dxvk/src/dxvk/dxvk_context.cpp

5051 lines
179 KiB
C++

#include <cstring>
#include "dxvk_device.h"
#include "dxvk_context.h"
#include "dxvk_main.h"
namespace dxvk {
DxvkContext::DxvkContext(const Rc<DxvkDevice>& device)
: m_device (device),
m_common (&device->m_objects),
m_sdmaAcquires(DxvkCmdBuffer::SdmaBuffer),
m_sdmaBarriers(DxvkCmdBuffer::SdmaBuffer),
m_initBarriers(DxvkCmdBuffer::InitBuffer),
m_execAcquires(DxvkCmdBuffer::ExecBuffer),
m_execBarriers(DxvkCmdBuffer::ExecBuffer),
m_gfxBarriers (DxvkCmdBuffer::ExecBuffer),
m_queryManager(m_common->queryPool()),
m_staging (device) {
if (m_device->features().extRobustness2.nullDescriptor)
m_features.set(DxvkContextFeature::NullDescriptors);
if (m_device->features().extExtendedDynamicState.extendedDynamicState)
m_features.set(DxvkContextFeature::ExtendedDynamicState);
}
DxvkContext::~DxvkContext() {
}
void DxvkContext::beginRecording(const Rc<DxvkCommandList>& cmdList) {
m_cmd = cmdList;
m_cmd->beginRecording();
// Mark all resources as untracked
m_vbTracked.clear();
m_rcTracked.clear();
// The current state of the internal command buffer is
// undefined, so we have to bind and set up everything
// before any draw or dispatch command is recorded.
m_flags.clr(
DxvkContextFlag::GpRenderPassBound,
DxvkContextFlag::GpXfbActive);
m_flags.set(
DxvkContextFlag::GpDirtyFramebuffer,
DxvkContextFlag::GpDirtyPipeline,
DxvkContextFlag::GpDirtyPipelineState,
DxvkContextFlag::GpDirtyResources,
DxvkContextFlag::GpDirtyVertexBuffers,
DxvkContextFlag::GpDirtyIndexBuffer,
DxvkContextFlag::GpDirtyXfbBuffers,
DxvkContextFlag::GpDirtyBlendConstants,
DxvkContextFlag::GpDirtyStencilRef,
DxvkContextFlag::GpDirtyViewport,
DxvkContextFlag::GpDirtyDepthBias,
DxvkContextFlag::GpDirtyDepthBounds,
DxvkContextFlag::CpDirtyPipeline,
DxvkContextFlag::CpDirtyPipelineState,
DxvkContextFlag::CpDirtyResources,
DxvkContextFlag::DirtyDrawBuffer);
}
Rc<DxvkCommandList> DxvkContext::endRecording() {
this->spillRenderPass(true);
// Ensure that any shared images are in their
// default layout for the next submission
this->transitionRenderTargetLayouts(m_execBarriers, true);
m_sdmaBarriers.recordCommands(m_cmd);
m_initBarriers.recordCommands(m_cmd);
m_execBarriers.recordCommands(m_cmd);
m_cmd->endRecording();
return std::exchange(m_cmd, nullptr);
}
void DxvkContext::flushCommandList() {
m_device->submitCommandList(
this->endRecording(),
VK_NULL_HANDLE,
VK_NULL_HANDLE);
this->beginRecording(
m_device->createCommandList());
}
void DxvkContext::beginQuery(const Rc<DxvkGpuQuery>& query) {
m_queryManager.enableQuery(m_cmd, query);
}
void DxvkContext::endQuery(const Rc<DxvkGpuQuery>& query) {
m_queryManager.disableQuery(m_cmd, query);
}
void DxvkContext::bindRenderTargets(
const DxvkRenderTargets& targets) {
// Set up default render pass ops
m_state.om.renderTargets = targets;
this->resetRenderPassOps(
m_state.om.renderTargets,
m_state.om.renderPassOps);
if (m_state.om.framebuffer == nullptr || !m_state.om.framebuffer->hasTargets(targets)) {
// Create a new framebuffer object next
// time we start rendering something
m_flags.set(DxvkContextFlag::GpDirtyFramebuffer);
} else {
// Don't redundantly spill the render pass if
// the same render targets are bound again
m_flags.clr(DxvkContextFlag::GpDirtyFramebuffer);
}
}
void DxvkContext::bindDrawBuffers(
const DxvkBufferSlice& argBuffer,
const DxvkBufferSlice& cntBuffer) {
m_state.id.argBuffer = argBuffer;
m_state.id.cntBuffer = cntBuffer;
m_flags.set(DxvkContextFlag::DirtyDrawBuffer);
}
void DxvkContext::bindIndexBuffer(
const DxvkBufferSlice& buffer,
VkIndexType indexType) {
if (!m_state.vi.indexBuffer.matchesBuffer(buffer))
m_vbTracked.clr(MaxNumVertexBindings);
m_state.vi.indexBuffer = buffer;
m_state.vi.indexType = indexType;
m_flags.set(DxvkContextFlag::GpDirtyIndexBuffer);
}
void DxvkContext::bindResourceBuffer(
uint32_t slot,
const DxvkBufferSlice& buffer) {
bool needsUpdate = !m_rc[slot].bufferSlice.matchesBuffer(buffer);
if (likely(needsUpdate))
m_rcTracked.clr(slot);
else
needsUpdate = m_rc[slot].bufferSlice.length() != buffer.length();
if (likely(needsUpdate)) {
m_flags.set(
DxvkContextFlag::CpDirtyResources,
DxvkContextFlag::GpDirtyResources);
} else {
m_flags.set(
DxvkContextFlag::CpDirtyDescriptorBinding,
DxvkContextFlag::GpDirtyDescriptorBinding);
}
m_rc[slot].bufferSlice = buffer;
}
void DxvkContext::bindResourceView(
uint32_t slot,
const Rc<DxvkImageView>& imageView,
const Rc<DxvkBufferView>& bufferView) {
m_rc[slot].imageView = imageView;
m_rc[slot].bufferView = bufferView;
m_rc[slot].bufferSlice = bufferView != nullptr
? bufferView->slice()
: DxvkBufferSlice();
m_rcTracked.clr(slot);
m_flags.set(
DxvkContextFlag::CpDirtyResources,
DxvkContextFlag::GpDirtyResources);
}
void DxvkContext::bindResourceSampler(
uint32_t slot,
const Rc<DxvkSampler>& sampler) {
m_rc[slot].sampler = sampler;
m_rcTracked.clr(slot);
m_flags.set(
DxvkContextFlag::CpDirtyResources,
DxvkContextFlag::GpDirtyResources);
}
void DxvkContext::bindShader(
VkShaderStageFlagBits stage,
const Rc<DxvkShader>& shader) {
Rc<DxvkShader>* shaderStage;
switch (stage) {
case VK_SHADER_STAGE_VERTEX_BIT: shaderStage = &m_state.gp.shaders.vs; break;
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT: shaderStage = &m_state.gp.shaders.tcs; break;
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT: shaderStage = &m_state.gp.shaders.tes; break;
case VK_SHADER_STAGE_GEOMETRY_BIT: shaderStage = &m_state.gp.shaders.gs; break;
case VK_SHADER_STAGE_FRAGMENT_BIT: shaderStage = &m_state.gp.shaders.fs; break;
case VK_SHADER_STAGE_COMPUTE_BIT: shaderStage = &m_state.cp.shaders.cs; break;
default: return;
}
*shaderStage = shader;
if (stage == VK_SHADER_STAGE_COMPUTE_BIT) {
m_flags.set(
DxvkContextFlag::CpDirtyPipeline,
DxvkContextFlag::CpDirtyPipelineState,
DxvkContextFlag::CpDirtyResources);
} else {
m_flags.set(
DxvkContextFlag::GpDirtyPipeline,
DxvkContextFlag::GpDirtyPipelineState,
DxvkContextFlag::GpDirtyResources);
}
}
void DxvkContext::bindVertexBuffer(
uint32_t binding,
const DxvkBufferSlice& buffer,
uint32_t stride) {
if (!m_state.vi.vertexBuffers[binding].matchesBuffer(buffer))
m_vbTracked.clr(binding);
m_state.vi.vertexBuffers[binding] = buffer;
m_flags.set(DxvkContextFlag::GpDirtyVertexBuffers);
if (unlikely(!buffer.defined())
&& unlikely(!m_features.test(DxvkContextFeature::NullDescriptors)))
stride = 0;
if (unlikely(m_state.vi.vertexStrides[binding] != stride)) {
m_state.vi.vertexStrides[binding] = stride;
m_flags.set(DxvkContextFlag::GpDirtyPipelineState);
}
}
void DxvkContext::bindXfbBuffer(
uint32_t binding,
const DxvkBufferSlice& buffer,
const DxvkBufferSlice& counter) {
if (!m_state.xfb.buffers [binding].matches(buffer)
|| !m_state.xfb.counters[binding].matches(counter)) {
m_state.xfb.buffers [binding] = buffer;
m_state.xfb.counters[binding] = counter;
m_flags.set(DxvkContextFlag::GpDirtyXfbBuffers);
}
}
void DxvkContext::blitImage(
const Rc<DxvkImage>& dstImage,
const VkComponentMapping& dstMapping,
const Rc<DxvkImage>& srcImage,
const VkComponentMapping& srcMapping,
const VkImageBlit& region,
VkFilter filter) {
this->spillRenderPass(true);
this->prepareImage(m_execBarriers, dstImage, vk::makeSubresourceRange(region.dstSubresource));
this->prepareImage(m_execBarriers, srcImage, vk::makeSubresourceRange(region.srcSubresource));
auto mapping = util::resolveSrcComponentMapping(dstMapping, srcMapping);
bool canUseFb = (srcImage->info().usage & VK_IMAGE_USAGE_SAMPLED_BIT)
&& (dstImage->info().usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
&& ((dstImage->info().flags & VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT)
|| (dstImage->info().type != VK_IMAGE_TYPE_3D));
bool useFb = dstImage->info().sampleCount != VK_SAMPLE_COUNT_1_BIT
|| !util::isIdentityMapping(mapping);
if (!useFb) {
this->blitImageHw(
dstImage, srcImage,
region, filter);
} else if (canUseFb) {
this->blitImageFb(
dstImage, srcImage,
region, mapping, filter);
} else {
Logger::err("DxvkContext: Unsupported blit operation");
}
}
void DxvkContext::changeImageLayout(
const Rc<DxvkImage>& image,
VkImageLayout layout) {
if (image->info().layout != layout) {
this->spillRenderPass(true);
VkImageSubresourceRange subresources;
subresources.aspectMask = image->formatInfo()->aspectMask;
subresources.baseArrayLayer = 0;
subresources.baseMipLevel = 0;
subresources.layerCount = image->info().numLayers;
subresources.levelCount = image->info().mipLevels;
this->prepareImage(m_execBarriers, image, subresources);
if (m_execBarriers.isImageDirty(image, subresources, DxvkAccess::Write))
m_execBarriers.recordCommands(m_cmd);
m_execBarriers.accessImage(image, subresources,
image->info().layout,
image->info().stages, 0,
layout,
image->info().stages,
image->info().access);
image->setLayout(layout);
m_cmd->trackResource<DxvkAccess::Write>(image);
}
}
void DxvkContext::clearBuffer(
const Rc<DxvkBuffer>& buffer,
VkDeviceSize offset,
VkDeviceSize length,
uint32_t value) {
this->spillRenderPass(true);
length = align(length, sizeof(uint32_t));
auto slice = buffer->getSliceHandle(offset, length);
if (m_execBarriers.isBufferDirty(slice, DxvkAccess::Write))
m_execBarriers.recordCommands(m_cmd);
m_cmd->cmdFillBuffer(
slice.handle,
slice.offset,
slice.length,
value);
m_execBarriers.accessBuffer(slice,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
buffer->info().stages,
buffer->info().access);
m_cmd->trackResource<DxvkAccess::Write>(buffer);
}
void DxvkContext::clearBufferView(
const Rc<DxvkBufferView>& bufferView,
VkDeviceSize offset,
VkDeviceSize length,
VkClearColorValue value) {
this->spillRenderPass(true);
this->unbindComputePipeline();
// The view range might have been invalidated, so
// we need to make sure the handle is up to date
bufferView->updateView();
auto bufferSlice = bufferView->getSliceHandle();
if (m_execBarriers.isBufferDirty(bufferSlice, DxvkAccess::Write))
m_execBarriers.recordCommands(m_cmd);
// Query pipeline objects to use for this clear operation
DxvkMetaClearPipeline pipeInfo = m_common->metaClear().getClearBufferPipeline(
imageFormatInfo(bufferView->info().format)->flags);
// Create a descriptor set pointing to the view
VkBufferView viewObject = bufferView->handle();
VkDescriptorSet descriptorSet = allocateDescriptorSet(pipeInfo.dsetLayout);
VkWriteDescriptorSet descriptorWrite;
descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrite.pNext = nullptr;
descriptorWrite.dstSet = descriptorSet;
descriptorWrite.dstBinding = 0;
descriptorWrite.dstArrayElement = 0;
descriptorWrite.descriptorCount = 1;
descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER;
descriptorWrite.pImageInfo = nullptr;
descriptorWrite.pBufferInfo = nullptr;
descriptorWrite.pTexelBufferView = &viewObject;
m_cmd->updateDescriptorSets(1, &descriptorWrite);
// Prepare shader arguments
DxvkMetaClearArgs pushArgs = { };
pushArgs.clearValue = value;
pushArgs.offset = VkOffset3D { int32_t(offset), 0, 0 };
pushArgs.extent = VkExtent3D { uint32_t(length), 1, 1 };
VkExtent3D workgroups = util::computeBlockCount(
pushArgs.extent, pipeInfo.workgroupSize);
m_cmd->cmdBindPipeline(
VK_PIPELINE_BIND_POINT_COMPUTE,
pipeInfo.pipeline);
m_cmd->cmdBindDescriptorSet(
VK_PIPELINE_BIND_POINT_COMPUTE,
pipeInfo.pipeLayout, descriptorSet,
0, nullptr);
m_cmd->cmdPushConstants(
pipeInfo.pipeLayout,
VK_SHADER_STAGE_COMPUTE_BIT,
0, sizeof(pushArgs), &pushArgs);
m_cmd->cmdDispatch(
workgroups.width,
workgroups.height,
workgroups.depth);
m_execBarriers.accessBuffer(bufferSlice,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_ACCESS_SHADER_WRITE_BIT,
bufferView->bufferInfo().stages,
bufferView->bufferInfo().access);
m_cmd->trackResource<DxvkAccess::None>(bufferView);
m_cmd->trackResource<DxvkAccess::Write>(bufferView->buffer());
}
void DxvkContext::clearColorImage(
const Rc<DxvkImage>& image,
const VkClearColorValue& value,
const VkImageSubresourceRange& subresources) {
this->spillRenderPass(false);
VkImageLayout imageLayoutClear = image->pickLayout(VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
this->initializeImage(image, subresources,
imageLayoutClear,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT);
m_execAcquires.recordCommands(m_cmd);
m_cmd->cmdClearColorImage(image->handle(),
imageLayoutClear, &value, 1, &subresources);
m_execBarriers.accessImage(image, subresources,
imageLayoutClear,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
image->info().layout,
image->info().stages,
image->info().access);
m_cmd->trackResource<DxvkAccess::Write>(image);
}
void DxvkContext::clearDepthStencilImage(
const Rc<DxvkImage>& image,
const VkClearDepthStencilValue& value,
const VkImageSubresourceRange& subresources) {
this->spillRenderPass(false);
m_execBarriers.recordCommands(m_cmd);
VkImageLayout imageLayoutClear = image->pickLayout(VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
this->initializeImage(image, subresources,
imageLayoutClear,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT);
m_execAcquires.recordCommands(m_cmd);
m_cmd->cmdClearDepthStencilImage(image->handle(),
imageLayoutClear, &value, 1, &subresources);
m_execBarriers.accessImage(
image, subresources,
imageLayoutClear,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
image->info().layout,
image->info().stages,
image->info().access);
m_cmd->trackResource<DxvkAccess::Write>(image);
}
void DxvkContext::clearCompressedColorImage(
const Rc<DxvkImage>& image,
const VkImageSubresourceRange& subresources) {
this->spillRenderPass(false);
// Allocate enough staging buffer memory to fit one
// single subresource, then dispatch multiple copies
VkDeviceSize dataSize = util::computeImageDataSize(
image->info().format,
image->mipLevelExtent(subresources.baseMipLevel));
auto zeroBuffer = createZeroBuffer(dataSize);
auto zeroHandle = zeroBuffer->getSliceHandle();
VkImageLayout layout = image->pickLayout(VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
this->initializeImage(image, subresources, layout,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT);
m_execAcquires.recordCommands(m_cmd);
for (uint32_t level = 0; level < subresources.levelCount; level++) {
VkOffset3D offset = VkOffset3D { 0, 0, 0 };
VkExtent3D extent = image->mipLevelExtent(subresources.baseMipLevel + level);
for (uint32_t layer = 0; layer < subresources.layerCount; layer++) {
VkBufferImageCopy region;
region.bufferOffset = zeroHandle.offset;
region.bufferRowLength = 0;
region.bufferImageHeight = 0;
region.imageSubresource = vk::makeSubresourceLayers(
vk::pickSubresource(subresources, level, layer));
region.imageOffset = offset;
region.imageExtent = extent;
m_cmd->cmdCopyBufferToImage(DxvkCmdBuffer::ExecBuffer,
zeroHandle.handle, image->handle(), layout, 1, &region);
}
}
m_execBarriers.accessImage(
image, subresources, layout,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
image->info().layout,
image->info().stages,
image->info().access);
m_cmd->trackResource<DxvkAccess::Write>(image);
m_cmd->trackResource<DxvkAccess::Read>(zeroBuffer);
}
void DxvkContext::clearRenderTarget(
const Rc<DxvkImageView>& imageView,
VkImageAspectFlags clearAspects,
VkClearValue clearValue) {
// Make sure the color components are ordered correctly
if (clearAspects & VK_IMAGE_ASPECT_COLOR_BIT) {
clearValue.color = util::swizzleClearColor(clearValue.color,
util::invertComponentMapping(imageView->info().swizzle));
}
// Check whether the render target view is an attachment
// of the current framebuffer and is included entirely.
// If not, we need to create a temporary framebuffer.
int32_t attachmentIndex = -1;
if (m_state.om.framebuffer != nullptr
&& m_state.om.framebuffer->isFullSize(imageView))
attachmentIndex = m_state.om.framebuffer->findAttachment(imageView);
if (attachmentIndex < 0) {
// Suspend works here because we'll end up with one of these scenarios:
// 1) The render pass gets ended for good, in which case we emit barriers
// 2) The clear gets folded into render pass ops, so the layout is correct
// 3) The clear gets executed separately, in which case updateFramebuffer
// will indirectly emit barriers for the given render target.
