcInstClass::TextureQueryMsPos:
return this->emitTextureQueryMsPos(ins);
case DxbcInstClass::TextureFetch:
return this->emitTextureFetch(ins);
case DxbcInstClass::TextureGather:
return this->emitTextureGather(ins);
case DxbcInstClass::TextureSample:
return this->emitTextureSample(ins);
case DxbcInstClass::TypedUavLoad:
return this->emitTypedUavLoad(ins);
case DxbcInstClass::TypedUavStore:
return this->emitTypedUavStore(ins);
case DxbcInstClass::VectorAlu:
return this->emitVectorAlu(ins);
case DxbcInstClass::VectorCmov:
return this->emitVectorCmov(ins);
case DxbcInstClass::VectorCmp:
return this->emitVectorCmp(ins);
case DxbcInstClass::VectorDeriv:
return this->emitVectorDeriv(ins);
case DxbcInstClass::VectorDot:
return this->emitVectorDot(ins);
case DxbcInstClass::VectorIdiv:
return this->emitVectorIdiv(ins);
case DxbcInstClass::VectorImul:
return this->emitVectorImul(ins);
case DxbcInstClass::VectorMsad:
return this->emitVectorMsad(ins);
case DxbcInstClass::VectorShift:
return this->emitVectorShift(ins);
case DxbcInstClass::VectorSinCos:
return this->emitVectorSinCos(ins);
default:
Logger::warn(
str::format("DxbcCompiler: Unhandled opcode class: ",
ins.op));
}
}
void DxbcCompiler::processXfbPassthrough() {
m_module.setExecutionMode (m_entryPointId, spv::ExecutionModeInputPoints);
m_module.setExecutionMode (m_entryPointId, spv::ExecutionModeOutputPoints);
m_module.setOutputVertices(m_entryPointId, 1);
m_module.setInvocations (m_entryPointId, 1);
for (auto e = m_isgn->begin(); e != m_isgn->end(); e++) {
emitDclInput(e->registerId, 1,
e->componentMask, DxbcSystemValue::None,
DxbcInterpolationMode::Undefined);
}
// Figure out which streams to enable
uint32_t streamMask = 0;
for (size_t i = 0; i < m_xfbVars.size(); i++)
streamMask |= 1u << m_xfbVars[i].streamId;
for (uint32_t streamId : bit::BitMask(streamMask)) {
emitXfbOutputSetup(streamId, true);
m_module.opEmitVertex(m_module.constu32(streamId));
}
// End the main function
emitFunctionEnd();
}
Rc<DxvkShader> DxbcCompiler::finalize() {
// Depending on the shader type, this will prepare
// input registers, call various shader functions
// and write back the output registers.
switch (m_programInfo.type()) {
case DxbcProgramType::VertexShader: this->emitVsFinalize(); break;
case DxbcProgramType::HullShader: this->emitHsFinalize(); break;
case DxbcProgramType::DomainShader: this->emitDsFinalize(); break;
case DxbcProgramType::GeometryShader: this->emitGsFinalize(); break;
case DxbcProgramType::PixelShader: this->emitPsFinalize(); break;
case DxbcProgramType::ComputeShader: this->emitCsFinalize(); break;
}
// Emit float control mode if the extension is supported
this->emitFloatControl();
// Declare the entry point, we now have all the
// information we need, including the interfaces
m_module.addEntryPoint(m_entryPointId,
m_programInfo.executionModel(), "main");
m_module.setDebugName(m_entryPointId, "main");
// Create the shader object
DxvkShaderCreateInfo info;
info.stage = m_programInfo.shaderStage();
info.bindingCount = m_bindings.size();
info.bindings = m_bindings.data();
info.inputMask = m_inputMask;
info.outputMask = m_outputMask;
info.uniformSize = m_immConstData.size();
info.uniformData = m_immConstData.data();
if (m_programInfo.type() == DxbcProgramType::PixelShader && m_ps.pushConstantId)
info.pushConstSize = sizeof(DxbcPushConstants);
if (m_moduleInfo.xfb) {
info.xfbRasterizedStream = m_moduleInfo.xfb->rasterizedStream;
for (uint32_t i = 0; i < 4; i++)
info.xfbStrides[i] = m_moduleInfo.xfb->strides[i];
}
return new DxvkShader(info, m_module.compile());
}
void DxbcCompiler::emitDcl(const DxbcShaderInstruction& ins) {
switch (ins.op) {
case DxbcOpcode::DclGlobalFlags:
return this->emitDclGlobalFlags(ins);
case DxbcOpcode::DclIndexRange:
return; // not needed for anything
case DxbcOpcode::DclTemps:
return this->emitDclTemps(ins);
case DxbcOpcode::DclIndexableTemp:
return this->emitDclIndexableTemp(ins);
case DxbcOpcode::DclInput:
case DxbcOpcode::DclInputSgv:
case DxbcOpcode::DclInputSiv:
case DxbcOpcode::DclInputPs:
case DxbcOpcode::DclInputPsSgv:
case DxbcOpcode::DclInputPsSiv:
case DxbcOpcode::DclOutput:
case DxbcOpcode::DclOutputSgv:
case DxbcOpcode::DclOutputSiv:
return this->emitDclInterfaceReg(ins);
case DxbcOpcode::DclConstantBuffer:
return this->emitDclConstantBuffer(ins);
case DxbcOpcode::DclSampler:
return this->emitDclSampler(ins);
case DxbcOpcode::DclStream:
return this->emitDclStream(ins);
case DxbcOpcode::DclUavTyped:
case DxbcOpcode::DclResource:
return this->emitDclResourceTyped(ins);
case DxbcOpcode::DclUavRaw:
case DxbcOpcode::DclResourceRaw:
case DxbcOpcode::DclUavStructured:
case DxbcOpcode::DclResourceStructured:
return this->emitDclResourceRawStructured(ins);
case DxbcOpcode::DclThreadGroupSharedMemoryRaw:
case DxbcOpcode::DclThreadGroupSharedMemoryStructured:
return this->emitDclThreadGroupSharedMemory(ins);
case DxbcOpcode::DclGsInputPrimitive:
return this->emitDclGsInputPrimitive(ins);
case DxbcOpcode::DclGsOutputPrimitiveTopology:
return this->emitDclGsOutputTopology(ins);
case DxbcOpcode::DclMaxOutputVertexCount:
return this->emitDclMaxOutputVertexCount(ins);
case DxbcOpcode::DclInputControlPointCount:
return this->emitDclInputControlPointCount(ins);
case DxbcOpcode::DclOutputControlPointCount:
return this->emitDclOutputControlPointCount(ins);
case DxbcOpcode::DclHsMaxTessFactor:
return this->emitDclHsMaxTessFactor(ins);
case DxbcOpcode::DclTessDomain:
return this->emitDclTessDomain(ins);
case DxbcOpcode::DclTessPartitioning:
return this->emitDclTessPartitioning(ins);
case DxbcOpcode::DclTessOutputPrimitive:
return this->emitDclTessOutputPrimitive(ins);
case DxbcOpcode::DclThreadGroup:
return this->emitDclThreadGroup(ins);
case DxbcOpcode::DclGsInstanceCount:
return this->emitDclGsInstanceCount(ins);
default:
Logger::warn(
str::format("DxbcCompiler: Unhandled opcode: ",
ins.op));
}
}
void DxbcCompiler::emitDclGlobalFlags(const DxbcShaderInstruction& ins) {
const DxbcGlobalFlags flags = ins.controls.globalFlags();
if (flags.test(DxbcGlobalFlag::RefactoringAllowed))
m_precise = false;
if (flags.test(DxbcGlobalFlag::EarlyFragmentTests))
m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeEarlyFragmentTests);
}
void DxbcCompiler::emitDclTemps(const DxbcShaderInstruction& ins) {
// dcl_temps has one operand:
// (imm0) Number of temp registers
// Ignore this and declare temps on demand.
}
void DxbcCompiler::emitDclIndexableTemp(const DxbcShaderInstruction& ins) {
// dcl_indexable_temps has three operands:
// (imm0) Array register index (x#)
// (imm1) Number of vectors stored in the array
// (imm2) Component count of each individual vector. This is
// always 4 in fxc-generated binaries and therefore useless.
const uint32_t regId = ins.imm[0].u32;
DxbcRegisterInfo info;
info.type.ctype = DxbcScalarType::Float32;
info.type.ccount = m_analysis->xRegMasks.at(regId).minComponents();
info.type.alength = ins.imm[1].u32;
info.sclass = spv::StorageClassPrivate;
if (regId >= m_xRegs.size())
m_xRegs.resize(regId + 1);
m_xRegs.at(regId).ccount = info.type.ccount;
m_xRegs.at(regId).alength = info.type.alength;
m_xRegs.at(regId).varId = emitNewVariable(info);
m_module.setDebugName(m_xRegs.at(regId).varId,
str::format("x", regId).c_str());
}
void DxbcCompiler::emitDclInterfaceReg(const DxbcShaderInstruction& ins) {
switch (ins.dst[0].type) {
case DxbcOperandType::InputControlPoint:
if (m_programInfo.type() != DxbcProgramType::HullShader)
break;
[[fallthrough]];
case DxbcOperandType::Input:
case DxbcOperandType::Output: {
// dcl_input and dcl_output instructions
// have the following operands:
// (dst0) The register to declare
// (imm0) The system value (optional)
uint32_t regDim = 0;
uint32_t regIdx = 0;
// In the vertex and fragment shader stage, the
// operand indices will have the following format:
// (0) Register index
//
// In other stages, the input and output registers
// may be declared as arrays of a fixed size:
// (0) Array length
// (1) Register index
if (ins.dst[0].idxDim == 2) {
regDim = ins.dst[0].idx[0].offset;
regIdx = ins.dst[0].idx[1].offset;
} else if (ins.dst[0].idxDim == 1) {
regIdx = ins.dst[0].idx[0].offset;
} else {
Logger::err(str::format(
"DxbcCompiler: ", ins.op,
": Invalid index dimension"));
return;
}
// This declaration may map an output register to a system
// value. If that is the case, the system value type will
// be stored in the second operand.
const bool hasSv =
ins.op == DxbcOpcode::DclInputSgv
|| ins.op == DxbcOpcode::DclInputSiv
|| ins.op == DxbcOpcode::DclInputPsSgv
|| ins.op == DxbcOpcode::DclInputPsSiv
|| ins.op == DxbcOpcode::DclOutputSgv
|| ins.op == DxbcOpcode::DclOutputSiv;
DxbcSystemValue sv = DxbcSystemValue::None;
if (hasSv)
sv = static_cast<DxbcSystemValue>(ins.imm[0].u32);
// In the pixel shader, inputs are declared with an
// interpolation mode that is part of the op token.
const bool hasInterpolationMode =
ins.op == DxbcOpcode::DclInputPs
|| ins.op == DxbcOpcode::DclInputPsSiv;
DxbcInterpolationMode im = DxbcInterpolationMode::Undefined;
if (hasInterpolationMode)
im = ins.controls.interpolation();
// Declare the actual input/output variable
switch (ins.op) {
case DxbcOpcode::DclInput:
case DxbcOpcode::DclInputSgv:
case DxbcOpcode::DclInputSiv:
case DxbcOpcode::DclInputPs:
case DxbcOpcode::DclInputPsSgv:
case DxbcOpcode::DclInputPsSiv:
this->emitDclInput(regIdx, regDim, ins.dst[0].mask, sv, im);
break;
case DxbcOpcode::DclOutput:
case DxbcOpcode::DclOutputSgv:
case DxbcOpcode::DclOutputSiv:
this->emitDclOutput(regIdx, regDim, ins.dst[0].mask, sv, im);
break;
default:
Logger::err(str::format(
"DxbcCompiler: Unexpected opcode: ",
ins.op));
}
} break;
case DxbcOperandType::InputThreadId: {
m_cs.builtinGlobalInvocationId = emitNewBuiltinVariable({
{ DxbcScalarType::Uint32, 3, 0 },
spv::StorageClassInput },
spv::BuiltInGlobalInvocationId,
"vThreadId");
} break;
case DxbcOperandType::InputThreadGroupId: {
m_cs.builtinWorkgroupId = emitNewBuiltinVariable({
{ DxbcScalarType::Uint32, 3, 0 },
spv::StorageClassInput },
spv::BuiltInWorkgroupId,
"vThreadGroupId");
} break;
case DxbcOperandType::InputThreadIdInGroup: {
m_cs.builtinLocalInvocationId = emitNewBuiltinVariable({
{ DxbcScalarType::Uint32, 3, 0 },
spv::StorageClassInput },
spv::BuiltInLocalInvocationId,
"vThreadIdInGroup");
} break;
case DxbcOperandType::InputThreadIndexInGroup: {
m_cs.builtinLocalInvocationIndex = emitNewBuiltinVariable({
{ DxbcScalarType::Uint32, 1, 0 },
spv::StorageClassInput },
spv::BuiltInLocalInvocationIndex,
"vThreadIndexInGroup");
} break;
case DxbcOperandType::InputCoverageMask: {
m_ps.builtinSampleMaskIn = emitNewBuiltinVariable({
{ DxbcScalarType::Uint32, 1, 1 },
spv::StorageClassInput },
spv::BuiltInSampleMask,
"vCoverage");
} break;
case DxbcOperandType::OutputCoverageMask: {
m_ps.builtinSampleMaskOut = emitNewBuiltinVariable({
{ DxbcScalarType::Uint32, 1, 1 },
spv::StorageClassOutput },
spv::BuiltInSampleMask,
"oMask");
} break;
case DxbcOperandType::OutputDepth: {
m_module.setExecutionMode(m_entryPointId,
spv::ExecutionModeDepthReplacing);
m_ps.builtinDepth = emitNewBuiltinVariable({
{ DxbcScalarType::Float32, 1, 0 },
spv::StorageClassOutput },
spv::BuiltInFragDepth,
"oDepth");
} break;
case DxbcOperandType::OutputStencilRef: {
m_module.enableExtension("SPV_EXT_shader_stencil_export");
m_module.enableCapability(spv::CapabilityStencilExportEXT);
m_module.setExecutionMode(m_entryPointId,
spv::ExecutionModeStencilRefReplacingEXT);
m_ps.builtinStencilRef = emitNewBuiltinVariable({
{ DxbcScalarType::Sint32, 1, 0 },
spv::StorageClassOutput },
spv::BuiltInFragStencilRefEXT,
"oStencilRef");
} break;
case DxbcOperandType::OutputDepthGe: {
m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeDepthReplacing);
m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeDepthGreater);
m_ps.builtinDepth = emitNewBuiltinVariable({
{ DxbcScalarType::Float32, 1, 0 },
spv::StorageClassOutput },
spv::BuiltInFragDepth,
"oDepthGe");
} break;
case DxbcOperandType::OutputDepthLe: {
m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeDepthReplacing);
m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeDepthLess);
m_ps.builtinDepth = emitNewBuiltinVariable({
{ DxbcScalarType::Float32, 1, 0 },
spv::StorageClassOutput },
spv::BuiltInFragDepth,
"oDepthLe");
} break;
case DxbcOperandType::InputPrimitiveId: {
m_primitiveIdIn = emitNewBuiltinVariable({
{ DxbcScalarType::Uint32, 1, 0 },
spv::StorageClassInput },
spv::BuiltInPrimitiveId,
"vPrim");
} break;
case DxbcOperandType::InputDomainPoint: {
m_ds.builtinTessCoord = emitNewBuiltinVariable({
{ DxbcScalarType::Float32, 3, 0 },
spv::StorageClassInput },
spv::BuiltInTessCoord,
"vDomain");
} break;
case DxbcOperandType::InputForkInstanceId:
case DxbcOperandType::InputJoinInstanceId: {
auto phase = this->getCurrentHsForkJoinPhase();
phase->instanceIdPtr = m_module.newVar(
m_module.defPointerType(
m_module.defIntType(32, 0),
spv::StorageClassFunction),
spv::StorageClassFunction);
m_module.opStore(phase->instanceIdPtr, phase->instanceId);
m_module.setDebugName(phase->instanceIdPtr,
ins.dst[0].type == DxbcOperandType::InputForkInstanceId
? "vForkInstanceId" : "vJoinInstanceId");
} break;
case DxbcOperandType::OutputControlPointId: {
// This system value map to the invocation
// ID, which has been declared already.
} break;
case DxbcOperandType::InputPatchConstant:
case DxbcOperandType::OutputControlPoint: {
// These have been declared as global input and
// output arrays, so there's nothing left to do.
} break;
case DxbcOperandType::InputGsInstanceId: {
m_gs.builtinInvocationId = emitNewBuiltinVariable({
{ DxbcScalarType::Uint32, 1, 0 },
spv::StorageClassInput },
spv::BuiltInInvocationId,
"vInstanceID");
} break;
case DxbcOperandType::InputInnerCoverage: {
m_module.enableExtension("SPV_EXT_fragment_fully_covered");
m_module.enableCapability(spv::CapabilityFragmentFullyCoveredEXT);
// This is bool in SPIR-V but uint32 in DXBC. A bool value of
// false must be 0, and bit 1 must be set to represent true.
uint32_t builtinId = emitNewBuiltinVariable({
{ DxbcScalarType::Bool, 1, 0 },
spv::StorageClassInput },
spv::BuiltInFullyCoveredEXT,
nullptr);
m_ps.builtinInnerCoverageId = emitNewVariable({
{ DxbcScalarType::Uint32, 1, 0 },
spv::StorageClassPrivate });
m_module.setDebugName(m_ps.builtinInnerCoverageId, "vInnerCoverage");
uint32_t boolTypeId = m_module.defBoolType();
uint32_t uintTypeId = m_module.defIntType(32, 0);
m_module.opStore(m_ps.builtinInnerCoverageId,
m_module.opSelect(uintTypeId,
m_module.opLoad(boolTypeId, builtinId),
m_module.constu32(1),
m_module.constu32(0)));
} break;
default:
Logger::err(str::format(
"DxbcCompiler: Unsupported operand type declaration: ",
ins.dst[0].type));
}
}
void DxbcCompiler::emitDclInput(
uint32_t regIdx,
uint32_t regDim,
DxbcRegMask regMask,
DxbcSystemValue sv,
DxbcInterpolationMode im) {
// Avoid declaring the same variable multiple times.
// This may happen when multiple system values are
// mapped to different parts of the same register.
if (m_vRegs.at(regIdx).id == 0 && sv == DxbcSystemValue::None) {
const DxbcVectorType regType = getInputRegType(regIdx);
DxbcRegisterInfo info;
info.type.ctype = regType.ctype;
info.type.ccount = regType.ccount;
info.type.alength = regDim;
info.sclass = spv::StorageClassInput;
const uint32_t varId = emitNewVariable(info);
m_module.decorateLocation(varId, regIdx);
m_module.setDebugName(varId, str::format("v", regIdx).c_str());
m_vRegs.at(regIdx) = { regType, varId };
// Interpolation mode, used in pixel shaders
if (im == DxbcInterpolationMode::Constant)
m_module.decorate(varId, spv::DecorationFlat);
if (im == DxbcInterpolationMode::LinearCentroid
|| im == DxbcInterpolationMode::LinearNoPerspectiveCentroid)
m_module.decorate(varId, spv::DecorationCentroid);
if (im == DxbcInterpolationMode::LinearNoPerspective
|| im == DxbcInterpolationMode::LinearNoPerspectiveCentroid
|| im == DxbcInterpolationMode::LinearNoPerspectiveSample)
m_module.decorate(varId, spv::DecorationNoPerspective);
if (im == DxbcInterpolationMode::LinearSample
|| im == DxbcInterpolationMode::LinearNoPerspectiveSample) {
m_module.enableCapability(spv::CapabilitySampleRateShading);
m_module.decorate(varId, spv::DecorationSample);
}
// Declare the input slot as defined
m_inputMask |= 1u << regIdx;
m_vArrayLength = std::max(m_vArrayLength, regIdx + 1);
} else if (sv != DxbcSystemValue::None) {
// Add a new system value mapping if needed
bool skipSv = sv == DxbcSystemValue::ClipDistance
|| sv == DxbcSystemValue::CullDistance;
if (!skipSv)
m_vMappings.push_back({ regIdx, regMask, sv });
}
}
void DxbcCompiler::emitDclOutput(
uint32_t regIdx,
uint32_t regDim,
DxbcRegMask regMask,
DxbcSystemValue sv,
DxbcInterpolationMode im) {
// Add a new system value mapping if needed. Clip
// and cull distances are handled separately.
if (sv != DxbcSystemValue::None
&& sv != DxbcSystemValue::ClipDistance
&& sv != DxbcSystemValue::CullDistance)
m_oMappings.push_back({ regIdx, regMask, sv });
if (m_programInfo.type() == DxbcProgramType::HullShader) {
// Hull shaders don't use standard outputs
if (getCurrentHsForkJoinPhase() != nullptr)
m_hs.outputPerPatchMask |= 1 << regIdx;
} else if (m_oRegs.at(regIdx).id == 0) {
// Avoid declaring the same variable multiple times.
// This may happen when multiple system values are
// mapped to different parts of the same register.
const DxbcVectorType regType = getOutputRegType(regIdx);
DxbcRegisterInfo info;
info.type.ctype = regType.ctype;
info.type.ccount = regType.ccount;
info.type.alength = regDim;
info.sclass = spv::StorageClassOutput;
// In xfb mode, we set up the actual
// output vars when emitting a vertex
if (m_moduleInfo.xfb != nullptr)
info.sclass = spv::StorageClassPrivate;
// In geometry shaders, don't duplicate system value outputs
// to stay within device limits. The pixel shader will read
// all GS system value outputs as system value inputs.
if (m_programInfo.type() == DxbcProgramType::GeometryShader && sv != DxbcSystemValue::None)
info.sclass = spv::StorageClassPrivate;
const uint32_t varId = this->emitNewVariable(info);
m_module.setDebugName(varId, str::format("o", regIdx).c_str());
if (info.sclass == spv::StorageClassOutput) {
m_module.decorateLocation(varId, regIdx);
// Add index decoration for potential dual-source blending
if (m_programInfo.type() == DxbcProgramType::PixelShader)
m_module.decorateIndex(varId, 0);
// Declare vertex positions in all stages as invariant, even if
// this is not the last stage, to help with potential Z fighting.
if (sv == DxbcSystemValue::Position && m_moduleInfo.options.invariantPosition)
m_module.decorate(varId, spv::DecorationInvariant);
}
m_oRegs.at(regIdx) = { regType, varId };
// Declare the output slot as defined
m_outputMask |= 1u << regIdx;
}
}
void DxbcCompiler::emitDclConstantBuffer(const DxbcShaderInstruction& ins) {
// dcl_constant_buffer has one operand with two indices:
// (0) Constant buffer register ID (cb#)
// (1) Number of constants in the buffer
const uint32_t bufferId = ins.dst[0].idx[0].offset;
const uint32_t elementCount = ins.dst[0].idx[1].offset;
this->emitDclConstantBufferVar(bufferId, elementCount,
str::format("cb", bufferId).c_str());
}
void DxbcCompiler::emitDclConstantBufferVar(
uint32_t regIdx,
uint32_t numConstants,
const char* name) {
// Uniform buffer data is stored as a fixed-size array
// of 4x32-bit vectors. SPIR-V requires explicit strides.
const uint32_t arrayType = m_module.defArrayTypeUnique(
getVectorTypeId({ DxbcScalarType::Float32, 4 }),
m_module.constu32(numConstants));
m_module.decorateArrayStride(arrayType, 16);
// SPIR-V requires us to put that array into a
// struct and decorate that struct as a block.
const uint32_t structType = m_module.defStructTypeUnique(1, &arrayType);
m_module.decorate(structType, spv::DecorationBlock);
m_module.memberDecorateOffset(structType, 0, 0);
m_module.setDebugName (structType, str::format(name, "_t").c_str());
m_module.setDebugMemberName (structType, 0, "m");
// Variable that we'll use to access the buffer
const uint32_t varId = m_module.newVar(
m_module.defPointerType(structType, spv::StorageClassUniform),
spv::StorageClassUniform);
m_module.setDebugName(varId, name);
// Compute the DXVK binding slot index for the buffer.
// D3D11 needs to bind the actual buffers to this slot.
uint32_t bindingId = computeConstantBufferBinding(
m_programInfo.type(), regIdx);
m_module.decorateDescriptorSet(varId, 0);
m_module.decorateBinding(varId, bindingId);
DxbcConstantBuffer buf;
buf.varId = varId;
buf.size = numConstants;
m_constantBuffers.at(regIdx) = buf;
// Store descriptor info for the shader interface
DxvkBindingInfo binding = { VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER };
binding.viewType = VK_IMAGE_VIEW_TYPE_MAX_ENUM;
binding.access = VK_ACCESS_UNIFORM_READ_BIT;
binding.resourceBinding = bindingId;
m_bindings.push_back(binding);
}
void DxbcCompiler::emitDclSampler(const DxbcShaderInstruction& ins) {
// dclSampler takes one operand:
// (dst0) The sampler register to declare
const uint32_t samplerId = ins.dst[0].idx[0].offset;
// The sampler type is opaque, but we still have to
// define a pointer and a variable in oder to use it
const uint32_t samplerType = m_module.defSamplerType();
const uint32_t samplerPtrType = m_module.defPointerType(
samplerType, spv::StorageClassUniformConstant);
// Define the sampler variable
const uint32_t varId = m_module.newVar(samplerPtrType,
spv::StorageClassUniformConstant);
m_module.setDebugName(varId,
str::format("s", samplerId).c_str());
m_samplers.at(samplerId).varId = varId;
m_samplers.at(samplerId).typeId = samplerType;
// Compute binding slot index for the sampler
uint32_t bindingId = computeSamplerBinding(
m_programInfo.type(), samplerId);
m_module.decorateDescriptorSet(varId, 0);
m_module.decorateBinding(varId, bindingId);
// Store descriptor info for the shader interface
DxvkBindingInfo binding = { VK_DESCRIPTOR_TYPE_SAMPLER };
binding.viewType = VK_IMAGE_VIEW_TYPE_MAX_ENUM;
binding.resourceBinding = bindingId;
m_bindings.push_back(binding);
}
void DxbcCompiler::emitDclStream(const DxbcShaderInstruction& ins) {
if (ins.dst[0].idx[0].offset != 0 && m_moduleInfo.xfb == nullptr)
Logger::err("Dxbc: Multiple streams not supported");
}
void DxbcCompiler::emitDclResourceTyped(const DxbcShaderInstruction& ins) {
// dclResource takes two operands:
// (dst0) The resource register ID
// (imm0) The resource return type
const uint32_t registerId = ins.dst[0].idx[0].offset;
// We also handle unordered access views here
const bool isUav = ins.op == DxbcOpcode::DclUavTyped;
if (isUav) {
if (m_moduleInfo.options.supportsTypedUavLoadR32)
m_module.enableCapability(spv::CapabilityStorageImageReadWithoutFormat);
m_module.enableCapability(spv::CapabilityStorageImageWriteWithoutFormat);
}
// Defines the type of the resource (texture2D, ...)
const DxbcResourceDim resourceType = ins.controls.resourceDim();
// Defines the type of a read operation. DXBC has the ability
// to define four different types whereas SPIR-V only allows
// one, but in practice this should not be much of a problem.
auto xType = static_cast<DxbcResourceReturnType>(
bit::extract(ins.imm[0].u32, 0, 3));
auto yType = static_cast<DxbcResourceReturnType>(
bit::extract(ins.imm[0].u32, 4, 7));
auto zType = static_cast<DxbcResourceReturnType>(
bit::extract(ins.imm[0].u32, 8, 11));
auto wType = static_cast<DxbcResourceReturnType>(
bit::extract(ins.imm[0].u32, 12, 15));
if ((xType != yType) || (xType != zType) || (xType != wType))
Logger::warn("DxbcCompiler: dcl_resource: Ignoring resource return types");
// Declare the actual sampled type
const DxbcScalarType sampledType = [xType] {
switch (xType) {
// FIXME is this correct? There's no documentation about it
case DxbcResourceReturnType::Mixed: return DxbcScalarType::Uint32;
// FIXME do we have to manually clamp writes to SNORM/UNORM resources?
case DxbcResourceReturnType::Snorm: return DxbcScalarType::Float32;
case DxbcResourceReturnType::Unorm: return DxbcScalarType::Float32;
case DxbcResourceReturnType::Float: return DxbcScalarType::Float32;
case DxbcResourceReturnType::Sint: return DxbcScalarType::Sint32;
case DxbcResourceReturnType::Uint: return DxbcScalarType::Uint32;
default: throw DxvkError(str::format("DxbcCompiler: Invalid sampled type: ", xType));
}
}();
// Declare the resource type
const uint32_t sampledTypeId = getScalarTypeId(sampledType);
const DxbcImageInfo typeInfo = getResourceType(resourceType, isUav);
// Declare additional capabilities if necessary
switch (resourceType) {
case DxbcResourceDim::Buffer:
m_module.enableCapability(isUav
? spv::CapabilityImageBuffer
: spv::CapabilitySampledBuffer);
break;
case DxbcResourceDim::Texture1D:
case DxbcResourceDim::Texture1DArr:
m_module.enableCapability(isUav
? spv::CapabilityImage1D
: spv::CapabilitySampled1D);
break;
case DxbcResourceDim::TextureCubeArr:
m_module.enableCapability(
spv::CapabilitySampledCubeArray);
break;
default:
// No additional capabilities required
break;
}
// If the read-without-format capability is not set and this
// image is access via a typed load, or if atomic operations
// are used,, we must define the image format explicitly.
spv::ImageFormat imageFormat = spv::ImageFormatUnknown;
if (isUav) {
if ((m_analysis->uavInfos[registerId].accessAtomicOp)
|| (m_analysis->uavInfos[registerId].accessTypedLoad
&& !m_moduleInfo.options.supportsTypedUavLoadR32))
imageFormat = getScalarImageFormat(sampledType);
}
// We do not know whether the image is going to be used as
// a color image or a depth image yet, but we can pick the
// correct type when creating a sampled image object.
const uint32_t imageTypeId = m_module.defImageType(sampledTypeId,
typeInfo.dim, 0, typeInfo.array, typeInfo.ms, typeInfo.sampled,
imageFormat);
// We'll declare the texture variable with the color type
// and decide which one to use when the texture is sampled.
const uint32_t resourcePtrType = m_module.defPointerType(
imageTypeId, spv::StorageClassUniformConstant);
const uint32_t varId = m_module.newVar(resourcePtrType,
spv::StorageClassUniformConstant);
m_module.setDebugName(varId,
str::format(isUav ? "u" : "t", registerId).c_str());
// Compute the DXVK binding slot index for the resource.
