dxvk/src/util/thread.h

347 lines
7.0 KiB
C++

#pragma once
#include <chrono>
#include <condition_variable>
#include <functional>
#include <mutex>
#include <thread>
#include <utility>
#include "util_error.h"
#include "./com/com_include.h"
#include "./rc/util_rc.h"
#include "./rc/util_rc_ptr.h"
namespace dxvk {
/**
* \brief Thread priority
*/
enum class ThreadPriority : int32_t {
Normal,
Lowest,
};
#ifdef _WIN32
using ThreadProc = std::function<void()>;
/**
* \brief Thread object
*/
struct ThreadData {
ThreadData(ThreadProc&& proc_)
: proc(std::move(proc_)) { }
~ThreadData() {
if (handle)
CloseHandle(handle);
}
HANDLE handle = nullptr;
DWORD id = 0;
std::atomic<uint32_t> refs = { 2u };
ThreadProc proc;
void decRef() {
if (refs.fetch_sub(1, std::memory_order_release) == 1)
delete this;
}
};
/**
* \brief Thread wrapper
*
* Drop-in replacement for std::thread
* using plain win32 threads.
*/
class thread {
public:
using id = uint32_t;
using native_handle_type = HANDLE;
thread() { }
explicit thread(ThreadProc&& proc);
~thread();
thread(thread&& other)
: m_data(std::exchange(other.m_data, nullptr)) { }
thread& operator = (thread&& other) {
if (m_data)
m_data->decRef();
m_data = std::exchange(other.m_data, nullptr);
return *this;
}
void detach() {
m_data->decRef();
m_data = nullptr;
}
bool joinable() const {
return m_data != nullptr;
}
id get_id() const {
return joinable() ? m_data->id : id();
}
native_handle_type native_handle() const {
return joinable() ? m_data->handle : native_handle_type();
}
void swap(thread& other) {
std::swap(m_data, other.m_data);
}
void join();
void set_priority(ThreadPriority priority);
static uint32_t hardware_concurrency();
private:
ThreadData* m_data = nullptr;
static DWORD WINAPI threadProc(void* arg);
};
namespace this_thread {
inline void yield() {
SwitchToThread();
}
inline thread::id get_id() {
return thread::id(GetCurrentThreadId());
}
bool isInModuleDetachment();
}
/**
* \brief SRW-based mutex implementation
*
* Drop-in replacement for \c std::mutex that uses Win32
* SRW locks, which are implemented with \c futex in wine.
*/
class mutex {
public:
using native_handle_type = PSRWLOCK;
mutex() { }
mutex(const mutex&) = delete;
mutex& operator = (const mutex&) = delete;
void lock() {
AcquireSRWLockExclusive(&m_lock);
}
void unlock() {
ReleaseSRWLockExclusive(&m_lock);
}
bool try_lock() {
return TryAcquireSRWLockExclusive(&m_lock);
}
native_handle_type native_handle() {
return &m_lock;
}
private:
SRWLOCK m_lock = SRWLOCK_INIT;
};
/**
* \brief Recursive mutex implementation
*
* Drop-in replacement for \c std::recursive_mutex that
* uses Win32 critical sections.
*/
class recursive_mutex {
public:
using native_handle_type = PCRITICAL_SECTION;
recursive_mutex() {
InitializeCriticalSection(&m_lock);
}
~recursive_mutex() {
DeleteCriticalSection(&m_lock);
}
recursive_mutex(const recursive_mutex&) = delete;
recursive_mutex& operator = (const recursive_mutex&) = delete;
void lock() {
EnterCriticalSection(&m_lock);
}
void unlock() {
LeaveCriticalSection(&m_lock);
}
bool try_lock() {
return TryEnterCriticalSection(&m_lock);
}
native_handle_type native_handle() {
return &m_lock;
}
private:
CRITICAL_SECTION m_lock;
};
/**
* \brief SRW-based condition variable implementation
*
* Drop-in replacement for \c std::condition_variable that
* uses Win32 condition variables on SRW locks.
*/
class condition_variable {
public:
using native_handle_type = PCONDITION_VARIABLE;
condition_variable() {
InitializeConditionVariable(&m_cond);
}
condition_variable(condition_variable&) = delete;
condition_variable& operator = (condition_variable&) = delete;
void notify_one() {
WakeConditionVariable(&m_cond);
}
void notify_all() {
WakeAllConditionVariable(&m_cond);
}
void wait(std::unique_lock<dxvk::mutex>& lock) {
auto srw = lock.mutex()->native_handle();
SleepConditionVariableSRW(&m_cond, srw, INFINITE, 0);
}
template<typename Predicate>
void wait(std::unique_lock<dxvk::mutex>& lock, Predicate pred) {
while (!pred())
wait(lock);
}
template<typename Clock, typename Duration>
std::cv_status wait_until(std::unique_lock<dxvk::mutex>& lock, const std::chrono::time_point<Clock, Duration>& time) {
auto now = Clock::now();
return (now < time)
? wait_for(lock, now - time)
: std::cv_status::timeout;
}
template<typename Clock, typename Duration, typename Predicate>
bool wait_until(std::unique_lock<dxvk::mutex>& lock, const std::chrono::time_point<Clock, Duration>& time, Predicate pred) {
if (pred())
return true;
auto now = Clock::now();
return now < time && wait_for(lock, now - time, pred);
}
template<typename Rep, typename Period>
std::cv_status wait_for(std::unique_lock<dxvk::mutex>& lock, const std::chrono::duration<Rep, Period>& timeout) {
auto ms = std::chrono::duration_cast<std::chrono::milliseconds>(timeout);
auto srw = lock.mutex()->native_handle();
return SleepConditionVariableSRW(&m_cond, srw, ms.count(), 0)
? std::cv_status::no_timeout
: std::cv_status::timeout;
}
template<typename Rep, typename Period, typename Predicate>
bool wait_for(std::unique_lock<dxvk::mutex>& lock, const std::chrono::duration<Rep, Period>& timeout, Predicate pred) {
bool result = pred();
if (!result && wait_for(lock, timeout) == std::cv_status::no_timeout)
result = pred();
return result;
}
native_handle_type native_handle() {
return &m_cond;
}
private:
CONDITION_VARIABLE m_cond;
};
#else
class thread : public std::thread {
public:
using std::thread::thread;
void set_priority(ThreadPriority priority) {
::sched_param param = {};
int32_t policy;
switch (priority) {
default:
case ThreadPriority::Normal: policy = SCHED_OTHER; break;
#ifndef __linux__
case ThreadPriority::Lowest: policy = SCHED_OTHER; break;
#else
case ThreadPriority::Lowest: policy = SCHED_IDLE; break;
#endif
}
::pthread_setschedparam(this->native_handle(), policy, &param);
}
};
using mutex = std::mutex;
using recursive_mutex = std::recursive_mutex;
using condition_variable = std::condition_variable;
namespace this_thread {
inline void yield() {
std::this_thread::yield();
}
uint32_t get_id();
inline bool isInModuleDetachment() {
return false;
}
}
#endif
}