// If there is overlap, we need to explicitly transition affected attachments.
this->spillRenderPass(true);
this->prepareImage(m_execBarriers, imageView->image(), imageView->subresources(), false);
} else if (!m_state.om.framebuffer->isWritable(attachmentIndex, clearAspects)) {
// We cannot inline clears if the clear aspects are not writable
this->spillRenderPass(true);
}
if (m_flags.test(DxvkContextFlag::GpRenderPassBound)) {
uint32_t colorIndex = std::max(0, m_state.om.framebuffer->getColorAttachmentIndex(attachmentIndex));
VkClearAttachment clearInfo;
clearInfo.aspectMask = clearAspects;
clearInfo.colorAttachment = colorIndex;
clearInfo.clearValue = clearValue;
VkClearRect clearRect;
clearRect.rect.offset.x = 0;
clearRect.rect.offset.y = 0;
clearRect.rect.extent.width = imageView->mipLevelExtent(0).width;
clearRect.rect.extent.height = imageView->mipLevelExtent(0).height;
clearRect.baseArrayLayer = 0;
clearRect.layerCount = imageView->info().numLayers;
m_cmd->cmdClearAttachments(1, &clearInfo, 1, &clearRect);
} else
this->deferClear(imageView, clearAspects, clearValue);
}
void DxvkContext::clearImageView(
const Rc<DxvkImageView>& imageView,
VkOffset3D offset,
VkExtent3D extent,
VkImageAspectFlags aspect,
VkClearValue value) {
const VkImageUsageFlags viewUsage = imageView->info().usage;
if (aspect & VK_IMAGE_ASPECT_COLOR_BIT) {
value.color = util::swizzleClearColor(value.color,
util::invertComponentMapping(imageView->info().swizzle));
}
if (viewUsage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT))
this->clearImageViewFb(imageView, offset, extent, aspect, value);
else if (viewUsage & VK_IMAGE_USAGE_STORAGE_BIT)
this->clearImageViewCs(imageView, offset, extent, value);
}
void DxvkContext::copyBuffer(
const Rc<DxvkBuffer>& dstBuffer,
VkDeviceSize dstOffset,
const Rc<DxvkBuffer>& srcBuffer,
VkDeviceSize srcOffset,
VkDeviceSize numBytes) {
if (numBytes == 0)
return;
this->spillRenderPass(true);
auto dstSlice = dstBuffer->getSliceHandle(dstOffset, numBytes);
auto srcSlice = srcBuffer->getSliceHandle(srcOffset, numBytes);
if (m_execBarriers.isBufferDirty(srcSlice, DxvkAccess::Read)
|| m_execBarriers.isBufferDirty(dstSlice, DxvkAccess::Write))
m_execBarriers.recordCommands(m_cmd);
VkBufferCopy bufferRegion;
bufferRegion.srcOffset = srcSlice.offset;
bufferRegion.dstOffset = dstSlice.offset;
bufferRegion.size = dstSlice.length;
m_cmd->cmdCopyBuffer(DxvkCmdBuffer::ExecBuffer,
srcSlice.handle, dstSlice.handle, 1, &bufferRegion);
m_execBarriers.accessBuffer(srcSlice,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_READ_BIT,
srcBuffer->info().stages,
srcBuffer->info().access);
m_execBarriers.accessBuffer(dstSlice,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
dstBuffer->info().stages,
dstBuffer->info().access);
m_cmd->trackResource<DxvkAccess::Write>(dstBuffer);
m_cmd->trackResource<DxvkAccess::Read>(srcBuffer);
}
void DxvkContext::copyBufferRegion(
const Rc<DxvkBuffer>& dstBuffer,
VkDeviceSize dstOffset,
VkDeviceSize srcOffset,
VkDeviceSize numBytes) {
VkDeviceSize loOvl = std::max(dstOffset, srcOffset);
VkDeviceSize hiOvl = std::min(dstOffset, srcOffset) + numBytes;
if (hiOvl > loOvl) {
DxvkBufferCreateInfo bufInfo;
bufInfo.size = numBytes;
bufInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufInfo.stages = VK_PIPELINE_STAGE_TRANSFER_BIT;
bufInfo.access = VK_ACCESS_TRANSFER_WRITE_BIT
| VK_ACCESS_TRANSFER_READ_BIT;
auto tmpBuffer = m_device->createBuffer(
bufInfo, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VkDeviceSize tmpOffset = 0;
this->copyBuffer(tmpBuffer, tmpOffset, dstBuffer, srcOffset, numBytes);
this->copyBuffer(dstBuffer, dstOffset, tmpBuffer, tmpOffset, numBytes);
} else {
this->copyBuffer(dstBuffer, dstOffset, dstBuffer, srcOffset, numBytes);
}
}
void DxvkContext::copyBufferToImage(
const Rc<DxvkImage>& dstImage,
VkImageSubresourceLayers dstSubresource,
VkOffset3D dstOffset,
VkExtent3D dstExtent,
const Rc<DxvkBuffer>& srcBuffer,
VkDeviceSize srcOffset,
VkExtent2D srcExtent) {
this->spillRenderPass(true);
this->prepareImage(m_execBarriers, dstImage, vk::makeSubresourceRange(dstSubresource));
auto srcSlice = srcBuffer->getSliceHandle(srcOffset, 0);
// We may copy to only one aspect of a depth-stencil image,
// but pipeline barriers need to have all aspect bits set
auto dstFormatInfo = dstImage->formatInfo();
auto dstSubresourceRange = vk::makeSubresourceRange(dstSubresource);
dstSubresourceRange.aspectMask = dstFormatInfo->aspectMask;
if (m_execBarriers.isImageDirty(dstImage, dstSubresourceRange, DxvkAccess::Write)
|| m_execBarriers.isBufferDirty(srcSlice, DxvkAccess::Read))
m_execBarriers.recordCommands(m_cmd);
// Initialize the image if the entire subresource is covered
VkImageLayout dstImageLayoutInitial = dstImage->info().layout;
VkImageLayout dstImageLayoutTransfer = dstImage->pickLayout(VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
if (dstImage->isFullSubresource(dstSubresource, dstExtent))
dstImageLayoutInitial = VK_IMAGE_LAYOUT_UNDEFINED;
if (dstImageLayoutTransfer != dstImageLayoutInitial) {
m_execAcquires.accessImage(
dstImage, dstSubresourceRange,
dstImageLayoutInitial,
VK_PIPELINE_STAGE_TRANSFER_BIT, 0,
dstImageLayoutTransfer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT);
}
m_execAcquires.recordCommands(m_cmd);
VkBufferImageCopy copyRegion;
copyRegion.bufferOffset = srcSlice.offset;
copyRegion.bufferRowLength = srcExtent.width;
copyRegion.bufferImageHeight = srcExtent.height;
copyRegion.imageSubresource = dstSubresource;
copyRegion.imageOffset = dstOffset;
copyRegion.imageExtent = dstExtent;
m_cmd->cmdCopyBufferToImage(DxvkCmdBuffer::ExecBuffer,
srcSlice.handle, dstImage->handle(),
dstImageLayoutTransfer, 1, &copyRegion);
m_execBarriers.accessImage(
dstImage, dstSubresourceRange,
dstImageLayoutTransfer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
dstImage->info().layout,
dstImage->info().stages,
dstImage->info().access);
m_execBarriers.accessBuffer(srcSlice,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_READ_BIT,
srcBuffer->info().stages,
srcBuffer->info().access);
m_cmd->trackResource<DxvkAccess::Write>(dstImage);
m_cmd->trackResource<DxvkAccess::Read>(srcBuffer);
}
void DxvkContext::copyImage(
const Rc<DxvkImage>& dstImage,
VkImageSubresourceLayers dstSubresource,
VkOffset3D dstOffset,
const Rc<DxvkImage>& srcImage,
VkImageSubresourceLayers srcSubresource,
VkOffset3D srcOffset,
VkExtent3D extent) {
this->spillRenderPass(true);
if (this->copyImageClear(dstImage, dstSubresource, dstOffset, extent, srcImage, srcSubresource))
return;
this->prepareImage(m_execBarriers, dstImage, vk::makeSubresourceRange(dstSubresource));
this->prepareImage(m_execBarriers, srcImage, vk::makeSubresourceRange(srcSubresource));
bool useFb = dstSubresource.aspectMask != srcSubresource.aspectMask;
if (m_device->perfHints().preferFbDepthStencilCopy) {
useFb |= (dstSubresource.aspectMask == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT))
&& (dstImage->info().usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)
&& (srcImage->info().usage & VK_IMAGE_USAGE_SAMPLED_BIT);
}
if (!useFb) {
this->copyImageHw(
dstImage, dstSubresource, dstOffset,
srcImage, srcSubresource, srcOffset,
extent);
} else {
this->copyImageFb(
dstImage, dstSubresource, dstOffset,
srcImage, srcSubresource, srcOffset,
extent);
}
}
void DxvkContext::copyImageRegion(
const Rc<DxvkImage>& dstImage,
VkImageSubresourceLayers dstSubresource,
VkOffset3D dstOffset,
VkOffset3D srcOffset,
VkExtent3D extent) {
VkOffset3D loOvl = {
std::max(dstOffset.x, srcOffset.x),
std::max(dstOffset.y, srcOffset.y),
std::max(dstOffset.z, srcOffset.z) };
VkOffset3D hiOvl = {
std::min(dstOffset.x, srcOffset.x) + int32_t(extent.width),
std::min(dstOffset.y, srcOffset.y) + int32_t(extent.height),
std::min(dstOffset.z, srcOffset.z) + int32_t(extent.depth) };
bool overlap = hiOvl.x > loOvl.x
&& hiOvl.y > loOvl.y
&& hiOvl.z > loOvl.z;
if (overlap) {
DxvkImageCreateInfo imgInfo;
imgInfo.type = dstImage->info().type;
imgInfo.format = dstImage->info().format;
imgInfo.flags = 0;
imgInfo.sampleCount = dstImage->info().sampleCount;
imgInfo.extent = extent;
imgInfo.numLayers = dstSubresource.layerCount;
imgInfo.mipLevels = 1;
imgInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT
| VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
imgInfo.stages = VK_PIPELINE_STAGE_TRANSFER_BIT;
imgInfo.access = VK_ACCESS_TRANSFER_WRITE_BIT
| VK_ACCESS_TRANSFER_READ_BIT;
imgInfo.tiling = dstImage->info().tiling;
imgInfo.layout = VK_IMAGE_LAYOUT_GENERAL;
auto tmpImage = m_device->createImage(
imgInfo, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VkImageSubresourceLayers tmpSubresource;
tmpSubresource.aspectMask = dstSubresource.aspectMask;
tmpSubresource.mipLevel = 0;
tmpSubresource.baseArrayLayer = 0;
tmpSubresource.layerCount = dstSubresource.layerCount;
VkOffset3D tmpOffset = { 0, 0, 0 };
this->copyImage(
tmpImage, tmpSubresource, tmpOffset,
dstImage, dstSubresource, srcOffset,
extent);
this->copyImage(
dstImage, dstSubresource, dstOffset,
tmpImage, tmpSubresource, tmpOffset,
extent);
} else {
this->copyImage(
dstImage, dstSubresource, dstOffset,
dstImage, dstSubresource, srcOffset,
extent);
}
}
void DxvkContext::copyImageToBuffer(
const Rc<DxvkBuffer>& dstBuffer,
VkDeviceSize dstOffset,
VkExtent2D dstExtent,
const Rc<DxvkImage>& srcImage,
VkImageSubresourceLayers srcSubresource,
VkOffset3D srcOffset,
VkExtent3D srcExtent) {
this->spillRenderPass(true);
this->prepareImage(m_execBarriers, srcImage, vk::makeSubresourceRange(srcSubresource));
auto dstSlice = dstBuffer->getSliceHandle(dstOffset, 0);
// We may copy to only one aspect of a depth-stencil image,
// but pipeline barriers need to have all aspect bits set
auto srcFormatInfo = srcImage->formatInfo();
auto srcSubresourceRange = vk::makeSubresourceRange(srcSubresource);
srcSubresourceRange.aspectMask = srcFormatInfo->aspectMask;
if (m_execBarriers.isImageDirty(srcImage, srcSubresourceRange, DxvkAccess::Write)
|| m_execBarriers.isBufferDirty(dstSlice, DxvkAccess::Write))
m_execBarriers.recordCommands(m_cmd);
// Select a suitable image layout for the transfer op
VkImageLayout srcImageLayoutTransfer = srcImage->pickLayout(VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
m_execAcquires.accessImage(
srcImage, srcSubresourceRange,
srcImage->info().layout,
VK_PIPELINE_STAGE_TRANSFER_BIT, 0,
srcImageLayoutTransfer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_READ_BIT);
m_execAcquires.recordCommands(m_cmd);
VkBufferImageCopy copyRegion;
copyRegion.bufferOffset = dstSlice.offset;
copyRegion.bufferRowLength = dstExtent.width;
copyRegion.bufferImageHeight = dstExtent.height;
copyRegion.imageSubresource = srcSubresource;
copyRegion.imageOffset = srcOffset;
copyRegion.imageExtent = srcExtent;
m_cmd->cmdCopyImageToBuffer(DxvkCmdBuffer::ExecBuffer,
srcImage->handle(), srcImageLayoutTransfer,
dstSlice.handle, 1, &copyRegion);
m_execBarriers.accessImage(
srcImage, srcSubresourceRange,
srcImageLayoutTransfer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_READ_BIT,
srcImage->info().layout,
srcImage->info().stages,
srcImage->info().access);
m_execBarriers.accessBuffer(dstSlice,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
dstBuffer->info().stages,
dstBuffer->info().access);
m_cmd->trackResource<DxvkAccess::Write>(dstBuffer);
m_cmd->trackResource<DxvkAccess::Read>(srcImage);
}
void DxvkContext::copyDepthStencilImageToPackedBuffer(
const Rc<DxvkBuffer>& dstBuffer,
VkDeviceSize dstOffset,
const Rc<DxvkImage>& srcImage,
VkImageSubresourceLayers srcSubresource,
VkOffset2D srcOffset,
VkExtent2D srcExtent,
VkFormat format) {
this->spillRenderPass(true);
this->prepareImage(m_execBarriers, srcImage, vk::makeSubresourceRange(srcSubresource));
this->unbindComputePipeline();
// Retrieve compute pipeline for the given format
auto pipeInfo = m_common->metaPack().getPackPipeline(format);
if (!pipeInfo.pipeHandle)
return;
// Create one depth view and one stencil view
DxvkImageViewCreateInfo dViewInfo;
dViewInfo.type = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
dViewInfo.format = srcImage->info().format;
dViewInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
dViewInfo.aspect = VK_IMAGE_ASPECT_DEPTH_BIT;
dViewInfo.minLevel = srcSubresource.mipLevel;
dViewInfo.numLevels = 1;
dViewInfo.minLayer = srcSubresource.baseArrayLayer;
dViewInfo.numLayers = srcSubresource.layerCount;
DxvkImageViewCreateInfo sViewInfo = dViewInfo;
sViewInfo.aspect = VK_IMAGE_ASPECT_STENCIL_BIT;
Rc<DxvkImageView> dView = m_device->createImageView(srcImage, dViewInfo);
Rc<DxvkImageView> sView = m_device->createImageView(srcImage, sViewInfo);
// Create a descriptor set for the pack operation
VkImageLayout layout = srcImage->pickLayout(VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL);
DxvkMetaPackDescriptors descriptors;
descriptors.dstBuffer = dstBuffer->getDescriptor(dstOffset, VK_WHOLE_SIZE).buffer;
descriptors.srcDepth = dView->getDescriptor(VK_IMAGE_VIEW_TYPE_2D_ARRAY, layout).image;
descriptors.srcStencil = sView->getDescriptor(VK_IMAGE_VIEW_TYPE_2D_ARRAY, layout).image;
VkDescriptorSet dset = allocateDescriptorSet(pipeInfo.dsetLayout);
m_cmd->updateDescriptorSetWithTemplate(dset, pipeInfo.dsetTemplate, &descriptors);
// Since this is a meta operation, the image may be
// in a different layout and we have to transition it
auto subresourceRange = vk::makeSubresourceRange(srcSubresource);
if (m_execBarriers.isImageDirty(srcImage, subresourceRange, DxvkAccess::Write))
m_execBarriers.recordCommands(m_cmd);
if (srcImage->info().layout != layout) {
m_execAcquires.accessImage(
srcImage, subresourceRange,
srcImage->info().layout,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0,
layout,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_ACCESS_SHADER_READ_BIT);
m_execAcquires.recordCommands(m_cmd);
}
// Execute the actual pack operation
DxvkMetaPackArgs args;
args.srcOffset = srcOffset;
args.srcExtent = srcExtent;
m_cmd->cmdBindPipeline(
VK_PIPELINE_BIND_POINT_COMPUTE,
pipeInfo.pipeHandle);
m_cmd->cmdBindDescriptorSet(
VK_PIPELINE_BIND_POINT_COMPUTE,
pipeInfo.pipeLayout, dset,
0, nullptr);
m_cmd->cmdPushConstants(
pipeInfo.pipeLayout,
VK_SHADER_STAGE_COMPUTE_BIT,
0, sizeof(args), &args);
m_cmd->cmdDispatch(
(srcExtent.width + 7) / 8,
(srcExtent.height + 7) / 8,
srcSubresource.layerCount);
m_execBarriers.accessImage(
srcImage, subresourceRange, layout,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_ACCESS_SHADER_READ_BIT,
srcImage->info().layout,
srcImage->info().stages,
srcImage->info().access);
m_execBarriers.accessBuffer(
dstBuffer->getSliceHandle(),
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_ACCESS_SHADER_WRITE_BIT,
dstBuffer->info().stages,
dstBuffer->info().access);
m_cmd->trackResource<DxvkAccess::None>(dView);
m_cmd->trackResource<DxvkAccess::None>(sView);
m_cmd->trackResource<DxvkAccess::Write>(dstBuffer);
m_cmd->trackResource<DxvkAccess::Read>(srcImage);
}
void DxvkContext::copyPackedBufferToDepthStencilImage(
const Rc<DxvkImage>& dstImage,
VkImageSubresourceLayers dstSubresource,
VkOffset2D dstOffset,
VkExtent2D dstExtent,