// D3D11 needs to bind the actual resource to this slot.
uint32_t bindingId = isUav
? computeUavBinding(m_programInfo.type(), registerId)
: computeSrvBinding(m_programInfo.type(), registerId);
m_module.decorateDescriptorSet(varId, 0);
m_module.decorateBinding(varId, bindingId);
// Declare a specialization constant which will
// store whether or not the resource is bound.
if (isUav) {
DxbcUav uav;
uav.type = DxbcResourceType::Typed;
uav.imageInfo = typeInfo;
uav.varId = varId;
uav.ctrId = 0;
uav.sampledType = sampledType;
uav.sampledTypeId = sampledTypeId;
uav.imageTypeId = imageTypeId;
uav.structStride = 0;
uav.coherence = getUavCoherence(registerId, ins.controls.uavFlags());
uav.isRawSsbo = false;
m_uavs.at(registerId) = uav;
} else {
DxbcShaderResource res;
res.type = DxbcResourceType::Typed;
res.imageInfo = typeInfo;
res.varId = varId;
res.sampledType = sampledType;
res.sampledTypeId = sampledTypeId;
res.imageTypeId = imageTypeId;
res.colorTypeId = imageTypeId;
res.depthTypeId = 0;
res.structStride = 0;
res.isRawSsbo = false;
if ((sampledType == DxbcScalarType::Float32)
&& (resourceType == DxbcResourceDim::Texture2D
|| resourceType == DxbcResourceDim::Texture2DArr
|| resourceType == DxbcResourceDim::TextureCube
|| resourceType == DxbcResourceDim::TextureCubeArr)) {
res.depthTypeId = m_module.defImageType(sampledTypeId,
typeInfo.dim, 1, typeInfo.array, typeInfo.ms, typeInfo.sampled,
spv::ImageFormatUnknown);
}
m_textures.at(registerId) = res;
}
// Store descriptor info for the shader interface
DxvkBindingInfo binding = { };
binding.viewType = typeInfo.vtype;
binding.resourceBinding = bindingId;
if (isUav) {
binding.descriptorType = resourceType == DxbcResourceDim::Buffer
? VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER
: VK_DESCRIPTOR_TYPE_STORAGE_IMAGE;
binding.access = m_analysis->uavInfos[registerId].accessFlags;
if (!(binding.access & VK_ACCESS_SHADER_WRITE_BIT))
m_module.decorate(varId, spv::DecorationNonWritable);
if (!(binding.access & VK_ACCESS_SHADER_READ_BIT))
m_module.decorate(varId, spv::DecorationNonReadable);
} else {
binding.descriptorType = resourceType == DxbcResourceDim::Buffer
? VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER
: VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
binding.access = VK_ACCESS_SHADER_READ_BIT;
}
m_bindings.push_back(binding);
}
void DxbcCompiler::emitDclResourceRawStructured(const DxbcShaderInstruction& ins) {
// dcl_resource_raw and dcl_uav_raw take one argument:
// (dst0) The resource register ID
// dcl_resource_structured and dcl_uav_structured take two arguments:
// (dst0) The resource register ID
// (imm0) Structure stride, in bytes
const uint32_t registerId = ins.dst[0].idx[0].offset;
const bool isUav = ins.op == DxbcOpcode::DclUavRaw
|| ins.op == DxbcOpcode::DclUavStructured;
const bool isStructured = ins.op == DxbcOpcode::DclUavStructured
|| ins.op == DxbcOpcode::DclResourceStructured;
const DxbcScalarType sampledType = DxbcScalarType::Uint32;
const uint32_t sampledTypeId = getScalarTypeId(sampledType);
const DxbcImageInfo typeInfo = { spv::DimBuffer, 0, 0, isUav ? 2u : 1u, VK_IMAGE_VIEW_TYPE_MAX_ENUM };
// Declare the resource type
uint32_t resTypeId = 0;
uint32_t varId = 0;
// Write back resource info
DxbcResourceType resType = isStructured
? DxbcResourceType::Structured
: DxbcResourceType::Raw;
uint32_t resStride = isStructured
? ins.imm[0].u32
: 0;
uint32_t resAlign = isStructured
? (resStride & -resStride)
: 16;
// Compute the DXVK binding slot index for the resource.
uint32_t bindingId = isUav
? computeUavBinding(m_programInfo.type(), registerId)
: computeSrvBinding(m_programInfo.type(), registerId);
// Test whether we should use a raw SSBO for this resource
bool hasSparseFeedback = isUav
? m_analysis->uavInfos[registerId].sparseFeedback
: m_analysis->srvInfos[registerId].sparseFeedback;
bool useRawSsbo = m_moduleInfo.options.minSsboAlignment <= resAlign && !hasSparseFeedback;
if (useRawSsbo) {
uint32_t elemType = getScalarTypeId(DxbcScalarType::Uint32);
uint32_t arrayType = m_module.defRuntimeArrayTypeUnique(elemType);
uint32_t structType = m_module.defStructTypeUnique(1, &arrayType);
uint32_t ptrType = m_module.defPointerType(structType, spv::StorageClassStorageBuffer);
resTypeId = m_module.defPointerType(elemType, spv::StorageClassStorageBuffer);
varId = m_module.newVar(ptrType, spv::StorageClassStorageBuffer);
m_module.decorateArrayStride(arrayType, sizeof(uint32_t));
m_module.decorate(structType, spv::DecorationBlock);
m_module.memberDecorateOffset(structType, 0, 0);
m_module.setDebugName(structType,
str::format(isUav ? "u" : "t", registerId, "_t").c_str());
m_module.setDebugMemberName(structType, 0, "m");
} else {
// Structured and raw buffers are represented as
// texel buffers consisting of 32-bit integers.
m_module.enableCapability(isUav
? spv::CapabilityImageBuffer
: spv::CapabilitySampledBuffer);
resTypeId = m_module.defImageType(sampledTypeId,
typeInfo.dim, 0, typeInfo.array, typeInfo.ms, typeInfo.sampled,
spv::ImageFormatR32ui);
varId = m_module.newVar(
m_module.defPointerType(resTypeId, spv::StorageClassUniformConstant),
spv::StorageClassUniformConstant);
}
m_module.setDebugName(varId,
str::format(isUav ? "u" : "t", registerId).c_str());
m_module.decorateDescriptorSet(varId, 0);
m_module.decorateBinding(varId, bindingId);
if (isUav) {
DxbcUav uav;
uav.type = resType;
uav.imageInfo = typeInfo;
uav.varId = varId;
uav.ctrId = 0;
uav.sampledType = sampledType;
uav.sampledTypeId = sampledTypeId;
uav.imageTypeId = resTypeId;
uav.structStride = resStride;
uav.coherence = getUavCoherence(registerId, ins.controls.uavFlags());
uav.isRawSsbo = useRawSsbo;
m_uavs.at(registerId) = uav;
} else {
DxbcShaderResource res;
res.type = resType;
res.imageInfo = typeInfo;
res.varId = varId;
res.sampledType = sampledType;
res.sampledTypeId = sampledTypeId;
res.imageTypeId = resTypeId;
res.colorTypeId = resTypeId;
res.depthTypeId = 0;
res.structStride = resStride;
res.isRawSsbo = useRawSsbo;
m_textures.at(registerId) = res;
}
// Store descriptor info for the shader interface
DxvkBindingInfo binding = { };
binding.descriptorType = useRawSsbo
? VK_DESCRIPTOR_TYPE_STORAGE_BUFFER
: (isUav ? VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER : VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER);
binding.viewType = VK_IMAGE_VIEW_TYPE_MAX_ENUM;
binding.resourceBinding = bindingId;
binding.access = isUav
? m_analysis->uavInfos[registerId].accessFlags
: VK_ACCESS_SHADER_READ_BIT;
if (useRawSsbo || isUav) {
if (!(binding.access & VK_ACCESS_SHADER_WRITE_BIT))
m_module.decorate(varId, spv::DecorationNonWritable);
if (!(binding.access & VK_ACCESS_SHADER_READ_BIT))
m_module.decorate(varId, spv::DecorationNonReadable);
}
m_bindings.push_back(binding);
}
void DxbcCompiler::emitDclThreadGroupSharedMemory(const DxbcShaderInstruction& ins) {
// dcl_tgsm_raw takes two arguments:
// (dst0) The resource register ID
// (imm0) Block size, in bytes
// dcl_tgsm_structured takes three arguments:
// (dst0) The resource register ID
// (imm0) Structure stride, in bytes
// (imm1) Structure count
const bool isStructured = ins.op == DxbcOpcode::DclThreadGroupSharedMemoryStructured;
const uint32_t regId = ins.dst[0].idx[0].offset;
if (regId >= m_gRegs.size())
m_gRegs.resize(regId + 1);
const uint32_t elementStride = isStructured ? ins.imm[0].u32 : 0;
const uint32_t elementCount = isStructured ? ins.imm[1].u32 : ins.imm[0].u32;
DxbcRegisterInfo varInfo;
varInfo.type.ctype = DxbcScalarType::Uint32;
varInfo.type.ccount = 1;
varInfo.type.alength = isStructured
? elementCount * elementStride / 4
: elementCount / 4;
varInfo.sclass = spv::StorageClassWorkgroup;
m_gRegs[regId].type = isStructured
? DxbcResourceType::Structured
: DxbcResourceType::Raw;
m_gRegs[regId].elementStride = elementStride;
m_gRegs[regId].elementCount = elementCount;
m_gRegs[regId].varId = emitNewVariable(varInfo);
m_module.setDebugName(m_gRegs[regId].varId,
str::format("g", regId).c_str());
}
void DxbcCompiler::emitDclGsInputPrimitive(const DxbcShaderInstruction& ins) {
// The input primitive type is stored within in the
// control bits of the opcode token. In SPIR-V, we
// have to define an execution mode.
const spv::ExecutionMode mode = [&] {
switch (ins.controls.primitive()) {
case DxbcPrimitive::Point: return spv::ExecutionModeInputPoints;
case DxbcPrimitive::Line: return spv::ExecutionModeInputLines;
case DxbcPrimitive::Triangle: return spv::ExecutionModeTriangles;
case DxbcPrimitive::LineAdj: return spv::ExecutionModeInputLinesAdjacency;
case DxbcPrimitive::TriangleAdj: return spv::ExecutionModeInputTrianglesAdjacency;
default: throw DxvkError("DxbcCompiler: Unsupported primitive type");
}
}();
m_gs.inputPrimitive = ins.controls.primitive();
m_module.setExecutionMode(m_entryPointId, mode);
const uint32_t vertexCount
= primitiveVertexCount(m_gs.inputPrimitive);
emitDclInputArray(vertexCount);
emitDclInputPerVertex(vertexCount, "gs_vertex_in");
}
void DxbcCompiler::emitDclGsOutputTopology(const DxbcShaderInstruction& ins) {
// The input primitive topology is stored within in the
// control bits of the opcode token. In SPIR-V, we have
// to define an execution mode.
const spv::ExecutionMode mode = [&] {
switch (ins.controls.primitiveTopology()) {
case DxbcPrimitiveTopology::PointList: return spv::ExecutionModeOutputPoints;
case DxbcPrimitiveTopology::LineStrip: return spv::ExecutionModeOutputLineStrip;
case DxbcPrimitiveTopology::TriangleStrip: return spv::ExecutionModeOutputTriangleStrip;
default: throw DxvkError("DxbcCompiler: Unsupported primitive topology");
}
}();
m_module.setExecutionMode(m_entryPointId, mode);
}
void DxbcCompiler::emitDclMaxOutputVertexCount(const DxbcShaderInstruction& ins) {
// dcl_max_output_vertex_count has one operand:
// (imm0) The maximum number of vertices
m_gs.outputVertexCount = ins.imm[0].u32;
m_module.setOutputVertices(m_entryPointId, m_gs.outputVertexCount);
}
void DxbcCompiler::emitDclInputControlPointCount(const DxbcShaderInstruction& ins) {
// dcl_input_control_points has the control point
// count embedded within the opcode token.
if (m_programInfo.type() == DxbcProgramType::HullShader) {
m_hs.vertexCountIn = ins.controls.controlPointCount();
emitDclInputArray(m_hs.vertexCountIn);
} else {
m_ds.vertexCountIn = ins.controls.controlPointCount();
m_ds.inputPerPatch = emitTessInterfacePerPatch (spv::StorageClassInput);
m_ds.inputPerVertex = emitTessInterfacePerVertex(spv::StorageClassInput, m_ds.vertexCountIn);
}
}
void DxbcCompiler::emitDclOutputControlPointCount(const DxbcShaderInstruction& ins) {
// dcl_output_control_points has the control point
// count embedded within the opcode token.
m_hs.vertexCountOut = ins.controls.controlPointCount();
m_hs.outputPerPatch = emitTessInterfacePerPatch(spv::StorageClassPrivate);
m_hs.outputPerVertex = emitTessInterfacePerVertex(spv::StorageClassOutput, m_hs.vertexCountOut);
m_module.setOutputVertices(m_entryPointId, m_hs.vertexCountOut);
}
void DxbcCompiler::emitDclHsMaxTessFactor(const DxbcShaderInstruction& ins) {
m_hs.maxTessFactor = ins.imm[0].f32;
}
void DxbcCompiler::emitDclTessDomain(const DxbcShaderInstruction& ins) {
const spv::ExecutionMode executionMode = [&] {
switch (ins.controls.tessDomain()) {
case DxbcTessDomain::Isolines: return spv::ExecutionModeIsolines;
case DxbcTessDomain::Triangles: return spv::ExecutionModeTriangles;
case DxbcTessDomain::Quads: return spv::ExecutionModeQuads;
default: throw DxvkError("Dxbc: Invalid tess domain");
}
}();
m_module.setExecutionMode(m_entryPointId, executionMode);
}
void DxbcCompiler::emitDclTessPartitioning(const DxbcShaderInstruction& ins) {
const spv::ExecutionMode executionMode = [&] {
switch (ins.controls.tessPartitioning()) {
case DxbcTessPartitioning::Pow2:
case DxbcTessPartitioning::Integer: return spv::ExecutionModeSpacingEqual;
case DxbcTessPartitioning::FractOdd: return spv::ExecutionModeSpacingFractionalOdd;
case DxbcTessPartitioning::FractEven: return spv::ExecutionModeSpacingFractionalEven;
default: throw DxvkError("Dxbc: Invalid tess partitioning");
}
}();
m_module.setExecutionMode(m_entryPointId, executionMode);
}
void DxbcCompiler::emitDclTessOutputPrimitive(const DxbcShaderInstruction& ins) {
switch (ins.controls.tessOutputPrimitive()) {
case DxbcTessOutputPrimitive::Point:
m_module.setExecutionMode(m_entryPointId, spv::ExecutionModePointMode);
break;
case DxbcTessOutputPrimitive::Line:
break;
case DxbcTessOutputPrimitive::TriangleCw:
m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeVertexOrderCw);
break;
case DxbcTessOutputPrimitive::TriangleCcw:
m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeVertexOrderCcw);
break;
default:
throw DxvkError("Dxbc: Invalid tess output primitive");
}
}
void DxbcCompiler::emitDclThreadGroup(const DxbcShaderInstruction& ins) {
// dcl_thread_group has three operands:
// (imm0) Number of threads in X dimension
// (imm1) Number of threads in Y dimension
// (imm2) Number of threads in Z dimension
m_cs.workgroupSizeX = ins.imm[0].u32;
m_cs.workgroupSizeY = ins.imm[1].u32;
m_cs.workgroupSizeZ = ins.imm[2].u32;
m_module.setLocalSize(m_entryPointId,
ins.imm[0].u32, ins.imm[1].u32, ins.imm[2].u32);
}
void DxbcCompiler::emitDclGsInstanceCount(const DxbcShaderInstruction& ins) {
// dcl_gs_instance_count has one operand:
// (imm0) Number of geometry shader invocations
m_module.setInvocations(m_entryPointId, ins.imm[0].u32);
m_gs.invocationCount = ins.imm[0].u32;
}
uint32_t DxbcCompiler::emitDclUavCounter(uint32_t regId) {
// Declare a structure type which holds the UAV counter
if (m_uavCtrStructType == 0) {
const uint32_t t_u32 = m_module.defIntType(32, 0);
const uint32_t t_struct = m_module.defStructTypeUnique(1, &t_u32);
m_module.decorate(t_struct, spv::DecorationBlock);
m_module.memberDecorateOffset(t_struct, 0, 0);
m_module.setDebugName (t_struct, "uav_meta");
m_module.setDebugMemberName(t_struct, 0, "ctr");
m_uavCtrStructType = t_struct;
m_uavCtrPointerType = m_module.defPointerType(
t_struct, spv::StorageClassStorageBuffer);
}
// Declare the buffer variable
const uint32_t varId = m_module.newVar(
m_uavCtrPointerType, spv::StorageClassStorageBuffer);
m_module.setDebugName(varId,
str::format("u", regId, "_meta").c_str());
uint32_t bindingId = computeUavCounterBinding(
m_programInfo.type(), regId);
m_module.decorateDescriptorSet(varId, 0);
m_module.decorateBinding(varId, bindingId);
// Declare the storage buffer binding
DxvkBindingInfo binding = { VK_DESCRIPTOR_TYPE_STORAGE_BUFFER };
binding.resourceBinding = bindingId;
binding.viewType = VK_IMAGE_VIEW_TYPE_MAX_ENUM;
binding.access = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT;
m_bindings.push_back(binding);
return varId;
}
void DxbcCompiler::emitDclImmediateConstantBuffer(const DxbcShaderInstruction& ins) {
if (m_immConstBuf != 0)
throw DxvkError("DxbcCompiler: Immediate constant buffer already declared");
if ((ins.customDataSize & 0x3) != 0)
throw DxvkError("DxbcCompiler: Immediate constant buffer size not a multiple of four DWORDs");
if (ins.customDataSize <= Icb_MaxBakedDwords) {
this->emitDclImmediateConstantBufferBaked(
ins.customDataSize, ins.customData);
} else {
this->emitDclImmediateConstantBufferUbo(
ins.customDataSize, ins.customData);
}
}
void DxbcCompiler::emitDclImmediateConstantBufferBaked(
uint32_t dwordCount,
const uint32_t* dwordArray) {
// Declare individual vector constants as 4x32-bit vectors
std::array<uint32_t, 4096> vectorIds;
DxbcVectorType vecType;
vecType.ctype = DxbcScalarType::Uint32;
vecType.ccount = 4;
const uint32_t vectorTypeId = getVectorTypeId(vecType);
const uint32_t vectorCount = dwordCount / 4;
for (uint32_t i = 0; i < vectorCount; i++) {
std::array<uint32_t, 4> scalarIds = {
m_module.constu32(dwordArray[4 * i + 0]),
m_module.constu32(dwordArray[4 * i + 1]),
m_module.constu32(dwordArray[4 * i + 2]),
m_module.constu32(dwordArray[4 * i + 3]),
};
vectorIds.at(i) = m_module.constComposite(
vectorTypeId, scalarIds.size(), scalarIds.data());
}
// Declare the array that contains all the vectors
DxbcArrayType arrInfo;
arrInfo.ctype = DxbcScalarType::Uint32;
arrInfo.ccount = 4;
arrInfo.alength = vectorCount;
const uint32_t arrayTypeId = getArrayTypeId(arrInfo);
const uint32_t arrayId = m_module.constComposite(
arrayTypeId, vectorCount, vectorIds.data());
// Declare the variable that will hold the constant
// data and initialize it with the constant array.
const uint32_t pointerTypeId = m_module.defPointerType(
arrayTypeId, spv::StorageClassPrivate);
m_immConstBuf = m_module.newVarInit(
pointerTypeId, spv::StorageClassPrivate,
arrayId);
m_module.setDebugName(m_immConstBuf, "icb");
m_module.decorate(m_immConstBuf, spv::DecorationNonWritable);
}
void DxbcCompiler::emitDclImmediateConstantBufferUbo(
uint32_t dwordCount,
const uint32_t* dwordArray) {
this->emitDclConstantBufferVar(Icb_BindingSlotId, dwordCount / 4, "icb");
m_immConstData.resize(dwordCount * sizeof(uint32_t));
std::memcpy(m_immConstData.data(), dwordArray, m_immConstData.size());
}
void DxbcCompiler::emitCustomData(const DxbcShaderInstruction& ins) {
switch (ins.customDataType) {
case DxbcCustomDataClass::ImmConstBuf:
return emitDclImmediateConstantBuffer(ins);
default:
Logger::warn(str::format(
"DxbcCompiler: Unsupported custom data block: ",
ins.customDataType));
}
}
void DxbcCompiler::emitVectorAlu(const DxbcShaderInstruction& ins) {
std::array<DxbcRegisterValue, DxbcMaxOperandCount> src;
for (uint32_t i = 0; i < ins.srcCount; i++)
src.at(i) = emitRegisterLoad(ins.src[i], ins.dst[0].mask);
DxbcRegisterValue dst;
dst.type.ctype = ins.dst[0].dataType;
dst.type.ccount = ins.dst[0].mask.popCount();
if (isDoubleType(ins.dst[0].dataType))
dst.type.ccount /= 2;
const uint32_t typeId = getVectorTypeId(dst.type);
switch (ins.op) {
/////////////////////
// Move instructions
case DxbcOpcode::Mov:
case DxbcOpcode::DMov:
dst.id = src.at(0).id;
break;
/////////////////////////////////////
// ALU operations on float32 numbers
case DxbcOpcode::Add:
case DxbcOpcode::DAdd:
dst.id = m_module.opFAdd(typeId,
src.at(0).id, src.at(1).id);
break;
case DxbcOpcode::Div:
case DxbcOpcode::DDiv:
dst.id = m_module.opFDiv(typeId,
src.at(0).id, src.at(1).id);
break;
case DxbcOpcode::Exp:
dst.id = m_module.opExp2(
typeId, src.at(0).id);
break;
case DxbcOpcode::Frc:
dst.id = m_module.opFract(
typeId, src.at(0).id);
break;
case DxbcOpcode::Log:
dst.id = m_module.opLog2(
typeId, src.at(0).id);
break;
case DxbcOpcode::Mad:
case DxbcOpcode::DFma:
dst.id = m_module.opFFma(typeId,
src.at(0).id, src.at(1).id, src.at(2).id);
break;
case DxbcOpcode::Max:
case DxbcOpcode::DMax:
dst.id = m_module.opNMax(typeId,
src.at(0).id, src.at(1).id);
break;
case DxbcOpcode::Min:
case DxbcOpcode::DMin:
dst.id = m_module.opNMin(typeId,
src.at(0).id, src.at(1).id);
break;
case DxbcOpcode::Mul:
case DxbcOpcode::DMul:
dst.id = m_module.opFMul(typeId,
src.at(0).id, src.at(1).id);
break;
case DxbcOpcode::Rcp:
dst.id = m_module.opFDiv(typeId,
emitBuildConstVecf32(
1.0f, 1.0f, 1.0f, 1.0f,
ins.dst[0].mask).id,
src.at(0).id);
break;
case DxbcOpcode::DRcp:
dst.id = m_module.opFDiv(typeId,
emitBuildConstVecf64(1.0, 1.0,
ins.dst[0].mask).id,
src.at(0).id);
break;
case DxbcOpcode::RoundNe:
dst.id = m_module.opRoundEven(
typeId, src.at(0).id);
break;
case DxbcOpcode::RoundNi:
dst.id = m_module.opFloor(
typeId, src.at(0).id);
break;
case DxbcOpcode::RoundPi:
dst.id = m_module.opCeil(
typeId, src.at(0).id);
break;
case DxbcOpcode::RoundZ:
dst.id = m_module.opTrunc(
typeId, src.at(0).id);
break;
case DxbcOpcode::Rsq:
dst.id = m_module.opInverseSqrt(
typeId, src.at(0).id);
break;
case DxbcOpcode::Sqrt:
dst.id = m_module.opSqrt(
typeId, src.at(0).id);
break;
/////////////////////////////////////
// ALU operations on signed integers
case DxbcOpcode::IAdd:
dst.id = m_module.opIAdd(typeId,
src.at(0).id, src.at(1).id);
break;
case DxbcOpcode::IMad:
case DxbcOpcode::UMad:
dst.id = m_module.opIAdd(typeId,
m_module.opIMul(typeId,
src.at(0).id, src.at(1).id),
src.at(2).id);
break;
case DxbcOpcode::IMax:
dst.id = m_module.opSMax(typeId,
src.at(0).id, src.at(1).id);
break;
case DxbcOpcode::IMin:
dst.id = m_module.opSMin(typeId,
src.at(0).id, src.at(1).id);
break;
case DxbcOpcode::INeg:
dst.id = m_module.opSNegate(
typeId, src.at(0).id);
break;
///////////////////////////////////////
// ALU operations on unsigned integers
case DxbcOpcode::UMax:
dst.id = m_module.opUMax(typeId,
src.at(0).id, src.at(1).id);
break;
case DxbcOpcode::UMin:
dst.id = m_module.opUMin(typeId,
src.at(0).id, src.at(1).id);
break;
///////////////////////////////////////
// Bit operations on unsigned integers
case DxbcOpcode::And:
dst.id = m_module.opBitwiseAnd(typeId,
src.at(0).id, src.at(1).id);
break;
case DxbcOpcode::Not:
dst.id = m_module.opNot(
typeId, src.at(0).id);
break;
case DxbcOpcode::Or:
dst.id = m_module.opBitwiseOr(typeId,
src.at(0).id, src.at(1).id);
break;
case DxbcOpcode::Xor:
dst.id = m_module.opBitwiseXor(typeId,
src.at(0).id, src.at(1).id);
break;
case DxbcOpcode::CountBits:
dst.id = m_module.opBitCount(
typeId, src.at(0).id);
break;
case DxbcOpcode::BfRev:
dst.id = m_module.opBitReverse(
typeId, src.at(0).id);
break;
///////////////////////////
// Conversion instructions
case DxbcOpcode::ItoF:
dst.id = m_module.opConvertStoF(
typeId, src.at(0).id);
break;
case DxbcOpcode::UtoF:
dst.id = m_module.opConvertUtoF(
typeId, src.at(0).id);
break;
case DxbcOpcode::FtoI:
dst.id = m_module.opConvertFtoS(
typeId, src.at(0).id);
break;
case DxbcOpcode::FtoU:
dst.id = m_module.opConvertFtoU(
typeId, src.at(0).id);
break;
default:
Logger::warn(str::format(
"DxbcCompiler: Unhandled instruction: ",
ins.op));
return;
}
if (ins.controls.precise() || m_precise)
m_module.decorate(dst.id, spv::DecorationNoContraction);
// Store computed value
dst = emitDstOperandModifiers(dst, ins.modifiers);
emitRegisterStore(ins.dst[0], dst);
}
void DxbcCompiler::emitVectorCmov(const DxbcShaderInstruction& ins) {
// movc and swapc have the following operands:
// (dst0) The first destination register
// (dst1) The second destination register (swapc only)
// (src0) The condition vector
// (src1) Vector to select from if the condition is not 0
// (src2) Vector to select from if the condition is 0
DxbcRegMask condMask = ins.dst[0].mask;
if (ins.dst[0].dataType == DxbcScalarType::Float64) {
condMask = DxbcRegMask(
condMask[0] && condMask[1],
condMask[2] && condMask[3],
false, false);
}
const DxbcRegisterValue condition = emitRegisterLoad(ins.src[0], condMask);
const DxbcRegisterValue selectTrue = emitRegisterLoad(ins.src[1], ins.dst[0].mask);
const DxbcRegisterValue selectFalse = emitRegisterLoad(ins.src[2], ins.dst[0].mask);
uint32_t componentCount = condMask.popCount();
// We'll compare against a vector of zeroes to generate a
// boolean vector, which in turn will be used by OpSelect
uint32_t zeroType = m_module.defIntType(32, 0);
uint32_t boolType = m_module.defBoolType();
uint32_t zero = m_module.constu32(0);
if (componentCount > 1) {
zeroType = m_module.defVectorType(zeroType, componentCount);
boolType = m_module.defVectorType(boolType, componentCount);
const std::array<uint32_t, 4> zeroVec = { zero, zero, zero, zero };
zero = m_module.constComposite(zeroType, componentCount, zeroVec.data());
}
// In case of swapc, the second destination operand receives
// the output that a cmov instruction would normally get
const uint32_t trueIndex = ins.op == DxbcOpcode::Swapc ? 1 : 0;
for (uint32_t i = 0; i < ins.dstCount; i++) {
DxbcRegisterValue result;
result.type.ctype = ins.dst[i].dataType;
result.type.ccount = componentCount;
result.id = m_module.opSelect(
getVectorTypeId(result.type),
m_module.opINotEqual(boolType, condition.id, zero),
i == trueIndex ? selectTrue.id : selectFalse.id,
i != trueIndex ? selectTrue.id : selectFalse.id);
result = emitDstOperandModifiers(result, ins.modifiers);
emitRegisterStore(ins.dst[i], result);
}
}
void DxbcCompiler::emitVectorCmp(const DxbcShaderInstruction& ins) {
// Compare instructions have three operands:
// (dst0) The destination register
// (src0) The first vector to compare
// (src1) The second vector to compare
uint32_t componentCount = ins.dst[0].mask.popCount();
// For 64-bit operations, we'll return a 32-bit
// vector, so we have to adjust the read mask
DxbcRegMask srcMask = ins.dst[0].mask;
if (isDoubleType(ins.src[0].dataType)) {
srcMask = DxbcRegMask(
componentCount > 0, componentCount > 0,
componentCount > 1, componentCount > 1);
}
const std::array<DxbcRegisterValue, 2> src = {
emitRegisterLoad(ins.src[0], srcMask),
emitRegisterLoad(ins.src[1], srcMask),
};
// Condition, which is a boolean vector used
// to select between the ~0u and 0u vectors.
uint32_t condition = 0;
uint32_t conditionType = m_module.defBoolType();
if (componentCount > 1)
conditionType = m_module.defVectorType(conditionType, componentCount);
bool invert = false;
switch (ins.op) {
case DxbcOpcode::Ne:
case DxbcOpcode::DNe:
invert = true;
[[fallthrough]];
case DxbcOpcode::Eq:
case DxbcOpcode::DEq:
condition = m_module.opFOrdEqual(
conditionType, src.at(0).id, src.at(1).id);
break;
case DxbcOpcode::Ge:
case DxbcOpcode::DGe:
condition = m_module.opFOrdGreaterThanEqual(
conditionType, src.at(0).id, src.at(1).id);
break;
case DxbcOpcode::Lt:
case DxbcOpcode::DLt:
condition = m_module.opFOrdLessThan(
conditionType, src.at(0).id, src.at(1).id);
break;
case DxbcOpcode::IEq:
condition = m_module.opIEqual(
conditionType, src.at(0).id, src.at(1).id);
break;
case DxbcOpcode::IGe:
condition = m_module.opSGreaterThanEqual(
conditionType, src.at(0).id, src.at(1).id);
break;
case DxbcOpcode::ILt:
condition = m_module.opSLessThan(
conditionType, src.at(0).id, src.at(1).id);
break;
case DxbcOpcode::INe:
condition = m_module.opINotEqual(
conditionType, src.at(0).id, src.at(1).id);
break;
case DxbcOpcode::UGe:
condition = m_module.opUGreaterThanEqual(
conditionType, src.at(0).id, src.at(1).id);
break;
case DxbcOpcode::ULt:
condition = m_module.opULessThan(
conditionType, src.at(0).id, src.at(1).id);
break;
default:
Logger::warn(str::format(
"DxbcCompiler: Unhandled instruction: ",
ins.op));
return;
}
// Generate constant vectors for selection
uint32_t sFalse = m_module.constu32( 0u);
uint32_t sTrue = m_module.constu32(~0u);
DxbcRegisterValue result;
result.type.ctype = DxbcScalarType::Uint32;
result.type.ccount = componentCount;
const uint32_t typeId = getVectorTypeId(result.type);
if (componentCount > 1) {
const std::array<uint32_t, 4> vFalse = { sFalse, sFalse, sFalse, sFalse };
const std::array<uint32_t, 4> vTrue = { sTrue, sTrue, sTrue, sTrue };
sFalse = m_module.constComposite(typeId, componentCount, vFalse.data());
sTrue = m_module.constComposite(typeId, componentCount, vTrue .data());
}
if (invert)
std::swap(sFalse, sTrue);
// Perform component-wise mask selection
// based on the condition evaluated above.
result.id = m_module.opSelect(
typeId, condition, sTrue, sFalse);
emitRegisterStore(ins.dst[0], result);
}
void DxbcCompiler::emitVectorDeriv(const DxbcShaderInstruction& ins) {
// Derivative instructions have two operands:
// (dst0) Destination register for the derivative
// (src0) The operand to compute the derivative of
DxbcRegisterValue value = emitRegisterLoad(ins.src[0], ins.dst[0].mask);
const uint32_t typeId = getVectorTypeId(value.type);
switch (ins.op) {
case DxbcOpcode::DerivRtx:
value.id = m_module.opDpdx(typeId, value.id);
break;
case DxbcOpcode::DerivRty:
value.id = m_module.opDpdy(typeId, value.id);
break;
case DxbcOpcode::DerivRtxCoarse:
value.id = m_module.opDpdxCoarse(typeId, value.id);
break;
case DxbcOpcode::DerivRtyCoarse:
value.id = m_module.opDpdyCoarse(typeId, value.id);
break;
case DxbcOpcode::DerivRtxFine:
value.id = m_module.opDpdxFine(typeId, value.id);
break;
case DxbcOpcode::DerivRtyFine:
value.id = m_module.opDpdyFine(typeId, value.id);
break;
default:
Logger::warn(str::format(
"DxbcCompiler: Unhandled instruction: ",
ins.op));
return;
}
value = emitDstOperandModifiers(value, ins.modifiers);
emitRegisterStore(ins.dst[0], value);
}
void DxbcCompiler::emitVectorDot(const DxbcShaderInstruction& ins) {
const DxbcRegMask srcMask(true,
ins.op >= DxbcOpcode::Dp2,
ins.op >= DxbcOpcode::Dp3,
ins.op >= DxbcOpcode::Dp4);
const std::array<DxbcRegisterValue, 2> src = {
emitRegisterLoad(ins.src[0], srcMask),
emitRegisterLoad(ins.src[1], srcMask),
};
DxbcRegisterValue dst;
dst.type.ctype = ins.dst[0].dataType;
dst.type.ccount = 1;
dst.id = m_module.opDot(
getVectorTypeId(dst.type),
src.at(0).id,
src.at(1).id);
if (ins.controls.precise() || m_precise)
m_module.decorate(dst.id, spv::DecorationNoContraction);
dst = emitDstOperandModifiers(dst, ins.modifiers);
emitRegisterStore(ins.dst[0], dst);
}
void DxbcCompiler::emitVectorIdiv(const DxbcShaderInstruction& ins) {
// udiv has four operands:
// (dst0) Quotient destination register
// (dst1) Remainder destination register
// (src0) The first vector to compare
// (src1) The second vector to compare
if (ins.dst[0].type == DxbcOperandType::Null
&& ins.dst[1].type == DxbcOperandType::Null)
return;
// FIXME support this if applications require it
if (ins.dst[0].type != DxbcOperandType::Null
&& ins.dst[1].type != DxbcOperandType::Null
&& ins.dst[0].mask != ins.dst[1].mask) {
Logger::warn("DxbcCompiler: Idiv with different destination masks not supported");
return;
}
// Load source operands as integers with the
// mask of one non-NULL destination operand
const DxbcRegMask srcMask =
ins.dst[0].type != DxbcOperandType::Null
? ins.dst[0].mask
: ins.dst[1].mask;
const std::array<DxbcRegisterValue, 2> src = {
emitRegisterLoad(ins.src[0], srcMask),
emitRegisterLoad(ins.src[1], srcMask),
};
// Division by zero will return 0xffffffff for both results
auto bvecId = getVectorTypeId({ DxbcScalarType::Bool, srcMask.popCount() });
DxbcRegisterValue const0 = emitBuildConstVecu32( 0u, 0u, 0u, 0u, srcMask);
DxbcRegisterValue constff = emitBuildConstVecu32(~0u, ~0u, ~0u, ~0u, srcMask);
uint32_t cmpValue = m_module.opINotEqual(bvecId, src.at(1).id, const0.id);
// Compute results only if the destination
// operands are not NULL.