const Rc<DxvkBuffer>& srcBuffer,
VkDeviceSize srcOffset,
VkFormat format) {
this->spillRenderPass(true);
this->prepareImage(m_execBarriers, dstImage, vk::makeSubresourceRange(dstSubresource));
this->unbindComputePipeline();
if (m_execBarriers.isBufferDirty(srcBuffer->getSliceHandle(), DxvkAccess::Read)
|| m_execBarriers.isImageDirty(dstImage, vk::makeSubresourceRange(dstSubresource), DxvkAccess::Write))
m_execBarriers.recordCommands(m_cmd);
// Retrieve compute pipeline for the given format
auto pipeInfo = m_common->metaPack().getUnpackPipeline(dstImage->info().format, format);
if (!pipeInfo.pipeHandle) {
Logger::err(str::format(
"DxvkContext: copyPackedBufferToDepthStencilImage: Unhandled formats"
"\n dstFormat = ", dstImage->info().format,
"\n srcFormat = ", format));
return;
}
// Pick depth and stencil data formats
VkFormat dataFormatD = VK_FORMAT_UNDEFINED;
VkFormat dataFormatS = VK_FORMAT_UNDEFINED;
const std::array<std::tuple<VkFormat, VkFormat, VkFormat>, 2> formats = {{
{ VK_FORMAT_D24_UNORM_S8_UINT, VK_FORMAT_R32_UINT, VK_FORMAT_R8_UINT },
{ VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_R32_SFLOAT, VK_FORMAT_R8_UINT },
}};
for (const auto& e : formats) {
if (std::get<0>(e) == dstImage->info().format) {
dataFormatD = std::get<1>(e);
dataFormatS = std::get<2>(e);
}
}
// Create temporary buffer for depth/stencil data
VkDeviceSize pixelCount = dstExtent.width * dstExtent.height * dstSubresource.layerCount;
VkDeviceSize dataSizeD = align(pixelCount * imageFormatInfo(dataFormatD)->elementSize, 256);
VkDeviceSize dataSizeS = align(pixelCount * imageFormatInfo(dataFormatS)->elementSize, 256);
DxvkBufferCreateInfo tmpBufferInfo;
tmpBufferInfo.size = dataSizeD + dataSizeS;
tmpBufferInfo.usage = VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
tmpBufferInfo.stages = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT
| VK_PIPELINE_STAGE_TRANSFER_BIT;
tmpBufferInfo.access = VK_ACCESS_SHADER_WRITE_BIT
| VK_ACCESS_TRANSFER_READ_BIT;
auto tmpBuffer = m_device->createBuffer(tmpBufferInfo, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
// Create formatted buffer views
DxvkBufferViewCreateInfo tmpViewInfoD;
tmpViewInfoD.format = dataFormatD;
tmpViewInfoD.rangeOffset = 0;
tmpViewInfoD.rangeLength = dataSizeD;
DxvkBufferViewCreateInfo tmpViewInfoS;
tmpViewInfoS.format = dataFormatS;
tmpViewInfoS.rangeOffset = dataSizeD;
tmpViewInfoS.rangeLength = dataSizeS;
auto tmpBufferViewD = m_device->createBufferView(tmpBuffer, tmpViewInfoD);
auto tmpBufferViewS = m_device->createBufferView(tmpBuffer, tmpViewInfoS);
// Create descriptor set for the unpack operation
DxvkMetaUnpackDescriptors descriptors;
descriptors.dstDepth = tmpBufferViewD->handle();
descriptors.dstStencil = tmpBufferViewS->handle();
descriptors.srcBuffer = srcBuffer->getDescriptor(srcOffset, VK_WHOLE_SIZE).buffer;
VkDescriptorSet dset = allocateDescriptorSet(pipeInfo.dsetLayout);
m_cmd->updateDescriptorSetWithTemplate(dset, pipeInfo.dsetTemplate, &descriptors);
// Unpack the source buffer to temporary buffers
DxvkMetaUnpackArgs args;
args.dstExtent = dstExtent;
args.srcExtent = dstExtent;
m_cmd->cmdBindPipeline(
VK_PIPELINE_BIND_POINT_COMPUTE,
pipeInfo.pipeHandle);
m_cmd->cmdBindDescriptorSet(
VK_PIPELINE_BIND_POINT_COMPUTE,
pipeInfo.pipeLayout, dset,
0, nullptr);
m_cmd->cmdPushConstants(
pipeInfo.pipeLayout,
VK_SHADER_STAGE_COMPUTE_BIT,
0, sizeof(args), &args);
m_cmd->cmdDispatch(
(dstExtent.width + 63) / 64,
dstExtent.height,
dstSubresource.layerCount);
m_execBarriers.accessBuffer(
tmpBuffer->getSliceHandle(),
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_ACCESS_SHADER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_READ_BIT);
m_execBarriers.accessBuffer(
srcBuffer->getSliceHandle(),
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_ACCESS_SHADER_READ_BIT,
srcBuffer->info().stages,
srcBuffer->info().access);
// Prepare image for the data transfer operation
VkOffset3D dstOffset3D = { dstOffset.x, dstOffset.y, 0 };
VkExtent3D dstExtent3D = { dstExtent.width, dstExtent.height, 1 };
VkImageLayout initialImageLayout = dstImage->info().layout;
if (dstImage->isFullSubresource(dstSubresource, dstExtent3D))
initialImageLayout = VK_IMAGE_LAYOUT_UNDEFINED;
m_execBarriers.accessImage(
dstImage, vk::makeSubresourceRange(dstSubresource),
initialImageLayout,
dstImage->info().stages,
dstImage->info().access,
dstImage->pickLayout(VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL),
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT);
m_execBarriers.recordCommands(m_cmd);
// Copy temporary buffer data to depth-stencil image
VkImageSubresourceLayers dstSubresourceD = dstSubresource;
dstSubresourceD.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
VkImageSubresourceLayers dstSubresourceS = dstSubresource;
dstSubresourceS.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
std::array<VkBufferImageCopy, 2> copyRegions = {{
{ tmpBufferViewD->info().rangeOffset, 0, 0, dstSubresourceD, dstOffset3D, dstExtent3D },
{ tmpBufferViewS->info().rangeOffset, 0, 0, dstSubresourceS, dstOffset3D, dstExtent3D },
}};
m_cmd->cmdCopyBufferToImage(DxvkCmdBuffer::ExecBuffer,
tmpBuffer->getSliceHandle().handle,
dstImage->handle(),
dstImage->pickLayout(VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL),
copyRegions.size(),
copyRegions.data());
m_execBarriers.accessImage(
dstImage, vk::makeSubresourceRange(dstSubresource),
dstImage->pickLayout(VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL),
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
dstImage->info().layout,
dstImage->info().stages,
dstImage->info().access);
// Track all involved resources
m_cmd->trackResource<DxvkAccess::Write>(dstImage);
m_cmd->trackResource<DxvkAccess::Read>(srcBuffer);
m_cmd->trackResource<DxvkAccess::None>(tmpBufferViewD);
m_cmd->trackResource<DxvkAccess::None>(tmpBufferViewS);
}
void DxvkContext::discardBuffer(
const Rc<DxvkBuffer>& buffer) {
if (m_execBarriers.isBufferDirty(buffer->getSliceHandle(), DxvkAccess::Write))
this->invalidateBuffer(buffer, buffer->allocSlice());
}
void DxvkContext::discardImageView(
const Rc<DxvkImageView>& imageView,
VkImageAspectFlags discardAspects) {
VkImageUsageFlags viewUsage = imageView->info().usage;
// Ignore non-render target views since there's likely no good use case for
// discarding those. Also, force reinitialization even if the image is bound
// as a render target, which may have niche use cases for depth buffers.
if (viewUsage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
this->spillRenderPass(true);
this->deferDiscard(imageView, discardAspects);
}
}
void DxvkContext::dispatch(
uint32_t x,
uint32_t y,
uint32_t z) {
if (this->commitComputeState()) {
this->commitComputeInitBarriers();
m_queryManager.beginQueries(m_cmd,
VK_QUERY_TYPE_PIPELINE_STATISTICS);
m_cmd->cmdDispatch(x, y, z);
m_queryManager.endQueries(m_cmd,
VK_QUERY_TYPE_PIPELINE_STATISTICS);
this->commitComputePostBarriers();
}
m_cmd->addStatCtr(DxvkStatCounter::CmdDispatchCalls, 1);
}
void DxvkContext::dispatchIndirect(
VkDeviceSize offset) {
auto bufferSlice = m_state.id.argBuffer.getSliceHandle(
offset, sizeof(VkDispatchIndirectCommand));
if (m_execBarriers.isBufferDirty(bufferSlice, DxvkAccess::Read))
m_execBarriers.recordCommands(m_cmd);
if (this->commitComputeState()) {
this->commitComputeInitBarriers();
m_queryManager.beginQueries(m_cmd,
VK_QUERY_TYPE_PIPELINE_STATISTICS);
m_cmd->cmdDispatchIndirect(
bufferSlice.handle,
bufferSlice.offset);
m_queryManager.endQueries(m_cmd,
VK_QUERY_TYPE_PIPELINE_STATISTICS);
this->commitComputePostBarriers();
m_execBarriers.accessBuffer(bufferSlice,
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT,
VK_ACCESS_INDIRECT_COMMAND_READ_BIT,
m_state.id.argBuffer.bufferInfo().stages,
m_state.id.argBuffer.bufferInfo().access);
this->trackDrawBuffer();
}
m_cmd->addStatCtr(DxvkStatCounter::CmdDispatchCalls, 1);
}
void DxvkContext::draw(
uint32_t vertexCount,
uint32_t instanceCount,
uint32_t firstVertex,
uint32_t firstInstance) {
if (this->commitGraphicsState<false, false>()) {
m_cmd->cmdDraw(
vertexCount, instanceCount,
firstVertex, firstInstance);
}
m_cmd->addStatCtr(DxvkStatCounter::CmdDrawCalls, 1);
}
void DxvkContext::drawIndirect(
VkDeviceSize offset,
uint32_t count,
uint32_t stride) {
if (this->commitGraphicsState<false, true>()) {
auto descriptor = m_state.id.argBuffer.getDescriptor();
m_cmd->cmdDrawIndirect(
descriptor.buffer.buffer,
descriptor.buffer.offset + offset,
count, stride);
}
m_cmd->addStatCtr(DxvkStatCounter::CmdDrawCalls, 1);
}
void DxvkContext::drawIndirectCount(
VkDeviceSize offset,
VkDeviceSize countOffset,
uint32_t maxCount,
uint32_t stride) {
if (this->commitGraphicsState<false, true>()) {
auto argDescriptor = m_state.id.argBuffer.getDescriptor();
auto cntDescriptor = m_state.id.cntBuffer.getDescriptor();
m_cmd->cmdDrawIndirectCount(
argDescriptor.buffer.buffer,
argDescriptor.buffer.offset + offset,
cntDescriptor.buffer.buffer,
cntDescriptor.buffer.offset + countOffset,
maxCount, stride);
}
m_cmd->addStatCtr(DxvkStatCounter::CmdDrawCalls, 1);
}
void DxvkContext::drawIndexed(
uint32_t indexCount,
uint32_t instanceCount,
uint32_t firstIndex,
uint32_t vertexOffset,
uint32_t firstInstance) {
if (this->commitGraphicsState<true, false>()) {
m_cmd->cmdDrawIndexed(
indexCount, instanceCount,
firstIndex, vertexOffset,
firstInstance);
}
m_cmd->addStatCtr(DxvkStatCounter::CmdDrawCalls, 1);
}
void DxvkContext::drawIndexedIndirect(
VkDeviceSize offset,
uint32_t count,
uint32_t stride) {
if (this->commitGraphicsState<true, true>()) {
auto descriptor = m_state.id.argBuffer.getDescriptor();
m_cmd->cmdDrawIndexedIndirect(
descriptor.buffer.buffer,
descriptor.buffer.offset + offset,
count, stride);
}
m_cmd->addStatCtr(DxvkStatCounter::CmdDrawCalls, 1);
}
void DxvkContext::drawIndexedIndirectCount(
VkDeviceSize offset,
VkDeviceSize countOffset,
uint32_t maxCount,
uint32_t stride) {
if (this->commitGraphicsState<true, true>()) {
auto argDescriptor = m_state.id.argBuffer.getDescriptor();
auto cntDescriptor = m_state.id.cntBuffer.getDescriptor();
m_cmd->cmdDrawIndexedIndirectCount(
argDescriptor.buffer.buffer,
argDescriptor.buffer.offset + offset,
cntDescriptor.buffer.buffer,
cntDescriptor.buffer.offset + countOffset,
maxCount, stride);
}
m_cmd->addStatCtr(DxvkStatCounter::CmdDrawCalls, 1);
}
void DxvkContext::drawIndirectXfb(
const DxvkBufferSlice& counterBuffer,
uint32_t counterDivisor,
uint32_t counterBias) {
if (this->commitGraphicsState<false, false>()) {
auto physSlice = counterBuffer.getSliceHandle();
m_cmd->cmdDrawIndirectVertexCount(1, 0,
physSlice.handle,
physSlice.offset,
counterBias,
counterDivisor);
}
m_cmd->addStatCtr(DxvkStatCounter::CmdDrawCalls, 1);
}
void DxvkContext::emitRenderTargetReadbackBarrier() {
if (m_flags.test(DxvkContextFlag::GpRenderPassBound)) {
emitMemoryBarrier(VK_DEPENDENCY_BY_REGION_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_ACCESS_SHADER_READ_BIT);
}
}
void DxvkContext::initImage(
const Rc<DxvkImage>& image,
const VkImageSubresourceRange& subresources,
VkImageLayout initialLayout) {
m_execBarriers.accessImage(image, subresources,
initialLayout, 0, 0,
image->info().layout,
image->info().stages,
image->info().access);
(initialLayout == VK_IMAGE_LAYOUT_PREINITIALIZED)
? m_cmd->trackResource<DxvkAccess::None> (image)
: m_cmd->trackResource<DxvkAccess::Write>(image);
}
void DxvkContext::generateMipmaps(
const Rc<DxvkImageView>& imageView,
VkFilter filter) {
if (imageView->info().numLevels <= 1)
return;
this->spillRenderPass(false);
m_execBarriers.recordCommands(m_cmd);
// Create the a set of framebuffers and image views
const Rc<DxvkMetaMipGenRenderPass> mipGenerator
= new DxvkMetaMipGenRenderPass(m_device->vkd(), imageView);
// Common descriptor set properties that we use to
// bind the source image view to the fragment shader
VkDescriptorImageInfo descriptorImage;
descriptorImage.sampler = m_common->metaBlit().getSampler(filter);
descriptorImage.imageView = VK_NULL_HANDLE;
descriptorImage.imageLayout = imageView->imageInfo().layout;
VkWriteDescriptorSet descriptorWrite;
descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrite.pNext = nullptr;
descriptorWrite.dstSet = VK_NULL_HANDLE;
descriptorWrite.dstBinding = 0;
descriptorWrite.dstArrayElement = 0;
descriptorWrite.descriptorCount = 1;
descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptorWrite.pImageInfo = &descriptorImage;
descriptorWrite.pBufferInfo = nullptr;
descriptorWrite.pTexelBufferView = nullptr;
// Common render pass info
VkRenderPassBeginInfo passInfo;
passInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
passInfo.pNext = nullptr;
passInfo.renderPass = mipGenerator->renderPass();
passInfo.framebuffer = VK_NULL_HANDLE;
passInfo.renderArea = VkRect2D { };
passInfo.clearValueCount = 0;
passInfo.pClearValues = nullptr;
// Retrieve a compatible pipeline to use for rendering
DxvkMetaBlitPipeline pipeInfo = m_common->metaBlit().getPipeline(
mipGenerator->viewType(), imageView->info().format, VK_SAMPLE_COUNT_1_BIT);
for (uint32_t i = 0; i < mipGenerator->passCount(); i++) {
DxvkMetaBlitPass pass = mipGenerator->pass(i);
// Width, height and layer count for the current pass
VkExtent3D passExtent = mipGenerator->passExtent(i);
// Create descriptor set with the current source view
descriptorImage.imageView = pass.srcView;
descriptorWrite.dstSet = allocateDescriptorSet(pipeInfo.dsetLayout);
m_cmd->updateDescriptorSets(1, &descriptorWrite);
// Set up viewport and scissor rect
VkViewport viewport;
viewport.x = 0.0f;
viewport.y = 0.0f;
viewport.width = float(passExtent.width);
viewport.height = float(passExtent.height);
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
VkRect2D scissor;
scissor.offset = { 0, 0 };
scissor.extent = { passExtent.width, passExtent.height };
// Set up render pass info
passInfo.framebuffer = pass.framebuffer;
passInfo.renderArea = scissor;
// Set up push constants
DxvkMetaBlitPushConstants pushConstants = { };
pushConstants.srcCoord0 = { 0.0f, 0.0f, 0.0f };
pushConstants.srcCoord1 = { 1.0f, 1.0f, 1.0f };
pushConstants.layerCount = passExtent.depth;
m_cmd->cmdBeginRenderPass(&passInfo, VK_SUBPASS_CONTENTS_INLINE);
m_cmd->cmdBindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, pipeInfo.pipeHandle);
m_cmd->cmdBindDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS,
pipeInfo.pipeLayout, descriptorWrite.dstSet, 0, nullptr);
m_cmd->cmdSetViewport(0, 1, &viewport);
m_cmd->cmdSetScissor (0, 1, &scissor);
m_cmd->cmdPushConstants(
pipeInfo.pipeLayout,
VK_SHADER_STAGE_FRAGMENT_BIT,
0, sizeof(pushConstants),
&pushConstants);
m_cmd->cmdDraw(3, passExtent.depth, 0, 0);
m_cmd->cmdEndRenderPass();
}
m_cmd->trackResource<DxvkAccess::None>(mipGenerator);
m_cmd->trackResource<DxvkAccess::Write>(imageView->image());
}
void DxvkContext::invalidateBuffer(
const Rc<DxvkBuffer>& buffer,
const DxvkBufferSliceHandle& slice) {
// Allocate new backing resource
DxvkBufferSliceHandle prevSlice = buffer->rename(slice);
m_cmd->freeBufferSlice(buffer, prevSlice);
// We also need to update all bindings that the buffer
// may be bound to either directly or through views.
VkBufferUsageFlags usage = buffer->info().usage &
~(VK_BUFFER_USAGE_TRANSFER_DST_BIT |
VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
if (usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT) {
m_flags.set(prevSlice.handle == slice.handle
? DxvkContextFlags(DxvkContextFlag::GpDirtyDescriptorBinding,
DxvkContextFlag::CpDirtyDescriptorBinding)
: DxvkContextFlags(DxvkContextFlag::GpDirtyResources,
DxvkContextFlag::CpDirtyResources));
}
// Fast early-out for uniform buffers, very common
if (likely(usage == VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT))
return;
if (usage & (VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT
| VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT
| VK_BUFFER_USAGE_STORAGE_BUFFER_BIT)) {
m_flags.set(DxvkContextFlag::GpDirtyResources,
DxvkContextFlag::CpDirtyResources);
}
if (usage & VK_BUFFER_USAGE_INDEX_BUFFER_BIT)
m_flags.set(DxvkContextFlag::GpDirtyIndexBuffer);
if (usage & VK_BUFFER_USAGE_VERTEX_BUFFER_BIT)
m_flags.set(DxvkContextFlag::GpDirtyVertexBuffers);
if (usage & VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT)
m_flags.set(DxvkContextFlag::DirtyDrawBuffer);
if (usage & VK_BUFFER_USAGE_TRANSFORM_FEEDBACK_BUFFER_BIT_EXT)
m_flags.set(DxvkContextFlag::GpDirtyXfbBuffers);
}
void DxvkContext::pushConstants(
uint32_t offset,
uint32_t size,
const void* data) {
std::memcpy(&m_state.pc.data[offset], data, size);
m_flags.set(DxvkContextFlag::DirtyPushConstants);
}
void DxvkContext::resolveImage(
const Rc<DxvkImage>& dstImage,
const Rc<DxvkImage>& srcImage,
const VkImageResolve& region,
VkFormat format) {
this->spillRenderPass(true);
this->prepareImage(m_execBarriers, dstImage, vk::makeSubresourceRange(region.dstSubresource));
this->prepareImage(m_execBarriers, srcImage, vk::makeSubresourceRange(region.srcSubresource));
if (format == VK_FORMAT_UNDEFINED)
format = srcImage->info().format;
bool useFb = srcImage->info().format != format
|| dstImage->info().format != format;
if (m_device->perfHints().preferFbResolve) {
useFb |= (dstImage->info().usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
&& (srcImage->info().usage & VK_IMAGE_USAGE_SAMPLED_BIT);
}
if (!useFb) {
this->resolveImageHw(
dstImage, srcImage, region);
} else {
this->resolveImageFb(
dstImage, srcImage, region, format,
VK_RESOLVE_MODE_NONE_KHR,
VK_RESOLVE_MODE_NONE_KHR);
}
}
void DxvkContext::resolveDepthStencilImage(
const Rc<DxvkImage>& dstImage,
const Rc<DxvkImage>& srcImage,
const VkImageResolve& region,
VkResolveModeFlagBitsKHR depthMode,
VkResolveModeFlagBitsKHR stencilMode) {
this->spillRenderPass(true);
this->prepareImage(m_execBarriers, dstImage, vk::makeSubresourceRange(region.dstSubresource));
this->prepareImage(m_execBarriers, srcImage, vk::makeSubresourceRange(region.srcSubresource));
// Technically legal, but no-op
if (!depthMode && !stencilMode)
return;
// Subsequent functions expect stencil mode to be None
// if either of the images have no stencil aspect
if (!(region.dstSubresource.aspectMask
& region.srcSubresource.aspectMask
& VK_IMAGE_ASPECT_STENCIL_BIT))
stencilMode = VK_RESOLVE_MODE_NONE_KHR;
// We can only use the depth-stencil resolve path if the
// extension is supported, if we are resolving a full
// subresource, and both images have the same format.
bool useFb = !m_device->extensions().khrDepthStencilResolve
|| !dstImage->isFullSubresource(region.dstSubresource, region.extent)
|| !srcImage->isFullSubresource(region.srcSubresource, region.extent)
|| dstImage->info().format != srcImage->info().format;
if (!useFb) {
// Additionally, the given mode combination must be supported.
const auto& properties = m_device->properties().khrDepthStencilResolve;
useFb |= (properties.supportedDepthResolveModes & depthMode) != depthMode
|| (properties.supportedStencilResolveModes & stencilMode) != stencilMode;
if (depthMode != stencilMode) {
useFb |= (!depthMode || !stencilMode)
? !properties.independentResolveNone
: !properties.independentResolve;
}
}
if (useFb) {
this->resolveImageFb(
dstImage, srcImage, region, VK_FORMAT_UNDEFINED,
depthMode, stencilMode);
} else {
this->resolveImageDs(
dstImage, srcImage, region,
depthMode, stencilMode);
}
}
void DxvkContext::transformImage(
const Rc<DxvkImage>& dstImage,
const VkImageSubresourceRange& dstSubresources,
VkImageLayout srcLayout,
VkImageLayout dstLayout) {
this->spillRenderPass(false);
if (srcLayout != dstLayout) {
m_execBarriers.recordCommands(m_cmd);
m_execBarriers.accessImage(
dstImage, dstSubresources,
srcLayout,
dstImage->info().stages,
dstImage->info().access,
dstLayout,
dstImage->info().stages,
dstImage->info().access);
m_cmd->trackResource<DxvkAccess::Write>(dstImage);
}
}
void DxvkContext::performClear(
const Rc<DxvkImageView>& imageView,
int32_t attachmentIndex,
VkImageAspectFlags discardAspects,
VkImageAspectFlags clearAspects,
VkClearValue clearValue) {
DxvkColorAttachmentOps colorOp;
colorOp.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
colorOp.loadLayout = imageView->imageInfo().layout;
colorOp.storeLayout = imageView->imageInfo().layout;
DxvkDepthAttachmentOps depthOp;
depthOp.loadOpD = VK_ATTACHMENT_LOAD_OP_LOAD;
depthOp.loadOpS = VK_ATTACHMENT_LOAD_OP_LOAD;
depthOp.loadLayout = imageView->imageInfo().layout;
depthOp.storeLayout = imageView->imageInfo().layout;
if (clearAspects & VK_IMAGE_ASPECT_COLOR_BIT)
colorOp.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
else if (discardAspects & VK_IMAGE_ASPECT_COLOR_BIT)
colorOp.loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
if (clearAspects & VK_IMAGE_ASPECT_DEPTH_BIT)
depthOp.loadOpD = VK_ATTACHMENT_LOAD_OP_CLEAR;
else if (discardAspects & VK_IMAGE_ASPECT_DEPTH_BIT)
depthOp.loadOpD = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
if (clearAspects & VK_IMAGE_ASPECT_STENCIL_BIT)
depthOp.loadOpS = VK_ATTACHMENT_LOAD_OP_CLEAR;
else if (discardAspects & VK_IMAGE_ASPECT_DEPTH_BIT)
depthOp.loadOpS = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
if (attachmentIndex >= 0 && !m_state.om.framebuffer->isWritable(attachmentIndex, clearAspects | discardAspects)) {
// Do not fold the clear/discard into the render pass if any of the affected aspects
// isn't writable. We can only hit this particular path when starting a render pass,
// so we can safely manipulate load layouts here.
int32_t colorIndex = m_state.om.framebuffer->getColorAttachmentIndex(attachmentIndex);
VkImageLayout renderLayout = m_state.om.framebuffer->getAttachment(attachmentIndex).layout;
if (colorIndex < 0) {
depthOp.loadLayout = m_state.om.renderPassOps.depthOps.loadLayout;
depthOp.storeLayout = renderLayout;
m_state.om.renderPassOps.depthOps.loadLayout = renderLayout;
} else {
colorOp.loadLayout = m_state.om.renderPassOps.colorOps[colorIndex].loadLayout;
colorOp.storeLayout = renderLayout;
m_state.om.renderPassOps.colorOps[colorIndex].loadLayout = renderLayout;
}
attachmentIndex = -1;
}
bool is3D = imageView->imageInfo().type == VK_IMAGE_TYPE_3D;
if ((clearAspects | discardAspects) == imageView->info().aspect && !is3D) {
colorOp.loadLayout = VK_IMAGE_LAYOUT_UNDEFINED;
depthOp.loadLayout = VK_IMAGE_LAYOUT_UNDEFINED;
}
if (attachmentIndex < 0) {
if (m_execBarriers.isImageDirty(
imageView->image(),
imageView->imageSubresources(),
DxvkAccess::Write))
m_execBarriers.recordCommands(m_cmd);
// Set up and bind a temporary framebuffer
DxvkRenderTargets attachments;
DxvkRenderPassOps ops;
VkPipelineStageFlags clearStages = 0;
VkAccessFlags clearAccess = 0;
if (clearAspects & VK_IMAGE_ASPECT_COLOR_BIT) {
clearStages |= VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
clearAccess |= VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
attachments.color[0].view = imageView;
attachments.color[0].layout = imageView->pickLayout(VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
ops.colorOps[0] = colorOp;
} else {
clearStages |= VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT
| VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
clearAccess |= VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
attachments.depth.view = imageView;
attachments.depth.layout = imageView->pickLayout(VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
ops.depthOps = depthOp;
}
ops.barrier.srcStages = clearStages;
ops.barrier.srcAccess = clearAccess;
ops.barrier.dstStages = imageView->imageInfo().stages;
ops.barrier.dstAccess = imageView->imageInfo().access;
this->renderPassBindFramebuffer(
m_device->createFramebuffer(attachments),
ops, 1, &clearValue);
this->renderPassUnbindFramebuffer();
} else {
// Perform the operation when starting the next render pass
if ((clearAspects | discardAspects) & VK_IMAGE_ASPECT_COLOR_BIT) {
uint32_t colorIndex = m_state.om.framebuffer->getColorAttachmentIndex(attachmentIndex);
m_state.om.renderPassOps.colorOps[colorIndex].loadOp = colorOp.loadOp;
if (m_state.om.renderPassOps.colorOps[colorIndex].loadOp != VK_ATTACHMENT_LOAD_OP_LOAD && !is3D)
m_state.om.renderPassOps.colorOps[colorIndex].loadLayout = VK_IMAGE_LAYOUT_UNDEFINED;
m_state.om.clearValues[attachmentIndex].color = clearValue.color;
}
if ((clearAspects | discardAspects) & VK_IMAGE_ASPECT_DEPTH_BIT) {
m_state.om.renderPassOps.depthOps.loadOpD = depthOp.loadOpD;
m_state.om.clearValues[attachmentIndex].depthStencil.depth = clearValue.depthStencil.depth;
}
if ((clearAspects | discardAspects) & VK_IMAGE_ASPECT_STENCIL_BIT) {
m_state.om.renderPassOps.depthOps.loadOpS = depthOp.loadOpS;
m_state.om.clearValues[attachmentIndex].depthStencil.stencil = clearValue.depthStencil.stencil;
}
if ((clearAspects | discardAspects) & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
if (m_state.om.renderPassOps.depthOps.loadOpD != VK_ATTACHMENT_LOAD_OP_LOAD
&& m_state.om.renderPassOps.depthOps.loadOpS != VK_ATTACHMENT_LOAD_OP_LOAD)
m_state.om.renderPassOps.depthOps.loadLayout = VK_IMAGE_LAYOUT_UNDEFINED;
}
}
}
void DxvkContext::deferClear(
const Rc<DxvkImageView>& imageView,
VkImageAspectFlags clearAspects,
VkClearValue clearValue) {
for (auto& entry : m_deferredClears) {
if (entry.imageView->checkSubresourceMatch(imageView)) {
entry.imageView = imageView;
entry.discardAspects &= ~clearAspects;
entry.clearAspects |= clearAspects;
if (clearAspects & VK_IMAGE_ASPECT_COLOR_BIT)
entry.clearValue.color = clearValue.color;
if (clearAspects & VK_IMAGE_ASPECT_DEPTH_BIT)
entry.clearValue.depthStencil.depth = clearValue.depthStencil.depth;
if (clearAspects & VK_IMAGE_ASPECT_STENCIL_BIT)
entry.clearValue.depthStencil.stencil = clearValue.depthStencil.stencil;
return;
} else if (entry.imageView->checkSubresourceOverlap(imageView)) {
this->spillRenderPass(false);
break;
}
}
m_deferredClears.push_back({ imageView, 0, clearAspects, clearValue });
}
void DxvkContext::deferDiscard(
const Rc<DxvkImageView>& imageView,
VkImageAspectFlags discardAspects) {
for (auto& entry : m_deferredClears) {
if (entry.imageView->checkSubresourceMatch(imageView)) {
entry.imageView = imageView;
entry.discardAspects |= discardAspects;
entry.clearAspects &= ~discardAspects;
return;
} else if (entry.imageView->checkSubresourceOverlap(imageView)) {
this->spillRenderPass(false);
break;
}
}
m_deferredClears.push_back({ imageView, discardAspects });
}
void DxvkContext::flushClears(
bool useRenderPass) {
for (const auto& clear : m_deferredClears) {
int32_t attachmentIndex = -1;
if (useRenderPass && m_state.om.framebuffer->isFullSize(clear.imageView))
attachmentIndex = m_state.om.framebuffer->findAttachment(clear.imageView);
this->performClear(clear.imageView, attachmentIndex,
clear.discardAspects, clear.clearAspects, clear.clearValue);
}
m_deferredClears.clear();
}
void DxvkContext::updateBuffer(
const Rc<DxvkBuffer>& buffer,
VkDeviceSize offset,
VkDeviceSize size,
const void* data) {
bool replaceBuffer = (size == buffer->info().size)
&& (size <= (1 << 20)); /* 1 MB */
DxvkBufferSliceHandle bufferSlice;
DxvkCmdBuffer cmdBuffer;
if (replaceBuffer) {
// Pause transform feedback so that we don't mess
// with the currently bound counter buffers
if (m_flags.test(DxvkContextFlag::GpXfbActive))
this->pauseTransformFeedback();
// As an optimization, allocate a free slice and perform
// the copy in the initialization command buffer instead
// interrupting the render pass and stalling the pipeline.
bufferSlice = buffer->allocSlice();
cmdBuffer = DxvkCmdBuffer::InitBuffer;
this->invalidateBuffer(buffer, bufferSlice);
} else {
this->spillRenderPass(true);
bufferSlice = buffer->getSliceHandle(offset, size);
cmdBuffer = DxvkCmdBuffer::ExecBuffer;
if (m_execBarriers.isBufferDirty(bufferSlice, DxvkAccess::Write))
m_execBarriers.recordCommands(m_cmd);
}
// Vulkan specifies that small amounts of data (up to 64kB) can
// be copied to a buffer directly if the size is a multiple of
// four. Anything else must be copied through a staging buffer.
// We'll limit the size to 4kB in order to keep command buffers
// reasonably small, we do not know how much data apps may upload.
if ((size <= 4096) && ((size & 0x3) == 0) && ((offset & 0x3) == 0)) {
m_cmd->cmdUpdateBuffer(
cmdBuffer,
bufferSlice.handle,
bufferSlice.offset,
bufferSlice.length,
data);
} else {
auto stagingSlice = m_staging.alloc(CACHE_LINE_SIZE, size);
auto stagingHandle = stagingSlice.getSliceHandle();
std::memcpy(stagingHandle.mapPtr, data, size);
VkBufferCopy region;
region.srcOffset = stagingHandle.offset;
region.dstOffset = bufferSlice.offset;
region.size = size;
m_cmd->cmdCopyBuffer(cmdBuffer,
stagingHandle.handle, bufferSlice.handle, 1, &region);
m_cmd->trackResource<DxvkAccess::Read>(stagingSlice.buffer());
}
auto& barriers = replaceBuffer
? m_initBarriers
: m_execBarriers;
barriers.accessBuffer(
bufferSlice,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
buffer->info().stages,
buffer->info().access);
m_cmd->trackResource<DxvkAccess::Write>(buffer);
}
void DxvkContext::updateImage(
const Rc<DxvkImage>& image,
const VkImageSubresourceLayers& subresources,
VkOffset3D imageOffset,
VkExtent3D imageExtent,
const void* data,
VkDeviceSize pitchPerRow,
VkDeviceSize pitchPerLayer) {
this->spillRenderPass(true);
// Upload data through a staging buffer. Special care needs to
// be taken when dealing with compressed image formats: Rather
// than copying pixels, we'll be copying blocks of pixels.
const DxvkFormatInfo* formatInfo = image->formatInfo();
// Align image extent to a full block. This is necessary in
// case the image size is not a multiple of the block size.
VkExtent3D elementCount = util::computeBlockCount(
imageExtent, formatInfo->blockSize);
elementCount.depth *= subresources.layerCount;
// Allocate staging buffer memory for the image data. The
// pixels or blocks will be tightly packed within the buffer.
auto stagingSlice = m_staging.alloc(CACHE_LINE_SIZE,
formatInfo->elementSize * util::flattenImageExtent(elementCount));
auto stagingHandle = stagingSlice.getSliceHandle();
util::packImageData(stagingHandle.mapPtr, data,
elementCount, formatInfo->elementSize,
pitchPerRow, pitchPerLayer);
// Prepare the image layout. If the given extent covers
// the entire image, we may discard its previous contents.
auto subresourceRange = vk::makeSubresourceRange(subresources);
subresourceRange.aspectMask = formatInfo->aspectMask;
this->prepareImage(m_execBarriers, image, subresourceRange);
if (m_execBarriers.isImageDirty(image, subresourceRange, DxvkAccess::Write))
m_execBarriers.recordCommands(m_cmd);
// Initialize the image if the entire subresource is covered
VkImageLayout imageLayoutInitial = image->info().layout;
VkImageLayout imageLayoutTransfer = image->pickLayout(VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
if (image->isFullSubresource(subresources, imageExtent))
imageLayoutInitial = VK_IMAGE_LAYOUT_UNDEFINED;
if (imageLayoutTransfer != imageLayoutInitial) {
m_execAcquires.accessImage(
image, subresourceRange,
imageLayoutInitial,
VK_PIPELINE_STAGE_TRANSFER_BIT, 0,
imageLayoutTransfer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT);
}
m_execAcquires.recordCommands(m_cmd);
// Copy contents of the staging buffer into the image.
// Since our source data is tightly packed, we do not
// need to specify any strides.