if (ins.dst[0].type != DxbcOperandType::Null) {
DxbcRegisterValue quotient;
quotient.type.ctype = ins.dst[0].dataType;
quotient.type.ccount = ins.dst[0].mask.popCount();
quotient.id = m_module.opUDiv(
getVectorTypeId(quotient.type),
src.at(0).id, src.at(1).id);
quotient.id = m_module.opSelect(
getVectorTypeId(quotient.type),
cmpValue, quotient.id, constff.id);
quotient = emitDstOperandModifiers(quotient, ins.modifiers);
emitRegisterStore(ins.dst[0], quotient);
}
if (ins.dst[1].type != DxbcOperandType::Null) {
DxbcRegisterValue remainder;
remainder.type.ctype = ins.dst[1].dataType;
remainder.type.ccount = ins.dst[1].mask.popCount();
remainder.id = m_module.opUMod(
getVectorTypeId(remainder.type),
src.at(0).id, src.at(1).id);
remainder.id = m_module.opSelect(
getVectorTypeId(remainder.type),
cmpValue, remainder.id, constff.id);
remainder = emitDstOperandModifiers(remainder, ins.modifiers);
emitRegisterStore(ins.dst[1], remainder);
}
}
void DxbcCompiler::emitVectorImul(const DxbcShaderInstruction& ins) {
// imul and umul have four operands:
// (dst0) High destination register
// (dst1) Low destination register
// (src0) The first vector to compare
// (src1) The second vector to compare
if (ins.dst[0].type == DxbcOperandType::Null) {
if (ins.dst[1].type == DxbcOperandType::Null)
return;
// If dst0 is NULL, this instruction behaves just
// like any other three-operand ALU instruction
const std::array<DxbcRegisterValue, 2> src = {
emitRegisterLoad(ins.src[0], ins.dst[1].mask),
emitRegisterLoad(ins.src[1], ins.dst[1].mask),
};
DxbcRegisterValue result;
result.type.ctype = ins.dst[1].dataType;
result.type.ccount = ins.dst[1].mask.popCount();
result.id = m_module.opIMul(
getVectorTypeId(result.type),
src.at(0).id, src.at(1).id);
result = emitDstOperandModifiers(result, ins.modifiers);
emitRegisterStore(ins.dst[1], result);
} else {
// TODO implement this
Logger::warn("DxbcCompiler: Extended Imul not yet supported");
}
}
void DxbcCompiler::emitVectorMsad(const DxbcShaderInstruction& ins) {
// msad has four operands:
// (dst0) Destination
// (src0) Reference (packed uint8)
// (src1) Source (packed uint8)
// (src2) Accumulator
DxbcRegisterValue refReg = emitRegisterLoad(ins.src[0], ins.dst[0].mask);
DxbcRegisterValue srcReg = emitRegisterLoad(ins.src[1], ins.dst[0].mask);
DxbcRegisterValue result = emitRegisterLoad(ins.src[2], ins.dst[0].mask);
auto typeId = getVectorTypeId(result.type);
auto bvecId = getVectorTypeId({ DxbcScalarType::Bool, result.type.ccount });
for (uint32_t i = 0; i < 4; i++) {
auto shift = m_module.constu32(8 * i);
auto count = m_module.constu32(8);
auto ref = m_module.opBitFieldUExtract(typeId, refReg.id, shift, count);
auto src = m_module.opBitFieldUExtract(typeId, srcReg.id, shift, count);
auto zero = emitBuildConstVecu32(0, 0, 0, 0, ins.dst[0].mask);
auto mask = m_module.opINotEqual(bvecId, ref, zero.id);
auto diff = m_module.opSAbs(typeId, m_module.opISub(typeId, ref, src));
result.id = m_module.opSelect(typeId, mask, m_module.opIAdd(typeId, result.id, diff), result.id);
}
result = emitDstOperandModifiers(result, ins.modifiers);
emitRegisterStore(ins.dst[0], result);
}
void DxbcCompiler::emitVectorShift(const DxbcShaderInstruction& ins) {
// Shift operations have three operands:
// (dst0) The destination register
// (src0) The register to shift
// (src1) The shift amount (scalar)
DxbcRegisterValue shiftReg = emitRegisterLoad(ins.src[0], ins.dst[0].mask);
DxbcRegisterValue countReg = emitRegisterLoad(ins.src[1], ins.dst[0].mask);
if (ins.src[1].type != DxbcOperandType::Imm32)
countReg = emitRegisterMaskBits(countReg, 0x1F);
if (countReg.type.ccount == 1)
countReg = emitRegisterExtend(countReg, shiftReg.type.ccount);
DxbcRegisterValue result;
result.type.ctype = ins.dst[0].dataType;
result.type.ccount = ins.dst[0].mask.popCount();
switch (ins.op) {
case DxbcOpcode::IShl:
result.id = m_module.opShiftLeftLogical(
getVectorTypeId(result.type),
shiftReg.id, countReg.id);
break;
case DxbcOpcode::IShr:
result.id = m_module.opShiftRightArithmetic(
getVectorTypeId(result.type),
shiftReg.id, countReg.id);
break;
case DxbcOpcode::UShr:
result.id = m_module.opShiftRightLogical(
getVectorTypeId(result.type),
shiftReg.id, countReg.id);
break;
default:
Logger::warn(str::format(
"DxbcCompiler: Unhandled instruction: ",
ins.op));
return;
}
result = emitDstOperandModifiers(result, ins.modifiers);
emitRegisterStore(ins.dst[0], result);
}
void DxbcCompiler::emitVectorSinCos(const DxbcShaderInstruction& ins) {
// sincos has three operands:
// (dst0) Destination register for sin(x)
// (dst1) Destination register for cos(x)
// (src0) Source operand x
// Load source operand as 32-bit float vector.
const DxbcRegisterValue srcValue = emitRegisterLoad(
ins.src[0], DxbcRegMask(true, true, true, true));
// Either output may be DxbcOperandType::Null, in
// which case we don't have to generate any code.
if (ins.dst[0].type != DxbcOperandType::Null) {
const DxbcRegisterValue sinInput =
emitRegisterExtract(srcValue, ins.dst[0].mask);
DxbcRegisterValue sin;
sin.type = sinInput.type;
sin.id = m_module.opSin(
getVectorTypeId(sin.type),
sinInput.id);
emitRegisterStore(ins.dst[0], sin);
}
if (ins.dst[1].type != DxbcOperandType::Null) {
const DxbcRegisterValue cosInput =
emitRegisterExtract(srcValue, ins.dst[1].mask);
DxbcRegisterValue cos;
cos.type = cosInput.type;
cos.id = m_module.opCos(
getVectorTypeId(cos.type),
cosInput.id);
emitRegisterStore(ins.dst[1], cos);
}
}
void DxbcCompiler::emitGeometryEmit(const DxbcShaderInstruction& ins) {
// In xfb mode we might have multiple streams, so
// we have to figure out which stream to write to
uint32_t streamId = 0;
uint32_t streamVar = 0;
if (m_moduleInfo.xfb != nullptr) {
streamId = ins.dstCount > 0 ? ins.dst[0].idx[0].offset : 0;
streamVar = m_module.constu32(streamId);
}
// Checking the negation is easier for EmitThenCut/EmitThenCutStream
bool doEmit = ins.op != DxbcOpcode::Cut && ins.op != DxbcOpcode::CutStream;
bool doCut = ins.op != DxbcOpcode::Emit && ins.op != DxbcOpcode::EmitStream;
if (doEmit) {
if (m_perVertexOut)
emitOutputSetup();
emitClipCullStore(DxbcSystemValue::ClipDistance, m_clipDistances);
emitClipCullStore(DxbcSystemValue::CullDistance, m_cullDistances);
emitXfbOutputSetup(streamId, false);
m_module.opEmitVertex(streamVar);
}
if (doCut)
m_module.opEndPrimitive(streamVar);
}
void DxbcCompiler::emitAtomic(const DxbcShaderInstruction& ins) {
// atomic_* operations have the following operands:
// (dst0) Destination u# or g# register
// (src0) Index into the texture or buffer
// (src1) The source value for the operation
// (src2) Second source operand (optional)
// imm_atomic_* operations have the following operands:
// (dst0) Register that receives the result
// (dst1) Destination u# or g# register
// (srcX) As above
const DxbcBufferInfo bufferInfo = getBufferInfo(ins.dst[ins.dstCount - 1]);
bool isImm = ins.dstCount == 2;
bool isUav = ins.dst[ins.dstCount - 1].type == DxbcOperandType::UnorderedAccessView;
bool isSsbo = bufferInfo.isSsbo;
// Retrieve destination pointer for the atomic operation>
const DxbcRegisterPointer pointer = emitGetAtomicPointer(
ins.dst[ins.dstCount - 1], ins.src[0]);
// Load source values
std::array<DxbcRegisterValue, 2> src;
for (uint32_t i = 1; i < ins.srcCount; i++) {
src[i - 1] = emitRegisterBitcast(
emitRegisterLoad(ins.src[i], DxbcRegMask(true, false, false, false)),
pointer.type.ctype);
}
// Define memory scope and semantics based on the operands
uint32_t scope = 0;
uint32_t semantics = 0;
if (isUav) {
scope = spv::ScopeQueueFamily;
semantics = spv::MemorySemanticsAcquireReleaseMask;
semantics |= isSsbo
? spv::MemorySemanticsUniformMemoryMask
: spv::MemorySemanticsImageMemoryMask;
} else {
scope = spv::ScopeWorkgroup;
semantics = spv::MemorySemanticsWorkgroupMemoryMask
| spv::MemorySemanticsAcquireReleaseMask;
}
const uint32_t scopeId = m_module.constu32(scope);
const uint32_t semanticsId = m_module.constu32(semantics);
// Perform the atomic operation on the given pointer
DxbcRegisterValue value;
value.type = pointer.type;
value.id = 0;
// The result type, which is a scalar integer
const uint32_t typeId = getVectorTypeId(value.type);
switch (ins.op) {
case DxbcOpcode::AtomicCmpStore:
case DxbcOpcode::ImmAtomicCmpExch:
value.id = m_module.opAtomicCompareExchange(
typeId, pointer.id, scopeId, semanticsId,
m_module.constu32(spv::MemorySemanticsMaskNone),
src[1].id, src[0].id);
break;
case DxbcOpcode::ImmAtomicExch:
value.id = m_module.opAtomicExchange(typeId,
pointer.id, scopeId, semanticsId,
src[0].id);
break;
case DxbcOpcode::AtomicIAdd:
case DxbcOpcode::ImmAtomicIAdd:
value.id = m_module.opAtomicIAdd(typeId,
pointer.id, scopeId, semanticsId,
src[0].id);
break;
case DxbcOpcode::AtomicAnd:
case DxbcOpcode::ImmAtomicAnd:
value.id = m_module.opAtomicAnd(typeId,
pointer.id, scopeId, semanticsId,
src[0].id);
break;
case DxbcOpcode::AtomicOr:
case DxbcOpcode::ImmAtomicOr:
value.id = m_module.opAtomicOr(typeId,
pointer.id, scopeId, semanticsId,
src[0].id);
break;
case DxbcOpcode::AtomicXor:
case DxbcOpcode::ImmAtomicXor:
value.id = m_module.opAtomicXor(typeId,
pointer.id, scopeId, semanticsId,
src[0].id);
break;
case DxbcOpcode::AtomicIMin:
case DxbcOpcode::ImmAtomicIMin:
value.id = m_module.opAtomicSMin(typeId,
pointer.id, scopeId, semanticsId,
src[0].id);
break;
case DxbcOpcode::AtomicIMax:
case DxbcOpcode::ImmAtomicIMax:
value.id = m_module.opAtomicSMax(typeId,
pointer.id, scopeId, semanticsId,
src[0].id);
break;
case DxbcOpcode::AtomicUMin:
case DxbcOpcode::ImmAtomicUMin:
value.id = m_module.opAtomicUMin(typeId,
pointer.id, scopeId, semanticsId,
src[0].id);
break;
case DxbcOpcode::AtomicUMax:
case DxbcOpcode::ImmAtomicUMax:
value.id = m_module.opAtomicUMax(typeId,
pointer.id, scopeId, semanticsId,
src[0].id);
break;
default:
Logger::warn(str::format(
"DxbcCompiler: Unhandled instruction: ",
ins.op));
return;
}
// Write back the result to the destination
// register if this is an imm_atomic_* opcode.
if (isImm)
emitRegisterStore(ins.dst[0], value);
}
void DxbcCompiler::emitAtomicCounter(const DxbcShaderInstruction& ins) {
// imm_atomic_alloc and imm_atomic_consume have the following operands:
// (dst0) The register that will hold the old counter value
// (dst1) The UAV whose counter is going to be modified
const uint32_t registerId = ins.dst[1].idx[0].offset;
if (m_uavs.at(registerId).ctrId == 0)
m_uavs.at(registerId).ctrId = emitDclUavCounter(registerId);
// Only use subgroup ops on compute to avoid having to
// deal with helper invocations or hardware limitations
bool useSubgroupOps = m_moduleInfo.options.useSubgroupOpsForAtomicCounters
&& m_programInfo.type() == DxbcProgramType::ComputeShader;
// Current block ID used in a phi later on
uint32_t baseBlockId = m_module.getBlockId();
// In case we have subgroup ops enabled, we need to
// count the number of active lanes, the lane index,
// and we need to perform the atomic op conditionally
uint32_t laneCount = 0;
uint32_t laneIndex = 0;
DxbcConditional elect;
if (useSubgroupOps) {
m_module.enableCapability(spv::CapabilityGroupNonUniform);
m_module.enableCapability(spv::CapabilityGroupNonUniformBallot);
uint32_t ballot = m_module.opGroupNonUniformBallot(
getVectorTypeId({ DxbcScalarType::Uint32, 4 }),
m_module.constu32(spv::ScopeSubgroup),
m_module.constBool(true));
laneCount = m_module.opGroupNonUniformBallotBitCount(
getScalarTypeId(DxbcScalarType::Uint32),
m_module.constu32(spv::ScopeSubgroup),
spv::GroupOperationReduce, ballot);
laneIndex = m_module.opGroupNonUniformBallotBitCount(
getScalarTypeId(DxbcScalarType::Uint32),
m_module.constu32(spv::ScopeSubgroup),
spv::GroupOperationExclusiveScan, ballot);
// Elect one lane to perform the atomic op
uint32_t election = m_module.opGroupNonUniformElect(
m_module.defBoolType(),
m_module.constu32(spv::ScopeSubgroup));
elect.labelIf = m_module.allocateId();
elect.labelEnd = m_module.allocateId();
m_module.opSelectionMerge(elect.labelEnd, spv::SelectionControlMaskNone);
m_module.opBranchConditional(election, elect.labelIf, elect.labelEnd);
m_module.opLabel(elect.labelIf);
} else {
// We're going to use this for the increment
laneCount = m_module.constu32(1);
}
// Get a pointer to the atomic counter in question
DxbcRegisterInfo ptrType;
ptrType.type.ctype = DxbcScalarType::Uint32;
ptrType.type.ccount = 1;
ptrType.type.alength = 0;
ptrType.sclass = spv::StorageClassStorageBuffer;
uint32_t zeroId = m_module.consti32(0);
uint32_t ptrId = m_module.opAccessChain(
getPointerTypeId(ptrType),
m_uavs.at(registerId).ctrId,
1, &zeroId);
// Define memory scope and semantics based on the operands
uint32_t scope = spv::ScopeQueueFamily;
uint32_t semantics = spv::MemorySemanticsUniformMemoryMask
| spv::MemorySemanticsAcquireReleaseMask;
uint32_t scopeId = m_module.constu32(scope);
uint32_t semanticsId = m_module.constu32(semantics);
// Compute the result value
DxbcRegisterValue value;
value.type.ctype = DxbcScalarType::Uint32;
value.type.ccount = 1;
uint32_t typeId = getVectorTypeId(value.type);
switch (ins.op) {
case DxbcOpcode::ImmAtomicAlloc:
value.id = m_module.opAtomicIAdd(typeId, ptrId,
scopeId, semanticsId, laneCount);
break;
case DxbcOpcode::ImmAtomicConsume:
value.id = m_module.opAtomicISub(typeId, ptrId,
scopeId, semanticsId, laneCount);
value.id = m_module.opISub(typeId, value.id, laneCount);
break;
default:
Logger::warn(str::format(
"DxbcCompiler: Unhandled instruction: ",
ins.op));
return;
}
// If we're using subgroup ops, we have to broadcast
// the result of the atomic op and compute the index
if (useSubgroupOps) {
m_module.opBranch(elect.labelEnd);
m_module.opLabel (elect.labelEnd);
uint32_t undef = m_module.constUndef(typeId);
std::array<SpirvPhiLabel, 2> phiLabels = {{
{ value.id, elect.labelIf },
{ undef, baseBlockId },
}};
value.id = m_module.opPhi(typeId,
phiLabels.size(), phiLabels.data());
value.id = m_module.opGroupNonUniformBroadcastFirst(typeId,
m_module.constu32(spv::ScopeSubgroup), value.id);
value.id = m_module.opIAdd(typeId, value.id, laneIndex);
}
// Store the result
emitRegisterStore(ins.dst[0], value);
}
void DxbcCompiler::emitBarrier(const DxbcShaderInstruction& ins) {
// sync takes no operands. Instead, the synchronization
// scope is defined by the operand control bits.
const DxbcSyncFlags flags = ins.controls.syncFlags();
uint32_t executionScope = spv::ScopeInvocation;
uint32_t memoryScope = spv::ScopeInvocation;
uint32_t memorySemantics = 0;
if (flags.test(DxbcSyncFlag::ThreadsInGroup))
executionScope = spv::ScopeWorkgroup;
if (flags.test(DxbcSyncFlag::ThreadGroupSharedMemory)) {
memoryScope = spv::ScopeWorkgroup;
memorySemantics |= spv::MemorySemanticsWorkgroupMemoryMask
| spv::MemorySemanticsAcquireReleaseMask
| spv::MemorySemanticsMakeAvailableMask
| spv::MemorySemanticsMakeVisibleMask;
}
if (flags.test(DxbcSyncFlag::UavMemoryGroup)) {
memoryScope = spv::ScopeWorkgroup;
memorySemantics |= spv::MemorySemanticsImageMemoryMask
| spv::MemorySemanticsUniformMemoryMask
| spv::MemorySemanticsAcquireReleaseMask;
}
if (flags.test(DxbcSyncFlag::UavMemoryGlobal)) {
memoryScope = spv::ScopeQueueFamily;
memorySemantics |= spv::MemorySemanticsImageMemoryMask
| spv::MemorySemanticsUniformMemoryMask
| spv::MemorySemanticsAcquireReleaseMask;
}
if (executionScope != spv::ScopeInvocation) {
m_module.opControlBarrier(
m_module.constu32(executionScope),
m_module.constu32(memoryScope),
m_module.constu32(memorySemantics));
} else if (memoryScope != spv::ScopeInvocation) {
m_module.opMemoryBarrier(
m_module.constu32(memoryScope),
m_module.constu32(memorySemantics));
} else {
Logger::warn("DxbcCompiler: sync instruction has no effect");
}
}
void DxbcCompiler::emitBitExtract(const DxbcShaderInstruction& ins) {
// ibfe and ubfe take the following arguments:
// (dst0) The destination register
// (src0) Number of bits to extact
// (src1) Offset of the bits to extract
// (src2) Register to extract bits from
const bool isSigned = ins.op == DxbcOpcode::IBfe;
DxbcRegisterValue bitCnt = emitRegisterLoad(ins.src[0], ins.dst[0].mask);
DxbcRegisterValue bitOfs = emitRegisterLoad(ins.src[1], ins.dst[0].mask);
if (ins.src[0].type != DxbcOperandType::Imm32)
bitCnt = emitRegisterMaskBits(bitCnt, 0x1F);
if (ins.src[1].type != DxbcOperandType::Imm32)
bitOfs = emitRegisterMaskBits(bitOfs, 0x1F);
const DxbcRegisterValue src = emitRegisterLoad(ins.src[2], ins.dst[0].mask);
const uint32_t componentCount = src.type.ccount;
std::array<uint32_t, 4> componentIds = {{ 0, 0, 0, 0 }};
for (uint32_t i = 0; i < componentCount; i++) {
const DxbcRegisterValue currBitCnt = emitRegisterExtract(bitCnt, DxbcRegMask::select(i));
const DxbcRegisterValue currBitOfs = emitRegisterExtract(bitOfs, DxbcRegMask::select(i));
const DxbcRegisterValue currSrc = emitRegisterExtract(src, DxbcRegMask::select(i));
const uint32_t typeId = getVectorTypeId(currSrc.type);
componentIds[i] = isSigned
? m_module.opBitFieldSExtract(typeId, currSrc.id, currBitOfs.id, currBitCnt.id)
: m_module.opBitFieldUExtract(typeId, currSrc.id, currBitOfs.id, currBitCnt.id);
}
DxbcRegisterValue result;
result.type = src.type;
result.id = componentCount > 1
? m_module.opCompositeConstruct(
getVectorTypeId(result.type),
componentCount, componentIds.data())
: componentIds[0];
emitRegisterStore(ins.dst[0], result);
}
void DxbcCompiler::emitBitInsert(const DxbcShaderInstruction& ins) {
// ibfe and ubfe take the following arguments:
// (dst0) The destination register
// (src0) Number of bits to extact
// (src1) Offset of the bits to extract
// (src2) Register to take bits from
// (src3) Register to replace bits in
DxbcRegisterValue bitCnt = emitRegisterLoad(ins.src[0], ins.dst[0].mask);
DxbcRegisterValue bitOfs = emitRegisterLoad(ins.src[1], ins.dst[0].mask);
if (ins.src[0].type != DxbcOperandType::Imm32)
bitCnt = emitRegisterMaskBits(bitCnt, 0x1F);
if (ins.src[1].type != DxbcOperandType::Imm32)
bitOfs = emitRegisterMaskBits(bitOfs, 0x1F);
const DxbcRegisterValue insert = emitRegisterLoad(ins.src[2], ins.dst[0].mask);
const DxbcRegisterValue base = emitRegisterLoad(ins.src[3], ins.dst[0].mask);
const uint32_t componentCount = base.type.ccount;
std::array<uint32_t, 4> componentIds = {{ 0, 0, 0, 0 }};
for (uint32_t i = 0; i < componentCount; i++) {
const DxbcRegisterValue currBitCnt = emitRegisterExtract(bitCnt, DxbcRegMask::select(i));
const DxbcRegisterValue currBitOfs = emitRegisterExtract(bitOfs, DxbcRegMask::select(i));
const DxbcRegisterValue currInsert = emitRegisterExtract(insert, DxbcRegMask::select(i));
const DxbcRegisterValue currBase = emitRegisterExtract(base, DxbcRegMask::select(i));
componentIds[i] = m_module.opBitFieldInsert(
getVectorTypeId(currBase.type),
currBase.id, currInsert.id,
currBitOfs.id, currBitCnt.id);
}
DxbcRegisterValue result;
result.type = base.type;
result.id = componentCount > 1
? m_module.opCompositeConstruct(
getVectorTypeId(result.type),
componentCount, componentIds.data())
: componentIds[0];
emitRegisterStore(ins.dst[0], result);
}
void DxbcCompiler::emitBitScan(const DxbcShaderInstruction& ins) {
// firstbit(lo|hi|shi) have two operands:
// (dst0) The destination operant
// (src0) Source operand to scan
DxbcRegisterValue src = emitRegisterLoad(ins.src[0], ins.dst[0].mask);
DxbcRegisterValue dst;
dst.type.ctype = ins.dst[0].dataType;
dst.type.ccount = ins.dst[0].mask.popCount();
// Result type, should be an unsigned integer
const uint32_t typeId = getVectorTypeId(dst.type);
switch (ins.op) {
case DxbcOpcode::FirstBitLo: dst.id = m_module.opFindILsb(typeId, src.id); break;
case DxbcOpcode::FirstBitHi: dst.id = m_module.opFindUMsb(typeId, src.id); break;
case DxbcOpcode::FirstBitShi: dst.id = m_module.opFindSMsb(typeId, src.id); break;
default: Logger::warn(str::format("DxbcCompiler: Unhandled instruction: ", ins.op)); return;
}
// The 'Hi' variants are counted from the MSB in DXBC
// rather than the LSB, so we have to invert the number
if (ins.op == DxbcOpcode::FirstBitHi || ins.op == DxbcOpcode::FirstBitShi) {
uint32_t boolTypeId = m_module.defBoolType();
if (dst.type.ccount > 1)
boolTypeId = m_module.defVectorType(boolTypeId, dst.type.ccount);
DxbcRegisterValue const31 = emitBuildConstVecu32(31u, 31u, 31u, 31u, ins.dst[0].mask);
DxbcRegisterValue constff = emitBuildConstVecu32(~0u, ~0u, ~0u, ~0u, ins.dst[0].mask);
dst.id = m_module.opSelect(typeId,
m_module.opINotEqual(boolTypeId, dst.id, constff.id),
m_module.opISub(typeId, const31.id, dst.id),
constff.id);
}
// No modifiers are supported
emitRegisterStore(ins.dst[0], dst);
}
void DxbcCompiler::emitBufferQuery(const DxbcShaderInstruction& ins) {
// bufinfo takes two arguments
// (dst0) The destination register
// (src0) The buffer register to query
const DxbcBufferInfo bufferInfo = getBufferInfo(ins.src[0]);
bool isSsbo = bufferInfo.isSsbo;
// We'll store this as a scalar unsigned integer
DxbcRegisterValue result = isSsbo
? emitQueryBufferSize(ins.src[0])
: emitQueryTexelBufferSize(ins.src[0]);
uint32_t typeId = getVectorTypeId(result.type);
// Adjust returned size if this is a raw or structured
// buffer, as emitQueryTexelBufferSize only returns the
// number of typed elements in the buffer.
if (bufferInfo.type == DxbcResourceType::Raw) {
result.id = m_module.opIMul(typeId,
result.id, m_module.constu32(4));
} else if (bufferInfo.type == DxbcResourceType::Structured) {
result.id = m_module.opUDiv(typeId, result.id,
m_module.constu32(bufferInfo.stride / 4));
}
// Store the result. The scalar will be extended to a
// vector if the write mask consists of more than one
// component, which is the desired behaviour.
emitRegisterStore(ins.dst[0], result);
}
void DxbcCompiler::emitBufferLoad(const DxbcShaderInstruction& ins) {
// ld_raw takes three arguments:
// (dst0) Destination register
// (src0) Byte offset
// (src1) Source register
// ld_structured takes four arguments:
// (dst0) Destination register
// (src0) Structure index
// (src1) Byte offset
// (src2) Source register
const bool isStructured = ins.op == DxbcOpcode::LdStructured
|| ins.op == DxbcOpcode::LdStructuredS;
// Source register. The exact way we access
// the data depends on the register type.
const DxbcRegister& dstReg = ins.dst[0];
const DxbcRegister& srcReg = isStructured ? ins.src[2] : ins.src[1];
// Retrieve common info about the buffer
const DxbcBufferInfo bufferInfo = getBufferInfo(srcReg);
// Compute element index
const DxbcRegisterValue elementIndex = isStructured
? emitCalcBufferIndexStructured(
emitRegisterLoad(ins.src[0], DxbcRegMask(true, false, false, false)),
emitRegisterLoad(ins.src[1], DxbcRegMask(true, false, false, false)),
bufferInfo.stride)
: emitCalcBufferIndexRaw(
emitRegisterLoad(ins.src[0], DxbcRegMask(true, false, false, false)));
uint32_t sparseFeedbackId = uint32_t(ins.dstCount == 2);
emitRegisterStore(dstReg, emitRawBufferLoad(srcReg,
elementIndex, dstReg.mask, sparseFeedbackId));
if (sparseFeedbackId)
emitStoreSparseFeedback(ins.dst[1], sparseFeedbackId);
}
void DxbcCompiler::emitBufferStore(const DxbcShaderInstruction& ins) {
// store_raw takes three arguments:
// (dst0) Destination register
// (src0) Byte offset
// (src1) Source register
// store_structured takes four arguments:
// (dst0) Destination register
// (src0) Structure index
// (src1) Byte offset
// (src2) Source register
const bool isStructured = ins.op == DxbcOpcode::StoreStructured;
// Source register. The exact way we access
// the data depends on the register type.
const DxbcRegister& dstReg = ins.dst[0];
const DxbcRegister& srcReg = isStructured ? ins.src[2] : ins.src[1];
// Retrieve common info about the buffer
const DxbcBufferInfo bufferInfo = getBufferInfo(dstReg);
// Compute element index
const DxbcRegisterValue elementIndex = isStructured
? emitCalcBufferIndexStructured(
emitRegisterLoad(ins.src[0], DxbcRegMask(true, false, false, false)),
emitRegisterLoad(ins.src[1], DxbcRegMask(true, false, false, false)),
bufferInfo.stride)
: emitCalcBufferIndexRaw(
emitRegisterLoad(ins.src[0], DxbcRegMask(true, false, false, false)));
emitRawBufferStore(dstReg, elementIndex,
emitRegisterLoad(srcReg, dstReg.mask));
}
void DxbcCompiler::emitConvertFloat16(const DxbcShaderInstruction& ins) {
// f32tof16 takes two operands:
// (dst0) Destination register as a uint32 vector
// (src0) Source register as a float32 vector
// f16tof32 takes two operands:
// (dst0) Destination register as a float32 vector
// (src0) Source register as a uint32 vector
const DxbcRegisterValue src = emitRegisterLoad(ins.src[0], ins.dst[0].mask);
// We handle both packing and unpacking here
const bool isPack = ins.op == DxbcOpcode::F32toF16;
// The conversion instructions do not map very well to the
// SPIR-V pack instructions, which operate on 2D vectors.
std::array<uint32_t, 4> scalarIds = {{ 0, 0, 0, 0 }};
const uint32_t componentCount = src.type.ccount;
// These types are used in both pack and unpack operations
const uint32_t t_u32 = getVectorTypeId({ DxbcScalarType::Uint32, 1 });
const uint32_t t_f32 = getVectorTypeId({ DxbcScalarType::Float32, 1 });
const uint32_t t_f32v2 = getVectorTypeId({ DxbcScalarType::Float32, 2 });
// Constant zero-bit pattern, used for packing
const uint32_t zerof32 = isPack ? m_module.constf32(0.0f) : 0;
for (uint32_t i = 0; i < componentCount; i++) {
const DxbcRegisterValue componentValue
= emitRegisterExtract(src, DxbcRegMask::select(i));
if (isPack) { // f32tof16
const std::array<uint32_t, 2> packIds =
{{ componentValue.id, zerof32 }};
scalarIds[i] = m_module.opPackHalf2x16(t_u32,
m_module.opCompositeConstruct(t_f32v2, packIds.size(), packIds.data()));
} else { // f16tof32
const uint32_t zeroIndex = 0;
scalarIds[i] = m_module.opCompositeExtract(t_f32,
m_module.opUnpackHalf2x16(t_f32v2, componentValue.id),
1, &zeroIndex);
}
}
DxbcRegisterValue result;
result.type.ctype = ins.dst[0].dataType;
result.type.ccount = componentCount;
uint32_t typeId = getVectorTypeId(result.type);
result.id = componentCount > 1
? m_module.opCompositeConstruct(typeId,
componentCount, scalarIds.data())
: scalarIds[0];
if (isPack) {
// Some drivers return infinity if the input value is above a certain
// threshold, but D3D wants us to return infinity only if the input is
// actually infinite. Fix this up to return the maximum representable
// 16-bit floating point number instead, but preserve input infinity.
uint32_t t_bvec = getVectorTypeId({ DxbcScalarType::Bool, componentCount });
uint32_t f16Infinity = m_module.constuReplicant(0x7C00, componentCount);
uint32_t f16Unsigned = m_module.constuReplicant(0x7FFF, componentCount);
uint32_t isInputInf = m_module.opIsInf(t_bvec, src.id);
uint32_t isValueInf = m_module.opIEqual(t_bvec, f16Infinity,
m_module.opBitwiseAnd(typeId, result.id, f16Unsigned));
result.id = m_module.opSelect(getVectorTypeId(result.type),
m_module.opLogicalAnd(t_bvec, isValueInf, m_module.opLogicalNot(t_bvec, isInputInf)),
m_module.opISub(typeId, result.id, m_module.constuReplicant(1, componentCount)),
result.id);
}
// Store result in the destination register
emitRegisterStore(ins.dst[0], result);
}
void DxbcCompiler::emitConvertFloat64(const DxbcShaderInstruction& ins) {
// ftod and dtof take the following operands:
// (dst0) Destination operand
// (src0) Number to convert
uint32_t dstBits = ins.dst[0].mask.popCount();
DxbcRegMask srcMask = isDoubleType(ins.dst[0].dataType)
? DxbcRegMask(dstBits >= 2, dstBits >= 4, false, false)
: DxbcRegMask(dstBits >= 1, dstBits >= 1, dstBits >= 2, dstBits >= 2);
// Perform actual conversion, destination modifiers are not applied
DxbcRegisterValue val = emitRegisterLoad(ins.src[0], srcMask);
DxbcRegisterValue result;
result.type.ctype = ins.dst[0].dataType;
result.type.ccount = val.type.ccount;
switch (ins.op) {
case DxbcOpcode::DtoF:
case DxbcOpcode::FtoD:
result.id = m_module.opFConvert(
getVectorTypeId(result.type), val.id);
break;
case DxbcOpcode::DtoI:
result.id = m_module.opConvertFtoS(
getVectorTypeId(result.type), val.id);
break;
case DxbcOpcode::DtoU:
result.id = m_module.opConvertFtoU(
getVectorTypeId(result.type), val.id);
break;
case DxbcOpcode::ItoD:
result.id = m_module.opConvertStoF(
getVectorTypeId(result.type), val.id);
break;
case DxbcOpcode::UtoD:
result.id = m_module.opConvertUtoF(
getVectorTypeId(result.type), val.id);
break;
default:
Logger::warn(str::format("DxbcCompiler: Unhandled instruction: ", ins.op));
return;
}
emitRegisterStore(ins.dst[0], result);
}
void DxbcCompiler::emitHullShaderInstCnt(const DxbcShaderInstruction& ins) {
this->getCurrentHsForkJoinPhase()->instanceCount = ins.imm[0].u32;
}
void DxbcCompiler::emitHullShaderPhase(const DxbcShaderInstruction& ins) {
switch (ins.op) {
case DxbcOpcode::HsDecls: {
if (m_hs.currPhaseType != DxbcCompilerHsPhase::None)
Logger::err("DXBC: HsDecls not the first phase in hull shader");
m_hs.currPhaseType = DxbcCompilerHsPhase::Decl;
} break;
case DxbcOpcode::HsControlPointPhase: {
m_hs.cpPhase = this->emitNewHullShaderControlPointPhase();
m_hs.currPhaseType = DxbcCompilerHsPhase::ControlPoint;
m_hs.currPhaseId = 0;
m_module.setDebugName(m_hs.cpPhase.functionId, "hs_control_point");
} break;
case DxbcOpcode::HsForkPhase: {
auto phase = this->emitNewHullShaderForkJoinPhase();
m_hs.forkPhases.push_back(phase);
m_hs.currPhaseType = DxbcCompilerHsPhase::Fork;
m_hs.currPhaseId = m_hs.forkPhases.size() - 1;
m_module.setDebugName(phase.functionId,
str::format("hs_fork_", m_hs.currPhaseId).c_str());
} break;
case DxbcOpcode::HsJoinPhase: {
auto phase = this->emitNewHullShaderForkJoinPhase();
m_hs.joinPhases.push_back(phase);
m_hs.currPhaseType = DxbcCompilerHsPhase::Join;
m_hs.currPhaseId = m_hs.joinPhases.size() - 1;
m_module.setDebugName(phase.functionId,
str::format("hs_join_", m_hs.currPhaseId).c_str());
} break;
default:
Logger::warn(str::format(
"DxbcCompiler: Unhandled instruction: ",
ins.op));
}
}
void DxbcCompiler::emitInterpolate(const DxbcShaderInstruction& ins) {
m_module.enableCapability(spv::CapabilityInterpolationFunction);
// The SPIR-V instructions operate on input variable pointers,
// which are all declared as four-component float vectors.
uint32_t registerId = ins.src[0].idx[0].offset;
DxbcRegisterValue result;
result.type = getInputRegType(registerId);
switch (ins.op) {
case DxbcOpcode::EvalCentroid: {
result.id = m_module.opInterpolateAtCentroid(
getVectorTypeId(result.type),
m_vRegs.at(registerId).id);
} break;
case DxbcOpcode::EvalSampleIndex: {
const DxbcRegisterValue sampleIndex = emitRegisterLoad(
ins.src[1], DxbcRegMask(true, false, false, false));
result.id = m_module.opInterpolateAtSample(
getVectorTypeId(result.type),
m_vRegs.at(registerId).id,
sampleIndex.id);
} break;
case DxbcOpcode::EvalSnapped: {
const DxbcRegisterValue offset = emitRegisterLoad(
ins.src[1], DxbcRegMask(true, true, false, false));
result.id = m_module.opInterpolateAtOffset(
getVectorTypeId(result.type),
m_vRegs.at(registerId).id,
offset.id);
} break;
default:
Logger::warn(str::format(
"DxbcCompiler: Unhandled instruction: ",
ins.op));
return;
}
result = emitRegisterSwizzle(result,
ins.src[0].swizzle, ins.dst[0].mask);
emitRegisterStore(ins.dst[0], result);
}
void DxbcCompiler::emitSparseCheckAccess(
const DxbcShaderInstruction& ins) {
// check_access_mapped has two operands:
// (dst0) The destination register
// (src0) The residency code
m_module.enableCapability(spv::CapabilitySparseResidency);
DxbcRegisterValue srcValue = emitRegisterLoad(ins.src[0], ins.dst[0].mask);
uint32_t boolId = m_module.opImageSparseTexelsResident(
m_module.defBoolType(), srcValue.id);
DxbcRegisterValue dstValue;
dstValue.type = { DxbcScalarType::Uint32, 1 };
dstValue.id = m_module.opSelect(getScalarTypeId(DxbcScalarType::Uint32),
boolId, m_module.constu32(~0u), m_module.constu32(0));
emitRegisterStore(ins.dst[0], dstValue);
}
void DxbcCompiler::emitTextureQuery(const DxbcShaderInstruction& ins) {
// resinfo has three operands:
// (dst0) The destination register
// (src0) Resource LOD to query
// (src1) Resource to query
const DxbcBufferInfo resourceInfo = getBufferInfo(ins.src[1]);
const DxbcResinfoType resinfoType = ins.controls.resinfoType();
// Read the exact LOD for the image query
const DxbcRegisterValue mipLod = emitRegisterLoad(
ins.src[0], DxbcRegMask(true, false, false, false));
const DxbcScalarType returnType = resinfoType == DxbcResinfoType::Uint
? DxbcScalarType::Uint32 : DxbcScalarType::Float32;
// Query the size of the selected mip level, as well as the
// total number of mip levels. We will have to combine the
// result into a four-component vector later.