VkBufferImageCopy region;
region.bufferOffset = stagingHandle.offset;
region.bufferRowLength = 0;
region.bufferImageHeight = 0;
region.imageSubresource = subresources;
region.imageOffset = imageOffset;
region.imageExtent = imageExtent;
m_cmd->cmdCopyBufferToImage(DxvkCmdBuffer::ExecBuffer,
stagingHandle.handle, image->handle(),
imageLayoutTransfer, 1, &region);
// Transition image back into its optimal layout
m_execBarriers.accessImage(
image, subresourceRange,
imageLayoutTransfer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
image->info().layout,
image->info().stages,
image->info().access);
m_cmd->trackResource<DxvkAccess::Write>(image);
m_cmd->trackResource<DxvkAccess::Read>(stagingSlice.buffer());
}
void DxvkContext::updateDepthStencilImage(
const Rc<DxvkImage>& image,
const VkImageSubresourceLayers& subresources,
VkOffset2D imageOffset,
VkExtent2D imageExtent,
const void* data,
VkDeviceSize pitchPerRow,
VkDeviceSize pitchPerLayer,
VkFormat format) {
auto formatInfo = imageFormatInfo(format);
VkExtent3D extent3D;
extent3D.width = imageExtent.width;
extent3D.height = imageExtent.height;
extent3D.depth = subresources.layerCount;
VkDeviceSize pixelCount = extent3D.width * extent3D.height * extent3D.depth;
DxvkBufferCreateInfo tmpBufferInfo;
tmpBufferInfo.size = pixelCount * formatInfo->elementSize;
tmpBufferInfo.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
tmpBufferInfo.stages = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
tmpBufferInfo.access = VK_ACCESS_SHADER_READ_BIT;
auto tmpBuffer = m_device->createBuffer(tmpBufferInfo,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
util::packImageData(tmpBuffer->mapPtr(0), data,
extent3D, formatInfo->elementSize,
pitchPerRow, pitchPerLayer);
copyPackedBufferToDepthStencilImage(
image, subresources, imageOffset, imageExtent,
tmpBuffer, 0, format);
}
void DxvkContext::uploadBuffer(
const Rc<DxvkBuffer>& buffer,
const void* data) {
auto bufferSlice = buffer->getSliceHandle();
auto stagingSlice = m_staging.alloc(CACHE_LINE_SIZE, bufferSlice.length);
auto stagingHandle = stagingSlice.getSliceHandle();
std::memcpy(stagingHandle.mapPtr, data, bufferSlice.length);
VkBufferCopy region;
region.srcOffset = stagingHandle.offset;
region.dstOffset = bufferSlice.offset;
region.size = bufferSlice.length;
m_cmd->cmdCopyBuffer(DxvkCmdBuffer::SdmaBuffer,
stagingHandle.handle, bufferSlice.handle, 1, &region);
m_sdmaBarriers.releaseBuffer(
m_initBarriers, bufferSlice,
m_device->queues().transfer.queueFamily,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
m_device->queues().graphics.queueFamily,
buffer->info().stages,
buffer->info().access);
m_cmd->trackResource<DxvkAccess::Read>(stagingSlice.buffer());
m_cmd->trackResource<DxvkAccess::Write>(buffer);
}
void DxvkContext::uploadImage(
const Rc<DxvkImage>& image,
const VkImageSubresourceLayers& subresources,
const void* data,
VkDeviceSize pitchPerRow,
VkDeviceSize pitchPerLayer) {
const DxvkFormatInfo* formatInfo = image->formatInfo();
VkOffset3D imageOffset = { 0, 0, 0 };
VkExtent3D imageExtent = image->mipLevelExtent(subresources.mipLevel);
// Allocate staging buffer slice and copy data to it
VkExtent3D elementCount = util::computeBlockCount(
imageExtent, formatInfo->blockSize);
elementCount.depth *= subresources.layerCount;
auto stagingSlice = m_staging.alloc(CACHE_LINE_SIZE,
formatInfo->elementSize * util::flattenImageExtent(elementCount));
auto stagingHandle = stagingSlice.getSliceHandle();
util::packImageData(stagingHandle.mapPtr, data,
elementCount, formatInfo->elementSize,
pitchPerRow, pitchPerLayer);
DxvkCmdBuffer cmdBuffer = DxvkCmdBuffer::SdmaBuffer;
DxvkBarrierSet* barriers = &m_sdmaAcquires;
if (subresources.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
cmdBuffer = DxvkCmdBuffer::InitBuffer;
barriers = &m_initBarriers;
}
// Discard previous subresource contents
barriers->accessImage(image,
vk::makeSubresourceRange(subresources),
VK_IMAGE_LAYOUT_UNDEFINED, 0, 0,
image->pickLayout(VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL),
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT);
barriers->recordCommands(m_cmd);
// Perform copy on the transfer queue
VkBufferImageCopy region;
region.bufferOffset = stagingHandle.offset;
region.bufferRowLength = 0;
region.bufferImageHeight = 0;
region.imageSubresource = subresources;
region.imageOffset = imageOffset;
region.imageExtent = imageExtent;
m_cmd->cmdCopyBufferToImage(cmdBuffer,
stagingHandle.handle, image->handle(),
image->pickLayout(VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL),
1, &region);
// Transfer ownership to graphics queue
if (cmdBuffer == DxvkCmdBuffer::SdmaBuffer) {
m_sdmaBarriers.releaseImage(m_initBarriers,
image, vk::makeSubresourceRange(subresources),
m_device->queues().transfer.queueFamily,
image->pickLayout(VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL),
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
m_device->queues().graphics.queueFamily,
image->info().layout,
image->info().stages,
image->info().access);
} else {
barriers->accessImage(image,
vk::makeSubresourceRange(subresources),
image->pickLayout(VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL),
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
image->info().layout,
image->info().stages,
image->info().access);
}
m_cmd->trackResource<DxvkAccess::Write>(image);
m_cmd->trackResource<DxvkAccess::Read>(stagingSlice.buffer());
}
void DxvkContext::setViewports(
uint32_t viewportCount,
const VkViewport* viewports,
const VkRect2D* scissorRects) {
if (m_state.gp.state.rs.viewportCount() != viewportCount) {
m_state.gp.state.rs.setViewportCount(viewportCount);
m_flags.set(DxvkContextFlag::GpDirtyPipelineState);
}
for (uint32_t i = 0; i < viewportCount; i++) {
m_state.vp.viewports[i] = viewports[i];
m_state.vp.scissorRects[i] = scissorRects[i];
// Vulkan viewports are not allowed to have a width or
// height of zero, so we fall back to a dummy viewport
// and instead set an empty scissor rect, which is legal.
if (viewports[i].width == 0.0f || viewports[i].height == 0.0f) {
m_state.vp.viewports[i] = VkViewport {
0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f };
m_state.vp.scissorRects[i] = VkRect2D {
VkOffset2D { 0, 0 },
VkExtent2D { 0, 0 } };
}
}
m_flags.set(DxvkContextFlag::GpDirtyViewport);
}
void DxvkContext::setBlendConstants(
DxvkBlendConstants blendConstants) {
if (m_state.dyn.blendConstants != blendConstants) {
m_state.dyn.blendConstants = blendConstants;
m_flags.set(DxvkContextFlag::GpDirtyBlendConstants);
}
}
void DxvkContext::setDepthBias(
DxvkDepthBias depthBias) {
if (m_state.dyn.depthBias != depthBias) {
m_state.dyn.depthBias = depthBias;
m_flags.set(DxvkContextFlag::GpDirtyDepthBias);
}
}
void DxvkContext::setDepthBounds(
DxvkDepthBounds depthBounds) {
if (m_state.dyn.depthBounds != depthBounds) {
m_state.dyn.depthBounds = depthBounds;
m_flags.set(DxvkContextFlag::GpDirtyDepthBounds);
}
if (m_state.gp.state.ds.enableDepthBoundsTest() != depthBounds.enableDepthBounds) {
m_state.gp.state.ds.setEnableDepthBoundsTest(depthBounds.enableDepthBounds);
m_flags.set(DxvkContextFlag::GpDirtyPipelineState);
}
}
void DxvkContext::setStencilReference(
uint32_t reference) {
if (m_state.dyn.stencilReference != reference) {
m_state.dyn.stencilReference = reference;
m_flags.set(DxvkContextFlag::GpDirtyStencilRef);
}
}
void DxvkContext::setInputAssemblyState(const DxvkInputAssemblyState& ia) {
m_state.gp.state.ia = DxvkIaInfo(
ia.primitiveTopology,
ia.primitiveRestart,
ia.patchVertexCount);
m_flags.set(DxvkContextFlag::GpDirtyPipelineState);
}
void DxvkContext::setInputLayout(
uint32_t attributeCount,
const DxvkVertexAttribute* attributes,
uint32_t bindingCount,
const DxvkVertexBinding* bindings) {
m_flags.set(
DxvkContextFlag::GpDirtyPipelineState,
DxvkContextFlag::GpDirtyVertexBuffers);
for (uint32_t i = 0; i < attributeCount; i++) {
m_state.gp.state.ilAttributes[i] = DxvkIlAttribute(
attributes[i].location, attributes[i].binding,
attributes[i].format, attributes[i].offset);
}
for (uint32_t i = attributeCount; i < m_state.gp.state.il.attributeCount(); i++)
m_state.gp.state.ilAttributes[i] = DxvkIlAttribute();
for (uint32_t i = 0; i < bindingCount; i++) {
m_state.gp.state.ilBindings[i] = DxvkIlBinding(
bindings[i].binding, 0, bindings[i].inputRate,
bindings[i].fetchRate);
}
for (uint32_t i = bindingCount; i < m_state.gp.state.il.bindingCount(); i++)
m_state.gp.state.ilBindings[i] = DxvkIlBinding();
m_state.gp.state.il = DxvkIlInfo(attributeCount, bindingCount);
}
void DxvkContext::setRasterizerState(const DxvkRasterizerState& rs) {
m_state.gp.state.rs = DxvkRsInfo(
rs.depthClipEnable,
rs.depthBiasEnable,
rs.polygonMode,
rs.cullMode,
rs.frontFace,
m_state.gp.state.rs.viewportCount(),
rs.sampleCount,
rs.conservativeMode);
m_flags.set(DxvkContextFlag::GpDirtyPipelineState);
}
void DxvkContext::setMultisampleState(const DxvkMultisampleState& ms) {
m_state.gp.state.ms = DxvkMsInfo(
m_state.gp.state.ms.sampleCount(),
ms.sampleMask,
ms.enableAlphaToCoverage);
m_flags.set(DxvkContextFlag::GpDirtyPipelineState);
}
void DxvkContext::setDepthStencilState(const DxvkDepthStencilState& ds) {
m_state.gp.state.ds = DxvkDsInfo(
ds.enableDepthTest,
ds.enableDepthWrite,
m_state.gp.state.ds.enableDepthBoundsTest(),
ds.enableStencilTest,
ds.depthCompareOp);
m_state.gp.state.dsFront = DxvkDsStencilOp(ds.stencilOpFront);
m_state.gp.state.dsBack = DxvkDsStencilOp(ds.stencilOpBack);
m_flags.set(DxvkContextFlag::GpDirtyPipelineState);
}
void DxvkContext::setLogicOpState(const DxvkLogicOpState& lo) {
m_state.gp.state.om = DxvkOmInfo(
lo.enableLogicOp,
lo.logicOp);
m_flags.set(DxvkContextFlag::GpDirtyPipelineState);
}
void DxvkContext::setBlendMode(
uint32_t attachment,
const DxvkBlendMode& blendMode) {
m_state.gp.state.omBlend[attachment] = DxvkOmAttachmentBlend(
blendMode.enableBlending,
blendMode.colorSrcFactor,
blendMode.colorDstFactor,
blendMode.colorBlendOp,
blendMode.alphaSrcFactor,
blendMode.alphaDstFactor,
blendMode.alphaBlendOp,
blendMode.writeMask);
m_flags.set(DxvkContextFlag::GpDirtyPipelineState);
}
void DxvkContext::setSpecConstant(
VkPipelineBindPoint pipeline,
uint32_t index,
uint32_t value) {
auto& specConst = pipeline == VK_PIPELINE_BIND_POINT_GRAPHICS
? m_state.gp.state.sc.specConstants[index]
: m_state.cp.state.sc.specConstants[index];
if (specConst != value) {
specConst = value;
m_flags.set(pipeline == VK_PIPELINE_BIND_POINT_GRAPHICS
? DxvkContextFlag::GpDirtyPipelineState
: DxvkContextFlag::CpDirtyPipelineState);
}
}
void DxvkContext::setBarrierControl(DxvkBarrierControlFlags control) {
m_barrierControl = control;
}
void DxvkContext::signalGpuEvent(const Rc<DxvkGpuEvent>& event) {
this->spillRenderPass(true);
DxvkGpuEventHandle handle = m_common->eventPool().allocEvent();
m_cmd->cmdSetEvent(handle.event,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
m_cmd->trackGpuEvent(event->reset(handle));
m_cmd->trackResource<DxvkAccess::None>(event);
}
void DxvkContext::writeTimestamp(const Rc<DxvkGpuQuery>& query) {
m_queryManager.writeTimestamp(m_cmd, query);
}
void DxvkContext::signal(const Rc<sync::Signal>& signal, uint64_t value) {
m_cmd->queueSignal(signal, value);
}
void DxvkContext::trimStagingBuffers() {
m_staging.trim();
}
void DxvkContext::beginDebugLabel(VkDebugUtilsLabelEXT *label) {
if (!m_device->instance()->extensions().extDebugUtils)
return;
m_cmd->cmdBeginDebugUtilsLabel(label);
}
void DxvkContext::endDebugLabel() {
if (!m_device->instance()->extensions().extDebugUtils)
return;
m_cmd->cmdEndDebugUtilsLabel();
}
void DxvkContext::insertDebugLabel(VkDebugUtilsLabelEXT *label) {
if (!m_device->instance()->extensions().extDebugUtils)
return;
m_cmd->cmdInsertDebugUtilsLabel(label);
}
void DxvkContext::blitImageFb(
const Rc<DxvkImage>& dstImage,
const Rc<DxvkImage>& srcImage,
const VkImageBlit& region,
const VkComponentMapping& mapping,
VkFilter filter) {
auto dstSubresourceRange = vk::makeSubresourceRange(region.dstSubresource);
auto srcSubresourceRange = vk::makeSubresourceRange(region.srcSubresource);
if (m_execBarriers.isImageDirty(dstImage, dstSubresourceRange, DxvkAccess::Write)
|| m_execBarriers.isImageDirty(srcImage, srcSubresourceRange, DxvkAccess::Write))
m_execBarriers.recordCommands(m_cmd);
bool isDepthStencil = region.srcSubresource.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
VkImageLayout srcLayout = srcImage->pickLayout(isDepthStencil
? VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL
: VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
if (srcImage->info().layout != srcLayout) {
m_execAcquires.accessImage(
srcImage, srcSubresourceRange,
srcImage->info().layout,
srcImage->info().stages, 0,
srcLayout,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_ACCESS_SHADER_READ_BIT);
m_execAcquires.recordCommands(m_cmd);
}
// Sort out image offsets so that dstOffset[0] points
// to the top-left corner of the target area
VkOffset3D srcOffsets[2] = { region.srcOffsets[0], region.srcOffsets[1] };
VkOffset3D dstOffsets[2] = { region.dstOffsets[0], region.dstOffsets[1] };
if (dstOffsets[0].x > dstOffsets[1].x) {
std::swap(dstOffsets[0].x, dstOffsets[1].x);
std::swap(srcOffsets[0].x, srcOffsets[1].x);
}
if (dstOffsets[0].y > dstOffsets[1].y) {
std::swap(dstOffsets[0].y, dstOffsets[1].y);
std::swap(srcOffsets[0].y, srcOffsets[1].y);
}
if (dstOffsets[0].z > dstOffsets[1].z) {
std::swap(dstOffsets[0].z, dstOffsets[1].z);
std::swap(srcOffsets[0].z, srcOffsets[1].z);
}
VkExtent3D dstExtent = {
uint32_t(dstOffsets[1].x - dstOffsets[0].x),
uint32_t(dstOffsets[1].y - dstOffsets[0].y),
uint32_t(dstOffsets[1].z - dstOffsets[0].z) };
// Begin render pass
Rc<DxvkMetaBlitRenderPass> pass = new DxvkMetaBlitRenderPass(
m_device, dstImage, srcImage, region, mapping);
DxvkMetaBlitPass passObjects = pass->pass();
VkExtent3D imageExtent = dstImage->mipLevelExtent(region.dstSubresource.mipLevel);
VkRect2D renderArea;
renderArea.offset = VkOffset2D { 0, 0 };
renderArea.extent = VkExtent2D { imageExtent.width, imageExtent.height };
VkRenderPassBeginInfo passInfo;
passInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
passInfo.pNext = nullptr;
passInfo.renderPass = passObjects.renderPass;
passInfo.framebuffer = passObjects.framebuffer;
passInfo.renderArea = renderArea;
passInfo.clearValueCount = 0;
passInfo.pClearValues = nullptr;
m_cmd->cmdBeginRenderPass(&passInfo, VK_SUBPASS_CONTENTS_INLINE);
// Bind pipeline
DxvkMetaBlitPipeline pipeInfo = m_common->metaBlit().getPipeline(
pass->viewType(), dstImage->info().format, dstImage->info().sampleCount);
m_cmd->cmdBindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, pipeInfo.pipeHandle);
// Set up viewport
VkViewport viewport;
viewport.x = float(dstOffsets[0].x);
viewport.y = float(dstOffsets[0].y);
viewport.width = float(dstExtent.width);
viewport.height = float(dstExtent.height);
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
VkRect2D scissor;
scissor.offset = { dstOffsets[0].x, dstOffsets[0].y };
scissor.extent = { dstExtent.width, dstExtent.height };
m_cmd->cmdSetViewport(0, 1, &viewport);
m_cmd->cmdSetScissor (0, 1, &scissor);
// Bind source image view
VkDescriptorImageInfo descriptorImage;
descriptorImage.sampler = m_common->metaBlit().getSampler(filter);
descriptorImage.imageView = passObjects.srcView;
descriptorImage.imageLayout = srcLayout;
VkWriteDescriptorSet descriptorWrite;
descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrite.pNext = nullptr;
descriptorWrite.dstSet = allocateDescriptorSet(pipeInfo.dsetLayout);
descriptorWrite.dstBinding = 0;
descriptorWrite.dstArrayElement = 0;
descriptorWrite.descriptorCount = 1;
descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptorWrite.pImageInfo = &descriptorImage;
descriptorWrite.pBufferInfo = nullptr;
descriptorWrite.pTexelBufferView = nullptr;
m_cmd->updateDescriptorSets(1, &descriptorWrite);
m_cmd->cmdBindDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS,
pipeInfo.pipeLayout, descriptorWrite.dstSet, 0, nullptr);
// Compute shader parameters for the operation
VkExtent3D srcExtent = srcImage->mipLevelExtent(region.srcSubresource.mipLevel);
DxvkMetaBlitPushConstants pushConstants = { };
pushConstants.srcCoord0 = {
float(srcOffsets[0].x) / float(srcExtent.width),
float(srcOffsets[0].y) / float(srcExtent.height),
float(srcOffsets[0].z) / float(srcExtent.depth) };
pushConstants.srcCoord1 = {
float(srcOffsets[1].x) / float(srcExtent.width),
float(srcOffsets[1].y) / float(srcExtent.height),
float(srcOffsets[1].z) / float(srcExtent.depth) };
pushConstants.layerCount = pass->framebufferLayerCount();
m_cmd->cmdPushConstants(
pipeInfo.pipeLayout,
VK_SHADER_STAGE_FRAGMENT_BIT,
0, sizeof(pushConstants),
&pushConstants);
m_cmd->cmdDraw(3, pushConstants.layerCount, 0, 0);
m_cmd->cmdEndRenderPass();
// Add barriers and track image objects
m_execBarriers.accessImage(dstImage,
vk::makeSubresourceRange(region.dstSubresource),
dstImage->info().layout,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
dstImage->info().layout,
dstImage->info().stages,
dstImage->info().access);
m_execBarriers.accessImage(srcImage,
vk::makeSubresourceRange(region.srcSubresource),
srcLayout,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_ACCESS_SHADER_READ_BIT,
srcImage->info().layout,
srcImage->info().stages,
srcImage->info().access);
m_cmd->trackResource<DxvkAccess::Write>(dstImage);
m_cmd->trackResource<DxvkAccess::Read>(srcImage);
m_cmd->trackResource<DxvkAccess::None>(pass);
}
void DxvkContext::blitImageHw(
const Rc<DxvkImage>& dstImage,
const Rc<DxvkImage>& srcImage,
const VkImageBlit& region,
VkFilter filter) {
auto dstSubresourceRange = vk::makeSubresourceRange(region.dstSubresource);
auto srcSubresourceRange = vk::makeSubresourceRange(region.srcSubresource);
if (m_execBarriers.isImageDirty(dstImage, dstSubresourceRange, DxvkAccess::Write)
|| m_execBarriers.isImageDirty(srcImage, srcSubresourceRange, DxvkAccess::Write))
m_execBarriers.recordCommands(m_cmd);
// Prepare the two images for transfer ops if necessary
auto dstLayout = dstImage->pickLayout(VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
auto srcLayout = srcImage->pickLayout(VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
if (dstImage->info().layout != dstLayout) {
m_execAcquires.accessImage(
dstImage, dstSubresourceRange,
dstImage->info().layout,
VK_PIPELINE_STAGE_TRANSFER_BIT, 0,
dstLayout,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT);
}
if (srcImage->info().layout != srcLayout) {
m_execAcquires.accessImage(
srcImage, srcSubresourceRange,
srcImage->info().layout,
VK_PIPELINE_STAGE_TRANSFER_BIT, 0,
srcLayout,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_READ_BIT);
}
m_execAcquires.recordCommands(m_cmd);
// Perform the blit operation
m_cmd->cmdBlitImage(
srcImage->handle(), srcLayout,
dstImage->handle(), dstLayout,
1, &region, filter);
m_execBarriers.accessImage(
dstImage, dstSubresourceRange, dstLayout,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
dstImage->info().layout,
dstImage->info().stages,
dstImage->info().access);
m_execBarriers.accessImage(
srcImage, srcSubresourceRange, srcLayout,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_READ_BIT,
srcImage->info().layout,
srcImage->info().stages,
srcImage->info().access);
m_cmd->trackResource<DxvkAccess::Write>(dstImage);
m_cmd->trackResource<DxvkAccess::Read>(srcImage);
}
void DxvkContext::clearImageViewFb(
const Rc<DxvkImageView>& imageView,
VkOffset3D offset,
VkExtent3D extent,
VkImageAspectFlags aspect,
VkClearValue value) {
this->updateFramebuffer();
// Find out if the render target view is currently bound,
// so that we can avoid spilling the render pass if it is.