DxbcRegisterValue imageSize = emitQueryTextureSize(ins.src[1], mipLod);
DxbcRegisterValue imageLevels = emitQueryTextureLods(ins.src[1]);
// If the mip level is out of bounds, D3D requires us to return
// zero before applying modifiers, whereas SPIR-V is undefined,
// so we need to fix it up manually here.
imageSize.id = m_module.opSelect(getVectorTypeId(imageSize.type),
m_module.opULessThan(m_module.defBoolType(), mipLod.id, imageLevels.id),
imageSize.id, emitBuildZeroVector(imageSize.type).id);
// Convert intermediates to the requested type
if (returnType == DxbcScalarType::Float32) {
imageSize.type.ctype = DxbcScalarType::Float32;
imageSize.id = m_module.opConvertUtoF(
getVectorTypeId(imageSize.type),
imageSize.id);
imageLevels.type.ctype = DxbcScalarType::Float32;
imageLevels.id = m_module.opConvertUtoF(
getVectorTypeId(imageLevels.type),
imageLevels.id);
}
// If the selected return type is rcpFloat, we need
// to compute the reciprocal of the image dimensions,
// but not the array size, so we need to separate it.
const uint32_t imageCoordDim = imageSize.type.ccount;
DxbcRegisterValue imageLayers;
imageLayers.type = imageSize.type;
imageLayers.id = 0;
if (resinfoType == DxbcResinfoType::RcpFloat && resourceInfo.image.array) {
imageLayers = emitRegisterExtract(imageSize, DxbcRegMask::select(imageCoordDim - 1));
imageSize = emitRegisterExtract(imageSize, DxbcRegMask::firstN(imageCoordDim - 1));
}
if (resinfoType == DxbcResinfoType::RcpFloat) {
imageSize.id = m_module.opFDiv(
getVectorTypeId(imageSize.type),
emitBuildConstVecf32(1.0f, 1.0f, 1.0f, 1.0f,
DxbcRegMask::firstN(imageSize.type.ccount)).id,
imageSize.id);
}
// Concatenate result vectors and scalars to form a
// 4D vector. Unused components will be set to zero.
std::array<uint32_t, 4> vectorIds = { imageSize.id, 0, 0, 0 };
uint32_t numVectorIds = 1;
if (imageLayers.id != 0)
vectorIds[numVectorIds++] = imageLayers.id;
if (imageCoordDim < 3) {
const uint32_t zero = returnType == DxbcScalarType::Uint32
? m_module.constu32(0)
: m_module.constf32(0.0f);
for (uint32_t i = imageCoordDim; i < 3; i++)
vectorIds[numVectorIds++] = zero;
}
vectorIds[numVectorIds++] = imageLevels.id;
// Create the actual result vector
DxbcRegisterValue result;
result.type.ctype = returnType;
result.type.ccount = 4;
result.id = m_module.opCompositeConstruct(
getVectorTypeId(result.type),
numVectorIds, vectorIds.data());
// Swizzle components using the resource swizzle
// and the destination operand's write mask
result = emitRegisterSwizzle(result,
ins.src[1].swizzle, ins.dst[0].mask);
emitRegisterStore(ins.dst[0], result);
}
void DxbcCompiler::emitTextureQueryLod(const DxbcShaderInstruction& ins) {
// All sample instructions have at least these operands:
// (dst0) The destination register
// (src0) Texture coordinates
// (src1) The texture itself
// (src2) The sampler object
const DxbcRegister& texCoordReg = ins.src[0];
const DxbcRegister& textureReg = ins.src[1];
const DxbcRegister& samplerReg = ins.src[2];
// Texture and sampler register IDs
const auto& texture = m_textures.at(textureReg.idx[0].offset);
const auto& sampler = m_samplers.at(samplerReg.idx[0].offset);
// Load texture coordinates
const DxbcRegisterValue coord = emitRegisterLoad(texCoordReg,
DxbcRegMask::firstN(getTexLayerDim(texture.imageInfo)));
// Query the LOD. The result is a two-dimensional float32
// vector containing the mip level and virtual LOD numbers.
const uint32_t sampledImageId = emitLoadSampledImage(texture, sampler, false);
const uint32_t queriedLodId = m_module.opImageQueryLod(
getVectorTypeId({ DxbcScalarType::Float32, 2 }),
sampledImageId, coord.id);
// Build the result array vector by filling up
// the remaining two components with zeroes.
const uint32_t zero = m_module.constf32(0.0f);
const std::array<uint32_t, 3> resultIds
= {{ queriedLodId, zero, zero }};
DxbcRegisterValue result;
result.type = DxbcVectorType { DxbcScalarType::Float32, 4 };
result.id = m_module.opCompositeConstruct(
getVectorTypeId(result.type),
resultIds.size(), resultIds.data());
result = emitRegisterSwizzle(result, ins.src[1].swizzle, ins.dst[0].mask);
emitRegisterStore(ins.dst[0], result);
}
void DxbcCompiler::emitTextureQueryMs(const DxbcShaderInstruction& ins) {
// sampleinfo has two operands:
// (dst0) The destination register
// (src0) Resource to query
DxbcRegisterValue sampleCount = emitQueryTextureSamples(ins.src[0]);
if (ins.controls.returnType() != DxbcInstructionReturnType::Uint) {
sampleCount.type = { DxbcScalarType::Float32, 1 };
sampleCount.id = m_module.opConvertUtoF(
getVectorTypeId(sampleCount.type),
sampleCount.id);
}
emitRegisterStore(ins.dst[0], sampleCount);
}
void DxbcCompiler::emitTextureQueryMsPos(const DxbcShaderInstruction& ins) {
// samplepos has three operands:
// (dst0) The destination register
// (src0) Resource to query
// (src1) Sample index
if (m_samplePositions == 0)
m_samplePositions = emitSamplePosArray();
// The lookup index is qual to the sample count plus the
// sample index, or 0 if the resource cannot be queried.
DxbcRegisterValue sampleCount = emitQueryTextureSamples(ins.src[0]);
DxbcRegisterValue sampleIndex = emitRegisterLoad(
ins.src[1], DxbcRegMask(true, false, false, false));
uint32_t lookupIndex = m_module.opIAdd(
getVectorTypeId(sampleCount.type),
sampleCount.id, sampleIndex.id);
// Validate the parameters
uint32_t sampleCountValid = m_module.opULessThanEqual(
m_module.defBoolType(),
sampleCount.id,
m_module.constu32(16));
uint32_t sampleIndexValid = m_module.opULessThan(
m_module.defBoolType(),
sampleIndex.id,
sampleCount.id);
// If the lookup cannot be performed, set the lookup
// index to zero, which will return a zero vector.
lookupIndex = m_module.opSelect(
getVectorTypeId(sampleCount.type),
m_module.opLogicalAnd(
m_module.defBoolType(),
sampleCountValid,
sampleIndexValid),
lookupIndex,
m_module.constu32(0));
// Load sample pos vector and write the masked
// components to the destination register.
DxbcRegisterPointer samplePos;
samplePos.type.ctype = DxbcScalarType::Float32;
samplePos.type.ccount = 2;
samplePos.id = m_module.opAccessChain(
m_module.defPointerType(
getVectorTypeId(samplePos.type),
spv::StorageClassPrivate),
m_samplePositions, 1, &lookupIndex);
// Expand to vec4 by appending zeroes
DxbcRegisterValue result = emitValueLoad(samplePos);
DxbcRegisterValue zero;
zero.type.ctype = DxbcScalarType::Float32;
zero.type.ccount = 2;
zero.id = m_module.constvec2f32(0.0f, 0.0f);
result = emitRegisterConcat(result, zero);
emitRegisterStore(ins.dst[0],
emitRegisterSwizzle(result,
ins.src[0].swizzle,
ins.dst[0].mask));
}
void DxbcCompiler::emitTextureFetch(const DxbcShaderInstruction& ins) {
// ld has three operands:
// (dst0) The destination register
// (src0) Source address
// (src1) Source texture
// ld2dms has four operands:
// (dst0) The destination register
// (src0) Source address
// (src1) Source texture
// (src2) Sample number
const auto& texture = m_textures.at(ins.src[1].idx[0].offset);
const uint32_t imageLayerDim = getTexLayerDim(texture.imageInfo);
bool isMultisampled = ins.op == DxbcOpcode::LdMs
|| ins.op == DxbcOpcode::LdMsS;
// Load the texture coordinates. The last component
// contains the LOD if the resource is an image.
const DxbcRegisterValue address = emitRegisterLoad(
ins.src[0], DxbcRegMask(true, true, true, true));
// Additional image operands. This will store
// the LOD and the address offset if present.
SpirvImageOperands imageOperands;
imageOperands.sparse = ins.dstCount == 2;
if (ins.sampleControls.u != 0 || ins.sampleControls.v != 0 || ins.sampleControls.w != 0) {
const std::array<uint32_t, 3> offsetIds = {
imageLayerDim >= 1 ? m_module.consti32(ins.sampleControls.u) : 0,
imageLayerDim >= 2 ? m_module.consti32(ins.sampleControls.v) : 0,
imageLayerDim >= 3 ? m_module.consti32(ins.sampleControls.w) : 0,
};
imageOperands.flags |= spv::ImageOperandsConstOffsetMask;
imageOperands.sConstOffset = m_module.constComposite(
getVectorTypeId({ DxbcScalarType::Sint32, imageLayerDim }),
imageLayerDim, offsetIds.data());
}
// The LOD is not present when reading from
// a buffer or from a multisample texture.
if (texture.imageInfo.dim != spv::DimBuffer && texture.imageInfo.ms == 0) {
DxbcRegisterValue imageLod;
if (!isMultisampled) {
imageLod = emitRegisterExtract(
address, DxbcRegMask(false, false, false, true));
} else {
// If we force-disabled MSAA, fetch from LOD 0
imageLod.type = { DxbcScalarType::Uint32, 1 };
imageLod.id = m_module.constu32(0);
}
imageOperands.flags |= spv::ImageOperandsLodMask;
imageOperands.sLod = imageLod.id;
}
// The ld2dms instruction has a sample index, but we
// are only allowed to set it for multisample views
if (isMultisampled && texture.imageInfo.ms == 1) {
DxbcRegisterValue sampleId = emitRegisterLoad(
ins.src[2], DxbcRegMask(true, false, false, false));
imageOperands.flags |= spv::ImageOperandsSampleMask;
imageOperands.sSampleId = sampleId.id;
}
// Extract coordinates from address
const DxbcRegisterValue coord = emitCalcTexCoord(address, texture.imageInfo);
// Reading a typed image or buffer view
// always returns a four-component vector.
const uint32_t imageId = m_module.opLoad(texture.imageTypeId, texture.varId);
DxbcVectorType texelType;
texelType.ctype = texture.sampledType;
texelType.ccount = 4;
uint32_t texelTypeId = getVectorTypeId(texelType);
uint32_t resultTypeId = texelTypeId;
uint32_t resultId = 0;
if (imageOperands.sparse)
resultTypeId = getSparseResultTypeId(texelTypeId);
resultId = m_module.opImageFetch(resultTypeId,
imageId, coord.id, imageOperands);
DxbcRegisterValue result;
result.type = texelType;
result.id = imageOperands.sparse
? emitExtractSparseTexel(texelTypeId, resultId)
: resultId;
// Swizzle components using the texture swizzle
// and the destination operand's write mask
result = emitRegisterSwizzle(result,
ins.src[1].swizzle, ins.dst[0].mask);
emitRegisterStore(ins.dst[0], result);
if (imageOperands.sparse)
emitStoreSparseFeedback(ins.dst[1], resultId);
}
void DxbcCompiler::emitTextureGather(const DxbcShaderInstruction& ins) {
// Gather4 takes the following operands:
// (dst0) The destination register
// (dst1) The residency code for sparse ops
// (src0) Texture coordinates
// (src1) The texture itself
// (src2) The sampler, with a component selector
// Gather4C takes the following additional operand:
// (src3) The depth reference value
// The Gather4Po variants take an additional operand
// which defines an extended constant offset.
// TODO reduce code duplication by moving some common code
// in both sample() and gather() into separate methods
const bool isExtendedGather = ins.op == DxbcOpcode::Gather4Po
|| ins.op == DxbcOpcode::Gather4PoC
|| ins.op == DxbcOpcode::Gather4PoS
|| ins.op == DxbcOpcode::Gather4PoCS;
const DxbcRegister& texCoordReg = ins.src[0];
const DxbcRegister& textureReg = ins.src[1 + isExtendedGather];
const DxbcRegister& samplerReg = ins.src[2 + isExtendedGather];
// Texture and sampler register IDs
const auto& texture = m_textures.at(textureReg.idx[0].offset);
const auto& sampler = m_samplers.at(samplerReg.idx[0].offset);
// Image type, which stores the image dimensions etc.
const uint32_t imageLayerDim = getTexLayerDim(texture.imageInfo);
// Load the texture coordinates. SPIR-V allows these
// to be float4 even if not all components are used.
DxbcRegisterValue coord = emitLoadTexCoord(texCoordReg, texture.imageInfo);
// Load reference value for depth-compare operations
const bool isDepthCompare = ins.op == DxbcOpcode::Gather4C
|| ins.op == DxbcOpcode::Gather4PoC
|| ins.op == DxbcOpcode::Gather4CS
|| ins.op == DxbcOpcode::Gather4PoCS;
const DxbcRegisterValue referenceValue = isDepthCompare
? emitRegisterLoad(ins.src[3 + isExtendedGather],
DxbcRegMask(true, false, false, false))
: DxbcRegisterValue();
// Accumulate additional image operands.
SpirvImageOperands imageOperands;
imageOperands.sparse = ins.dstCount == 2;
if (isExtendedGather) {
m_module.enableCapability(spv::CapabilityImageGatherExtended);
DxbcRegisterValue gatherOffset = emitRegisterLoad(
ins.src[1], DxbcRegMask::firstN(imageLayerDim));
imageOperands.flags |= spv::ImageOperandsOffsetMask;
imageOperands.gOffset = gatherOffset.id;
} else if (ins.sampleControls.u != 0 || ins.sampleControls.v != 0 || ins.sampleControls.w != 0) {
const std::array<uint32_t, 3> offsetIds = {
imageLayerDim >= 1 ? m_module.consti32(ins.sampleControls.u) : 0,
imageLayerDim >= 2 ? m_module.consti32(ins.sampleControls.v) : 0,
imageLayerDim >= 3 ? m_module.consti32(ins.sampleControls.w) : 0,
};
imageOperands.flags |= spv::ImageOperandsConstOffsetMask;
imageOperands.sConstOffset = m_module.constComposite(
getVectorTypeId({ DxbcScalarType::Sint32, imageLayerDim }),
imageLayerDim, offsetIds.data());
}
// Gathering texels always returns a four-component
// vector, even for the depth-compare variants.
uint32_t sampledImageId = emitLoadSampledImage(texture, sampler, isDepthCompare);
DxbcVectorType texelType;
texelType.ctype = texture.sampledType;
texelType.ccount = 4;
uint32_t texelTypeId = getVectorTypeId(texelType);
uint32_t resultTypeId = texelTypeId;
uint32_t resultId = 0;
if (imageOperands.sparse)
resultTypeId = getSparseResultTypeId(texelTypeId);
switch (ins.op) {
// Simple image gather operation
case DxbcOpcode::Gather4:
case DxbcOpcode::Gather4S:
case DxbcOpcode::Gather4Po:
case DxbcOpcode::Gather4PoS: {
resultId = m_module.opImageGather(
resultTypeId, sampledImageId, coord.id,
m_module.consti32(samplerReg.swizzle[0]),
imageOperands);
} break;
// Depth-compare operation
case DxbcOpcode::Gather4C:
case DxbcOpcode::Gather4CS:
case DxbcOpcode::Gather4PoC:
case DxbcOpcode::Gather4PoCS: {
resultId = m_module.opImageDrefGather(
resultTypeId, sampledImageId, coord.id,
referenceValue.id, imageOperands);
} break;
default:
Logger::warn(str::format(
"DxbcCompiler: Unhandled instruction: ",
ins.op));
return;
}
// If necessary, deal with the sparse result
DxbcRegisterValue result;
result.type = texelType;
result.id = imageOperands.sparse
? emitExtractSparseTexel(texelTypeId, resultId)
: resultId;
// Swizzle components using the texture swizzle
// and the destination operand's write mask
result = emitRegisterSwizzle(result,
textureReg.swizzle, ins.dst[0].mask);
emitRegisterStore(ins.dst[0], result);
if (imageOperands.sparse)
emitStoreSparseFeedback(ins.dst[1], resultId);
}
void DxbcCompiler::emitTextureSample(const DxbcShaderInstruction& ins) {
// All sample instructions have at least these operands:
// (dst0) The destination register
// (src0) Texture coordinates
// (src1) The texture itself
// (src2) The sampler object
const DxbcRegister& texCoordReg = ins.src[0];
const DxbcRegister& textureReg = ins.src[1];
const DxbcRegister& samplerReg = ins.src[2];
// Texture and sampler register IDs
const auto& texture = m_textures.at(textureReg.idx[0].offset);
const auto& sampler = m_samplers.at(samplerReg.idx[0].offset);
const uint32_t imageLayerDim = getTexLayerDim(texture.imageInfo);
// Load the texture coordinates. SPIR-V allows these
// to be float4 even if not all components are used.
DxbcRegisterValue coord = emitLoadTexCoord(texCoordReg, texture.imageInfo);
// Load reference value for depth-compare operations
const bool isDepthCompare = ins.op == DxbcOpcode::SampleC
|| ins.op == DxbcOpcode::SampleClz
|| ins.op == DxbcOpcode::SampleCClampS
|| ins.op == DxbcOpcode::SampleClzS;
const DxbcRegisterValue referenceValue = isDepthCompare
? emitRegisterLoad(ins.src[3], DxbcRegMask(true, false, false, false))
: DxbcRegisterValue();
// Load explicit gradients for sample operations that require them
const bool hasExplicitGradients = ins.op == DxbcOpcode::SampleD
|| ins.op == DxbcOpcode::SampleDClampS;
const DxbcRegisterValue explicitGradientX = hasExplicitGradients
? emitRegisterLoad(ins.src[3], DxbcRegMask::firstN(imageLayerDim))
: DxbcRegisterValue();
const DxbcRegisterValue explicitGradientY = hasExplicitGradients
? emitRegisterLoad(ins.src[4], DxbcRegMask::firstN(imageLayerDim))
: DxbcRegisterValue();
// LOD for certain sample operations
const bool hasLod = ins.op == DxbcOpcode::SampleL
|| ins.op == DxbcOpcode::SampleLS
|| ins.op == DxbcOpcode::SampleB
|| ins.op == DxbcOpcode::SampleBClampS;
const DxbcRegisterValue lod = hasLod
? emitRegisterLoad(ins.src[3], DxbcRegMask(true, false, false, false))
: DxbcRegisterValue();
// Min LOD for certain sparse operations
const bool hasMinLod = ins.op == DxbcOpcode::SampleClampS
|| ins.op == DxbcOpcode::SampleBClampS
|| ins.op == DxbcOpcode::SampleDClampS
|| ins.op == DxbcOpcode::SampleCClampS;
const DxbcRegisterValue minLod = hasMinLod && ins.src[ins.srcCount - 1].type != DxbcOperandType::Null
? emitRegisterLoad(ins.src[ins.srcCount - 1], DxbcRegMask(true, false, false, false))
: DxbcRegisterValue();
// Accumulate additional image operands. These are
// not part of the actual operand token in SPIR-V.
SpirvImageOperands imageOperands;
imageOperands.sparse = ins.dstCount == 2;
if (ins.sampleControls.u != 0 || ins.sampleControls.v != 0 || ins.sampleControls.w != 0) {
const std::array<uint32_t, 3> offsetIds = {
imageLayerDim >= 1 ? m_module.consti32(ins.sampleControls.u) : 0,
imageLayerDim >= 2 ? m_module.consti32(ins.sampleControls.v) : 0,
imageLayerDim >= 3 ? m_module.consti32(ins.sampleControls.w) : 0,
};
imageOperands.flags |= spv::ImageOperandsConstOffsetMask;
imageOperands.sConstOffset = m_module.constComposite(
getVectorTypeId({ DxbcScalarType::Sint32, imageLayerDim }),
imageLayerDim, offsetIds.data());
}
if (hasMinLod) {
m_module.enableCapability(spv::CapabilityMinLod);
imageOperands.flags |= spv::ImageOperandsMinLodMask;
imageOperands.sMinLod = minLod.id;
}
// Combine the texture and the sampler into a sampled image
uint32_t sampledImageId = emitLoadSampledImage(texture, sampler, isDepthCompare);
// Sampling an image always returns a four-component
// vector, whereas depth-compare ops return a scalar.
DxbcVectorType texelType;
texelType.ctype = texture.sampledType;
texelType.ccount = isDepthCompare ? 1 : 4;
uint32_t texelTypeId = getVectorTypeId(texelType);
uint32_t resultTypeId = texelTypeId;
uint32_t resultId = 0;
if (imageOperands.sparse)
resultTypeId = getSparseResultTypeId(texelTypeId);
switch (ins.op) {
// Simple image sample operation
case DxbcOpcode::Sample:
case DxbcOpcode::SampleClampS: {
resultId = m_module.opImageSampleImplicitLod(
resultTypeId, sampledImageId, coord.id,
imageOperands);
} break;
// Depth-compare operation
case DxbcOpcode::SampleC:
case DxbcOpcode::SampleCClampS: {
resultId = m_module.opImageSampleDrefImplicitLod(
resultTypeId, sampledImageId, coord.id,
referenceValue.id, imageOperands);
} break;
// Depth-compare operation on mip level zero
case DxbcOpcode::SampleClz:
case DxbcOpcode::SampleClzS: {
imageOperands.flags |= spv::ImageOperandsLodMask;
imageOperands.sLod = m_module.constf32(0.0f);
resultId = m_module.opImageSampleDrefExplicitLod(
resultTypeId, sampledImageId, coord.id,
referenceValue.id, imageOperands);
} break;
// Sample operation with explicit gradients
case DxbcOpcode::SampleD:
case DxbcOpcode::SampleDClampS: {
imageOperands.flags |= spv::ImageOperandsGradMask;
imageOperands.sGradX = explicitGradientX.id;
imageOperands.sGradY = explicitGradientY.id;
resultId = m_module.opImageSampleExplicitLod(
resultTypeId, sampledImageId, coord.id,
imageOperands);
} break;
// Sample operation with explicit LOD
case DxbcOpcode::SampleL:
case DxbcOpcode::SampleLS: {
imageOperands.flags |= spv::ImageOperandsLodMask;
imageOperands.sLod = lod.id;
resultId = m_module.opImageSampleExplicitLod(
resultTypeId, sampledImageId, coord.id,
imageOperands);
} break;
// Sample operation with LOD bias
case DxbcOpcode::SampleB:
case DxbcOpcode::SampleBClampS: {
imageOperands.flags |= spv::ImageOperandsBiasMask;
imageOperands.sLodBias = lod.id;
resultId = m_module.opImageSampleImplicitLod(
resultTypeId, sampledImageId, coord.id,
imageOperands);
} break;
default:
Logger::warn(str::format(
"DxbcCompiler: Unhandled instruction: ",
ins.op));
return;
}
DxbcRegisterValue result;
result.type = texelType;
result.id = imageOperands.sparse
? emitExtractSparseTexel(texelTypeId, resultId)
: resultId;
// Swizzle components using the texture swizzle
// and the destination operand's write mask
if (result.type.ccount != 1) {
result = emitRegisterSwizzle(result,
textureReg.swizzle, ins.dst[0].mask);
}
emitRegisterStore(ins.dst[0], result);
if (imageOperands.sparse)
emitStoreSparseFeedback(ins.dst[1], resultId);
}
void DxbcCompiler::emitTypedUavLoad(const DxbcShaderInstruction& ins) {
// load_uav_typed has three operands:
// (dst0) The destination register
// (src0) The texture or buffer coordinates
// (src1) The UAV to load from
const uint32_t registerId = ins.src[1].idx[0].offset;
const DxbcUav uavInfo = m_uavs.at(registerId);
// Load texture coordinates
DxbcRegisterValue texCoord = emitLoadTexCoord(
ins.src[0], uavInfo.imageInfo);
SpirvImageOperands imageOperands;
imageOperands.sparse = ins.dstCount == 2;
if (uavInfo.coherence) {
imageOperands.flags |= spv::ImageOperandsNonPrivateTexelMask
| spv::ImageOperandsMakeTexelVisibleMask;
imageOperands.makeVisible = m_module.constu32(uavInfo.coherence);
}
DxbcVectorType texelType;
texelType.ctype = uavInfo.sampledType;
texelType.ccount = 4;
uint32_t texelTypeId = getVectorTypeId(texelType);
uint32_t resultTypeId = texelTypeId;
uint32_t resultId = 0;
if (imageOperands.sparse)
resultTypeId = getSparseResultTypeId(texelTypeId);
// Load source value from the UAV
resultId = m_module.opImageRead(resultTypeId,
m_module.opLoad(uavInfo.imageTypeId, uavInfo.varId),
texCoord.id, imageOperands);
// Apply component swizzle and mask
DxbcRegisterValue uavValue;
uavValue.type = texelType;
uavValue.id = imageOperands.sparse
? emitExtractSparseTexel(texelTypeId, resultId)
: resultId;
uavValue = emitRegisterSwizzle(uavValue,
ins.src[1].swizzle, ins.dst[0].mask);
emitRegisterStore(ins.dst[0], uavValue);
if (imageOperands.sparse)
emitStoreSparseFeedback(ins.dst[1], resultId);
}
void DxbcCompiler::emitTypedUavStore(const DxbcShaderInstruction& ins) {
// store_uav_typed has three operands:
// (dst0) The destination UAV
// (src0) The texture or buffer coordinates
// (src1) The value to store
const DxbcBufferInfo uavInfo = getBufferInfo(ins.dst[0]);
// Set image operands for coherent access if necessary
SpirvImageOperands imageOperands;
if (uavInfo.coherence) {
imageOperands.flags |= spv::ImageOperandsNonPrivateTexelMask
| spv::ImageOperandsMakeTexelAvailableMask;
imageOperands.makeAvailable = m_module.constu32(uavInfo.coherence);
}
// Load texture coordinates
DxbcRegisterValue texCoord = emitLoadTexCoord(ins.src[0], uavInfo.image);
// Load the value that will be written to the image. We'll
// have to cast it to the component type of the image.
const DxbcRegisterValue texValue = emitRegisterBitcast(
emitRegisterLoad(ins.src[1], DxbcRegMask(true, true, true, true)),
uavInfo.stype);
// Write the given value to the image
m_module.opImageWrite(
m_module.opLoad(uavInfo.typeId, uavInfo.varId),
texCoord.id, texValue.id, imageOperands);
}
void DxbcCompiler::emitControlFlowIf(const DxbcShaderInstruction& ins) {
// Load the first component of the condition
// operand and perform a zero test on it.
const DxbcRegisterValue condition = emitRegisterLoad(
ins.src[0], DxbcRegMask(true, false, false, false));
// Declare the 'if' block. We do not know if there
// will be an 'else' block or not, so we'll assume
// that there is one and leave it empty otherwise.
DxbcCfgBlock block;
block.type = DxbcCfgBlockType::If;
block.b_if.ztestId = emitRegisterZeroTest(condition, ins.controls.zeroTest()).id;
block.b_if.labelIf = m_module.allocateId();
block.b_if.labelElse = 0;
block.b_if.labelEnd = m_module.allocateId();
block.b_if.headerPtr = m_module.getInsertionPtr();
m_controlFlowBlocks.push_back(block);
// We'll insert the branch instruction when closing
// the block, since we don't know whether or not an
// else block is needed right now.
m_module.opLabel(block.b_if.labelIf);
}
void DxbcCompiler::emitControlFlowElse(const DxbcShaderInstruction& ins) {
if (m_controlFlowBlocks.size() == 0
|| m_controlFlowBlocks.back().type != DxbcCfgBlockType::If
|| m_controlFlowBlocks.back().b_if.labelElse != 0)
throw DxvkError("DxbcCompiler: 'Else' without 'If' found");
// Set the 'Else' flag so that we do
// not insert a dummy block on 'EndIf'
DxbcCfgBlock& block = m_controlFlowBlocks.back();
block.b_if.labelElse = m_module.allocateId();
// Close the 'If' block by branching to
// the merge block we declared earlier
m_module.opBranch(block.b_if.labelEnd);
m_module.opLabel (block.b_if.labelElse);
}
void DxbcCompiler::emitControlFlowEndIf(const DxbcShaderInstruction& ins) {
if (m_controlFlowBlocks.size() == 0
|| m_controlFlowBlocks.back().type != DxbcCfgBlockType::If)
throw DxvkError("DxbcCompiler: 'EndIf' without 'If' found");
// Remove the block from the stack, it's closed
DxbcCfgBlock block = m_controlFlowBlocks.back();
m_controlFlowBlocks.pop_back();
// Write out the 'if' header
m_module.beginInsertion(block.b_if.headerPtr);
m_module.opSelectionMerge(
block.b_if.labelEnd,
spv::SelectionControlMaskNone);
m_module.opBranchConditional(
block.b_if.ztestId,
block.b_if.labelIf,
block.b_if.labelElse != 0
? block.b_if.labelElse
: block.b_if.labelEnd);
m_module.endInsertion();
// End the active 'if' or 'else' block
m_module.opBranch(block.b_if.labelEnd);
m_module.opLabel (block.b_if.labelEnd);
}
void DxbcCompiler::emitControlFlowSwitch(const DxbcShaderInstruction& ins) {
// Load the selector as a scalar unsigned integer
const DxbcRegisterValue selector = emitRegisterLoad(
ins.src[0], DxbcRegMask(true, false, false, false));
// Declare switch block. We cannot insert the switch
// instruction itself yet because the number of case
// statements and blocks is unknown at this point.