int32_t attachmentIndex = -1;
if (m_state.om.framebuffer != nullptr
&& m_state.om.framebuffer->isFullSize(imageView))
attachmentIndex = m_state.om.framebuffer->findAttachment(imageView);
if (attachmentIndex >= 0 && !m_state.om.framebuffer->isWritable(attachmentIndex, aspect))
attachmentIndex = -1;
if (attachmentIndex < 0) {
this->spillRenderPass(false);
if (m_execBarriers.isImageDirty(
imageView->image(),
imageView->imageSubresources(),
DxvkAccess::Write))
m_execBarriers.recordCommands(m_cmd);
// Set up a temporary framebuffer
DxvkRenderTargets attachments;
DxvkRenderPassOps ops;
VkPipelineStageFlags clearStages = 0;
VkAccessFlags clearAccess = 0;
if (imageView->info().aspect & VK_IMAGE_ASPECT_COLOR_BIT) {
clearStages |= VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
clearAccess |= VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT
| VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
attachments.color[0].view = imageView;
attachments.color[0].layout = imageView->pickLayout(VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
ops.colorOps[0].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
ops.colorOps[0].loadLayout = imageView->imageInfo().layout;
ops.colorOps[0].storeLayout = imageView->imageInfo().layout;
} else {
clearStages |= VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT
| VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
clearAccess |= VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT
| VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;
attachments.depth.view = imageView;
attachments.depth.layout = imageView->pickLayout(VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
ops.depthOps.loadOpD = VK_ATTACHMENT_LOAD_OP_LOAD;
ops.depthOps.loadOpS = VK_ATTACHMENT_LOAD_OP_LOAD;
ops.depthOps.loadLayout = imageView->imageInfo().layout;
ops.depthOps.storeLayout = imageView->imageInfo().layout;
}
ops.barrier.srcStages = clearStages;
ops.barrier.srcAccess = clearAccess;
ops.barrier.dstStages = imageView->imageInfo().stages;
ops.barrier.dstAccess = imageView->imageInfo().access;
// We cannot leverage render pass clears
// because we clear only part of the view
this->renderPassBindFramebuffer(
m_device->createFramebuffer(attachments),
ops, 0, nullptr);
} else {
// Make sure the render pass is active so
// that we can actually perform the clear
this->startRenderPass();
}
// Perform the actual clear operation
VkClearAttachment clearInfo;
clearInfo.aspectMask = aspect;
clearInfo.colorAttachment = 0;
clearInfo.clearValue = value;
if ((aspect & VK_IMAGE_ASPECT_COLOR_BIT) && (attachmentIndex >= 0))
clearInfo.colorAttachment = m_state.om.framebuffer->getColorAttachmentIndex(attachmentIndex);
VkClearRect clearRect;
clearRect.rect.offset.x = offset.x;
clearRect.rect.offset.y = offset.y;
clearRect.rect.extent.width = extent.width;
clearRect.rect.extent.height = extent.height;
clearRect.baseArrayLayer = 0;
clearRect.layerCount = imageView->info().numLayers;
m_cmd->cmdClearAttachments(1, &clearInfo, 1, &clearRect);
// Unbind temporary framebuffer
if (attachmentIndex < 0)
this->renderPassUnbindFramebuffer();
}
void DxvkContext::clearImageViewCs(
const Rc<DxvkImageView>& imageView,
VkOffset3D offset,
VkExtent3D extent,
VkClearValue value) {
this->spillRenderPass(false);
this->unbindComputePipeline();
if (m_execBarriers.isImageDirty(
imageView->image(),
imageView->imageSubresources(),
DxvkAccess::Write))
m_execBarriers.recordCommands(m_cmd);
// Query pipeline objects to use for this clear operation
DxvkMetaClearPipeline pipeInfo = m_common->metaClear().getClearImagePipeline(
imageView->type(), imageFormatInfo(imageView->info().format)->flags);
// Create a descriptor set pointing to the view
VkDescriptorSet descriptorSet = allocateDescriptorSet(pipeInfo.dsetLayout);
VkDescriptorImageInfo viewInfo;
viewInfo.sampler = VK_NULL_HANDLE;
viewInfo.imageView = imageView->handle();
viewInfo.imageLayout = imageView->imageInfo().layout;
VkWriteDescriptorSet descriptorWrite;
descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrite.pNext = nullptr;
descriptorWrite.dstSet = descriptorSet;
descriptorWrite.dstBinding = 0;
descriptorWrite.dstArrayElement = 0;
descriptorWrite.descriptorCount = 1;
descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE;
descriptorWrite.pImageInfo = &viewInfo;
descriptorWrite.pBufferInfo = nullptr;
descriptorWrite.pTexelBufferView = nullptr;
m_cmd->updateDescriptorSets(1, &descriptorWrite);
// Prepare shader arguments
DxvkMetaClearArgs pushArgs = { };
pushArgs.clearValue = value.color;
pushArgs.offset = offset;
pushArgs.extent = extent;
VkExtent3D workgroups = util::computeBlockCount(
pushArgs.extent, pipeInfo.workgroupSize);
if (imageView->type() == VK_IMAGE_VIEW_TYPE_1D_ARRAY)
workgroups.height = imageView->subresources().layerCount;
else if (imageView->type() == VK_IMAGE_VIEW_TYPE_2D_ARRAY)
workgroups.depth = imageView->subresources().layerCount;
m_cmd->cmdBindPipeline(
VK_PIPELINE_BIND_POINT_COMPUTE,
pipeInfo.pipeline);
m_cmd->cmdBindDescriptorSet(
VK_PIPELINE_BIND_POINT_COMPUTE,
pipeInfo.pipeLayout, descriptorSet,
0, nullptr);
m_cmd->cmdPushConstants(
pipeInfo.pipeLayout,
VK_SHADER_STAGE_COMPUTE_BIT,
0, sizeof(pushArgs), &pushArgs);
m_cmd->cmdDispatch(
workgroups.width,
workgroups.height,
workgroups.depth);
m_execBarriers.accessImage(
imageView->image(),
imageView->imageSubresources(),
imageView->imageInfo().layout,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_ACCESS_SHADER_WRITE_BIT,
imageView->imageInfo().layout,
imageView->imageInfo().stages,
imageView->imageInfo().access);
m_cmd->trackResource<DxvkAccess::None>(imageView);
m_cmd->trackResource<DxvkAccess::Write>(imageView->image());
}
void DxvkContext::copyImageHw(
const Rc<DxvkImage>& dstImage,
VkImageSubresourceLayers dstSubresource,
VkOffset3D dstOffset,
const Rc<DxvkImage>& srcImage,
VkImageSubresourceLayers srcSubresource,
VkOffset3D srcOffset,
VkExtent3D extent) {
auto dstSubresourceRange = vk::makeSubresourceRange(dstSubresource);
auto srcSubresourceRange = vk::makeSubresourceRange(srcSubresource);
if (m_execBarriers.isImageDirty(dstImage, dstSubresourceRange, DxvkAccess::Write)
|| m_execBarriers.isImageDirty(srcImage, srcSubresourceRange, DxvkAccess::Write))
m_execBarriers.recordCommands(m_cmd);
VkImageLayout dstImageLayout = dstImage->pickLayout(VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
VkImageLayout srcImageLayout = srcImage->pickLayout(VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
VkImageLayout dstInitImageLayout = dstImage->info().layout;
if (dstImage->isFullSubresource(dstSubresource, extent))
dstInitImageLayout = VK_IMAGE_LAYOUT_UNDEFINED;
if (dstImageLayout != dstInitImageLayout) {
m_execAcquires.accessImage(
dstImage, dstSubresourceRange,
dstInitImageLayout,
VK_PIPELINE_STAGE_TRANSFER_BIT, 0,
dstImageLayout,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT);
}
if (srcImageLayout != srcImage->info().layout) {
m_execAcquires.accessImage(
srcImage, srcSubresourceRange,
srcImage->info().layout,
VK_PIPELINE_STAGE_TRANSFER_BIT, 0,
srcImageLayout,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_READ_BIT);
}
m_execAcquires.recordCommands(m_cmd);
VkImageCopy imageRegion;
imageRegion.srcSubresource = srcSubresource;
imageRegion.srcOffset = srcOffset;
imageRegion.dstSubresource = dstSubresource;
imageRegion.dstOffset = dstOffset;
imageRegion.extent = extent;
m_cmd->cmdCopyImage(DxvkCmdBuffer::ExecBuffer,
srcImage->handle(), srcImageLayout,
dstImage->handle(), dstImageLayout,
1, &imageRegion);
m_execBarriers.accessImage(
dstImage, dstSubresourceRange,
dstImageLayout,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
dstImage->info().layout,
dstImage->info().stages,
dstImage->info().access);
m_execBarriers.accessImage(
srcImage, srcSubresourceRange,
srcImageLayout,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_READ_BIT,
srcImage->info().layout,
srcImage->info().stages,
srcImage->info().access);
m_cmd->trackResource<DxvkAccess::Write>(dstImage);
m_cmd->trackResource<DxvkAccess::Read>(srcImage);
}
void DxvkContext::copyImageFb(
const Rc<DxvkImage>& dstImage,
VkImageSubresourceLayers dstSubresource,
VkOffset3D dstOffset,
const Rc<DxvkImage>& srcImage,
VkImageSubresourceLayers srcSubresource,
VkOffset3D srcOffset,
VkExtent3D extent) {
auto dstSubresourceRange = vk::makeSubresourceRange(dstSubresource);
auto srcSubresourceRange = vk::makeSubresourceRange(srcSubresource);
if (m_execBarriers.isImageDirty(dstImage, dstSubresourceRange, DxvkAccess::Write)
|| m_execBarriers.isImageDirty(srcImage, srcSubresourceRange, DxvkAccess::Write))
m_execBarriers.recordCommands(m_cmd);
// Source image needs to be readable
if (!(srcImage->info().usage & VK_IMAGE_USAGE_SAMPLED_BIT)) {
Logger::err("DxvkContext: copyImageFb: Source image not readable");
return;
}
// Render target format to use for this copy
VkFormat viewFormat = m_common->metaCopy().getCopyDestinationFormat(
dstSubresource.aspectMask,
srcSubresource.aspectMask,
srcImage->info().format);
if (viewFormat == VK_FORMAT_UNDEFINED) {
Logger::err("DxvkContext: copyImageFb: Unsupported format");
return;
}
// We might have to transition the source image layout
VkImageLayout srcLayout = (srcSubresource.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT)
? srcImage->pickLayout(VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
: srcImage->pickLayout(VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL);
if (srcImage->info().layout != srcLayout) {
m_execAcquires.accessImage(
srcImage, srcSubresourceRange,
srcImage->info().layout,
srcImage->info().stages, 0,
srcLayout,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_ACCESS_SHADER_READ_BIT);
m_execAcquires.recordCommands(m_cmd);
}
// In some cases, we may be able to render to the destination
// image directly, which is faster than using a temporary image
VkImageUsageFlagBits tgtUsage = (dstSubresource.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT)
? VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
: VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
bool useDirectRender = (dstImage->isViewCompatible(viewFormat))
&& (dstImage->info().usage & tgtUsage);
// If needed, create a temporary render target for the copy
Rc<DxvkImage> tgtImage = dstImage;
VkImageSubresourceLayers tgtSubresource = dstSubresource;
VkOffset3D tgtOffset = dstOffset;
if (!useDirectRender) {
DxvkImageCreateInfo info;
info.type = dstImage->info().type;
info.format = viewFormat;
info.flags = 0;
info.sampleCount = dstImage->info().sampleCount;
info.extent = extent;
info.numLayers = dstSubresource.layerCount;
info.mipLevels = 1;
info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | tgtUsage;
info.stages = VK_PIPELINE_STAGE_TRANSFER_BIT;
info.access = VK_ACCESS_TRANSFER_READ_BIT;
info.tiling = VK_IMAGE_TILING_OPTIMAL;
info.layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
tgtImage = m_device->createImage(info, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
tgtSubresource.mipLevel = 0;
tgtSubresource.baseArrayLayer = 0;
tgtOffset = { 0, 0, 0 };
}
// Create source and destination image views
VkImageViewType viewType = dstImage->info().type == VK_IMAGE_TYPE_1D
? VK_IMAGE_VIEW_TYPE_1D_ARRAY
: VK_IMAGE_VIEW_TYPE_2D_ARRAY;
DxvkImageViewCreateInfo tgtViewInfo;
tgtViewInfo.type = viewType;
tgtViewInfo.format = viewFormat;
tgtViewInfo.usage = tgtUsage;
tgtViewInfo.aspect = tgtSubresource.aspectMask;
tgtViewInfo.minLevel = tgtSubresource.mipLevel;
tgtViewInfo.numLevels = 1;
tgtViewInfo.minLayer = tgtSubresource.baseArrayLayer;
tgtViewInfo.numLayers = tgtSubresource.layerCount;
DxvkImageViewCreateInfo srcViewInfo;
srcViewInfo.type = viewType;
srcViewInfo.format = srcImage->info().format;
srcViewInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
srcViewInfo.aspect = srcSubresource.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_COLOR_BIT);
srcViewInfo.minLevel = srcSubresource.mipLevel;
srcViewInfo.numLevels = 1;
srcViewInfo.minLayer = srcSubresource.baseArrayLayer;
srcViewInfo.numLayers = srcSubresource.layerCount;
Rc<DxvkImageView> tgtImageView = m_device->createImageView(tgtImage, tgtViewInfo);
Rc<DxvkImageView> srcImageView = m_device->createImageView(srcImage, srcViewInfo);
Rc<DxvkImageView> srcStencilView;
if (srcSubresource.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
srcViewInfo.aspect = VK_IMAGE_ASPECT_STENCIL_BIT;
srcStencilView = m_device->createImageView(srcImage, srcViewInfo);
}
// Create framebuffer and pipeline for the copy
Rc<DxvkMetaCopyRenderPass> fb = new DxvkMetaCopyRenderPass(
m_device->vkd(), tgtImageView, srcImageView, srcStencilView,
tgtImage->isFullSubresource(tgtSubresource, extent));
auto pipeInfo = m_common->metaCopy().getPipeline(
viewType, viewFormat, tgtImage->info().sampleCount);
VkDescriptorImageInfo descriptorImage;
descriptorImage.sampler = VK_NULL_HANDLE;
descriptorImage.imageView = srcImageView->handle();
descriptorImage.imageLayout = srcLayout;
VkWriteDescriptorSet descriptorWrite;
descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrite.pNext = nullptr;
descriptorWrite.dstBinding = 0;
descriptorWrite.dstArrayElement = 0;
descriptorWrite.descriptorCount = 1;
descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptorWrite.pImageInfo = &descriptorImage;
descriptorWrite.pBufferInfo = nullptr;
descriptorWrite.pTexelBufferView = nullptr;
descriptorWrite.dstSet = allocateDescriptorSet(pipeInfo.dsetLayout);
m_cmd->updateDescriptorSets(1, &descriptorWrite);
if (srcSubresource.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
descriptorImage.imageView = srcStencilView->handle();
descriptorWrite.dstBinding = 1;
m_cmd->updateDescriptorSets(1, &descriptorWrite);
}
VkViewport viewport;
viewport.x = float(tgtOffset.x);
viewport.y = float(tgtOffset.y);
viewport.width = float(extent.width);
viewport.height = float(extent.height);
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
VkRect2D scissor;
scissor.offset = { tgtOffset.x, tgtOffset.y };
scissor.extent = { extent.width, extent.height };
VkRenderPassBeginInfo info;
info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
info.pNext = nullptr;
info.renderPass = fb->renderPass();
info.framebuffer = fb->framebuffer();
info.renderArea.offset = { 0, 0 };
info.renderArea.extent = {
tgtImage->mipLevelExtent(tgtSubresource.mipLevel).width,
tgtImage->mipLevelExtent(tgtSubresource.mipLevel).height };
info.clearValueCount = 0;
info.pClearValues = nullptr;
// Perform the actual copy operation
m_cmd->cmdBeginRenderPass(&info, VK_SUBPASS_CONTENTS_INLINE);
m_cmd->cmdBindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, pipeInfo.pipeHandle);
m_cmd->cmdBindDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS,
pipeInfo.pipeLayout, descriptorWrite.dstSet, 0, nullptr);
m_cmd->cmdSetViewport(0, 1, &viewport);
m_cmd->cmdSetScissor (0, 1, &scissor);
VkOffset2D srcCoordOffset = {
srcOffset.x - tgtOffset.x,
srcOffset.y - tgtOffset.y };
m_cmd->cmdPushConstants(pipeInfo.pipeLayout,
VK_SHADER_STAGE_FRAGMENT_BIT,
0, sizeof(srcCoordOffset),
&srcCoordOffset);
m_cmd->cmdDraw(3, tgtSubresource.layerCount, 0, 0);
m_cmd->cmdEndRenderPass();
if (srcLayout != srcImage->info().layout) {
m_execBarriers.accessImage(
srcImage, srcSubresourceRange, srcLayout,
srcImage->info().stages,
srcImage->info().access,
srcImage->info().layout,
srcImage->info().stages,
srcImage->info().access);
}
m_cmd->trackResource<DxvkAccess::Write>(tgtImage);
m_cmd->trackResource<DxvkAccess::Read>(srcImage);
m_cmd->trackResource<DxvkAccess::None>(fb);
// If necessary, copy the temporary image
// to the original destination image
if (!useDirectRender) {
this->copyImageHw(
dstImage, dstSubresource, dstOffset,
tgtImage, tgtSubresource, tgtOffset,
extent);
}
}
bool DxvkContext::copyImageClear(
const Rc<DxvkImage>& dstImage,
VkImageSubresourceLayers dstSubresource,
VkOffset3D dstOffset,
VkExtent3D dstExtent,
const Rc<DxvkImage>& srcImage,
VkImageSubresourceLayers srcSubresource) {
// If the source image has a pending deferred clear, we can
// implement the copy by clearing the destination image to
// the same clear value.
const VkImageUsageFlags attachmentUsage
= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
| VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
if (!(dstImage->info().usage & attachmentUsage)
|| !(srcImage->info().usage & attachmentUsage))
return false;
// Ignore 3D images since those are complicated to handle
if (dstImage->info().type == VK_IMAGE_TYPE_3D
|| srcImage->info().type == VK_IMAGE_TYPE_3D)
return false;
// Find a pending clear that overlaps with the source image
const DxvkDeferredClear* clear = nullptr;
for (const auto& entry : m_deferredClears) {
// Entries in the deferred clear array cannot overlap, so
// if we find an entry covering all source subresources,
// it's the only one in the list that does.
if ((entry.imageView->image() == srcImage) && ((srcSubresource.aspectMask & entry.clearAspects) == srcSubresource.aspectMask)
&& (vk::checkSubresourceRangeSuperset(entry.imageView->subresources(), vk::makeSubresourceRange(srcSubresource)))) {
clear = &entry;
break;
}
}
if (!clear)
return false;
// Create a view for the destination image with the general
// properties ofthe source image view used for the clear
DxvkImageViewCreateInfo viewInfo = clear->imageView->info();
viewInfo.type = dstImage->info().type == VK_IMAGE_TYPE_1D
? VK_IMAGE_VIEW_TYPE_1D_ARRAY
: VK_IMAGE_VIEW_TYPE_2D_ARRAY;
viewInfo.minLevel = dstSubresource.mipLevel;
viewInfo.numLevels = 1;
viewInfo.minLayer = dstSubresource.baseArrayLayer;
viewInfo.numLayers = dstSubresource.layerCount;
// That is, if the formats are actually compatible
// so that we can safely use the same clear value
if (!dstImage->isViewCompatible(viewInfo.format))
return false;
// Ignore mismatched size for now, needs more testing since we'd
// need to prepare the image first and then call clearImageViewFb
if (dstImage->mipLevelExtent(dstSubresource.mipLevel) != dstExtent)
return false;
auto view = m_device->createImageView(dstImage, viewInfo);
this->deferClear(view, srcSubresource.aspectMask, clear->clearValue);
return true;
}
void DxvkContext::resolveImageHw(
const Rc<DxvkImage>& dstImage,
const Rc<DxvkImage>& srcImage,
const VkImageResolve& region) {
auto dstSubresourceRange = vk::makeSubresourceRange(region.dstSubresource);
auto srcSubresourceRange = vk::makeSubresourceRange(region.srcSubresource);
if (m_execBarriers.isImageDirty(dstImage, dstSubresourceRange, DxvkAccess::Write)
|| m_execBarriers.isImageDirty(srcImage, srcSubresourceRange, DxvkAccess::Write))
m_execBarriers.recordCommands(m_cmd);
// We only support resolving to the entire image
// area, so we might as well discard its contents
VkImageLayout dstLayout = dstImage->pickLayout(VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
VkImageLayout srcLayout = srcImage->pickLayout(VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
VkImageLayout initialLayout = dstImage->info().layout;
if (dstImage->isFullSubresource(region.dstSubresource, region.extent))
initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
if (dstLayout != initialLayout) {
m_execAcquires.accessImage(
dstImage, dstSubresourceRange, initialLayout,
VK_PIPELINE_STAGE_TRANSFER_BIT, 0,
dstLayout,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT);
}
if (srcLayout != srcImage->info().layout) {
m_execAcquires.accessImage(
srcImage, srcSubresourceRange,
srcImage->info().layout,
VK_PIPELINE_STAGE_TRANSFER_BIT, 0,
srcLayout,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_READ_BIT);
}
m_execAcquires.recordCommands(m_cmd);
m_cmd->cmdResolveImage(
srcImage->handle(), srcLayout,
dstImage->handle(), dstLayout,
1, &region);
m_execBarriers.accessImage(
dstImage, dstSubresourceRange, dstLayout,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
dstImage->info().layout,
dstImage->info().stages,
dstImage->info().access);
m_execBarriers.accessImage(
srcImage, srcSubresourceRange, srcLayout,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_READ_BIT,
srcImage->info().layout,
srcImage->info().stages,
srcImage->info().access);
m_cmd->trackResource<DxvkAccess::Write>(dstImage);
m_cmd->trackResource<DxvkAccess::Read>(srcImage);
}
void DxvkContext::resolveImageDs(
const Rc<DxvkImage>& dstImage,
const Rc<DxvkImage>& srcImage,
const VkImageResolve& region,
VkResolveModeFlagBitsKHR depthMode,
VkResolveModeFlagBitsKHR stencilMode) {
auto dstSubresourceRange = vk::makeSubresourceRange(region.dstSubresource);
auto srcSubresourceRange = vk::makeSubresourceRange(region.srcSubresource);
if (m_execBarriers.isImageDirty(dstImage, dstSubresourceRange, DxvkAccess::Write)
|| m_execBarriers.isImageDirty(srcImage, srcSubresourceRange, DxvkAccess::Write))
m_execBarriers.recordCommands(m_cmd);
// Create image views covering the requested subresourcs
DxvkImageViewCreateInfo dstViewInfo;
dstViewInfo.type = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
dstViewInfo.format = dstImage->info().format;
dstViewInfo.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
dstViewInfo.aspect = region.dstSubresource.aspectMask;
dstViewInfo.minLevel = region.dstSubresource.mipLevel;
dstViewInfo.numLevels = 1;
dstViewInfo.minLayer = region.dstSubresource.baseArrayLayer;
dstViewInfo.numLayers = region.dstSubresource.layerCount;
DxvkImageViewCreateInfo srcViewInfo;
srcViewInfo.type = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
srcViewInfo.format = srcImage->info().format;
srcViewInfo.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
srcViewInfo.aspect = region.srcSubresource.aspectMask;
srcViewInfo.minLevel = region.srcSubresource.mipLevel;
srcViewInfo.numLevels = 1;
srcViewInfo.minLayer = region.srcSubresource.baseArrayLayer;
srcViewInfo.numLayers = region.srcSubresource.layerCount;
Rc<DxvkImageView> dstImageView = m_device->createImageView(dstImage, dstViewInfo);
Rc<DxvkImageView> srcImageView = m_device->createImageView(srcImage, srcViewInfo);
// Create a framebuffer for the resolve op
VkExtent3D passExtent = dstImageView->mipLevelExtent(0);
Rc<DxvkMetaResolveRenderPass> fb = new DxvkMetaResolveRenderPass(
m_device->vkd(), dstImageView, srcImageView, depthMode, stencilMode);
VkRenderPassBeginInfo info;
info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
info.pNext = nullptr;
info.renderPass = fb->renderPass();
info.framebuffer = fb->framebuffer();
info.renderArea.offset = { 0, 0 };
info.renderArea.extent = { passExtent.width, passExtent.height };
info.clearValueCount = 0;
info.pClearValues = nullptr;
m_cmd->cmdBeginRenderPass(&info, VK_SUBPASS_CONTENTS_INLINE);
m_cmd->cmdEndRenderPass();
m_cmd->trackResource<DxvkAccess::Write>(dstImage);
m_cmd->trackResource<DxvkAccess::Read>(srcImage);
m_cmd->trackResource<DxvkAccess::None>(fb);
}
void DxvkContext::resolveImageFb(
const Rc<DxvkImage>& dstImage,
const Rc<DxvkImage>& srcImage,
const VkImageResolve& region,
VkFormat format,
VkResolveModeFlagBitsKHR depthMode,
VkResolveModeFlagBitsKHR stencilMode) {
auto dstSubresourceRange = vk::makeSubresourceRange(region.dstSubresource);
auto srcSubresourceRange = vk::makeSubresourceRange(region.srcSubresource);
if (m_execBarriers.isImageDirty(dstImage, dstSubresourceRange, DxvkAccess::Write)
|| m_execBarriers.isImageDirty(srcImage, srcSubresourceRange, DxvkAccess::Write))
m_execBarriers.recordCommands(m_cmd);
// We might have to transition the source image layout
VkImageLayout srcLayout = srcImage->pickLayout(VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
if (srcImage->info().layout != srcLayout) {
m_execAcquires.accessImage(
srcImage, srcSubresourceRange,
srcImage->info().layout,
srcImage->info().stages, 0,
srcLayout,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_ACCESS_SHADER_READ_BIT);
m_execAcquires.recordCommands(m_cmd);
}
// Create image views covering the requested subresourcs
DxvkImageViewCreateInfo dstViewInfo;
dstViewInfo.type = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
dstViewInfo.format = format ? format : dstImage->info().format;
dstViewInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
dstViewInfo.aspect = region.dstSubresource.aspectMask;
dstViewInfo.minLevel = region.dstSubresource.mipLevel;
dstViewInfo.numLevels = 1;
dstViewInfo.minLayer = region.dstSubresource.baseArrayLayer;
dstViewInfo.numLayers = region.dstSubresource.layerCount;
if (region.dstSubresource.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT)
dstViewInfo.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
DxvkImageViewCreateInfo srcViewInfo;
srcViewInfo.type = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
srcViewInfo.format = format ? format : srcImage->info().format;
srcViewInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
srcViewInfo.aspect = region.srcSubresource.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_COLOR_BIT);
srcViewInfo.minLevel = region.srcSubresource.mipLevel;
srcViewInfo.numLevels = 1;
srcViewInfo.minLayer = region.srcSubresource.baseArrayLayer;
srcViewInfo.numLayers = region.srcSubresource.layerCount;
Rc<DxvkImageView> dstImageView = m_device->createImageView(dstImage, dstViewInfo);
Rc<DxvkImageView> srcImageView = m_device->createImageView(srcImage, srcViewInfo);
Rc<DxvkImageView> srcStencilView = nullptr;
if ((region.dstSubresource.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) && stencilMode != VK_RESOLVE_MODE_NONE_KHR) {
srcViewInfo.aspect = VK_IMAGE_ASPECT_STENCIL_BIT;
srcStencilView = m_device->createImageView(srcImage, srcViewInfo);
}
// Create a framebuffer and pipeline for the resolve op
VkExtent3D passExtent = dstImageView->mipLevelExtent(0);
Rc<DxvkMetaResolveRenderPass> fb = new DxvkMetaResolveRenderPass(
m_device->vkd(), dstImageView, srcImageView, srcStencilView,
dstImage->isFullSubresource(region.dstSubresource, region.extent));
auto pipeInfo = m_common->metaResolve().getPipeline(
dstViewInfo.format, srcImage->info().sampleCount, depthMode, stencilMode);
VkDescriptorImageInfo descriptorImage;
descriptorImage.sampler = VK_NULL_HANDLE;
descriptorImage.imageView = srcImageView->handle();
descriptorImage.imageLayout = srcLayout;
VkWriteDescriptorSet descriptorWrite;
descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrite.pNext = nullptr;
descriptorWrite.dstBinding = 0;
descriptorWrite.dstArrayElement = 0;
descriptorWrite.descriptorCount = 1;
descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptorWrite.pImageInfo = &descriptorImage;
descriptorWrite.pBufferInfo = nullptr;
descriptorWrite.pTexelBufferView = nullptr;
descriptorWrite.dstSet = allocateDescriptorSet(pipeInfo.dsetLayout);
m_cmd->updateDescriptorSets(1, &descriptorWrite);
if (srcStencilView != nullptr) {
descriptorWrite.dstBinding = 1;
descriptorImage.imageView = srcStencilView->handle();
m_cmd->updateDescriptorSets(1, &descriptorWrite);
}
VkViewport viewport;
viewport.x = float(region.dstOffset.x);
viewport.y = float(region.dstOffset.y);
viewport.width = float(region.extent.width);
viewport.height = float(region.extent.height);
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
VkRect2D scissor;
scissor.offset = { region.dstOffset.x, region.dstOffset.y };
scissor.extent = { region.extent.width, region.extent.height };
VkRenderPassBeginInfo info;
info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
info.pNext = nullptr;
info.renderPass = fb->renderPass();
info.framebuffer = fb->framebuffer();
info.renderArea.offset = { 0, 0 };
info.renderArea.extent = { passExtent.width, passExtent.height };
info.clearValueCount = 0;
info.pClearValues = nullptr;
// Perform the actual resolve operation
VkOffset2D srcOffset = {
region.srcOffset.x - region.dstOffset.x,
region.srcOffset.y - region.dstOffset.y };
m_cmd->cmdBeginRenderPass(&info, VK_SUBPASS_CONTENTS_INLINE);
m_cmd->cmdBindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, pipeInfo.pipeHandle);
m_cmd->cmdBindDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS,
pipeInfo.pipeLayout, descriptorWrite.dstSet, 0, nullptr);
m_cmd->cmdSetViewport(0, 1, &viewport);
m_cmd->cmdSetScissor (0, 1, &scissor);
m_cmd->cmdPushConstants(pipeInfo.pipeLayout,
VK_SHADER_STAGE_FRAGMENT_BIT,
0, sizeof(srcOffset), &srcOffset);
m_cmd->cmdDraw(3, region.dstSubresource.layerCount, 0, 0);
m_cmd->cmdEndRenderPass();
if (srcImage->info().layout != srcLayout) {
m_execBarriers.accessImage(
srcImage, srcSubresourceRange, srcLayout,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0,
srcImage->info().layout,
srcImage->info().stages,
srcImage->info().access);
}
m_cmd->trackResource<DxvkAccess::Write>(dstImage);
m_cmd->trackResource<DxvkAccess::Read>(srcImage);
m_cmd->trackResource<DxvkAccess::None>(fb);
}
void DxvkContext::startRenderPass() {
if (!m_flags.test(DxvkContextFlag::GpRenderPassBound)) {
this->applyRenderTargetLoadLayouts();
this->flushClears(true);
m_flags.set(DxvkContextFlag::GpRenderPassBound);
m_flags.clr(DxvkContextFlag::GpRenderPassSuspended);
m_execBarriers.recordCommands(m_cmd);
this->renderPassBindFramebuffer(
m_state.om.framebuffer,
m_state.om.renderPassOps,
m_state.om.framebuffer->numAttachments(),
m_state.om.clearValues.data());
// Track the final layout of each render target
this->applyRenderTargetStoreLayouts();
// Don't discard image contents if we have
// to spill the current render pass
this->resetRenderPassOps(
m_state.om.renderTargets,
m_state.om.renderPassOps);
// Begin occlusion queries
m_queryManager.beginQueries(m_cmd, VK_QUERY_TYPE_OCCLUSION);
m_queryManager.beginQueries(m_cmd, VK_QUERY_TYPE_PIPELINE_STATISTICS);
}
}
void DxvkContext::spillRenderPass(bool suspend) {
if (m_flags.test(DxvkContextFlag::GpRenderPassBound)) {
m_flags.clr(DxvkContextFlag::GpRenderPassBound);
this->pauseTransformFeedback();
m_queryManager.endQueries(m_cmd, VK_QUERY_TYPE_OCCLUSION);
m_queryManager.endQueries(m_cmd, VK_QUERY_TYPE_PIPELINE_STATISTICS);
this->renderPassUnbindFramebuffer();
if (suspend)
m_flags.set(DxvkContextFlag::GpRenderPassSuspended);
else
this->transitionRenderTargetLayouts(m_gfxBarriers, false);
m_gfxBarriers.recordCommands(m_cmd);
this->unbindGraphicsPipeline();
m_flags.clr(DxvkContextFlag::GpDirtyXfbCounters);
} else if (!suspend) {
// We may end a previously suspended render pass
if (m_flags.test(DxvkContextFlag::GpRenderPassSuspended)) {
m_flags.clr(DxvkContextFlag::GpRenderPassSuspended);
this->transitionRenderTargetLayouts(m_gfxBarriers, false);
m_gfxBarriers.recordCommands(m_cmd);
}
// Execute deferred clears if necessary
this->flushClears(false);
}
}
void DxvkContext::renderPassBindFramebuffer(
const Rc<DxvkFramebuffer>& framebuffer,
const DxvkRenderPassOps& ops,
uint32_t clearValueCount,
const VkClearValue* clearValues) {
const DxvkFramebufferSize fbSize = framebuffer->size();
VkRect2D renderArea;
renderArea.offset = VkOffset2D { 0, 0 };
renderArea.extent = VkExtent2D { fbSize.width, fbSize.height };
VkRenderPassBeginInfo info;
info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
info.pNext = nullptr;
info.renderPass = framebuffer->getRenderPassHandle(ops);
info.framebuffer = framebuffer->handle();
info.renderArea = renderArea;
info.clearValueCount = clearValueCount;
info.pClearValues = clearValues;
m_cmd->cmdBeginRenderPass(&info,
VK_SUBPASS_CONTENTS_INLINE);
m_cmd->trackResource<DxvkAccess::None>(framebuffer);
for (uint32_t i = 0; i < framebuffer->numAttachments(); i++) {
m_cmd->trackResource<DxvkAccess::None> (framebuffer->getAttachment(i).view);
m_cmd->trackResource<DxvkAccess::Write>(framebuffer->getAttachment(i).view->image());
}
m_cmd->addStatCtr(DxvkStatCounter::CmdRenderPassCount, 1);
}
void DxvkContext::renderPassUnbindFramebuffer() {
m_cmd->cmdEndRenderPass();
}
void DxvkContext::resetRenderPassOps(
const DxvkRenderTargets& renderTargets,
DxvkRenderPassOps& renderPassOps) {
VkAccessFlags access = 0;
if (renderTargets.depth.view != nullptr) {
renderPassOps.depthOps = DxvkDepthAttachmentOps {
VK_ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_LOAD_OP_LOAD,