DxbcCfgBlock block;
block.type = DxbcCfgBlockType::Switch;
block.b_switch.insertPtr = m_module.getInsertionPtr();
block.b_switch.selectorId = selector.id;
block.b_switch.labelBreak = m_module.allocateId();
block.b_switch.labelCase = m_module.allocateId();
block.b_switch.labelDefault = 0;
block.b_switch.labelCases = nullptr;
m_controlFlowBlocks.push_back(block);
// Define the first 'case' label
m_module.opLabel(block.b_switch.labelCase);
}
void DxbcCompiler::emitControlFlowCase(const DxbcShaderInstruction& ins) {
if (m_controlFlowBlocks.size() == 0
|| m_controlFlowBlocks.back().type != DxbcCfgBlockType::Switch)
throw DxvkError("DxbcCompiler: 'Case' without 'Switch' found");
// The source operand must be a 32-bit immediate.
if (ins.src[0].type != DxbcOperandType::Imm32)
throw DxvkError("DxbcCompiler: Invalid operand type for 'Case'");
// Use the last label allocated for 'case'.
DxbcCfgBlockSwitch* block = &m_controlFlowBlocks.back().b_switch;
if (caseBlockIsFallthrough()) {
block->labelCase = m_module.allocateId();
m_module.opBranch(block->labelCase);
m_module.opLabel (block->labelCase);
}
DxbcSwitchLabel label;
label.desc.literal = ins.src[0].imm.u32_1;
label.desc.labelId = block->labelCase;
label.next = block->labelCases;
block->labelCases = new DxbcSwitchLabel(label);
}
void DxbcCompiler::emitControlFlowDefault(const DxbcShaderInstruction& ins) {
if (m_controlFlowBlocks.size() == 0
|| m_controlFlowBlocks.back().type != DxbcCfgBlockType::Switch)
throw DxvkError("DxbcCompiler: 'Default' without 'Switch' found");
DxbcCfgBlockSwitch* block = &m_controlFlowBlocks.back().b_switch;
if (caseBlockIsFallthrough()) {
block->labelCase = m_module.allocateId();
m_module.opBranch(block->labelCase);
m_module.opLabel (block->labelCase);
}
// Set the last label allocated for 'case' as the default label.
block->labelDefault = block->labelCase;
}
void DxbcCompiler::emitControlFlowEndSwitch(const DxbcShaderInstruction& ins) {
if (m_controlFlowBlocks.size() == 0
|| m_controlFlowBlocks.back().type != DxbcCfgBlockType::Switch)
throw DxvkError("DxbcCompiler: 'EndSwitch' without 'Switch' found");
// Remove the block from the stack, it's closed
DxbcCfgBlock block = m_controlFlowBlocks.back();
m_controlFlowBlocks.pop_back();
if (!block.b_switch.labelDefault) {
block.b_switch.labelDefault = caseBlockIsFallthrough()
? block.b_switch.labelBreak
: block.b_switch.labelCase;
}
// Close the current 'case' block
m_module.opBranch(block.b_switch.labelBreak);
m_module.opLabel (block.b_switch.labelBreak);
// Insert the 'switch' statement. For that, we need to
// gather all the literal-label pairs for the construct.
m_module.beginInsertion(block.b_switch.insertPtr);
m_module.opSelectionMerge(
block.b_switch.labelBreak,
spv::SelectionControlMaskNone);
// We'll restore the original order of the case labels here
std::vector<SpirvSwitchCaseLabel> jumpTargets;
for (auto i = block.b_switch.labelCases; i != nullptr; i = i->next)
jumpTargets.insert(jumpTargets.begin(), i->desc);
m_module.opSwitch(
block.b_switch.selectorId,
block.b_switch.labelDefault,
jumpTargets.size(),
jumpTargets.data());
m_module.endInsertion();
// Destroy the list of case labels
// FIXME we're leaking memory if compilation fails.
DxbcSwitchLabel* caseLabel = block.b_switch.labelCases;
while (caseLabel != nullptr)
delete std::exchange(caseLabel, caseLabel->next);
}
void DxbcCompiler::emitControlFlowLoop(const DxbcShaderInstruction& ins) {
// Declare the 'loop' block
DxbcCfgBlock block;
block.type = DxbcCfgBlockType::Loop;
block.b_loop.labelHeader = m_module.allocateId();
block.b_loop.labelBegin = m_module.allocateId();
block.b_loop.labelContinue = m_module.allocateId();
block.b_loop.labelBreak = m_module.allocateId();
m_controlFlowBlocks.push_back(block);
m_module.opBranch(block.b_loop.labelHeader);
m_module.opLabel (block.b_loop.labelHeader);
m_module.opLoopMerge(
block.b_loop.labelBreak,
block.b_loop.labelContinue,
spv::LoopControlMaskNone);
m_module.opBranch(block.b_loop.labelBegin);
m_module.opLabel (block.b_loop.labelBegin);
}
void DxbcCompiler::emitControlFlowEndLoop(const DxbcShaderInstruction& ins) {
if (m_controlFlowBlocks.size() == 0
|| m_controlFlowBlocks.back().type != DxbcCfgBlockType::Loop)
throw DxvkError("DxbcCompiler: 'EndLoop' without 'Loop' found");
// Remove the block from the stack, it's closed
const DxbcCfgBlock block = m_controlFlowBlocks.back();
m_controlFlowBlocks.pop_back();
// Declare the continue block
m_module.opBranch(block.b_loop.labelContinue);
m_module.opLabel (block.b_loop.labelContinue);
// Declare the merge block
m_module.opBranch(block.b_loop.labelHeader);
m_module.opLabel (block.b_loop.labelBreak);
}
void DxbcCompiler::emitControlFlowBreak(const DxbcShaderInstruction& ins) {
const bool isBreak = ins.op == DxbcOpcode::Break;
DxbcCfgBlock* cfgBlock = isBreak
? cfgFindBlock({ DxbcCfgBlockType::Loop, DxbcCfgBlockType::Switch })
: cfgFindBlock({ DxbcCfgBlockType::Loop });
if (cfgBlock == nullptr)
throw DxvkError("DxbcCompiler: 'Break' or 'Continue' outside 'Loop' or 'Switch' found");
if (cfgBlock->type == DxbcCfgBlockType::Loop) {
m_module.opBranch(isBreak
? cfgBlock->b_loop.labelBreak
: cfgBlock->b_loop.labelContinue);
} else /* if (cfgBlock->type == DxbcCfgBlockType::Switch) */ {
m_module.opBranch(cfgBlock->b_switch.labelBreak);
}
// Subsequent instructions assume that there is an open block
const uint32_t labelId = m_module.allocateId();
m_module.opLabel(labelId);
// If this is on the same level as a switch-case construct,
// rather than being nested inside an 'if' statement, close
// the current 'case' block.
if (m_controlFlowBlocks.back().type == DxbcCfgBlockType::Switch)
cfgBlock->b_switch.labelCase = labelId;
}
void DxbcCompiler::emitControlFlowBreakc(const DxbcShaderInstruction& ins) {
const bool isBreak = ins.op == DxbcOpcode::Breakc;
DxbcCfgBlock* cfgBlock = isBreak
? cfgFindBlock({ DxbcCfgBlockType::Loop, DxbcCfgBlockType::Switch })
: cfgFindBlock({ DxbcCfgBlockType::Loop });
if (cfgBlock == nullptr)
throw DxvkError("DxbcCompiler: 'Breakc' or 'Continuec' outside 'Loop' or 'Switch' found");
// Perform zero test on the first component of the condition
const DxbcRegisterValue condition = emitRegisterLoad(
ins.src[0], DxbcRegMask(true, false, false, false));
const DxbcRegisterValue zeroTest = emitRegisterZeroTest(
condition, ins.controls.zeroTest());
// We basically have to wrap this into an 'if' block
const uint32_t breakBlock = m_module.allocateId();
const uint32_t mergeBlock = m_module.allocateId();
m_module.opSelectionMerge(mergeBlock,
spv::SelectionControlMaskNone);
m_module.opBranchConditional(
zeroTest.id, breakBlock, mergeBlock);
m_module.opLabel(breakBlock);
if (cfgBlock->type == DxbcCfgBlockType::Loop) {
m_module.opBranch(isBreak
? cfgBlock->b_loop.labelBreak
: cfgBlock->b_loop.labelContinue);
} else /* if (cfgBlock->type == DxbcCfgBlockType::Switch) */ {
m_module.opBranch(cfgBlock->b_switch.labelBreak);
}
m_module.opLabel(mergeBlock);
}
void DxbcCompiler::emitControlFlowRet(const DxbcShaderInstruction& ins) {
if (m_controlFlowBlocks.size() != 0) {
uint32_t labelId = m_module.allocateId();
m_module.opReturn();
m_module.opLabel(labelId);
// return can be used in place of break to terminate a case block
if (m_controlFlowBlocks.back().type == DxbcCfgBlockType::Switch)
m_controlFlowBlocks.back().b_switch.labelCase = labelId;
} else {
// Last instruction in the current function
this->emitFunctionEnd();
}
}
void DxbcCompiler::emitControlFlowRetc(const DxbcShaderInstruction& ins) {
// Perform zero test on the first component of the condition
const DxbcRegisterValue condition = emitRegisterLoad(
ins.src[0], DxbcRegMask(true, false, false, false));
const DxbcRegisterValue zeroTest = emitRegisterZeroTest(
condition, ins.controls.zeroTest());
// We basically have to wrap this into an 'if' block
const uint32_t returnLabel = m_module.allocateId();
const uint32_t continueLabel = m_module.allocateId();
m_module.opSelectionMerge(continueLabel,
spv::SelectionControlMaskNone);
m_module.opBranchConditional(
zeroTest.id, returnLabel, continueLabel);
m_module.opLabel(returnLabel);
m_module.opReturn();
m_module.opLabel(continueLabel);
}
void DxbcCompiler::emitControlFlowDiscard(const DxbcShaderInstruction& ins) {
// Discard actually has an operand that determines
// whether or not the fragment should be discarded
const DxbcRegisterValue condition = emitRegisterLoad(
ins.src[0], DxbcRegMask(true, false, false, false));
const DxbcRegisterValue zeroTest = emitRegisterZeroTest(
condition, ins.controls.zeroTest());
DxbcConditional cond;
cond.labelIf = m_module.allocateId();
cond.labelEnd = m_module.allocateId();
m_module.opSelectionMerge(cond.labelEnd, spv::SelectionControlMaskNone);
m_module.opBranchConditional(zeroTest.id, cond.labelIf, cond.labelEnd);
m_module.opLabel(cond.labelIf);
m_module.opDemoteToHelperInvocation();
m_module.opBranch(cond.labelEnd);
m_module.opLabel(cond.labelEnd);
m_module.enableCapability(spv::CapabilityDemoteToHelperInvocation);
}
void DxbcCompiler::emitControlFlowLabel(const DxbcShaderInstruction& ins) {
uint32_t functionNr = ins.dst[0].idx[0].offset;
uint32_t functionId = getFunctionId(functionNr);
this->emitFunctionBegin(
functionId,
m_module.defVoidType(),
m_module.defFunctionType(
m_module.defVoidType(), 0, nullptr));
m_module.opLabel(m_module.allocateId());
m_module.setDebugName(functionId, str::format("label", functionNr).c_str());
m_insideFunction = true;
}
void DxbcCompiler::emitControlFlowCall(const DxbcShaderInstruction& ins) {
uint32_t functionNr = ins.src[0].idx[0].offset;
uint32_t functionId = getFunctionId(functionNr);
m_module.opFunctionCall(
m_module.defVoidType(),
functionId, 0, nullptr);
}
void DxbcCompiler::emitControlFlowCallc(const DxbcShaderInstruction& ins) {
uint32_t functionNr = ins.src[1].idx[0].offset;
uint32_t functionId = getFunctionId(functionNr);
// Perform zero test on the first component of the condition
const DxbcRegisterValue condition = emitRegisterLoad(
ins.src[0], DxbcRegMask(true, false, false, false));
const DxbcRegisterValue zeroTest = emitRegisterZeroTest(
condition, ins.controls.zeroTest());
// We basically have to wrap this into an 'if' block
const uint32_t callLabel = m_module.allocateId();
const uint32_t skipLabel = m_module.allocateId();
m_module.opSelectionMerge(skipLabel,
spv::SelectionControlMaskNone);
m_module.opBranchConditional(
zeroTest.id, callLabel, skipLabel);
m_module.opLabel(callLabel);
m_module.opFunctionCall(
m_module.defVoidType(),
functionId, 0, nullptr);
m_module.opBranch(skipLabel);
m_module.opLabel(skipLabel);
}
void DxbcCompiler::emitControlFlow(const DxbcShaderInstruction& ins) {
switch (ins.op) {
case DxbcOpcode::If:
return this->emitControlFlowIf(ins);
case DxbcOpcode::Else:
return this->emitControlFlowElse(ins);
case DxbcOpcode::EndIf:
return this->emitControlFlowEndIf(ins);
case DxbcOpcode::Switch:
return this->emitControlFlowSwitch(ins);
case DxbcOpcode::Case:
return this->emitControlFlowCase(ins);
case DxbcOpcode::Default:
return this->emitControlFlowDefault(ins);
case DxbcOpcode::EndSwitch:
return this->emitControlFlowEndSwitch(ins);
case DxbcOpcode::Loop:
return this->emitControlFlowLoop(ins);
case DxbcOpcode::EndLoop:
return this->emitControlFlowEndLoop(ins);
case DxbcOpcode::Break:
case DxbcOpcode::Continue:
return this->emitControlFlowBreak(ins);
case DxbcOpcode::Breakc:
case DxbcOpcode::Continuec:
return this->emitControlFlowBreakc(ins);
case DxbcOpcode::Ret:
return this->emitControlFlowRet(ins);
case DxbcOpcode::Retc:
return this->emitControlFlowRetc(ins);
case DxbcOpcode::Discard:
return this->emitControlFlowDiscard(ins);
case DxbcOpcode::Label:
return this->emitControlFlowLabel(ins);
case DxbcOpcode::Call:
return this->emitControlFlowCall(ins);
case DxbcOpcode::Callc:
return this->emitControlFlowCallc(ins);
default:
Logger::warn(str::format(
"DxbcCompiler: Unhandled instruction: ",
ins.op));
}
}
DxbcRegisterValue DxbcCompiler::emitBuildConstVecf32(
float x,
float y,
float z,
float w,
const DxbcRegMask& writeMask) {
// TODO refactor these functions into one single template
std::array<uint32_t, 4> ids = { 0, 0, 0, 0 };
uint32_t componentIndex = 0;
if (writeMask[0]) ids[componentIndex++] = m_module.constf32(x);
if (writeMask[1]) ids[componentIndex++] = m_module.constf32(y);
if (writeMask[2]) ids[componentIndex++] = m_module.constf32(z);
if (writeMask[3]) ids[componentIndex++] = m_module.constf32(w);
DxbcRegisterValue result;
result.type.ctype = DxbcScalarType::Float32;
result.type.ccount = componentIndex;
result.id = componentIndex > 1
? m_module.constComposite(
getVectorTypeId(result.type),
componentIndex, ids.data())
: ids[0];
return result;
}
DxbcRegisterValue DxbcCompiler::emitBuildConstVecu32(
uint32_t x,
uint32_t y,
uint32_t z,
uint32_t w,
const DxbcRegMask& writeMask) {
std::array<uint32_t, 4> ids = { 0, 0, 0, 0 };
uint32_t componentIndex = 0;
if (writeMask[0]) ids[componentIndex++] = m_module.constu32(x);
if (writeMask[1]) ids[componentIndex++] = m_module.constu32(y);
if (writeMask[2]) ids[componentIndex++] = m_module.constu32(z);
if (writeMask[3]) ids[componentIndex++] = m_module.constu32(w);
DxbcRegisterValue result;
result.type.ctype = DxbcScalarType::Uint32;
result.type.ccount = componentIndex;
result.id = componentIndex > 1
? m_module.constComposite(
getVectorTypeId(result.type),
componentIndex, ids.data())
: ids[0];
return result;
}
DxbcRegisterValue DxbcCompiler::emitBuildConstVeci32(
int32_t x,
int32_t y,
int32_t z,
int32_t w,
const DxbcRegMask& writeMask) {
std::array<uint32_t, 4> ids = { 0, 0, 0, 0 };
uint32_t componentIndex = 0;
if (writeMask[0]) ids[componentIndex++] = m_module.consti32(x);
if (writeMask[1]) ids[componentIndex++] = m_module.consti32(y);
if (writeMask[2]) ids[componentIndex++] = m_module.consti32(z);
if (writeMask[3]) ids[componentIndex++] = m_module.consti32(w);
DxbcRegisterValue result;
result.type.ctype = DxbcScalarType::Sint32;
result.type.ccount = componentIndex;
result.id = componentIndex > 1
? m_module.constComposite(
getVectorTypeId(result.type),
componentIndex, ids.data())
: ids[0];
return result;
}
DxbcRegisterValue DxbcCompiler::emitBuildConstVecf64(
double xy,
double zw,
const DxbcRegMask& writeMask) {
std::array<uint32_t, 2> ids = { 0, 0 };
uint32_t componentIndex = 0;
if (writeMask[0] && writeMask[1]) ids[componentIndex++] = m_module.constf64(xy);
if (writeMask[2] && writeMask[3]) ids[componentIndex++] = m_module.constf64(zw);
DxbcRegisterValue result;
result.type.ctype = DxbcScalarType::Float64;
result.type.ccount = componentIndex;
result.id = componentIndex > 1
? m_module.constComposite(
getVectorTypeId(result.type),
componentIndex, ids.data())
: ids[0];
return result;
}
DxbcRegisterValue DxbcCompiler::emitBuildVector(
DxbcRegisterValue scalar,
uint32_t count) {
if (count == 1)
return scalar;
std::array<uint32_t, 4> scalarIds =
{ scalar.id, scalar.id, scalar.id, scalar.id };
DxbcRegisterValue result;
result.type.ctype = scalar.type.ctype;
result.type.ccount = count;
result.id = m_module.constComposite(
getVectorTypeId(result.type),
count, scalarIds.data());
return result;
}
DxbcRegisterValue DxbcCompiler::emitBuildZeroVector(
DxbcVectorType type) {
DxbcRegisterValue result;
result.type.ctype = type.ctype;
result.type.ccount = 1;
switch (type.ctype) {
case DxbcScalarType::Float32: result.id = m_module.constf32(0.0f); break;
case DxbcScalarType::Uint32: result.id = m_module.constu32(0u); break;
case DxbcScalarType::Sint32: result.id = m_module.consti32(0); break;
default: throw DxvkError("DxbcCompiler: Invalid scalar type");
}
return emitBuildVector(result, type.ccount);
}
DxbcRegisterValue DxbcCompiler::emitRegisterBitcast(
DxbcRegisterValue srcValue,
DxbcScalarType dstType) {
DxbcScalarType srcType = srcValue.type.ctype;
if (srcType == dstType)
return srcValue;
DxbcRegisterValue result;
result.type.ctype = dstType;
result.type.ccount = srcValue.type.ccount;
if (isDoubleType(srcType)) result.type.ccount *= 2;
if (isDoubleType(dstType)) result.type.ccount /= 2;
result.id = m_module.opBitcast(
getVectorTypeId(result.type),
srcValue.id);
return result;
}
DxbcRegisterValue DxbcCompiler::emitRegisterSwizzle(
DxbcRegisterValue value,
DxbcRegSwizzle swizzle,
DxbcRegMask writeMask) {
if (value.type.ccount == 1)
return emitRegisterExtend(value, writeMask.popCount());
std::array<uint32_t, 4> indices;
uint32_t dstIndex = 0;
for (uint32_t i = 0; i < 4; i++) {
if (writeMask[i])
indices[dstIndex++] = swizzle[i];
}
// If the swizzle combined with the mask can be reduced
// to a no-op, we don't need to insert any instructions.
bool isIdentitySwizzle = dstIndex == value.type.ccount;
for (uint32_t i = 0; i < dstIndex && isIdentitySwizzle; i++)
isIdentitySwizzle &= indices[i] == i;
if (isIdentitySwizzle)
return value;
// Use OpCompositeExtract if the resulting vector contains
// only one component, and OpVectorShuffle if it is a vector.
DxbcRegisterValue result;
result.type.ctype = value.type.ctype;
result.type.ccount = dstIndex;
const uint32_t typeId = getVectorTypeId(result.type);
if (dstIndex == 1) {
result.id = m_module.opCompositeExtract(
typeId, value.id, 1, indices.data());
} else {
result.id = m_module.opVectorShuffle(
typeId, value.id, value.id,
dstIndex, indices.data());
}
return result;
}
DxbcRegisterValue DxbcCompiler::emitRegisterExtract(
DxbcRegisterValue value,
DxbcRegMask mask) {
return emitRegisterSwizzle(value,
DxbcRegSwizzle(0, 1, 2, 3), mask);
}
DxbcRegisterValue DxbcCompiler::emitRegisterInsert(
DxbcRegisterValue dstValue,
DxbcRegisterValue srcValue,
DxbcRegMask srcMask) {
DxbcRegisterValue result;
result.type = dstValue.type;
const uint32_t typeId = getVectorTypeId(result.type);
if (srcMask.popCount() == 0) {
// Nothing to do if the insertion mask is empty
result.id = dstValue.id;
} else if (dstValue.type.ccount == 1) {
// Both values are scalar, so the first component
// of the write mask decides which one to take.
result.id = srcMask[0] ? srcValue.id : dstValue.id;
} else if (srcValue.type.ccount == 1) {
// The source value is scalar. Since OpVectorShuffle
// requires both arguments to be vectors, we have to
// use OpCompositeInsert to modify the vector instead.
const uint32_t componentId = srcMask.firstSet();
result.id = m_module.opCompositeInsert(typeId,
srcValue.id, dstValue.id, 1, &componentId);
} else {
// Both arguments are vectors. We can determine which
// components to take from which vector and use the
// OpVectorShuffle instruction.
std::array<uint32_t, 4> components;
uint32_t srcComponentId = dstValue.type.ccount;
for (uint32_t i = 0; i < dstValue.type.ccount; i++)
components.at(i) = srcMask[i] ? srcComponentId++ : i;
result.id = m_module.opVectorShuffle(
typeId, dstValue.id, srcValue.id,
dstValue.type.ccount, components.data());
}
return result;
}
DxbcRegisterValue DxbcCompiler::emitRegisterConcat(
DxbcRegisterValue value1,
DxbcRegisterValue value2) {
std::array<uint32_t, 2> ids =
{{ value1.id, value2.id }};
DxbcRegisterValue result;
result.type.ctype = value1.type.ctype;
result.type.ccount = value1.type.ccount + value2.type.ccount;
result.id = m_module.opCompositeConstruct(
getVectorTypeId(result.type),
ids.size(), ids.data());
return result;
}
DxbcRegisterValue DxbcCompiler::emitRegisterExtend(
DxbcRegisterValue value,
uint32_t size) {
if (size == 1)
return value;
std::array<uint32_t, 4> ids = {{
value.id, value.id,
value.id, value.id,
}};
DxbcRegisterValue result;
result.type.ctype = value.type.ctype;
result.type.ccount = size;
result.id = m_module.opCompositeConstruct(
getVectorTypeId(result.type),
size, ids.data());
return result;
}
DxbcRegisterValue DxbcCompiler::emitRegisterAbsolute(
DxbcRegisterValue value) {
const uint32_t typeId = getVectorTypeId(value.type);
switch (value.type.ctype) {
case DxbcScalarType::Float32: value.id = m_module.opFAbs(typeId, value.id); break;
case DxbcScalarType::Float64: value.id = m_module.opFAbs(typeId, value.id); break;
case DxbcScalarType::Sint32: value.id = m_module.opSAbs(typeId, value.id); break;
case DxbcScalarType::Sint64: value.id = m_module.opSAbs(typeId, value.id); break;
default: Logger::warn("DxbcCompiler: Cannot get absolute value for given type");
}
return value;
}
DxbcRegisterValue DxbcCompiler::emitRegisterNegate(
DxbcRegisterValue value) {
const uint32_t typeId = getVectorTypeId(value.type);
switch (value.type.ctype) {
case DxbcScalarType::Float32: value.id = m_module.opFNegate(typeId, value.id); break;
case DxbcScalarType::Float64: value.id = m_module.opFNegate(typeId, value.id); break;
case DxbcScalarType::Sint32: value.id = m_module.opSNegate(typeId, value.id); break;
case DxbcScalarType::Sint64: value.id = m_module.opSNegate(typeId, value.id); break;
default: Logger::warn("DxbcCompiler: Cannot negate given type");
}
return value;
}
DxbcRegisterValue DxbcCompiler::emitRegisterZeroTest(
DxbcRegisterValue value,
DxbcZeroTest test) {
DxbcRegisterValue result;
result.type.ctype = DxbcScalarType::Bool;
result.type.ccount = 1;
const uint32_t zeroId = m_module.constu32(0u);
const uint32_t typeId = getVectorTypeId(result.type);
result.id = test == DxbcZeroTest::TestZ
? m_module.opIEqual (typeId, value.id, zeroId)
: m_module.opINotEqual(typeId, value.id, zeroId);
return result;
}
DxbcRegisterValue DxbcCompiler::emitRegisterMaskBits(
DxbcRegisterValue value,
uint32_t mask) {
DxbcRegisterValue maskVector = emitBuildConstVecu32(
mask, mask, mask, mask, DxbcRegMask::firstN(value.type.ccount));
DxbcRegisterValue result;
result.type = value.type;
result.id = m_module.opBitwiseAnd(
getVectorTypeId(result.type),
value.id, maskVector.id);
return result;
}
DxbcRegisterValue DxbcCompiler::emitSrcOperandModifiers(
DxbcRegisterValue value,
DxbcRegModifiers modifiers) {
if (modifiers.test(DxbcRegModifier::Abs))
value = emitRegisterAbsolute(value);
if (modifiers.test(DxbcRegModifier::Neg))
value = emitRegisterNegate(value);
return value;
}
uint32_t DxbcCompiler::emitExtractSparseTexel(
uint32_t texelTypeId,
uint32_t resultId) {
uint32_t index = 1;
return m_module.opCompositeExtract(
texelTypeId, resultId, 1, &index);
}
void DxbcCompiler::emitStoreSparseFeedback(
const DxbcRegister& feedbackRegister,
uint32_t resultId) {
if (feedbackRegister.type != DxbcOperandType::Null) {
uint32_t index = 0;
DxbcRegisterValue result;
result.type = { DxbcScalarType::Uint32, 1 };
result.id = m_module.opCompositeExtract(
getScalarTypeId(DxbcScalarType::Uint32),
resultId, 1, &index);
emitRegisterStore(feedbackRegister, result);
}
}
DxbcRegisterValue DxbcCompiler::emitDstOperandModifiers(
DxbcRegisterValue value,
DxbcOpModifiers modifiers) {
const uint32_t typeId = getVectorTypeId(value.type);
if (modifiers.saturate) {
DxbcRegMask mask;
DxbcRegisterValue vec0, vec1;
if (value.type.ctype == DxbcScalarType::Float32) {
mask = DxbcRegMask::firstN(value.type.ccount);
vec0 = emitBuildConstVecf32(0.0f, 0.0f, 0.0f, 0.0f, mask);
vec1 = emitBuildConstVecf32(1.0f, 1.0f, 1.0f, 1.0f, mask);
} else if (value.type.ctype == DxbcScalarType::Float64) {
mask = DxbcRegMask::firstN(value.type.ccount * 2);
vec0 = emitBuildConstVecf64(0.0, 0.0, mask);
vec1 = emitBuildConstVecf64(1.0, 1.0, mask);
}
if (mask)
value.id = m_module.opNClamp(typeId, value.id, vec0.id, vec1.id);
}
return value;
}
DxbcRegisterPointer DxbcCompiler::emitArrayAccess(
DxbcRegisterPointer pointer,
spv::StorageClass sclass,
uint32_t index) {
uint32_t ptrTypeId = m_module.defPointerType(
getVectorTypeId(pointer.type), sclass);
DxbcRegisterPointer result;
result.type = pointer.type;
result.id = m_module.opAccessChain(
ptrTypeId, pointer.id, 1, &index);
return result;
}
uint32_t DxbcCompiler::emitLoadSampledImage(
const DxbcShaderResource& textureResource,
const DxbcSampler& samplerResource,
bool isDepthCompare) {
const uint32_t sampledImageType = isDepthCompare
? m_module.defSampledImageType(textureResource.depthTypeId)
: m_module.defSampledImageType(textureResource.colorTypeId);
return m_module.opSampledImage(sampledImageType,
m_module.opLoad(textureResource.imageTypeId, textureResource.varId),
m_module.opLoad(samplerResource.typeId, samplerResource.varId));
}
DxbcRegisterPointer DxbcCompiler::emitGetTempPtr(
const DxbcRegister& operand) {
// r# regs are indexed as follows:
// (0) register index (immediate)
uint32_t regIdx = operand.idx[0].offset;
if (regIdx >= m_rRegs.size())
m_rRegs.resize(regIdx + 1, 0u);
if (!m_rRegs.at(regIdx)) {
DxbcRegisterInfo info;
info.type.ctype = DxbcScalarType::Float32;
info.type.ccount = 4;
info.type.alength = 0;
info.sclass = spv::StorageClassPrivate;
uint32_t varId = emitNewVariable(info);
m_rRegs.at(regIdx) = varId;
m_module.setDebugName(varId,
str::format("r", regIdx).c_str());
}
DxbcRegisterPointer result;
result.type.ctype = DxbcScalarType::Float32;
result.type.ccount = 4;
result.id = m_rRegs.at(regIdx);
return result;
}
DxbcRegisterPointer DxbcCompiler::emitGetIndexableTempPtr(
const DxbcRegister& operand) {
return getIndexableTempPtr(operand, emitIndexLoad(operand.idx[1]));
}
DxbcRegisterPointer DxbcCompiler::emitGetInputPtr(
const DxbcRegister& operand) {
// In the vertex and pixel stages,
// v# regs are indexed as follows:
// (0) register index (relative)
//
// In the tessellation and geometry
// stages, the index has two dimensions:
// (0) vertex index (relative)
// (1) register index (relative)
DxbcRegisterPointer result;
result.type.ctype = DxbcScalarType::Float32;
result.type.ccount = 4;
std::array<uint32_t, 2> indices = {{ 0, 0 }};
for (uint32_t i = 0; i < operand.idxDim; i++)
indices.at(i) = emitIndexLoad(operand.idx[i]).id;
// Pick the input array depending on
// the program type and operand type
struct InputArray {
uint32_t id;
spv::StorageClass sclass;
};
const InputArray array = [&] () -> InputArray {
switch (operand.type) {
case DxbcOperandType::InputControlPoint:
return m_programInfo.type() == DxbcProgramType::HullShader
? InputArray { m_vArray, spv::StorageClassPrivate }
: InputArray { m_ds.inputPerVertex, spv::StorageClassInput };
case DxbcOperandType::InputPatchConstant:
return m_programInfo.type() == DxbcProgramType::HullShader
? InputArray { m_hs.outputPerPatch, spv::StorageClassPrivate }
: InputArray { m_ds.inputPerPatch, spv::StorageClassInput };
case DxbcOperandType::OutputControlPoint:
return InputArray { m_hs.outputPerVertex, spv::StorageClassOutput };
default:
return { m_vArray, spv::StorageClassPrivate };
}
}();
DxbcRegisterInfo info;
info.type.ctype = result.type.ctype;
info.type.ccount = result.type.ccount;
info.type.alength = 0;
info.sclass = array.sclass;
result.id = m_module.opAccessChain(
getPointerTypeId(info), array.id,
operand.idxDim, indices.data());
return result;
}
DxbcRegisterPointer DxbcCompiler::emitGetOutputPtr(
const DxbcRegister& operand) {
if (m_programInfo.type() == DxbcProgramType::HullShader) {
// Hull shaders are special in that they have two sets of
// output registers, one for per-patch values and one for
// per-vertex values.
DxbcRegisterPointer result;
result.type.ctype = DxbcScalarType::Float32;
result.type.ccount = 4;
uint32_t registerId = emitIndexLoad(operand.idx[0]).id;
if (m_hs.currPhaseType == DxbcCompilerHsPhase::ControlPoint) {
std::array<uint32_t, 2> indices = {{
m_module.opLoad(m_module.defIntType(32, 0), m_hs.builtinInvocationId),
registerId,
}};
uint32_t ptrTypeId = m_module.defPointerType(
getVectorTypeId(result.type),
spv::StorageClassOutput);
result.id = m_module.opAccessChain(
ptrTypeId, m_hs.outputPerVertex,
indices.size(), indices.data());
} else {
uint32_t ptrTypeId = m_module.defPointerType(
getVectorTypeId(result.type),
spv::StorageClassPrivate);
result.id = m_module.opAccessChain(
ptrTypeId, m_hs.outputPerPatch,
1, &registerId);
}
return result;
} else {
// Regular shaders have their output
// registers set up at declaration time
return m_oRegs.at(operand.idx[0].offset);
}
}
DxbcRegisterPointer DxbcCompiler::emitGetImmConstBufPtr(
const DxbcRegister& operand) {
const DxbcRegisterValue constId
= emitIndexLoad(operand.idx[0]);
if (m_immConstBuf != 0) {
DxbcRegisterInfo ptrInfo;
ptrInfo.type.ctype = DxbcScalarType::Uint32;
ptrInfo.type.ccount = 4;
ptrInfo.type.alength = 0;
ptrInfo.sclass = spv::StorageClassPrivate;
DxbcRegisterPointer result;
result.type.ctype = ptrInfo.type.ctype;
result.type.ccount = ptrInfo.type.ccount;
result.id = m_module.opAccessChain(
getPointerTypeId(ptrInfo),
m_immConstBuf, 1, &constId.id);
return result;
} else if (m_constantBuffers.at(Icb_BindingSlotId).varId != 0) {
const std::array<uint32_t, 2> indices =
{{ m_module.consti32(0), constId.id }};
DxbcRegisterInfo ptrInfo;
ptrInfo.type.ctype = DxbcScalarType::Float32;
ptrInfo.type.ccount = 4;
ptrInfo.type.alength = 0;
ptrInfo.sclass = spv::StorageClassUniform;
DxbcRegisterPointer result;
result.type.ctype = ptrInfo.type.ctype;
result.type.ccount = ptrInfo.type.ccount;
result.id = m_module.opAccessChain(
getPointerTypeId(ptrInfo),
m_constantBuffers.at(Icb_BindingSlotId).varId,
indices.size(), indices.data());
return result;
} else {
throw DxvkError("DxbcCompiler: Immediate constant buffer not defined");
}
}
DxbcRegisterPointer DxbcCompiler::emitGetOperandPtr(
const DxbcRegister& operand) {
switch (operand.type) {
case DxbcOperandType::Temp:
return emitGetTempPtr(operand);
case DxbcOperandType::IndexableTemp:
return emitGetIndexableTempPtr(operand);
case DxbcOperandType::Input:
case DxbcOperandType::InputControlPoint:
case DxbcOperandType::InputPatchConstant:
case DxbcOperandType::OutputControlPoint:
return emitGetInputPtr(operand);
case DxbcOperandType::Output:
return emitGetOutputPtr(operand);
case DxbcOperandType::ImmediateConstantBuffer:
return emitGetImmConstBufPtr(operand);
case DxbcOperandType::InputThreadId:
return DxbcRegisterPointer {
{ DxbcScalarType::Uint32, 3 },
m_cs.builtinGlobalInvocationId };
case DxbcOperandType::InputThreadGroupId:
return DxbcRegisterPointer {
{ DxbcScalarType::Uint32, 3 },
m_cs.builtinWorkgroupId };
case DxbcOperandType::InputThreadIdInGroup:
return DxbcRegisterPointer {
{ DxbcScalarType::Uint32, 3 },
m_cs.builtinLocalInvocationId };
case DxbcOperandType::InputThreadIndexInGroup:
return DxbcRegisterPointer {
{ DxbcScalarType::Uint32, 1 },
m_cs.builtinLocalInvocationIndex };
case DxbcOperandType::InputCoverageMask: {
const std::array<uint32_t, 1> indices
= {{ m_module.constu32(0) }};
DxbcRegisterPointer result;
result.type.ctype = DxbcScalarType::Uint32;
result.type.ccount = 1;
result.id = m_module.opAccessChain(
m_module.defPointerType(
getVectorTypeId(result.type),
spv::StorageClassInput),
m_ps.builtinSampleMaskIn,
indices.size(), indices.data());
return result;
}
case DxbcOperandType::OutputCoverageMask: {
const std::array<uint32_t, 1> indices
= {{ m_module.constu32(0) }};
DxbcRegisterPointer result;
result.type.ctype = DxbcScalarType::Uint32;
result.type.ccount = 1;
result.id = m_module.opAccessChain(
m_module.defPointerType(
getVectorTypeId(result.type),
spv::StorageClassOutput),
m_ps.builtinSampleMaskOut,
indices.size(), indices.data());
return result;
}
case DxbcOperandType::OutputDepth:
case DxbcOperandType::OutputDepthGe:
case DxbcOperandType::OutputDepthLe:
return DxbcRegisterPointer {
{ DxbcScalarType::Float32, 1 },
m_ps.builtinDepth };
case DxbcOperandType::OutputStencilRef:
return DxbcRegisterPointer {
{ DxbcScalarType::Sint32, 1 },
m_ps.builtinStencilRef };
case DxbcOperandType::InputPrimitiveId:
return DxbcRegisterPointer {
{ DxbcScalarType::Uint32, 1 },
m_primitiveIdIn };
case DxbcOperandType::InputDomainPoint:
return DxbcRegisterPointer {
{ DxbcScalarType::Float32, 3 },
m_ds.builtinTessCoord };
case DxbcOperandType::OutputControlPointId:
return DxbcRegisterPointer {
{ DxbcScalarType::Uint32, 1 },
m_hs.builtinInvocationId };
case DxbcOperandType::InputForkInstanceId:
case DxbcOperandType::InputJoinInstanceId:
return DxbcRegisterPointer {
{ DxbcScalarType::Uint32, 1 },
getCurrentHsForkJoinPhase()->instanceIdPtr };
case DxbcOperandType::InputGsInstanceId:
return DxbcRegisterPointer {
{ DxbcScalarType::Uint32, 1 },
m_gs.builtinInvocationId };
case DxbcOperandType::InputInnerCoverage:
return DxbcRegisterPointer {
{ DxbcScalarType::Uint32, 1 },
m_ps.builtinInnerCoverageId };
default:
throw DxvkError(str::format(
"DxbcCompiler: Unhandled operand type: ",
operand.type));
}
}
DxbcRegisterPointer DxbcCompiler::emitGetAtomicPointer(
const DxbcRegister& operand,
const DxbcRegister& address) {
// Query information about the resource itself
const uint32_t registerId = operand.idx[0].offset;
const DxbcBufferInfo resourceInfo = getBufferInfo(operand);
// For UAVs and shared memory, different methods
// of obtaining the final pointer are used.
bool isTgsm = operand.type == DxbcOperandType::ThreadGroupSharedMemory;
bool isSsbo = resourceInfo.isSsbo;
// Compute the actual address into the resource
const DxbcRegisterValue addressValue = [&] {
switch (resourceInfo.type) {
case DxbcResourceType::Raw:
return emitCalcBufferIndexRaw(emitRegisterLoad(
address, DxbcRegMask(true, false, false, false)));
case DxbcResourceType::Structured: {
const DxbcRegisterValue addressComponents = emitRegisterLoad(
address, DxbcRegMask(true, true, false, false));
return emitCalcBufferIndexStructured(
emitRegisterExtract(addressComponents, DxbcRegMask(true, false, false, false)),
emitRegisterExtract(addressComponents, DxbcRegMask(false, true, false, false)),
resourceInfo.stride);
};
case DxbcResourceType::Typed: {
if (isTgsm)
throw DxvkError("DxbcCompiler: TGSM cannot be typed");
return emitLoadTexCoord(address,
m_uavs.at(registerId).imageInfo);
}
default:
throw DxvkError("DxbcCompiler: Unhandled resource type");
}
}();
// Compute the actual pointer
DxbcRegisterPointer result;
result.type.ctype = resourceInfo.stype;
result.type.ccount = 1;
if (isTgsm) {
result.id = m_module.opAccessChain(resourceInfo.typeId,
resourceInfo.varId, 1, &addressValue.id);
} else if (isSsbo) {
uint32_t indices[2] = { m_module.constu32(0), addressValue.id };
result.id = m_module.opAccessChain(resourceInfo.typeId,
resourceInfo.varId, 2, indices);
} else {
result.id = m_module.opImageTexelPointer(
m_module.defPointerType(getVectorTypeId(result.type), spv::StorageClassImage),
resourceInfo.varId, addressValue.id, m_module.constu32(0));
}
return result;
}
DxbcRegisterValue DxbcCompiler::emitRawBufferLoad(
const DxbcRegister& operand,
DxbcRegisterValue elementIndex,
DxbcRegMask writeMask,
uint32_t& sparseFeedbackId) {
const DxbcBufferInfo bufferInfo = getBufferInfo(operand);
// Shared memory is the only type of buffer that
// is not accessed through a texel buffer view
bool isTgsm = operand.type == DxbcOperandType::ThreadGroupSharedMemory;
bool isSsbo = bufferInfo.isSsbo;
// Common types and IDs used while loading the data
uint32_t bufferId = isTgsm || isSsbo ? 0 : m_module.opLoad(bufferInfo.typeId, bufferInfo.varId);
uint32_t vectorTypeId = getVectorTypeId({ DxbcScalarType::Uint32, 4 });
uint32_t scalarTypeId = getVectorTypeId({ DxbcScalarType::Uint32, 1 });
// Since all data is represented as a sequence of 32-bit
// integers, we have to load each component individually.
std::array<uint32_t, 4> ccomps = { 0, 0, 0, 0 };
std::array<uint32_t, 4> scomps = { 0, 0, 0, 0 };
uint32_t scount = 0;
// The sparse feedback ID will be non-zero for sparse
// instructions on input. We need to reset it to 0.
SpirvMemoryOperands memoryOperands;
SpirvImageOperands imageOperands;
imageOperands.sparse = sparseFeedbackId != 0;
uint32_t coherence = bufferInfo.coherence;
if (isTgsm || coherence)
memoryOperands.flags = spv::MemoryAccessNonPrivatePointerMask;
if (isTgsm && m_moduleInfo.options.forceVolatileTgsmAccess) {
memoryOperands.flags |= spv::MemoryAccessVolatileMask;
coherence = spv::ScopeWorkgroup;
}
if (coherence) {
memoryOperands.flags |= spv::MemoryAccessMakePointerVisibleMask;
memoryOperands.makeVisible = m_module.constu32(coherence);
imageOperands.flags = spv::ImageOperandsNonPrivateTexelMask
| spv::ImageOperandsMakeTexelVisibleMask;
imageOperands.makeVisible = m_module.constu32(coherence);
}
sparseFeedbackId = 0;
for (uint32_t i = 0; i < 4; i++) {
uint32_t sindex = operand.swizzle[i];
if (!writeMask[i])
continue;
if (ccomps[sindex] == 0) {
uint32_t elementIndexAdjusted = m_module.opIAdd(
getVectorTypeId(elementIndex.type), elementIndex.id,
m_module.consti32(sindex));
// Load requested component from the buffer
uint32_t zero = 0;
if (isTgsm) {
ccomps[sindex] = m_module.opLoad(scalarTypeId,
m_module.opAccessChain(bufferInfo.typeId,
bufferInfo.varId, 1, &elementIndexAdjusted),
memoryOperands);
} else if (isSsbo) {
uint32_t indices[2] = { m_module.constu32(0), elementIndexAdjusted };
ccomps[sindex] = m_module.opLoad(scalarTypeId,
m_module.opAccessChain(bufferInfo.typeId,
bufferInfo.varId, 2, indices),
memoryOperands);
} else {
uint32_t resultTypeId = vectorTypeId;
uint32_t resultId = 0;
if (imageOperands.sparse)
resultTypeId = getSparseResultTypeId(vectorTypeId);
if (operand.type == DxbcOperandType::Resource) {
resultId = m_module.opImageFetch(resultTypeId,
bufferId, elementIndexAdjusted, imageOperands);
} else if (operand.type == DxbcOperandType::UnorderedAccessView) {
resultId = m_module.opImageRead(resultTypeId,
bufferId, elementIndexAdjusted, imageOperands);
} else {
throw DxvkError("DxbcCompiler: Invalid operand type for strucured/raw load");
}
// Only read sparse feedback once. This may be somewhat inaccurate
// for reads that straddle pages, but we can't easily emulate this.
if (imageOperands.sparse) {
imageOperands.sparse = false;
sparseFeedbackId = resultId;
resultId = emitExtractSparseTexel(vectorTypeId, resultId);
}
ccomps[sindex] = m_module.opCompositeExtract(scalarTypeId, resultId, 1, &zero);
}
}
}
for (uint32_t i = 0; i < 4; i++) {
uint32_t sindex = operand.swizzle[i];
if (writeMask[i])
scomps[scount++] = ccomps[sindex];
}
DxbcRegisterValue result;
result.type.ctype = DxbcScalarType::Uint32;
result.type.ccount = scount;
result.id = scomps[0];
if (scount > 1) {
result.id = m_module.opCompositeConstruct(
getVectorTypeId(result.type),
scount, scomps.data());
}
return result;
}
void DxbcCompiler::emitRawBufferStore(
const DxbcRegister& operand,
DxbcRegisterValue elementIndex,
DxbcRegisterValue value) {
const DxbcBufferInfo bufferInfo = getBufferInfo(operand);
// Cast source value to the expected data type
value = emitRegisterBitcast(value, DxbcScalarType::Uint32);
// Thread Group Shared Memory is not accessed through a texel buffer view
bool isTgsm = operand.type == DxbcOperandType::ThreadGroupSharedMemory;
bool isSsbo = bufferInfo.isSsbo;
// Perform the actual write operation
uint32_t bufferId = isTgsm || isSsbo ? 0 : m_module.opLoad(bufferInfo.typeId, bufferInfo.varId);
uint32_t scalarTypeId = getVectorTypeId({ DxbcScalarType::Uint32, 1 });
uint32_t vectorTypeId = getVectorTypeId({ DxbcScalarType::Uint32, 4 });
uint32_t srcComponentIndex = 0;
// Set memory operands according to resource properties
SpirvMemoryOperands memoryOperands;
SpirvImageOperands imageOperands;
uint32_t coherence = bufferInfo.coherence;
if (isTgsm || coherence)
memoryOperands.flags = spv::MemoryAccessNonPrivatePointerMask;
if (isTgsm && m_moduleInfo.options.forceVolatileTgsmAccess) {
memoryOperands.flags |= spv::MemoryAccessVolatileMask;
coherence = spv::ScopeWorkgroup;
}
if (coherence) {
memoryOperands.flags |= spv::MemoryAccessMakePointerAvailableMask;
memoryOperands.makeAvailable = m_module.constu32(coherence);
imageOperands.flags = spv::ImageOperandsNonPrivateTexelMask
| spv::ImageOperandsMakeTexelAvailableMask;
imageOperands.makeAvailable = m_module.constu32(coherence);
}
for (uint32_t i = 0; i < 4; i++) {
if (operand.mask[i]) {
uint32_t srcComponentId = value.type.ccount > 1
? m_module.opCompositeExtract(scalarTypeId,
value.id, 1, &srcComponentIndex)
: value.id;
// Add the component offset to the element index
uint32_t elementIndexAdjusted = i != 0
? m_module.opIAdd(getVectorTypeId(elementIndex.type),
elementIndex.id, m_module.consti32(i))
: elementIndex.id;
if (isTgsm) {
m_module.opStore(
m_module.opAccessChain(bufferInfo.typeId,
bufferInfo.varId, 1, &elementIndexAdjusted),
srcComponentId, memoryOperands);
} else if (isSsbo) {
uint32_t indices[2] = { m_module.constu32(0), elementIndexAdjusted };
m_module.opStore(
m_module.opAccessChain(bufferInfo.typeId,
bufferInfo.varId, 2, indices),
srcComponentId, memoryOperands);
} else if (operand.type == DxbcOperandType::UnorderedAccessView) {
const std::array<uint32_t, 4> srcVectorIds = {
srcComponentId, srcComponentId,
srcComponentId, srcComponentId,
};
m_module.opImageWrite(
bufferId, elementIndexAdjusted,
m_module.opCompositeConstruct(vectorTypeId,
4, srcVectorIds.data()),
imageOperands);
} else {
throw DxvkError("DxbcCompiler: Invalid operand type for strucured/raw store");
}
// Write next component
srcComponentIndex += 1;
}
}
}
DxbcRegisterValue DxbcCompiler::emitQueryBufferSize(
const DxbcRegister& resource) {
const DxbcBufferInfo bufferInfo = getBufferInfo(resource);
DxbcRegisterValue result;
result.type.ctype = DxbcScalarType::Uint32;
result.type.ccount = 1;
result.id = m_module.opArrayLength(
getVectorTypeId(result.type),
bufferInfo.varId, 0);
return result;
}
DxbcRegisterValue DxbcCompiler::emitQueryTexelBufferSize(
const DxbcRegister& resource) {
// Load the texel buffer object. This cannot be used with
// constant buffers or any other type of resource.
const DxbcBufferInfo bufferInfo = getBufferInfo(resource);
const uint32_t bufferId = m_module.opLoad(
bufferInfo.typeId, bufferInfo.varId);
// We'll store this as a scalar unsigned integer
DxbcRegisterValue result;
result.type.ctype = DxbcScalarType::Uint32;
result.type.ccount = 1;
result.id = m_module.opImageQuerySize(
getVectorTypeId(result.type), bufferId);
return result;
}
DxbcRegisterValue DxbcCompiler::emitQueryTextureLods(
const DxbcRegister& resource) {
const DxbcBufferInfo info = getBufferInfo(resource);
DxbcRegisterValue result;
result.type.ctype = DxbcScalarType::Uint32;
result.type.ccount = 1;
if (info.image.sampled == 1) {
result.id = m_module.opImageQueryLevels(
getVectorTypeId(result.type),
m_module.opLoad(info.typeId, info.varId));
} else {
// Report one LOD in case of UAVs
result.id = m_module.constu32(1);
}
return result;
}
DxbcRegisterValue DxbcCompiler::emitQueryTextureSamples(
const DxbcRegister& resource) {
if (resource.type == DxbcOperandType::Rasterizer) {
// SPIR-V has no gl_NumSamples equivalent, so we
// have to work around it using a push constant
if (!m_ps.pushConstantId)
m_ps.pushConstantId = emitPushConstants();
uint32_t uintTypeId = m_module.defIntType(32, 0);
uint32_t ptrTypeId = m_module.defPointerType(uintTypeId, spv::StorageClassPushConstant);
uint32_t index = m_module.constu32(0);
DxbcRegisterValue result;
result.type.ctype = DxbcScalarType::Uint32;
result.type.ccount = 1;
result.id = m_module.opLoad(uintTypeId,
m_module.opAccessChain(ptrTypeId, m_ps.pushConstantId, 1, &index));
return result;
} else {
DxbcBufferInfo info = getBufferInfo(resource);
DxbcRegisterValue result;
result.type.ctype = DxbcScalarType::Uint32;
result.type.ccount = 1;
if (info.image.ms) {
result.id = m_module.opImageQuerySamples(
getVectorTypeId(result.type),
m_module.opLoad(info.typeId, info.varId));
} else {
// OpImageQuerySamples requires MSAA images
result.id = m_module.constu32(1);
}
return result;
}
}
DxbcRegisterValue DxbcCompiler::emitQueryTextureSize(
const DxbcRegister& resource,
DxbcRegisterValue lod) {
const DxbcBufferInfo info = getBufferInfo(resource);
DxbcRegisterValue result;
result.type.ctype = DxbcScalarType::Uint32;
result.type.ccount = getTexSizeDim(info.image);
if (info.image.ms == 0 && info.image.sampled == 1) {
result.id = m_module.opImageQuerySizeLod(
getVectorTypeId(result.type),
m_module.opLoad(info.typeId, info.varId),
lod.id);
} else {
result.id = m_module.opImageQuerySize(
getVectorTypeId(result.type),
m_module.opLoad(info.typeId, info.varId));
}
return result;
}
DxbcRegisterValue DxbcCompiler::emitCalcBufferIndexStructured(
DxbcRegisterValue structId,
DxbcRegisterValue structOffset,
uint32_t structStride) {
DxbcRegisterValue result;
result.type.ctype = DxbcScalarType::Sint32;
result.type.ccount = 1;
uint32_t typeId = getVectorTypeId(result.type);
uint32_t offset = m_module.opShiftRightLogical(typeId, structOffset.id, m_module.consti32(2));
result.id = m_module.opIAdd(typeId,
m_module.opIMul(typeId, structId.id, m_module.consti32(structStride / 4)),
offset);
return result;
}
DxbcRegisterValue DxbcCompiler::emitCalcBufferIndexRaw(
DxbcRegisterValue byteOffset) {
DxbcRegisterValue result;
result.type.ctype = DxbcScalarType::Sint32;
result.type.ccount = 1;
uint32_t typeId = getVectorTypeId(result.type);
result.id = m_module.opShiftRightLogical(typeId, byteOffset.id, m_module.consti32(2));
return result;
}
DxbcRegisterValue DxbcCompiler::emitCalcTexCoord(
DxbcRegisterValue coordVector,
const DxbcImageInfo& imageInfo) {
const uint32_t dim = getTexCoordDim(imageInfo);
if (dim != coordVector.type.ccount) {
coordVector = emitRegisterExtract(
coordVector, DxbcRegMask::firstN(dim));
}
return coordVector;
}
DxbcRegisterValue DxbcCompiler::emitLoadTexCoord(
const DxbcRegister& coordReg,
const DxbcImageInfo& imageInfo) {
return emitCalcTexCoord(emitRegisterLoad(coordReg,
DxbcRegMask(true, true, true, true)), imageInfo);
}
DxbcRegisterValue DxbcCompiler::emitIndexLoad(
DxbcRegIndex index) {
if (index.relReg != nullptr) {
DxbcRegisterValue result = emitRegisterLoad(
*index.relReg, DxbcRegMask(true, false, false, false));
if (index.offset != 0) {
result.id = m_module.opIAdd(
getVectorTypeId(result.type), result.id,
m_module.consti32(index.offset));
}
return result;
} else {
DxbcRegisterValue result;
result.type.ctype = DxbcScalarType::Sint32;
result.type.ccount = 1;
result.id = m_module.consti32(index.offset);
return result;
}
}
DxbcRegisterValue DxbcCompiler::emitValueLoad(
DxbcRegisterPointer ptr) {
DxbcRegisterValue result;
result.type = ptr.type;
result.id = m_module.opLoad(
getVectorTypeId(result.type),
ptr.id);
return result;
}
void DxbcCompiler::emitValueStore(
DxbcRegisterPointer ptr,
DxbcRegisterValue value,
DxbcRegMask writeMask) {
// If the component types are not compatible,
// we need to bit-cast the source variable.
if (value.type.ctype != ptr.type.ctype)
value = emitRegisterBitcast(value, ptr.type.ctype);
// If the source value consists of only one component,
// it is stored in all components of the destination.
if (value.type.ccount == 1)
value = emitRegisterExtend(value, writeMask.popCount());
if (ptr.type.ccount == writeMask.popCount()) {
// Simple case: We write to the entire register
m_module.opStore(ptr.id, value.id);
} else {
// We only write to part of the destination
// register, so we need to load and modify it
DxbcRegisterValue tmp = emitValueLoad(ptr);
tmp = emitRegisterInsert(tmp, value, writeMask);
m_module.opStore(ptr.id, tmp.id);
}
}
DxbcRegisterValue DxbcCompiler::emitRegisterLoadRaw(
const DxbcRegister& reg) {
if (reg.type == DxbcOperandType::IndexableTemp) {
bool doBoundsCheck = reg.idx[1].relReg != nullptr;
DxbcRegisterValue vectorId = emitIndexLoad(reg.idx[1]);
if (doBoundsCheck) {
uint32_t boundsCheck = m_module.opULessThan(
m_module.defBoolType(), vectorId.id,
m_module.constu32(m_xRegs.at(reg.idx[0].offset).alength));
// Kind of ugly to have an empty else block here but there's no
// way for us to know the current block ID for the phi below
DxbcConditional cond;
cond.labelIf = m_module.allocateId();
cond.labelElse = m_module.allocateId();
cond.labelEnd = m_module.allocateId();
m_module.opSelectionMerge(cond.labelEnd, spv::SelectionControlMaskNone);
m_module.opBranchConditional(boundsCheck, cond.labelIf, cond.labelElse);
m_module.opLabel(cond.labelIf);
DxbcRegisterValue returnValue = emitValueLoad(emitGetOperandPtr(reg));
m_module.opBranch(cond.labelEnd);
m_module.opLabel (cond.labelElse);
DxbcRegisterValue zeroValue = emitBuildZeroVector(returnValue.type);
m_module.opBranch(cond.labelEnd);
m_module.opLabel (cond.labelEnd);
std::array<SpirvPhiLabel, 2> phiLabels = {{
{ returnValue.id, cond.labelIf },
{ zeroValue.id, cond.labelElse },
}};
returnValue.id = m_module.opPhi(
getVectorTypeId(returnValue.type),
phiLabels.size(), phiLabels.data());
return returnValue;
}
}
return emitValueLoad(emitGetOperandPtr(reg));
}
DxbcRegisterValue DxbcCompiler::emitConstantBufferLoad(
const DxbcRegister& reg,
DxbcRegMask writeMask) {
// Constant buffers take a two-dimensional index:
// (0) register index (immediate)
// (1) constant offset (relative)
DxbcRegisterInfo info;
info.type.ctype = DxbcScalarType::Float32;
info.type.ccount = 4;
info.type.alength = 0;
info.sclass = spv::StorageClassUniform;
uint32_t regId = reg.idx[0].offset;
DxbcRegisterValue constId = emitIndexLoad(reg.idx[1]);
uint32_t ptrTypeId = getPointerTypeId(info);
const std::array<uint32_t, 2> indices =
{{ m_module.consti32(0), constId.id }};
DxbcRegisterPointer ptr;
ptr.type.ctype = info.type.ctype;
ptr.type.ccount = info.type.ccount;
ptr.id = m_module.opAccessChain(ptrTypeId,
m_constantBuffers.at(regId).varId,
indices.size(), indices.data());
// Load individual components from buffer
std::array<uint32_t, 4> ccomps = { 0, 0, 0, 0 };
std::array<uint32_t, 4> scomps = { 0, 0, 0, 0 };
uint32_t scount = 0;
for (uint32_t i = 0; i < 4; i++) {
uint32_t sindex = reg.swizzle[i];
if (!writeMask[i] || ccomps[sindex])
continue;
uint32_t componentId = m_module.constu32(sindex);
uint32_t componentPtr = m_module.opAccessChain(
m_module.defPointerType(
getScalarTypeId(DxbcScalarType::Float32),
spv::StorageClassUniform),
ptr.id, 1, &componentId);
ccomps[sindex] = m_module.opLoad(
getScalarTypeId(DxbcScalarType::Float32),
componentPtr);
}
for (uint32_t i = 0; i < 4; i++) {
uint32_t sindex = reg.swizzle[i];
if (writeMask[i])
scomps[scount++] = ccomps[sindex];
}
DxbcRegisterValue result;
result.type.ctype = DxbcScalarType::Float32;
result.type.ccount = scount;
result.id = scomps[0];
if (scount > 1) {
result.id = m_module.opCompositeConstruct(
getVectorTypeId(result.type),
scount, scomps.data());
}
// Apply any post-processing that might be necessary
result = emitRegisterBitcast(result, reg.dataType);
result = emitSrcOperandModifiers(result, reg.modifiers);
return result;
}
DxbcRegisterValue DxbcCompiler::emitRegisterLoad(
const DxbcRegister& reg,
DxbcRegMask writeMask) {
if (reg.type == DxbcOperandType::Imm32
|| reg.type == DxbcOperandType::Imm64) {
DxbcRegisterValue result;
if (reg.componentCount == DxbcComponentCount::Component1) {
// Create one single u32 constant
result.type.ctype = DxbcScalarType::Uint32;
result.type.ccount = 1;
result.id = m_module.constu32(reg.imm.u32_1);
result = emitRegisterExtend(result, writeMask.popCount());
} else if (reg.componentCount == DxbcComponentCount::Component4) {
// Create a u32 vector with as many components as needed
std::array<uint32_t, 4> indices = { };
uint32_t indexId = 0;
for (uint32_t i = 0; i < indices.size(); i++) {
if (writeMask[i]) {
indices.at(indexId++) =
m_module.constu32(reg.imm.u32_4[i]);
}
}
result.type.ctype = DxbcScalarType::Uint32;
result.type.ccount = writeMask.popCount();
result.id = indices.at(0);
if (indexId > 1) {
result.id = m_module.constComposite(
getVectorTypeId(result.type),
result.type.ccount, indices.data());
}
} else {
// Something went horribly wrong in the decoder or the shader is broken
throw DxvkError("DxbcCompiler: Invalid component count for immediate operand");
}
// Cast constants to the requested type
return emitRegisterBitcast(result, reg.dataType);
} else if (reg.type == DxbcOperandType::ConstantBuffer) {
return emitConstantBufferLoad(reg, writeMask);
} else {
// Load operand from the operand pointer
DxbcRegisterValue result = emitRegisterLoadRaw(reg);
// Apply operand swizzle to the operand value
result = emitRegisterSwizzle(result, reg.swizzle, writeMask);
// Cast it to the requested type. We need to do
// this after the swizzling for 64-bit types.
result = emitRegisterBitcast(result, reg.dataType);
// Apply operand modifiers
result = emitSrcOperandModifiers(result, reg.modifiers);
return result;
}
}
void DxbcCompiler::emitRegisterStore(
const DxbcRegister& reg,
DxbcRegisterValue value) {
if (reg.type == DxbcOperandType::IndexableTemp) {
bool doBoundsCheck = reg.idx[1].relReg != nullptr;
DxbcRegisterValue vectorId = emitIndexLoad(reg.idx[1]);
if (doBoundsCheck) {
uint32_t boundsCheck = m_module.opULessThan(
m_module.defBoolType(), vectorId.id,
m_module.constu32(m_xRegs.at(reg.idx[0].offset).alength));
DxbcConditional cond;
cond.labelIf = m_module.allocateId();
cond.labelEnd = m_module.allocateId();
m_module.opSelectionMerge(cond.labelEnd, spv::SelectionControlMaskNone);
m_module.opBranchConditional(boundsCheck, cond.labelIf, cond.labelEnd);
m_module.opLabel(cond.labelIf);
emitValueStore(getIndexableTempPtr(reg, vectorId), value, reg.mask);
m_module.opBranch(cond.labelEnd);
m_module.opLabel (cond.labelEnd);
} else {
emitValueStore(getIndexableTempPtr(reg, vectorId), value, reg.mask);
}
} else {
emitValueStore(emitGetOperandPtr(reg), value, reg.mask);
}
}
void DxbcCompiler::emitInputSetup() {
m_module.setLateConst(m_vArrayLengthId, &m_vArrayLength);
// Copy all defined v# registers into the input array
const uint32_t vecTypeId = m_module.defVectorType(m_module.defFloatType(32), 4);
const uint32_t ptrTypeId = m_module.defPointerType(vecTypeId, spv::StorageClassPrivate);
for (uint32_t i = 0; i < m_vRegs.size(); i++) {
if (m_vRegs.at(i).id != 0) {
const uint32_t registerId = m_module.consti32(i);
DxbcRegisterPointer srcPtr = m_vRegs.at(i);
DxbcRegisterValue srcValue = emitRegisterBitcast(
emitValueLoad(srcPtr), DxbcScalarType::Float32);
DxbcRegisterPointer dstPtr;
dstPtr.type = { DxbcScalarType::Float32, 4 };
dstPtr.id = m_module.opAccessChain(
ptrTypeId, m_vArray, 1, &registerId);
emitValueStore(dstPtr, srcValue, DxbcRegMask::firstN(srcValue.type.ccount));
}
}
// Copy all system value registers into the array,
// preserving any previously written contents.
for (const DxbcSvMapping& map : m_vMappings) {
const uint32_t registerId = m_module.consti32(map.regId);
const DxbcRegisterValue value = [&] {
switch (m_programInfo.type()) {
case DxbcProgramType::VertexShader: return emitVsSystemValueLoad(map.sv, map.regMask);
case DxbcProgramType::PixelShader: return emitPsSystemValueLoad(map.sv, map.regMask);
default: throw DxvkError(str::format("DxbcCompiler: Unexpected stage: ", m_programInfo.type()));
}
}();
DxbcRegisterPointer inputReg;
inputReg.type.ctype = DxbcScalarType::Float32;
inputReg.type.ccount = 4;
inputReg.id = m_module.opAccessChain(
ptrTypeId, m_vArray, 1, &registerId);
emitValueStore(inputReg, value, map.regMask);
}
}
void DxbcCompiler::emitInputSetup(uint32_t vertexCount) {
m_module.setLateConst(m_vArrayLengthId, &m_vArrayLength);
// Copy all defined v# registers into the input array. Note
// that the outer index of the array is the vertex index.
const uint32_t vecTypeId = m_module.defVectorType(m_module.defFloatType(32), 4);
const uint32_t dstPtrTypeId = m_module.defPointerType(vecTypeId, spv::StorageClassPrivate);
for (uint32_t i = 0; i < m_vRegs.size(); i++) {
if (m_vRegs.at(i).id != 0) {
const uint32_t registerId = m_module.consti32(i);
for (uint32_t v = 0; v < vertexCount; v++) {
std::array<uint32_t, 2> indices
= {{ m_module.consti32(v), registerId }};
DxbcRegisterPointer srcPtr;
srcPtr.type = m_vRegs.at(i).type;
srcPtr.id = m_module.opAccessChain(
m_module.defPointerType(getVectorTypeId(srcPtr.type), spv::StorageClassInput),
m_vRegs.at(i).id, 1, indices.data());
DxbcRegisterValue srcValue = emitRegisterBitcast(
emitValueLoad(srcPtr), DxbcScalarType::Float32);
DxbcRegisterPointer dstPtr;
dstPtr.type = { DxbcScalarType::Float32, 4 };
dstPtr.id = m_module.opAccessChain(
dstPtrTypeId, m_vArray, 2, indices.data());
emitValueStore(dstPtr, srcValue, DxbcRegMask::firstN(srcValue.type.ccount));
}
}
}
// Copy all system value registers into the array,
// preserving any previously written contents.
for (const DxbcSvMapping& map : m_vMappings) {
const uint32_t registerId = m_module.consti32(map.regId);
for (uint32_t v = 0; v < vertexCount; v++) {
const DxbcRegisterValue value = [&] {
switch (m_programInfo.type()) {
case DxbcProgramType::GeometryShader: return emitGsSystemValueLoad(map.sv, map.regMask, v);
default: throw DxvkError(str::format("DxbcCompiler: Unexpected stage: ", m_programInfo.type()));
}
}();
std::array<uint32_t, 2> indices = {
m_module.consti32(v), registerId,
};
DxbcRegisterPointer inputReg;
inputReg.type.ctype = DxbcScalarType::Float32;
inputReg.type.ccount = 4;
inputReg.id = m_module.opAccessChain(dstPtrTypeId,
m_vArray, indices.size(), indices.data());
emitValueStore(inputReg, value, map.regMask);
}
}
}
void DxbcCompiler::emitOutputSetup() {
for (const DxbcSvMapping& svMapping : m_oMappings) {
DxbcRegisterPointer outputReg = m_oRegs.at(svMapping.regId);
if (m_programInfo.type() == DxbcProgramType::HullShader) {
uint32_t registerIndex = m_module.constu32(svMapping.regId);
outputReg.type = { DxbcScalarType::Float32, 4 };
outputReg.id = m_module.opAccessChain(
m_module.defPointerType(
getVectorTypeId(outputReg.type),
spv::StorageClassPrivate),
m_hs.outputPerPatch,
1, &registerIndex);
}
auto sv = svMapping.sv;
auto mask = svMapping.regMask;
auto value = emitValueLoad(outputReg);
switch (m_programInfo.type()) {
case DxbcProgramType::VertexShader: emitVsSystemValueStore(sv, mask, value); break;
case DxbcProgramType::GeometryShader: emitGsSystemValueStore(sv, mask, value); break;
case DxbcProgramType::HullShader: emitHsSystemValueStore(sv, mask, value); break;
case DxbcProgramType::DomainShader: emitDsSystemValueStore(sv, mask, value); break;
case DxbcProgramType::PixelShader: emitPsSystemValueStore(sv, mask, value); break;
case DxbcProgramType::ComputeShader: break;
}
}
}
void DxbcCompiler::emitOutputDepthClamp() {
// HACK: Some drivers do not clamp FragDepth to [minDepth..maxDepth]
// before writing to the depth attachment, but we do not have acccess
// to those. Clamp to [0..1] instead.
if (m_ps.builtinDepth) {
DxbcRegisterPointer ptr;
ptr.type = { DxbcScalarType::Float32, 1 };
ptr.id = m_ps.builtinDepth;
DxbcRegisterValue value = emitValueLoad(ptr);
value.id = m_module.opFClamp(
getVectorTypeId(ptr.type),
value.id,
m_module.constf32(0.0f),
m_module.constf32(1.0f));
emitValueStore(ptr, value,
DxbcRegMask::firstN(1));
}
}
void DxbcCompiler::emitInitWorkgroupMemory() {
bool hasTgsm = false;
SpirvMemoryOperands memoryOperands;
memoryOperands.flags = spv::MemoryAccessNonPrivatePointerMask
| spv::MemoryAccessMakePointerAvailableMask;
memoryOperands.makeAvailable = m_module.constu32(spv::ScopeWorkgroup);
for (uint32_t i = 0; i < m_gRegs.size(); i++) {
if (!m_gRegs[i].varId)
continue;
if (!m_cs.builtinLocalInvocationIndex) {
m_cs.builtinLocalInvocationIndex = emitNewBuiltinVariable({
{ DxbcScalarType::Uint32, 1, 0 },
spv::StorageClassInput },
spv::BuiltInLocalInvocationIndex,
"vThreadIndexInGroup");
}
uint32_t intTypeId = getScalarTypeId(DxbcScalarType::Uint32);
uint32_t ptrTypeId = m_module.defPointerType(
intTypeId, spv::StorageClassWorkgroup);
uint32_t numElements = m_gRegs[i].type == DxbcResourceType::Structured
? m_gRegs[i].elementCount * m_gRegs[i].elementStride / 4
: m_gRegs[i].elementCount / 4;
uint32_t numThreads = m_cs.workgroupSizeX *
m_cs.workgroupSizeY * m_cs.workgroupSizeZ;
uint32_t numElementsPerThread = numElements / numThreads;
uint32_t numElementsRemaining = numElements % numThreads;
uint32_t threadId = m_module.opLoad(
intTypeId, m_cs.builtinLocalInvocationIndex);
uint32_t strideId = m_module.constu32(numElementsPerThread);
uint32_t zeroId = m_module.constu32(0);
for (uint32_t e = 0; e < numElementsPerThread; e++) {
uint32_t ofsId = m_module.opIAdd(intTypeId,
m_module.opIMul(intTypeId, strideId, threadId),
m_module.constu32(e));
uint32_t ptrId = m_module.opAccessChain(
ptrTypeId, m_gRegs[i].varId, 1, &ofsId);
m_module.opStore(ptrId, zeroId, memoryOperands);
}
if (numElementsRemaining) {
uint32_t condition = m_module.opULessThan(
m_module.defBoolType(), threadId,
m_module.constu32(numElementsRemaining));
DxbcConditional cond;
cond.labelIf = m_module.allocateId();
cond.labelEnd = m_module.allocateId();
m_module.opSelectionMerge(cond.labelEnd, spv::SelectionControlMaskNone);
m_module.opBranchConditional(condition, cond.labelIf, cond.labelEnd);
m_module.opLabel(cond.labelIf);
uint32_t ofsId = m_module.opIAdd(intTypeId,
m_module.constu32(numThreads * numElementsPerThread),
threadId);
uint32_t ptrId = m_module.opAccessChain(
ptrTypeId, m_gRegs[i].varId, 1, &ofsId);
m_module.opStore(ptrId, zeroId, memoryOperands);
m_module.opBranch(cond.labelEnd);
m_module.opLabel (cond.labelEnd);
}
hasTgsm = true;
}
if (hasTgsm) {
m_module.opControlBarrier(
m_module.constu32(spv::ScopeInvocation),
m_module.constu32(spv::ScopeWorkgroup),
m_module.constu32(spv::MemorySemanticsWorkgroupMemoryMask
| spv::MemorySemanticsAcquireReleaseMask));
}
}
DxbcRegisterValue DxbcCompiler::emitVsSystemValueLoad(
DxbcSystemValue sv,
DxbcRegMask mask) {
switch (sv) {
case DxbcSystemValue::VertexId: {
const uint32_t typeId = getScalarTypeId(DxbcScalarType::Uint32);
if (m_vs.builtinVertexId == 0) {
m_vs.builtinVertexId = emitNewBuiltinVariable({
{ DxbcScalarType::Uint32, 1, 0 },
spv::StorageClassInput },
spv::BuiltInVertexIndex,
"vs_vertex_index");
}
if (m_vs.builtinBaseVertex == 0) {
m_vs.builtinBaseVertex = emitNewBuiltinVariable({
{ DxbcScalarType::Uint32, 1, 0 },
spv::StorageClassInput },
spv::BuiltInBaseVertex,
"vs_base_vertex");
}
DxbcRegisterValue result;
result.type.ctype = DxbcScalarType::Uint32;
result.type.ccount = 1;
result.id = m_module.opISub(typeId,
m_module.opLoad(typeId, m_vs.builtinVertexId),
m_module.opLoad(typeId, m_vs.builtinBaseVertex));
return result;
} break;
case DxbcSystemValue::InstanceId: {
const uint32_t typeId = getScalarTypeId(DxbcScalarType::Uint32);
if (m_vs.builtinInstanceId == 0) {
m_vs.builtinInstanceId = emitNewBuiltinVariable({
{ DxbcScalarType::Uint32, 1, 0 },
spv::StorageClassInput },
spv::BuiltInInstanceIndex,
"vs_instance_index");
}
if (m_vs.builtinBaseInstance == 0) {
m_vs.builtinBaseInstance = emitNewBuiltinVariable({
{ DxbcScalarType::Uint32, 1, 0 },
spv::StorageClassInput },
spv::BuiltInBaseInstance,
"vs_base_instance");
}
DxbcRegisterValue result;
result.type.ctype = DxbcScalarType::Uint32;
result.type.ccount = 1;
result.id = m_module.opISub(typeId,
m_module.opLoad(typeId, m_vs.builtinInstanceId),
m_module.opLoad(typeId, m_vs.builtinBaseInstance));
return result;
} break;
default:
throw DxvkError(str::format(
"DxbcCompiler: Unhandled VS SV input: ", sv));
}
}
DxbcRegisterValue DxbcCompiler::emitGsSystemValueLoad(
DxbcSystemValue sv,
DxbcRegMask mask,
uint32_t vertexId) {
switch (sv) {
case DxbcSystemValue::Position: {
const std::array<uint32_t, 2> indices = {
m_module.consti32(vertexId),
m_module.consti32(PerVertex_Position),
};
DxbcRegisterPointer ptrIn;
ptrIn.type.ctype = DxbcScalarType::Float32;
ptrIn.type.ccount = 4;
ptrIn.id = m_module.opAccessChain(
m_module.defPointerType(
getVectorTypeId(ptrIn.type),
spv::StorageClassInput),
m_perVertexIn,
indices.size(),
indices.data());
return emitRegisterExtract(
emitValueLoad(ptrIn), mask);
} break;
default:
throw DxvkError(str::format(
"DxbcCompiler: Unhandled GS SV input: ", sv));
}
}
DxbcRegisterValue DxbcCompiler::emitPsSystemValueLoad(
DxbcSystemValue sv,
DxbcRegMask mask) {
switch (sv) {
case DxbcSystemValue::Position: {
if (m_ps.builtinFragCoord == 0) {
m_ps.builtinFragCoord = emitNewBuiltinVariable({
{ DxbcScalarType::Float32, 4, 0 },
spv::StorageClassInput },
spv::BuiltInFragCoord,
"ps_frag_coord");
}
DxbcRegisterPointer ptrIn;
ptrIn.type = { DxbcScalarType::Float32, 4 };
ptrIn.id = m_ps.builtinFragCoord;
// The X, Y and Z components of the SV_POSITION semantic
// are identical to Vulkan's FragCoord builtin, but we
// need to compute the reciprocal of the W component.
DxbcRegisterValue fragCoord = emitValueLoad(ptrIn);
uint32_t componentIndex = 3;
uint32_t t_f32 = m_module.defFloatType(32);
uint32_t v_wComp = m_module.opCompositeExtract(t_f32, fragCoord.id, 1, &componentIndex);
v_wComp = m_module.opFDiv(t_f32, m_module.constf32(1.0f), v_wComp);
fragCoord.id = m_module.opCompositeInsert(
getVectorTypeId(fragCoord.type),
v_wComp, fragCoord.id,
1, &componentIndex);
return emitRegisterExtract(fragCoord, mask);
} break;
case DxbcSystemValue::IsFrontFace: {
if (m_ps.builtinIsFrontFace == 0) {
m_ps.builtinIsFrontFace = emitNewBuiltinVariable({
{ DxbcScalarType::Bool, 1, 0 },
spv::StorageClassInput },
spv::BuiltInFrontFacing,
"ps_is_front_face");
}
DxbcRegisterValue result;
result.type.ctype = DxbcScalarType::Uint32;
result.type.ccount = 1;
result.id = m_module.opSelect(
getVectorTypeId(result.type),
m_module.opLoad(
m_module.defBoolType(),
m_ps.builtinIsFrontFace),
m_module.constu32(0xFFFFFFFF),
m_module.constu32(0x00000000));
return result;
} break;
case DxbcSystemValue::PrimitiveId: {
if (m_primitiveIdIn == 0) {
m_module.enableCapability(spv::CapabilityGeometry);
m_primitiveIdIn = emitNewBuiltinVariable({
{ DxbcScalarType::Uint32, 1, 0 },
spv::StorageClassInput },
spv::BuiltInPrimitiveId,
"ps_primitive_id");
}
DxbcRegisterPointer ptrIn;
ptrIn.type = { DxbcScalarType::Uint32, 1 };
ptrIn.id = m_primitiveIdIn;
return emitValueLoad(ptrIn);
} break;
case DxbcSystemValue::SampleIndex: {
if (m_ps.builtinSampleId == 0) {
m_module.enableCapability(spv::CapabilitySampleRateShading);
m_ps.builtinSampleId = emitNewBuiltinVariable({
{ DxbcScalarType::Uint32, 1, 0 },
spv::StorageClassInput },
spv::BuiltInSampleId,
"ps_sample_id");
}
DxbcRegisterPointer ptrIn;
ptrIn.type.ctype = DxbcScalarType::Uint32;
ptrIn.type.ccount = 1;
ptrIn.id = m_ps.builtinSampleId;
return emitValueLoad(ptrIn);
} break;
case DxbcSystemValue::RenderTargetId: {
if (m_ps.builtinLayer == 0) {
m_module.enableCapability(spv::CapabilityGeometry);
m_ps.builtinLayer = emitNewBuiltinVariable({
{ DxbcScalarType::Uint32, 1, 0 },
spv::StorageClassInput },
spv::BuiltInLayer,
"v_layer");
}
DxbcRegisterPointer ptr;
ptr.type.ctype = DxbcScalarType::Uint32;
ptr.type.ccount = 1;
ptr.id = m_ps.builtinLayer;
return emitValueLoad(ptr);
} break;
case DxbcSystemValue::ViewportId: {
if (m_ps.builtinViewportId == 0) {
m_module.enableCapability(spv::CapabilityMultiViewport);
m_ps.builtinViewportId = emitNewBuiltinVariable({
{ DxbcScalarType::Uint32, 1, 0 },
spv::StorageClassInput },
spv::BuiltInViewportIndex,
"v_viewport");
}
DxbcRegisterPointer ptr;
ptr.type.ctype = DxbcScalarType::Uint32;
ptr.type.ccount = 1;
ptr.id = m_ps.builtinViewportId;
return emitValueLoad(ptr);
} break;
default:
throw DxvkError(str::format(
"DxbcCompiler: Unhandled PS SV input: ", sv));
}
}
void DxbcCompiler::emitVsSystemValueStore(
DxbcSystemValue sv,
DxbcRegMask mask,
const DxbcRegisterValue& value) {
switch (sv) {
case DxbcSystemValue::Position: {
const uint32_t memberId = m_module.consti32(PerVertex_Position);
DxbcRegisterPointer ptr;
ptr.type.ctype = DxbcScalarType::Float32;
ptr.type.ccount = 4;
ptr.id = m_module.opAccessChain(
m_module.defPointerType(
getVectorTypeId(ptr.type),
spv::StorageClassOutput),
m_perVertexOut, 1, &memberId);
emitValueStore(ptr, value, mask);
} break;
case DxbcSystemValue::RenderTargetId: {
if (m_programInfo.type() != DxbcProgramType::GeometryShader)
m_module.enableCapability(spv::CapabilityShaderLayer);
if (m_gs.builtinLayer == 0) {
m_module.enableCapability(spv::CapabilityGeometry);
m_gs.builtinLayer = emitNewBuiltinVariable({
{ DxbcScalarType::Uint32, 1, 0 },
spv::StorageClassOutput },
spv::BuiltInLayer,
"o_layer");
}
DxbcRegisterPointer ptr;
ptr.type = { DxbcScalarType::Uint32, 1 };
ptr.id = m_gs.builtinLayer;
emitValueStore(
ptr, emitRegisterExtract(value, mask),
DxbcRegMask(true, false, false, false));
} break;
case DxbcSystemValue::ViewportId: {
if (m_programInfo.type() != DxbcProgramType::GeometryShader)
m_module.enableCapability(spv::CapabilityShaderViewportIndex);
if (m_gs.builtinViewportId == 0) {
m_module.enableCapability(spv::CapabilityMultiViewport);
m_gs.builtinViewportId = emitNewBuiltinVariable({
{ DxbcScalarType::Uint32, 1, 0 },
spv::StorageClassOutput },
spv::BuiltInViewportIndex,
"o_viewport");
}
DxbcRegisterPointer ptr;
ptr.type = { DxbcScalarType::Uint32, 1};
ptr.id = m_gs.builtinViewportId;
emitValueStore(
ptr, emitRegisterExtract(value, mask),
DxbcRegMask(true, false, false, false));
} break;
default:
Logger::warn(str::format(
"DxbcCompiler: Unhandled VS SV output: ", sv));
}
}
void DxbcCompiler::emitHsSystemValueStore(
DxbcSystemValue sv,
DxbcRegMask mask,
const DxbcRegisterValue& value) {
if (sv >= DxbcSystemValue::FinalQuadUeq0EdgeTessFactor
&& sv <= DxbcSystemValue::FinalLineDensityTessFactor) {
struct TessFactor {
uint32_t array = 0;
uint32_t index = 0;
};
static const std::array<TessFactor, 12> s_tessFactors = {{
{ m_hs.builtinTessLevelOuter, 0 }, // FinalQuadUeq0EdgeTessFactor
{ m_hs.builtinTessLevelOuter, 1 }, // FinalQuadVeq0EdgeTessFactor
{ m_hs.builtinTessLevelOuter, 2 }, // FinalQuadUeq1EdgeTessFactor
{ m_hs.builtinTessLevelOuter, 3 }, // FinalQuadVeq1EdgeTessFactor
{ m_hs.builtinTessLevelInner, 0 }, // FinalQuadUInsideTessFactor
{ m_hs.builtinTessLevelInner, 1 }, // FinalQuadVInsideTessFactor
{ m_hs.builtinTessLevelOuter, 0 }, // FinalTriUeq0EdgeTessFactor
{ m_hs.builtinTessLevelOuter, 1 }, // FinalTriVeq0EdgeTessFactor
{ m_hs.builtinTessLevelOuter, 2 }, // FinalTriWeq0EdgeTessFactor
{ m_hs.builtinTessLevelInner, 0 }, // FinalTriInsideTessFactor
{ m_hs.builtinTessLevelOuter, 0 }, // FinalLineDensityTessFactor
{ m_hs.builtinTessLevelOuter, 1 }, // FinalLineDetailTessFactor
}};
const TessFactor tessFactor = s_tessFactors.at(uint32_t(sv)
- uint32_t(DxbcSystemValue::FinalQuadUeq0EdgeTessFactor));
const uint32_t tessFactorArrayIndex
= m_module.constu32(tessFactor.index);
// Apply global tess factor limit
float maxTessFactor = m_hs.maxTessFactor;
if (m_moduleInfo.tess != nullptr) {
if (m_moduleInfo.tess->maxTessFactor < maxTessFactor)
maxTessFactor = m_moduleInfo.tess->maxTessFactor;
}
DxbcRegisterValue tessValue = emitRegisterExtract(value, mask);
tessValue.id = m_module.opFClamp(getVectorTypeId(tessValue.type),
tessValue.id, m_module.constf32(0.0f),
m_module.constf32(maxTessFactor));
DxbcRegisterPointer ptr;
ptr.type.ctype = DxbcScalarType::Float32;
ptr.type.ccount = 1;
ptr.id = m_module.opAccessChain(
m_module.defPointerType(
getVectorTypeId(ptr.type),
spv::StorageClassOutput),
tessFactor.array, 1,
&tessFactorArrayIndex);
emitValueStore(ptr, tessValue,
DxbcRegMask(true, false, false, false));
} else {
Logger::warn(str::format(
"DxbcCompiler: Unhandled HS SV output: ", sv));
}
}
void DxbcCompiler::emitGsSystemValueStore(
DxbcSystemValue sv,
DxbcRegMask mask,
const DxbcRegisterValue& value) {
switch (sv) {
case DxbcSystemValue::Position:
case DxbcSystemValue::CullDistance:
case DxbcSystemValue::ClipDistance:
case DxbcSystemValue::RenderTargetId:
case DxbcSystemValue::ViewportId:
emitVsSystemValueStore(sv, mask, value);
break;
case DxbcSystemValue::PrimitiveId: {
if (m_primitiveIdOut == 0) {
m_primitiveIdOut = emitNewBuiltinVariable({
{ DxbcScalarType::Uint32, 1, 0 },
spv::StorageClassOutput },
spv::BuiltInPrimitiveId,
"gs_primitive_id");
}
DxbcRegisterPointer ptr;
ptr.type = { DxbcScalarType::Uint32, 1};
ptr.id = m_primitiveIdOut;
emitValueStore(
ptr, emitRegisterExtract(value, mask),
DxbcRegMask(true, false, false, false));
} break;
default:
Logger::warn(str::format(
"DxbcCompiler: Unhandled GS SV output: ", sv));
}
}
void DxbcCompiler::emitPsSystemValueStore(
DxbcSystemValue sv,
DxbcRegMask mask,
const DxbcRegisterValue& value) {
Logger::warn(str::format(
"DxbcCompiler: Unhandled PS SV output: ", sv));
}
void DxbcCompiler::emitDsSystemValueStore(
DxbcSystemValue sv,
DxbcRegMask mask,
const DxbcRegisterValue& value) {
switch (sv) {
case DxbcSystemValue::Position:
case DxbcSystemValue::CullDistance:
case DxbcSystemValue::ClipDistance:
case DxbcSystemValue::RenderTargetId:
case DxbcSystemValue::ViewportId:
emitVsSystemValueStore(sv, mask, value);
break;
default:
Logger::warn(str::format(
"DxbcCompiler: Unhandled DS SV output: ", sv));
}
}
void DxbcCompiler::emitClipCullStore(
DxbcSystemValue sv,
uint32_t dstArray) {
uint32_t offset = 0;
if (dstArray == 0)
return;
for (auto e = m_osgn->begin(); e != m_osgn->end(); e++) {
if (e->systemValue == sv) {
DxbcRegisterPointer srcPtr = m_oRegs.at(e->registerId);
DxbcRegisterValue srcValue = emitValueLoad(srcPtr);
for (uint32_t i = 0; i < 4; i++) {
if (e->componentMask[i]) {
uint32_t offsetId = m_module.consti32(offset++);
DxbcRegisterValue component = emitRegisterExtract(
srcValue, DxbcRegMask::select(i));
DxbcRegisterPointer dstPtr;
dstPtr.type = { DxbcScalarType::Float32, 1 };
dstPtr.id = m_module.opAccessChain(
m_module.defPointerType(
getVectorTypeId(dstPtr.type),
spv::StorageClassOutput),
dstArray, 1, &offsetId);
emitValueStore(dstPtr, component,
DxbcRegMask(true, false, false, false));
}
}
}
}
}
void DxbcCompiler::emitClipCullLoad(
DxbcSystemValue sv,
uint32_t srcArray) {
uint32_t offset = 0;
if (srcArray == 0)
return;
for (auto e = m_isgn->begin(); e != m_isgn->end(); e++) {
if (e->systemValue == sv) {
// Load individual components from the source array
uint32_t componentIndex = 0;
std::array<uint32_t, 4> componentIds = {{ 0, 0, 0, 0 }};
for (uint32_t i = 0; i < 4; i++) {
if (e->componentMask[i]) {
uint32_t offsetId = m_module.consti32(offset++);
DxbcRegisterPointer srcPtr;
srcPtr.type = { DxbcScalarType::Float32, 1 };
srcPtr.id = m_module.opAccessChain(
m_module.defPointerType(
getVectorTypeId(srcPtr.type),
spv::StorageClassInput),
srcArray, 1, &offsetId);
componentIds[componentIndex++]
= emitValueLoad(srcPtr).id;
}
}
// Put everything into one vector
DxbcRegisterValue dstValue;
dstValue.type = { DxbcScalarType::Float32, componentIndex };
dstValue.id = componentIds[0];
if (componentIndex > 1) {
dstValue.id = m_module.opCompositeConstruct(
getVectorTypeId(dstValue.type),
componentIndex, componentIds.data());
}
// Store vector to the input array
uint32_t registerId = m_module.consti32(e->registerId);
DxbcRegisterPointer dstInput;
dstInput.type = { DxbcScalarType::Float32, 4 };
dstInput.id = m_module.opAccessChain(
m_module.defPointerType(
getVectorTypeId(dstInput.type),
spv::StorageClassPrivate),
m_vArray, 1, &registerId);
emitValueStore(dstInput, dstValue, e->componentMask);
}
}
}
void DxbcCompiler::emitInit() {
// Set up common capabilities for all shaders
m_module.enableCapability(spv::CapabilityShader);
m_module.enableCapability(spv::CapabilityImageQuery);
// Initialize the shader module with capabilities
// etc. Each shader type has its own peculiarities.
switch (m_programInfo.type()) {
case DxbcProgramType::VertexShader: emitVsInit(); break;
case DxbcProgramType::HullShader: emitHsInit(); break;
case DxbcProgramType::DomainShader: emitDsInit(); break;
case DxbcProgramType::GeometryShader: emitGsInit(); break;
case DxbcProgramType::PixelShader: emitPsInit(); break;
case DxbcProgramType::ComputeShader: emitCsInit(); break;
}
}
void DxbcCompiler::emitFunctionBegin(
uint32_t entryPoint,
uint32_t returnType,
uint32_t funcType) {
this->emitFunctionEnd();
m_module.functionBegin(
returnType, entryPoint, funcType,
spv::FunctionControlMaskNone);
m_insideFunction = true;
}
void DxbcCompiler::emitFunctionEnd() {
if (m_insideFunction) {
m_module.opReturn();
m_module.functionEnd();
}
m_insideFunction = false;
}
void DxbcCompiler::emitFunctionLabel() {
m_module.opLabel(m_module.allocateId());
}
void DxbcCompiler::emitMainFunctionBegin() {
this->emitFunctionBegin(
m_entryPointId,
m_module.defVoidType(),
m_module.defFunctionType(
m_module.defVoidType(), 0, nullptr));
this->emitFunctionLabel();
}
void DxbcCompiler::emitVsInit() {
m_module.enableCapability(spv::CapabilityClipDistance);
m_module.enableCapability(spv::CapabilityCullDistance);
m_module.enableCapability(spv::CapabilityDrawParameters);
// Declare the per-vertex output block. This is where
// the vertex shader will write the vertex position.
const uint32_t perVertexStruct = this->getPerVertexBlockId();
const uint32_t perVertexPointer = m_module.defPointerType(
perVertexStruct, spv::StorageClassOutput);
m_perVertexOut = m_module.newVar(
perVertexPointer, spv::StorageClassOutput);
m_module.setDebugName(m_perVertexOut, "vs_vertex_out");
// Standard input array
emitDclInputArray(0);
// Cull/clip distances as outputs
m_clipDistances = emitDclClipCullDistanceArray(
m_analysis->clipCullOut.numClipPlanes,
spv::BuiltInClipDistance,
spv::StorageClassOutput);
m_cullDistances = emitDclClipCullDistanceArray(
m_analysis->clipCullOut.numCullPlanes,
spv::BuiltInCullDistance,
spv::StorageClassOutput);
// Main function of the vertex shader
m_vs.functionId = m_module.allocateId();
m_module.setDebugName(m_vs.functionId, "vs_main");
this->emitFunctionBegin(
m_vs.functionId,
m_module.defVoidType(),
m_module.defFunctionType(
m_module.defVoidType(), 0, nullptr));
this->emitFunctionLabel();
}
void DxbcCompiler::emitHsInit() {
m_module.enableCapability(spv::CapabilityTessellation);
m_module.enableCapability(spv::CapabilityClipDistance);
m_module.enableCapability(spv::CapabilityCullDistance);
m_hs.builtinInvocationId = emitNewBuiltinVariable(
DxbcRegisterInfo {
{ DxbcScalarType::Uint32, 1, 0 },
spv::StorageClassInput },
spv::BuiltInInvocationId,
"vOutputControlPointId");
m_hs.builtinTessLevelOuter = emitBuiltinTessLevelOuter(spv::StorageClassOutput);
m_hs.builtinTessLevelInner = emitBuiltinTessLevelInner(spv::StorageClassOutput);
}
void DxbcCompiler::emitDsInit() {
m_module.enableCapability(spv::CapabilityTessellation);
m_module.enableCapability(spv::CapabilityClipDistance);
m_module.enableCapability(spv::CapabilityCullDistance);
m_ds.builtinTessLevelOuter = emitBuiltinTessLevelOuter(spv::StorageClassInput);
m_ds.builtinTessLevelInner = emitBuiltinTessLevelInner(spv::StorageClassInput);
// Declare the per-vertex output block
const uint32_t perVertexStruct = this->getPerVertexBlockId();
const uint32_t perVertexPointer = m_module.defPointerType(
perVertexStruct, spv::StorageClassOutput);
// Cull/clip distances as outputs
m_clipDistances = emitDclClipCullDistanceArray(
m_analysis->clipCullOut.numClipPlanes,
spv::BuiltInClipDistance,
spv::StorageClassOutput);
m_cullDistances = emitDclClipCullDistanceArray(
m_analysis->clipCullOut.numCullPlanes,
spv::BuiltInCullDistance,
spv::StorageClassOutput);
m_perVertexOut = m_module.newVar(
perVertexPointer, spv::StorageClassOutput);
m_module.setDebugName(m_perVertexOut, "ds_vertex_out");
// Main function of the domain shader
m_ds.functionId = m_module.allocateId();
m_module.setDebugName(m_ds.functionId, "ds_main");
this->emitFunctionBegin(
m_ds.functionId,
m_module.defVoidType(),
m_module.defFunctionType(
m_module.defVoidType(), 0, nullptr));
this->emitFunctionLabel();
}
void DxbcCompiler::emitGsInit() {
m_module.enableCapability(spv::CapabilityGeometry);
m_module.enableCapability(spv::CapabilityClipDistance);
m_module.enableCapability(spv::CapabilityCullDistance);
// Enable capabilities for xfb mode if necessary
if (m_moduleInfo.xfb != nullptr) {
m_module.enableCapability(spv::CapabilityGeometryStreams);
m_module.enableCapability(spv::CapabilityTransformFeedback);
m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeXfb);
}
// Declare the per-vertex output block. Outputs are not
// declared as arrays, instead they will be flushed when
// calling EmitVertex.
if (!m_moduleInfo.xfb || m_moduleInfo.xfb->rasterizedStream >= 0) {
const uint32_t perVertexStruct = this->getPerVertexBlockId();
const uint32_t perVertexPointer = m_module.defPointerType(
perVertexStruct, spv::StorageClassOutput);
m_perVertexOut = m_module.newVar(
perVertexPointer, spv::StorageClassOutput);
m_module.setDebugName(m_perVertexOut, "gs_vertex_out");
}
// Cull/clip distances as outputs
m_clipDistances = emitDclClipCullDistanceArray(
m_analysis->clipCullOut.numClipPlanes,
spv::BuiltInClipDistance,
spv::StorageClassOutput);
m_cullDistances = emitDclClipCullDistanceArray(
m_analysis->clipCullOut.numCullPlanes,
spv::BuiltInCullDistance,
spv::StorageClassOutput);
// Emit Xfb variables if necessary
if (m_moduleInfo.xfb != nullptr)
emitXfbOutputDeclarations();
// Main function of the vertex shader
m_gs.functionId = m_module.allocateId();
m_module.setDebugName(m_gs.functionId, "gs_main");
this->emitFunctionBegin(
m_gs.functionId,
m_module.defVoidType(),
m_module.defFunctionType(
m_module.defVoidType(), 0, nullptr));
this->emitFunctionLabel();
}
void DxbcCompiler::emitPsInit() {
m_module.enableCapability(spv::CapabilityDerivativeControl);
m_module.setExecutionMode(m_entryPointId,
spv::ExecutionModeOriginUpperLeft);
// Standard input array
emitDclInputArray(0);
// Cull/clip distances as inputs
m_clipDistances = emitDclClipCullDistanceArray(
m_analysis->clipCullIn.numClipPlanes,
spv::BuiltInClipDistance,
spv::StorageClassInput);
m_cullDistances = emitDclClipCullDistanceArray(
m_analysis->clipCullIn.numCullPlanes,
spv::BuiltInCullDistance,
spv::StorageClassInput);
// Main function of the pixel shader
m_ps.functionId = m_module.allocateId();
m_module.setDebugName(m_ps.functionId, "ps_main");
this->emitFunctionBegin(
m_ps.functionId,
m_module.defVoidType(),
m_module.defFunctionType(
m_module.defVoidType(), 0, nullptr));
this->emitFunctionLabel();
}
void DxbcCompiler::emitCsInit() {
// Main function of the compute shader
m_cs.functionId = m_module.allocateId();
m_module.setDebugName(m_cs.functionId, "cs_main");
this->emitFunctionBegin(
m_cs.functionId,
m_module.defVoidType(),
m_module.defFunctionType(
m_module.defVoidType(), 0, nullptr));
this->emitFunctionLabel();
}
void DxbcCompiler::emitVsFinalize() {
this->emitMainFunctionBegin();
this->emitInputSetup();
m_module.opFunctionCall(
m_module.defVoidType(),
m_vs.functionId, 0, nullptr);
this->emitOutputSetup();
this->emitClipCullStore(DxbcSystemValue::ClipDistance, m_clipDistances);
this->emitClipCullStore(DxbcSystemValue::CullDistance, m_cullDistances);
this->emitFunctionEnd();
}
void DxbcCompiler::emitHsFinalize() {
if (m_hs.cpPhase.functionId == 0)
m_hs.cpPhase = this->emitNewHullShaderPassthroughPhase();
// Control point phase
this->emitMainFunctionBegin();
this->emitInputSetup(m_hs.vertexCountIn);
this->emitHsControlPointPhase(m_hs.cpPhase);
this->emitHsPhaseBarrier();
// Fork-join phases and output setup
this->emitHsInvocationBlockBegin(1);
for (const auto& phase : m_hs.forkPhases)
this->emitHsForkJoinPhase(phase);
for (const auto& phase : m_hs.joinPhases)
this->emitHsForkJoinPhase(phase);
this->emitOutputSetup();
this->emitHsOutputSetup();
this->emitHsInvocationBlockEnd();
this->emitFunctionEnd();
}
void DxbcCompiler::emitDsFinalize() {
this->emitMainFunctionBegin();
m_module.opFunctionCall(
m_module.defVoidType(),
m_ds.functionId, 0, nullptr);
this->emitOutputSetup();
this->emitClipCullStore(DxbcSystemValue::ClipDistance, m_clipDistances);
this->emitClipCullStore(DxbcSystemValue::CullDistance, m_cullDistances);
this->emitFunctionEnd();
}
void DxbcCompiler::emitGsFinalize() {
if (!m_gs.invocationCount)
m_module.setInvocations(m_entryPointId, 1);
this->emitMainFunctionBegin();
this->emitInputSetup(
primitiveVertexCount(m_gs.inputPrimitive));
m_module.opFunctionCall(
m_module.defVoidType(),
m_gs.functionId, 0, nullptr);
// No output setup at this point as that was
// already done during the EmitVertex step
this->emitFunctionEnd();
}
void DxbcCompiler::emitPsFinalize() {
this->emitMainFunctionBegin();
this->emitInputSetup();
this->emitClipCullLoad(DxbcSystemValue::ClipDistance, m_clipDistances);
this->emitClipCullLoad(DxbcSystemValue::CullDistance, m_cullDistances);
m_module.opFunctionCall(
m_module.defVoidType(),
m_ps.functionId, 0, nullptr);
this->emitOutputSetup();
if (m_moduleInfo.options.useDepthClipWorkaround)
this->emitOutputDepthClamp();
this->emitFunctionEnd();
}
void DxbcCompiler::emitCsFinalize() {
this->emitMainFunctionBegin();
if (m_moduleInfo.options.zeroInitWorkgroupMemory)
this->emitInitWorkgroupMemory();
m_module.opFunctionCall(
m_module.defVoidType(),
m_cs.functionId, 0, nullptr);
this->emitFunctionEnd();
}
void DxbcCompiler::emitXfbOutputDeclarations() {
for (uint32_t i = 0; i < m_moduleInfo.xfb->entryCount; i++) {
const DxbcXfbEntry* xfbEntry = m_moduleInfo.xfb->entries + i;
const DxbcSgnEntry* sigEntry = m_osgn->find(
xfbEntry->semanticName,
xfbEntry->semanticIndex,
xfbEntry->streamId);
if (sigEntry == nullptr)
continue;
DxbcRegisterInfo varInfo;
varInfo.type.ctype = DxbcScalarType::Float32;
varInfo.type.ccount = xfbEntry->componentCount;
varInfo.type.alength = 0;
varInfo.sclass = spv::StorageClassOutput;
uint32_t dstComponentMask = (1 << xfbEntry->componentCount) - 1;
uint32_t srcComponentMask = dstComponentMask
<< sigEntry->componentMask.firstSet()
<< xfbEntry->componentIndex;
DxbcXfbVar xfbVar;
xfbVar.varId = emitNewVariable(varInfo);
xfbVar.streamId = xfbEntry->streamId;
xfbVar.outputId = sigEntry->registerId;
xfbVar.srcMask = DxbcRegMask(srcComponentMask);
xfbVar.dstMask = DxbcRegMask(dstComponentMask);
m_xfbVars.push_back(xfbVar);
m_module.setDebugName(xfbVar.varId,
str::format("xfb", i).c_str());
m_module.decorateXfb(xfbVar.varId,
xfbEntry->streamId, xfbEntry->bufferId, xfbEntry->offset,
m_moduleInfo.xfb->strides[xfbEntry->bufferId]);
}
// TODO Compact location/component assignment
for (uint32_t i = 0; i < m_xfbVars.size(); i++) {
m_xfbVars[i].location = i;
m_xfbVars[i].component = 0;
}
for (uint32_t i = 0; i < m_xfbVars.size(); i++) {
const DxbcXfbVar* var = &m_xfbVars[i];
m_module.decorateLocation (var->varId, var->location);
m_module.decorateComponent(var->varId, var->component);
}
}
void DxbcCompiler::emitXfbOutputSetup(
uint32_t streamId,
bool passthrough) {
for (size_t i = 0; i < m_xfbVars.size(); i++) {
if (m_xfbVars[i].streamId == streamId) {
DxbcRegisterPointer srcPtr = passthrough
? m_vRegs[m_xfbVars[i].outputId]
: m_oRegs[m_xfbVars[i].outputId];
if (passthrough) {
srcPtr = emitArrayAccess(srcPtr,
spv::StorageClassInput,
m_module.constu32(0));
}
DxbcRegisterPointer dstPtr;
dstPtr.type.ctype = DxbcScalarType::Float32;
dstPtr.type.ccount = m_xfbVars[i].dstMask.popCount();
dstPtr.id = m_xfbVars[i].varId;
DxbcRegisterValue value = emitRegisterExtract(
emitValueLoad(srcPtr), m_xfbVars[i].srcMask);
emitValueStore(dstPtr, value, m_xfbVars[i].dstMask);
}
}
}
void DxbcCompiler::emitHsControlPointPhase(
const DxbcCompilerHsControlPointPhase& phase) {
m_module.opFunctionCall(
m_module.defVoidType(),
phase.functionId, 0, nullptr);
}
void DxbcCompiler::emitHsForkJoinPhase(
const DxbcCompilerHsForkJoinPhase& phase) {
for (uint32_t i = 0; i < phase.instanceCount; i++) {
uint32_t invocationId = m_module.constu32(i);
m_module.opFunctionCall(
m_module.defVoidType(),
phase.functionId, 1,
&invocationId);
}
}
void DxbcCompiler::emitDclInputArray(uint32_t vertexCount) {
DxbcVectorType info;
info.ctype = DxbcScalarType::Float32;
info.ccount = 4;
// Define the array type. This will be two-dimensional
// in some shaders, with the outer index representing
// the vertex ID within an invocation.
m_vArrayLength = m_isgn != nullptr ? std::max(1u, m_isgn->maxRegisterCount()) : 1;
m_vArrayLengthId = m_module.lateConst32(getScalarTypeId(DxbcScalarType::Uint32));
uint32_t vectorTypeId = getVectorTypeId(info);
uint32_t arrayTypeId = m_module.defArrayType(vectorTypeId, m_vArrayLengthId);
if (vertexCount != 0) {
arrayTypeId = m_module.defArrayType(
arrayTypeId, m_module.constu32(vertexCount));
}
// Define the actual variable. Note that this is private
// because we will copy input registers and some system
// variables to the array during the setup phase.
const uint32_t ptrTypeId = m_module.defPointerType(
arrayTypeId, spv::StorageClassPrivate);
const uint32_t varId = m_module.newVar(
ptrTypeId, spv::StorageClassPrivate);
m_module.setDebugName(varId, "shader_in");
m_vArray = varId;
}
void DxbcCompiler::emitDclInputPerVertex(
uint32_t vertexCount,
const char* varName) {
uint32_t typeId = getPerVertexBlockId();
if (vertexCount != 0) {
typeId = m_module.defArrayType(typeId,
m_module.constu32(vertexCount));
}
const uint32_t ptrTypeId = m_module.defPointerType(
typeId, spv::StorageClassInput);
m_perVertexIn = m_module.newVar(
ptrTypeId, spv::StorageClassInput);
m_module.setDebugName(m_perVertexIn, varName);
}
uint32_t DxbcCompiler::emitDclClipCullDistanceArray(
uint32_t length,
spv::BuiltIn builtIn,
spv::StorageClass storageClass) {
if (length == 0)
return 0;
uint32_t t_f32 = m_module.defFloatType(32);
uint32_t t_arr = m_module.defArrayType(t_f32, m_module.constu32(length));
uint32_t t_ptr = m_module.defPointerType(t_arr, storageClass);
uint32_t varId = m_module.newVar(t_ptr, storageClass);
m_module.decorateBuiltIn(varId, builtIn);
m_module.setDebugName(varId,
builtIn == spv::BuiltInClipDistance
? "clip_distances"
: "cull_distances");
return varId;
}
DxbcCompilerHsControlPointPhase DxbcCompiler::emitNewHullShaderControlPointPhase() {
uint32_t funTypeId = m_module.defFunctionType(
m_module.defVoidType(), 0, nullptr);
uint32_t funId = m_module.allocateId();
this->emitFunctionBegin(funId,
m_module.defVoidType(),
funTypeId);
this->emitFunctionLabel();
DxbcCompilerHsControlPointPhase result;
result.functionId = funId;
return result;
}
DxbcCompilerHsControlPointPhase DxbcCompiler::emitNewHullShaderPassthroughPhase() {
uint32_t funTypeId = m_module.defFunctionType(
m_module.defVoidType(), 0, nullptr);
// Begin passthrough function
uint32_t funId = m_module.allocateId();
m_module.setDebugName(funId, "hs_passthrough");
this->emitFunctionBegin(funId,
m_module.defVoidType(),
funTypeId);
this->emitFunctionLabel();
// We'll basically copy each input variable to the corresponding
// output, using the shader's invocation ID as the array index.
const uint32_t invocationId = m_module.opLoad(
getScalarTypeId(DxbcScalarType::Uint32),
m_hs.builtinInvocationId);
for (auto i = m_isgn->begin(); i != m_isgn->end(); i++) {
this->emitDclInput(
i->registerId, m_hs.vertexCountIn,
i->componentMask,
DxbcSystemValue::None,
DxbcInterpolationMode::Undefined);
// Vector type index
const std::array<uint32_t, 2> dstIndices
= {{ invocationId, m_module.constu32(i->registerId) }};
DxbcRegisterPointer srcPtr;
srcPtr.type = m_vRegs.at(i->registerId).type;
srcPtr.id = m_module.opAccessChain(
m_module.defPointerType(getVectorTypeId(srcPtr.type), spv::StorageClassInput),
m_vRegs.at(i->registerId).id, 1, &invocationId);
DxbcRegisterValue srcValue = emitRegisterBitcast(
emitValueLoad(srcPtr), DxbcScalarType::Float32);
DxbcRegisterPointer dstPtr;
dstPtr.type = { DxbcScalarType::Float32, 4 };
dstPtr.id = m_module.opAccessChain(
m_module.defPointerType(getVectorTypeId(dstPtr.type), spv::StorageClassOutput),
m_hs.outputPerVertex, dstIndices.size(), dstIndices.data());
emitValueStore(dstPtr, srcValue, DxbcRegMask::firstN(srcValue.type.ccount));
}
// End function
this->emitFunctionEnd();
DxbcCompilerHsControlPointPhase result;
result.functionId = funId;
return result;
}
DxbcCompilerHsForkJoinPhase DxbcCompiler::emitNewHullShaderForkJoinPhase() {
uint32_t argTypeId = m_module.defIntType(32, 0);
uint32_t funTypeId = m_module.defFunctionType(
m_module.defVoidType(), 1, &argTypeId);
uint32_t funId = m_module.allocateId();
this->emitFunctionBegin(funId,
m_module.defVoidType(),
funTypeId);
uint32_t argId = m_module.functionParameter(argTypeId);
this->emitFunctionLabel();
DxbcCompilerHsForkJoinPhase result;
result.functionId = funId;
result.instanceId = argId;
return result;
}
void DxbcCompiler::emitHsPhaseBarrier() {
uint32_t exeScopeId = m_module.constu32(spv::ScopeWorkgroup);
uint32_t memScopeId = m_module.constu32(spv::ScopeWorkgroup);
uint32_t semanticId = m_module.constu32(
spv::MemorySemanticsOutputMemoryMask |
spv::MemorySemanticsAcquireReleaseMask |
spv::MemorySemanticsMakeAvailableMask |
spv::MemorySemanticsMakeVisibleMask);
m_module.opControlBarrier(exeScopeId, memScopeId, semanticId);
}
void DxbcCompiler::emitHsInvocationBlockBegin(uint32_t count) {
uint32_t invocationId = m_module.opLoad(
getScalarTypeId(DxbcScalarType::Uint32),
m_hs.builtinInvocationId);
uint32_t condition = m_module.opULessThan(
m_module.defBoolType(), invocationId,
m_module.constu32(count));
m_hs.invocationBlockBegin = m_module.allocateId();
m_hs.invocationBlockEnd = m_module.allocateId();
m_module.opSelectionMerge(
m_hs.invocationBlockEnd,
spv::SelectionControlMaskNone);
m_module.opBranchConditional(
condition,
m_hs.invocationBlockBegin,
m_hs.invocationBlockEnd);
m_module.opLabel(
m_hs.invocationBlockBegin);
}
void DxbcCompiler::emitHsInvocationBlockEnd() {
m_module.opBranch (m_hs.invocationBlockEnd);
m_module.opLabel (m_hs.invocationBlockEnd);
m_hs.invocationBlockBegin = 0;
m_hs.invocationBlockEnd = 0;
}
void DxbcCompiler::emitHsOutputSetup() {
uint32_t outputPerPatch = emitTessInterfacePerPatch(spv::StorageClassOutput);
if (!outputPerPatch)
return;
uint32_t vecType = getVectorTypeId({ DxbcScalarType::Float32, 4 });
uint32_t srcPtrType = m_module.defPointerType(vecType, spv::StorageClassPrivate);
uint32_t dstPtrType = m_module.defPointerType(vecType, spv::StorageClassOutput);
for (uint32_t i = 0; i < 32; i++) {
if (m_hs.outputPerPatchMask & (1 << i)) {
uint32_t index = m_module.constu32(i);
uint32_t srcPtr = m_module.opAccessChain(srcPtrType, m_hs.outputPerPatch, 1, &index);
uint32_t dstPtr = m_module.opAccessChain(dstPtrType, outputPerPatch, 1, &index);
m_module.opStore(dstPtr, m_module.opLoad(vecType, srcPtr));
}
}
}
uint32_t DxbcCompiler::emitTessInterfacePerPatch(spv::StorageClass storageClass) {
const char* name = "vPatch";
if (storageClass == spv::StorageClassPrivate)
name = "rPatch";
if (storageClass == spv::StorageClassOutput)
name = "oPatch";
uint32_t arrLen = m_psgn != nullptr ? m_psgn->maxRegisterCount() : 0;
if (!arrLen)
return 0;
uint32_t vecType = m_module.defVectorType (m_module.defFloatType(32), 4);
uint32_t arrType = m_module.defArrayType (vecType, m_module.constu32(arrLen));
uint32_t ptrType = m_module.defPointerType(arrType, storageClass);
uint32_t varId = m_module.newVar (ptrType, storageClass);
m_module.setDebugName (varId, name);
if (storageClass != spv::StorageClassPrivate) {
m_module.decorate (varId, spv::DecorationPatch);
m_module.decorateLocation (varId, 0);
}
return varId;
}
uint32_t DxbcCompiler::emitTessInterfacePerVertex(spv::StorageClass storageClass, uint32_t vertexCount) {
const bool isInput = storageClass == spv::StorageClassInput;
uint32_t arrLen = isInput
? (m_isgn != nullptr ? m_isgn->maxRegisterCount() : 0)
: (m_osgn != nullptr ? m_osgn->maxRegisterCount() : 0);
if (!arrLen)
return 0;
uint32_t locIdx = m_psgn != nullptr
? m_psgn->maxRegisterCount()
: 0;
uint32_t vecType = m_module.defVectorType (m_module.defFloatType(32), 4);
uint32_t arrTypeInner = m_module.defArrayType (vecType, m_module.constu32(arrLen));
uint32_t arrTypeOuter = m_module.defArrayType (arrTypeInner, m_module.constu32(vertexCount));
uint32_t ptrType = m_module.defPointerType(arrTypeOuter, storageClass);
uint32_t varId = m_module.newVar (ptrType, storageClass);
m_module.setDebugName (varId, isInput ? "vVertex" : "oVertex");
m_module.decorateLocation (varId, locIdx);
return varId;
}
uint32_t DxbcCompiler::emitSamplePosArray() {
const std::array<uint32_t, 32> samplePosVectors = {{
// Invalid sample count / unbound resource
m_module.constvec2f32( 0.0f, 0.0f),
// VK_SAMPLE_COUNT_1_BIT
m_module.constvec2f32( 0.0f, 0.0f),
// VK_SAMPLE_COUNT_2_BIT
m_module.constvec2f32( 0.25f, 0.25f),
m_module.constvec2f32(-0.25f,-0.25f),
// VK_SAMPLE_COUNT_4_BIT
m_module.constvec2f32(-0.125f,-0.375f),
m_module.constvec2f32( 0.375f,-0.125f),
m_module.constvec2f32(-0.375f, 0.125f),
m_module.constvec2f32( 0.125f, 0.375f),
// VK_SAMPLE_COUNT_8_BIT
m_module.constvec2f32( 0.0625f,-0.1875f),
m_module.constvec2f32(-0.0625f, 0.1875f),
m_module.constvec2f32( 0.3125f, 0.0625f),
m_module.constvec2f32(-0.1875f,-0.3125f),
m_module.constvec2f32(-0.3125f, 0.3125f),
m_module.constvec2f32(-0.4375f,-0.0625f),
m_module.constvec2f32( 0.1875f, 0.4375f),
m_module.constvec2f32( 0.4375f,-0.4375f),
// VK_SAMPLE_COUNT_16_BIT
m_module.constvec2f32( 0.0625f, 0.0625f),
m_module.constvec2f32(-0.0625f,-0.1875f),
m_module.constvec2f32(-0.1875f, 0.1250f),
m_module.constvec2f32( 0.2500f,-0.0625f),
m_module.constvec2f32(-0.3125f,-0.1250f),
m_module.constvec2f32( 0.1250f, 0.3125f),
m_module.constvec2f32( 0.3125f, 0.1875f),
m_module.constvec2f32( 0.1875f,-0.3125f),
m_module.constvec2f32(-0.1250f, 0.3750f),
m_module.constvec2f32( 0.0000f,-0.4375f),
m_module.constvec2f32(-0.2500f,-0.3750f),
m_module.constvec2f32(-0.3750f, 0.2500f),
m_module.constvec2f32(-0.5000f, 0.0000f),
m_module.constvec2f32( 0.4375f,-0.2500f),
m_module.constvec2f32( 0.3750f, 0.4375f),
m_module.constvec2f32(-0.4375f,-0.5000f),
}};
uint32_t arrayTypeId = getArrayTypeId({
DxbcScalarType::Float32, 2,
static_cast<uint32_t>(samplePosVectors.size()) });
uint32_t samplePosArray = m_module.constComposite(
arrayTypeId,
samplePosVectors.size(),
samplePosVectors.data());
uint32_t varId = m_module.newVarInit(
m_module.defPointerType(arrayTypeId, spv::StorageClassPrivate),
spv::StorageClassPrivate, samplePosArray);
m_module.setDebugName(varId, "g_sample_pos");
m_module.decorate(varId, spv::DecorationNonWritable);
return varId;
}
void DxbcCompiler::emitFloatControl() {
DxbcFloatControlFlags flags = m_moduleInfo.options.floatControl;
if (flags.isClear())
return;
const uint32_t width32 = 32;
const uint32_t width64 = 64;
m_module.enableExtension("SPV_KHR_float_controls");
if (flags.test(DxbcFloatControlFlag::DenormFlushToZero32)) {
m_module.enableCapability(spv::CapabilityDenormFlushToZero);
m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeDenormFlushToZero, 1, &width32);
}
if (flags.test(DxbcFloatControlFlag::PreserveNan32)) {
m_module.enableCapability(spv::CapabilitySignedZeroInfNanPreserve);
m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeSignedZeroInfNanPreserve, 1, &width32);
}
if (m_module.hasCapability(spv::CapabilityFloat64)) {
if (flags.test(DxbcFloatControlFlag::DenormPreserve64)) {
m_module.enableCapability(spv::CapabilityDenormPreserve);
m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeDenormPreserve, 1, &width64);
}
if (flags.test(DxbcFloatControlFlag::PreserveNan64)) {
m_module.enableCapability(spv::CapabilitySignedZeroInfNanPreserve);
m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeSignedZeroInfNanPreserve, 1, &width64);
}
}
}
uint32_t DxbcCompiler::emitNewVariable(const DxbcRegisterInfo& info) {
const uint32_t ptrTypeId = this->getPointerTypeId(info);
return m_module.newVar(ptrTypeId, info.sclass);
}
uint32_t DxbcCompiler::emitNewBuiltinVariable(
const DxbcRegisterInfo& info,
spv::BuiltIn builtIn,
const char* name) {
const uint32_t varId = emitNewVariable(info);
if (name)
m_module.setDebugName(varId, name);
m_module.decorateBuiltIn(varId, builtIn);
if (m_programInfo.type() == DxbcProgramType::PixelShader
&& info.type.ctype != DxbcScalarType::Float32
&& info.type.ctype != DxbcScalarType::Bool
&& info.sclass == spv::StorageClassInput)
m_module.decorate(varId, spv::DecorationFlat);
return varId;
}
uint32_t DxbcCompiler::emitBuiltinTessLevelOuter(spv::StorageClass storageClass) {
uint32_t id = emitNewBuiltinVariable(
DxbcRegisterInfo {
{ DxbcScalarType::Float32, 0, 4 },
storageClass },
spv::BuiltInTessLevelOuter,
"bTessLevelOuter");
m_module.decorate(id, spv::DecorationPatch);
return id;
}
uint32_t DxbcCompiler::emitBuiltinTessLevelInner(spv::StorageClass storageClass) {
uint32_t id = emitNewBuiltinVariable(
DxbcRegisterInfo {
{ DxbcScalarType::Float32, 0, 2 },
storageClass },
spv::BuiltInTessLevelInner,
"bTessLevelInner");
m_module.decorate(id, spv::DecorationPatch);
return id;
}
uint32_t DxbcCompiler::emitPushConstants() {
uint32_t uintTypeId = m_module.defIntType(32, 0);
uint32_t structTypeId = m_module.defStructTypeUnique(1, &uintTypeId);
m_module.setDebugName(structTypeId, "pc_t");
m_module.setDebugMemberName(structTypeId, 0, "RasterizerSampleCount");
m_module.memberDecorateOffset(structTypeId, 0, 0);
uint32_t ptrTypeId = m_module.defPointerType(structTypeId, spv::StorageClassPushConstant);
uint32_t varId = m_module.newVar(ptrTypeId, spv::StorageClassPushConstant);
m_module.setDebugName(varId, "pc");
return varId;
}
DxbcCfgBlock* DxbcCompiler::cfgFindBlock(
const std::initializer_list<DxbcCfgBlockType>& types) {
for (auto cur = m_controlFlowBlocks.rbegin();
cur != m_controlFlowBlocks.rend(); cur++) {
for (auto type : types) {
if (cur->type == type)
return &(*cur);
}
}
return nullptr;
}
DxbcBufferInfo DxbcCompiler::getBufferInfo(const DxbcRegister& reg) {
const uint32_t registerId = reg.idx[0].offset;
switch (reg.type) {
case DxbcOperandType::Resource: {
const auto& texture = m_textures.at(registerId);
DxbcBufferInfo result;
result.image = texture.imageInfo;
result.stype = texture.sampledType;
result.type = texture.type;
result.typeId = texture.imageTypeId;
result.varId = texture.varId;
result.stride = texture.structStride;
result.coherence = 0;
result.isSsbo = texture.isRawSsbo;
return result;
} break;
case DxbcOperandType::UnorderedAccessView: {
const auto& uav = m_uavs.at(registerId);
DxbcBufferInfo result;
result.image = uav.imageInfo;
result.stype = uav.sampledType;
result.type = uav.type;
result.typeId = uav.imageTypeId;
result.varId = uav.varId;
result.stride = uav.structStride;
result.coherence = uav.coherence;
result.isSsbo = uav.isRawSsbo;
return result;
} break;
case DxbcOperandType::ThreadGroupSharedMemory: {
DxbcBufferInfo result;
result.image = { spv::DimBuffer, 0, 0, 0 };
result.stype = DxbcScalarType::Uint32;
result.type = m_gRegs.at(registerId).type;
result.typeId = m_module.defPointerType(
getScalarTypeId(DxbcScalarType::Uint32),
spv::StorageClassWorkgroup);
result.varId = m_gRegs.at(registerId).varId;
result.stride = m_gRegs.at(registerId).elementStride;
result.coherence = 0;
result.isSsbo = false;
return result;
} break;
default:
throw DxvkError(str::format("DxbcCompiler: Invalid operand type for buffer: ", reg.type));
}
}
uint32_t DxbcCompiler::getTexSizeDim(const DxbcImageInfo& imageType) const {
switch (imageType.dim) {
case spv::DimBuffer: return 1 + imageType.array;
case spv::Dim1D: return 1 + imageType.array;
case spv::Dim2D: return 2 + imageType.array;
case spv::Dim3D: return 3 + imageType.array;
case spv::DimCube: return 2 + imageType.array;
default: throw DxvkError("DxbcCompiler: getTexLayerDim: Unsupported image dimension");
}
}
uint32_t DxbcCompiler::getTexLayerDim(const DxbcImageInfo& imageType) const {
switch (imageType.dim) {
case spv::DimBuffer: return 1;
case spv::Dim1D: return 1;
case spv::Dim2D: return 2;
case spv::Dim3D: return 3;
case spv::DimCube: return 3;
default: throw DxvkError("DxbcCompiler: getTexLayerDim: Unsupported image dimension");
}
}
uint32_t DxbcCompiler::getTexCoordDim(const DxbcImageInfo& imageType) const {
return getTexLayerDim(imageType) + imageType.array;
}
DxbcRegMask DxbcCompiler::getTexCoordMask(const DxbcImageInfo& imageType) const {
return DxbcRegMask::firstN(getTexCoordDim(imageType));
}
DxbcVectorType DxbcCompiler::getInputRegType(uint32_t regIdx) const {
switch (m_programInfo.type()) {
case DxbcProgramType::VertexShader: {
const DxbcSgnEntry* entry = m_isgn->findByRegister(regIdx);
DxbcVectorType result;
result.ctype = DxbcScalarType::Float32;
result.ccount = 4;
if (entry != nullptr) {
result.ctype = entry->componentType;
result.ccount = entry->componentMask.popCount();
}
return result;
}
case DxbcProgramType::DomainShader: {
DxbcVectorType result;
result.ctype = DxbcScalarType::Float32;
result.ccount = 4;
return result;
}
default: {
DxbcVectorType result;
result.ctype = DxbcScalarType::Float32;
result.ccount = 4;
if (m_isgn->findByRegister(regIdx))
result.ccount = m_isgn->regMask(regIdx).minComponents();
return result;
}
}
}
DxbcVectorType DxbcCompiler::getOutputRegType(uint32_t regIdx) const {
switch (m_programInfo.type()) {
case DxbcProgramType::PixelShader: {
const DxbcSgnEntry* entry = m_osgn->findByRegister(regIdx);
DxbcVectorType result;
result.ctype = DxbcScalarType::Float32;
result.ccount = 4;
if (entry != nullptr) {
result.ctype = entry->componentType;
result.ccount = entry->componentMask.popCount();
}
return result;
}
case DxbcProgramType::HullShader: {
DxbcVectorType result;
result.ctype = DxbcScalarType::Float32;
result.ccount = 4;
return result;
}
default: {
DxbcVectorType result;
result.ctype = DxbcScalarType::Float32;
result.ccount = 4;
if (m_osgn->findByRegister(regIdx))
result.ccount = m_osgn->regMask(regIdx).minComponents();
return result;
}
}
}
DxbcImageInfo DxbcCompiler::getResourceType(
DxbcResourceDim resourceType,
bool isUav) const {
uint32_t ms = m_moduleInfo.options.disableMsaa ? 0 : 1;
switch (resourceType) {
case DxbcResourceDim::Buffer: return { spv::DimBuffer, 0, 0, isUav ? 2u : 1u, VK_IMAGE_VIEW_TYPE_MAX_ENUM };
case DxbcResourceDim::Texture1D: return { spv::Dim1D, 0, 0, isUav ? 2u : 1u, VK_IMAGE_VIEW_TYPE_1D };
case DxbcResourceDim::Texture1DArr: return { spv::Dim1D, 1, 0, isUav ? 2u : 1u, VK_IMAGE_VIEW_TYPE_1D_ARRAY };
case DxbcResourceDim::Texture2D: return { spv::Dim2D, 0, 0, isUav ? 2u : 1u, VK_IMAGE_VIEW_TYPE_2D };
case DxbcResourceDim::Texture2DArr: return { spv::Dim2D, 1, 0, isUav ? 2u : 1u, VK_IMAGE_VIEW_TYPE_2D_ARRAY };
case DxbcResourceDim::Texture2DMs: return { spv::Dim2D, 0, ms,isUav ? 2u : 1u, VK_IMAGE_VIEW_TYPE_2D };
case DxbcResourceDim::Texture2DMsArr: return { spv::Dim2D, 1, ms,isUav ? 2u : 1u, VK_IMAGE_VIEW_TYPE_2D_ARRAY };
case DxbcResourceDim::Texture3D: return { spv::Dim3D, 0, 0, isUav ? 2u : 1u, VK_IMAGE_VIEW_TYPE_3D };
case DxbcResourceDim::TextureCube: return { spv::DimCube, 0, 0, isUav ? 2u : 1u, VK_IMAGE_VIEW_TYPE_CUBE };
case DxbcResourceDim::TextureCubeArr: return { spv::DimCube, 1, 0, isUav ? 2u : 1u, VK_IMAGE_VIEW_TYPE_CUBE_ARRAY };
default: throw DxvkError(str::format("DxbcCompiler: Unsupported resource type: ", resourceType));
}
}
spv::ImageFormat DxbcCompiler::getScalarImageFormat(DxbcScalarType type) const {
switch (type) {
case DxbcScalarType::Float32: return spv::ImageFormatR32f;
case DxbcScalarType::Sint32: return spv::ImageFormatR32i;
case DxbcScalarType::Uint32: return spv::ImageFormatR32ui;
default: throw DxvkError("DxbcCompiler: Unhandled scalar resource type");
}
}
bool DxbcCompiler::isDoubleType(DxbcScalarType type) const {
return type == DxbcScalarType::Sint64
|| type == DxbcScalarType::Uint64
|| type == DxbcScalarType::Float64;
}
DxbcRegisterPointer DxbcCompiler::getIndexableTempPtr(
const DxbcRegister& operand,
DxbcRegisterValue vectorId) {
// x# regs are indexed as follows:
// (0) register index (immediate)
// (1) element index (relative)
const uint32_t regId = operand.idx[0].offset;
DxbcRegisterInfo info;
info.type.ctype = DxbcScalarType::Float32;
info.type.ccount = m_xRegs[regId].ccount;
info.type.alength = 0;
info.sclass = spv::StorageClassPrivate;
DxbcRegisterPointer result;
result.type.ctype = info.type.ctype;
result.type.ccount = info.type.ccount;
result.id = m_module.opAccessChain(
getPointerTypeId(info),
m_xRegs.at(regId).varId,
1, &vectorId.id);
return result;
}
bool DxbcCompiler::caseBlockIsFallthrough() const {
return m_lastOp != DxbcOpcode::Case
&& m_lastOp != DxbcOpcode::Default
&& m_lastOp != DxbcOpcode::Break
&& m_lastOp != DxbcOpcode::Ret;
}
uint32_t DxbcCompiler::getUavCoherence(uint32_t registerId, DxbcUavFlags flags) const {
// Ignore any resources that can't both be read and written in
// the current shader, explicit availability/visibility operands
// are not useful in that case.
if (m_analysis->uavInfos[registerId].accessFlags != (VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT))
return 0;
// If the globally coherent flag is set, the resource must be
// coherent across multiple workgroups of the same dispatch
if (flags.test(DxbcUavFlag::GloballyCoherent))
return spv::ScopeQueueFamily;
// In compute shaders, UAVs are implicitly workgroup coherent.
// In all other stage, there are no coherence guarantees.
if (m_programInfo.type() == DxbcProgramType::ComputeShader)
return spv::ScopeWorkgroup;
return 0;
}
uint32_t DxbcCompiler::getScalarTypeId(DxbcScalarType type) {
if (type == DxbcScalarType::Float64)
m_module.enableCapability(spv::CapabilityFloat64);
if (type == DxbcScalarType::Sint64 || type == DxbcScalarType::Uint64)
m_module.enableCapability(spv::CapabilityInt64);
switch (type) {
case DxbcScalarType::Uint32: return m_module.defIntType(32, 0);
case DxbcScalarType::Uint64: return m_module.defIntType(64, 0);
case DxbcScalarType::Sint32: return m_module.defIntType(32, 1);
case DxbcScalarType::Sint64: return m_module.defIntType(64, 1);
case DxbcScalarType::Float32: return m_module.defFloatType(32);
case DxbcScalarType::Float64: return m_module.defFloatType(64);
case DxbcScalarType::Bool: return m_module.defBoolType();
}
throw DxvkError("DxbcCompiler: Invalid scalar type");
}
uint32_t DxbcCompiler::getVectorTypeId(const DxbcVectorType& type) {
uint32_t typeId = this->getScalarTypeId(type.ctype);
if (type.ccount > 1)
typeId = m_module.defVectorType(typeId, type.ccount);
return typeId;
}
uint32_t DxbcCompiler::getArrayTypeId(const DxbcArrayType& type) {
DxbcVectorType vtype;
vtype.ctype = type.ctype;
vtype.ccount = type.ccount;
uint32_t typeId = this->getVectorTypeId(vtype);
if (type.alength != 0) {
typeId = m_module.defArrayType(typeId,
m_module.constu32(type.alength));
}
return typeId;
}
uint32_t DxbcCompiler::getPointerTypeId(const DxbcRegisterInfo& type) {
return m_module.defPointerType(
this->getArrayTypeId(type.type),
type.sclass);
}
uint32_t DxbcCompiler::getSparseResultTypeId(uint32_t baseType) {
m_module.enableCapability(spv::CapabilitySparseResidency);
uint32_t uintType = getScalarTypeId(DxbcScalarType::Uint32);
std::array<uint32_t, 2> typeIds = { uintType, baseType };
return m_module.defStructType(typeIds.size(), typeIds.data());
}
uint32_t DxbcCompiler::getPerVertexBlockId() {
uint32_t t_f32 = m_module.defFloatType(32);
uint32_t t_f32_v4 = m_module.defVectorType(t_f32, 4);
// uint32_t t_f32_a4 = m_module.defArrayType(t_f32, m_module.constu32(4));
std::array<uint32_t, 1> members;
members[PerVertex_Position] = t_f32_v4;
// members[PerVertex_CullDist] = t_f32_a4;
// members[PerVertex_ClipDist] = t_f32_a4;
uint32_t typeId = m_module.defStructTypeUnique(
members.size(), members.data());
m_module.memberDecorateBuiltIn(typeId, PerVertex_Position, spv::BuiltInPosition);
// m_module.memberDecorateBuiltIn(typeId, PerVertex_CullDist, spv::BuiltInCullDistance);
// m_module.memberDecorateBuiltIn(typeId, PerVertex_ClipDist, spv::BuiltInClipDistance);
m_module.decorateBlock(typeId);
m_module.setDebugName(typeId, "s_per_vertex");
m_module.setDebugMemberName(typeId, PerVertex_Position, "position");
// m_module.setDebugMemberName(typeId, PerVertex_CullDist, "cull_dist");
// m_module.setDebugMemberName(typeId, PerVertex_ClipDist, "clip_dist");
return typeId;
}
uint32_t DxbcCompiler::getFunctionId(
uint32_t functionNr) {
auto entry = m_subroutines.find(functionNr);
if (entry != m_subroutines.end())
return entry->second;
uint32_t functionId = m_module.allocateId();
m_subroutines.insert({ functionNr, functionId });
return functionId;
}
DxbcCompilerHsForkJoinPhase* DxbcCompiler::getCurrentHsForkJoinPhase() {
switch (m_hs.currPhaseType) {
case DxbcCompilerHsPhase::Fork: return &m_hs.forkPhases.at(m_hs.currPhaseId);
case DxbcCompilerHsPhase::Join: return &m_hs.joinPhases.at(m_hs.currPhaseId);
default: return nullptr;
}
}
}