renderTargets.depth.layout, renderTargets.depth.layout };
access |= VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;
if (renderTargets.depth.layout != VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL)
access |= VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
} else {
renderPassOps.depthOps = DxvkDepthAttachmentOps { };
}
for (uint32_t i = 0; i < MaxNumRenderTargets; i++) {
if (renderTargets.color[i].view != nullptr) {
renderPassOps.colorOps[i] = DxvkColorAttachmentOps {
VK_ATTACHMENT_LOAD_OP_LOAD,
renderTargets.color[i].layout,
renderTargets.color[i].layout };
access |= VK_ACCESS_COLOR_ATTACHMENT_READ_BIT
| VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
} else {
renderPassOps.colorOps[i] = DxvkColorAttachmentOps { };
}
}
renderPassOps.barrier.srcStages = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT;
renderPassOps.barrier.srcAccess = access;
renderPassOps.barrier.dstStages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
renderPassOps.barrier.dstAccess = access;
}
void DxvkContext::startTransformFeedback() {
if (!m_flags.test(DxvkContextFlag::GpXfbActive)) {
m_flags.set(DxvkContextFlag::GpXfbActive);
if (m_flags.test(DxvkContextFlag::GpDirtyXfbCounters)) {
m_flags.clr(DxvkContextFlag::GpDirtyXfbCounters);
this->emitMemoryBarrier(0,
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT,
VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT,
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT, /* XXX */
VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT);
}
VkBuffer ctrBuffers[MaxNumXfbBuffers];
VkDeviceSize ctrOffsets[MaxNumXfbBuffers];
for (uint32_t i = 0; i < MaxNumXfbBuffers; i++) {
auto physSlice = m_state.xfb.counters[i].getSliceHandle();
ctrBuffers[i] = physSlice.handle;
ctrOffsets[i] = physSlice.offset;
if (physSlice.handle != VK_NULL_HANDLE)
m_cmd->trackResource<DxvkAccess::Read>(m_state.xfb.counters[i].buffer());
}
m_cmd->cmdBeginTransformFeedback(
0, MaxNumXfbBuffers, ctrBuffers, ctrOffsets);
m_queryManager.beginQueries(m_cmd,
VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT);
}
}
void DxvkContext::pauseTransformFeedback() {
if (m_flags.test(DxvkContextFlag::GpXfbActive)) {
m_flags.clr(DxvkContextFlag::GpXfbActive);
VkBuffer ctrBuffers[MaxNumXfbBuffers];
VkDeviceSize ctrOffsets[MaxNumXfbBuffers];
for (uint32_t i = 0; i < MaxNumXfbBuffers; i++) {
auto physSlice = m_state.xfb.counters[i].getSliceHandle();
ctrBuffers[i] = physSlice.handle;
ctrOffsets[i] = physSlice.offset;
if (physSlice.handle != VK_NULL_HANDLE)
m_cmd->trackResource<DxvkAccess::Write>(m_state.xfb.counters[i].buffer());
}
m_queryManager.endQueries(m_cmd,
VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT);
m_cmd->cmdEndTransformFeedback(
0, MaxNumXfbBuffers, ctrBuffers, ctrOffsets);
m_flags.set(DxvkContextFlag::GpDirtyXfbCounters);
}
}
void DxvkContext::unbindComputePipeline() {
m_flags.set(
DxvkContextFlag::CpDirtyPipeline,
DxvkContextFlag::CpDirtyPipelineState,
DxvkContextFlag::CpDirtyResources);
m_cpActivePipeline = VK_NULL_HANDLE;
}
bool DxvkContext::updateComputePipeline() {
m_state.cp.pipeline = lookupComputePipeline(m_state.cp.shaders);
if (unlikely(m_state.cp.pipeline == nullptr))
return false;
if (m_state.cp.pipeline->layout()->pushConstRange().size)
m_flags.set(DxvkContextFlag::DirtyPushConstants);
m_flags.clr(DxvkContextFlag::CpDirtyPipeline);
return true;
}
bool DxvkContext::updateComputePipelineState() {
m_cpActivePipeline = m_state.cp.pipeline->getPipelineHandle(m_state.cp.state);
if (unlikely(!m_cpActivePipeline))
return false;
m_cmd->cmdBindPipeline(
VK_PIPELINE_BIND_POINT_COMPUTE,
m_cpActivePipeline);
m_flags.clr(DxvkContextFlag::CpDirtyPipelineState);
return true;
}
void DxvkContext::unbindGraphicsPipeline() {
m_flags.set(
DxvkContextFlag::GpDirtyPipeline,
DxvkContextFlag::GpDirtyPipelineState,
DxvkContextFlag::GpDirtyResources,
DxvkContextFlag::GpDirtyVertexBuffers,
DxvkContextFlag::GpDirtyIndexBuffer,
DxvkContextFlag::GpDirtyXfbBuffers,
DxvkContextFlag::GpDirtyBlendConstants,
DxvkContextFlag::GpDirtyStencilRef,
DxvkContextFlag::GpDirtyViewport,
DxvkContextFlag::GpDirtyDepthBias,
DxvkContextFlag::GpDirtyDepthBounds);
m_gpActivePipeline = VK_NULL_HANDLE;
}
bool DxvkContext::updateGraphicsPipeline() {
m_state.gp.pipeline = lookupGraphicsPipeline(m_state.gp.shaders);
if (unlikely(m_state.gp.pipeline == nullptr)) {
m_state.gp.flags = DxvkGraphicsPipelineFlags();
return false;
}
if (m_state.gp.flags != m_state.gp.pipeline->flags()) {
m_state.gp.flags = m_state.gp.pipeline->flags();
// Force-update vertex/index buffers for hazard checks
m_flags.set(DxvkContextFlag::GpDirtyIndexBuffer,
DxvkContextFlag::GpDirtyVertexBuffers,
DxvkContextFlag::GpDirtyXfbBuffers,
DxvkContextFlag::DirtyDrawBuffer);
// This is necessary because we'll only do hazard
// tracking if the active pipeline has side effects
this->spillRenderPass(true);
}
if (m_state.gp.pipeline->layout()->pushConstRange().size)
m_flags.set(DxvkContextFlag::DirtyPushConstants);
m_flags.clr(DxvkContextFlag::GpDirtyPipeline);
return true;
}
bool DxvkContext::updateGraphicsPipelineState() {
this->pauseTransformFeedback();
// Set up vertex buffer strides for active bindings
for (uint32_t i = 0; i < m_state.gp.state.il.bindingCount(); i++) {
const uint32_t binding = m_state.gp.state.ilBindings[i].binding();
m_state.gp.state.ilBindings[i].setStride(m_state.vi.vertexStrides[binding]);
}
// Check which dynamic states need to be active. States that
// are not dynamic will be invalidated in the command buffer.
m_flags.clr(DxvkContextFlag::GpDynamicBlendConstants,
DxvkContextFlag::GpDynamicDepthBias,
DxvkContextFlag::GpDynamicDepthBounds,
DxvkContextFlag::GpDynamicStencilRef);
m_flags.set(m_state.gp.state.useDynamicBlendConstants()
? DxvkContextFlag::GpDynamicBlendConstants
: DxvkContextFlag::GpDirtyBlendConstants);
m_flags.set(m_state.gp.state.useDynamicDepthBias()
? DxvkContextFlag::GpDynamicDepthBias
: DxvkContextFlag::GpDirtyDepthBias);
m_flags.set(m_state.gp.state.useDynamicDepthBounds()
? DxvkContextFlag::GpDynamicDepthBounds
: DxvkContextFlag::GpDirtyDepthBounds);
m_flags.set(m_state.gp.state.useDynamicStencilRef()
? DxvkContextFlag::GpDynamicStencilRef
: DxvkContextFlag::GpDirtyStencilRef);
// Retrieve and bind actual Vulkan pipeline handle
m_gpActivePipeline = m_state.gp.pipeline->getPipelineHandle(m_state.gp.state, m_state.om.framebuffer->getRenderPass());
if (unlikely(!m_gpActivePipeline))
return false;
m_cmd->cmdBindPipeline(
VK_PIPELINE_BIND_POINT_GRAPHICS,
m_gpActivePipeline);
m_flags.clr(DxvkContextFlag::GpDirtyPipelineState);
return true;
}
void DxvkContext::updateComputeShaderResources() {
if ((m_flags.test(DxvkContextFlag::CpDirtyResources))
|| (m_state.cp.pipeline->layout()->hasStaticBufferBindings()))
this->updateShaderResources<VK_PIPELINE_BIND_POINT_COMPUTE>(m_state.cp.pipeline->layout());
this->updateShaderDescriptorSetBinding<VK_PIPELINE_BIND_POINT_COMPUTE>(
m_cpSet, m_state.cp.pipeline->layout());
m_flags.clr(DxvkContextFlag::CpDirtyResources,
DxvkContextFlag::CpDirtyDescriptorBinding);
}
void DxvkContext::updateGraphicsShaderResources() {
if ((m_flags.test(DxvkContextFlag::GpDirtyResources))
|| (m_state.gp.pipeline->layout()->hasStaticBufferBindings()))
this->updateShaderResources<VK_PIPELINE_BIND_POINT_GRAPHICS>(m_state.gp.pipeline->layout());
this->updateShaderDescriptorSetBinding<VK_PIPELINE_BIND_POINT_GRAPHICS>(
m_gpSet, m_state.gp.pipeline->layout());
m_flags.clr(DxvkContextFlag::GpDirtyResources,
DxvkContextFlag::GpDirtyDescriptorBinding);
}
template<VkPipelineBindPoint BindPoint>
void DxvkContext::updateShaderResources(const DxvkPipelineLayout* layout) {
std::array<DxvkDescriptorInfo, MaxNumActiveBindings> descriptors;
// Assume that all bindings are active as a fast path
DxvkBindingMask bindMask;
bindMask.setFirst(layout->bindingCount());
for (uint32_t i = 0; i < layout->bindingCount(); i++) {
const auto& binding = layout->binding(i);
const auto& res = m_rc[binding.slot];
switch (binding.type) {
case VK_DESCRIPTOR_TYPE_SAMPLER:
if (res.sampler != nullptr) {
descriptors[i].image.sampler = res.sampler->handle();
descriptors[i].image.imageView = VK_NULL_HANDLE;
descriptors[i].image.imageLayout = VK_IMAGE_LAYOUT_UNDEFINED;
if (m_rcTracked.set(binding.slot))
m_cmd->trackResource<DxvkAccess::None>(res.sampler);
} else {
descriptors[i].image = m_common->dummyResources().samplerDescriptor();
} break;
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
if (res.imageView != nullptr && res.imageView->handle(binding.view) != VK_NULL_HANDLE) {
descriptors[i].image.sampler = VK_NULL_HANDLE;
descriptors[i].image.imageView = res.imageView->handle(binding.view);
descriptors[i].image.imageLayout = res.imageView->imageInfo().layout;
if (m_rcTracked.set(binding.slot)) {
m_cmd->trackResource<DxvkAccess::None>(res.imageView);
m_cmd->trackResource<DxvkAccess::Read>(res.imageView->image());
}
} else {
bindMask.clr(i);
descriptors[i].image = m_common->dummyResources().imageViewDescriptor(binding.view, true);
} break;
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
if (res.imageView != nullptr && res.imageView->handle(binding.view) != VK_NULL_HANDLE) {
descriptors[i].image.sampler = VK_NULL_HANDLE;
descriptors[i].image.imageView = res.imageView->handle(binding.view);
descriptors[i].image.imageLayout = res.imageView->imageInfo().layout;
if (m_rcTracked.set(binding.slot)) {
m_cmd->trackResource<DxvkAccess::None>(res.imageView);
m_cmd->trackResource<DxvkAccess::Write>(res.imageView->image());
}
} else {
bindMask.clr(i);
descriptors[i].image = m_common->dummyResources().imageViewDescriptor(binding.view, false);
} break;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
if (res.sampler != nullptr && res.imageView != nullptr
&& res.imageView->handle(binding.view) != VK_NULL_HANDLE) {
descriptors[i].image.sampler = res.sampler->handle();
descriptors[i].image.imageView = res.imageView->handle(binding.view);
descriptors[i].image.imageLayout = res.imageView->imageInfo().layout;
if (m_rcTracked.set(binding.slot)) {
m_cmd->trackResource<DxvkAccess::None>(res.sampler);
m_cmd->trackResource<DxvkAccess::None>(res.imageView);
m_cmd->trackResource<DxvkAccess::Read>(res.imageView->image());
}
} else {
bindMask.clr(i);
descriptors[i].image = m_common->dummyResources().imageSamplerDescriptor(binding.view);
} break;
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
if (res.bufferView != nullptr) {
res.bufferView->updateView();
descriptors[i].texelBuffer = res.bufferView->handle();
if (m_rcTracked.set(binding.slot)) {
m_cmd->trackResource<DxvkAccess::None>(res.bufferView);
m_cmd->trackResource<DxvkAccess::Read>(res.bufferView->buffer());
}
} else {
bindMask.clr(i);
descriptors[i].texelBuffer = m_common->dummyResources().bufferViewDescriptor();
} break;
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
if (res.bufferView != nullptr) {
res.bufferView->updateView();
descriptors[i].texelBuffer = res.bufferView->handle();
if (m_rcTracked.set(binding.slot)) {
m_cmd->trackResource<DxvkAccess::None>(res.bufferView);
m_cmd->trackResource<DxvkAccess::Write>(res.bufferView->buffer());
}
} else {
bindMask.clr(i);
descriptors[i].texelBuffer = m_common->dummyResources().bufferViewDescriptor();
} break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
if (res.bufferSlice.defined()) {
descriptors[i] = res.bufferSlice.getDescriptor();
if (m_rcTracked.set(binding.slot))
m_cmd->trackResource<DxvkAccess::Read>(res.bufferSlice.buffer());
} else {
bindMask.clr(i);
descriptors[i].buffer = m_common->dummyResources().bufferDescriptor();
} break;
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
if (res.bufferSlice.defined()) {
descriptors[i] = res.bufferSlice.getDescriptor();
if (m_rcTracked.set(binding.slot))
m_cmd->trackResource<DxvkAccess::Write>(res.bufferSlice.buffer());
} else {
bindMask.clr(i);
descriptors[i].buffer = m_common->dummyResources().bufferDescriptor();
} break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
if (res.bufferSlice.defined()) {
descriptors[i] = res.bufferSlice.getDescriptor();
descriptors[i].buffer.offset = 0;
if (m_rcTracked.set(binding.slot))
m_cmd->trackResource<DxvkAccess::Read>(res.bufferSlice.buffer());
} else {
bindMask.clr(i);
descriptors[i].buffer = m_common->dummyResources().bufferDescriptor();
} break;
default:
Logger::err(str::format("DxvkContext: Unhandled descriptor type: ", binding.type));
}
}
// Allocate and update descriptor set
auto& set = BindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS ? m_gpSet : m_cpSet;
if (layout->bindingCount()) {
set = allocateDescriptorSet(layout->descriptorSetLayout());
m_cmd->updateDescriptorSetWithTemplate(set,
layout->descriptorTemplate(), descriptors.data());
} else {
set = VK_NULL_HANDLE;
}
// Select the active binding mask to update
auto& refMask = BindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS
? m_state.gp.state.bsBindingMask
: m_state.cp.state.bsBindingMask;
// If some resources are not bound, we may need to
// update spec constants and rebind the pipeline
if (refMask != bindMask) {
refMask = bindMask;
m_flags.set(BindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS
? DxvkContextFlag::GpDirtyPipelineState
: DxvkContextFlag::CpDirtyPipelineState);
}
}
template<VkPipelineBindPoint BindPoint>
void DxvkContext::updateShaderDescriptorSetBinding(
VkDescriptorSet set,
const DxvkPipelineLayout* layout) {
if (set) {
std::array<uint32_t, MaxNumActiveBindings> offsets;
for (uint32_t i = 0; i < layout->dynamicBindingCount(); i++) {
const auto& binding = layout->dynamicBinding(i);
const auto& res = m_rc[binding.slot];
offsets[i] = res.bufferSlice.defined()
? res.bufferSlice.getDynamicOffset()
: 0;
}
m_cmd->cmdBindDescriptorSet(BindPoint,
layout->pipelineLayout(), set,
layout->dynamicBindingCount(),
offsets.data());
}
}
void DxvkContext::updateFramebuffer() {
if (m_flags.test(DxvkContextFlag::GpDirtyFramebuffer)) {
m_flags.clr(DxvkContextFlag::GpDirtyFramebuffer);
this->spillRenderPass(true);
auto fb = m_device->createFramebuffer(m_state.om.renderTargets);
this->updateRenderTargetLayouts(fb, m_state.om.framebuffer);
m_state.gp.state.ms.setSampleCount(fb->getSampleCount());
m_state.om.framebuffer = fb;
for (uint32_t i = 0; i < MaxNumRenderTargets; i++) {
Rc<DxvkImageView> attachment = fb->getColorTarget(i).view;
VkComponentMapping mapping = attachment != nullptr
? util::invertComponentMapping(attachment->info().swizzle)
: VkComponentMapping();
m_state.gp.state.omSwizzle[i] = DxvkOmAttachmentSwizzle(mapping);
}
m_flags.set(DxvkContextFlag::GpDirtyPipelineState);
}
}
void DxvkContext::applyRenderTargetLoadLayouts() {
for (uint32_t i = 0; i < MaxNumRenderTargets; i++)
m_state.om.renderPassOps.colorOps[i].loadLayout = m_rtLayouts.color[i];
m_state.om.renderPassOps.depthOps.loadLayout = m_rtLayouts.depth;
}
void DxvkContext::applyRenderTargetStoreLayouts() {
for (uint32_t i = 0; i < MaxNumRenderTargets; i++)
m_rtLayouts.color[i] = m_state.om.renderPassOps.colorOps[i].storeLayout;
m_rtLayouts.depth = m_state.om.renderPassOps.depthOps.storeLayout;
}
void DxvkContext::transitionRenderTargetLayouts(
DxvkBarrierSet& barriers,
bool sharedOnly) {
if (m_state.om.framebuffer == nullptr)
return;
for (uint32_t i = 0; i < MaxNumRenderTargets; i++) {
const DxvkAttachment& color = m_state.om.framebuffer->getColorTarget(i);
if (color.view != nullptr && (!sharedOnly || color.view->imageInfo().shared)) {
this->transitionColorAttachment(barriers, color, m_rtLayouts.color[i]);
m_rtLayouts.color[i] = color.view->imageInfo().layout;
}
}
const DxvkAttachment& depth = m_state.om.framebuffer->getDepthTarget();
if (depth.view != nullptr && (!sharedOnly || depth.view->imageInfo().shared)) {
this->transitionDepthAttachment(barriers, depth, m_rtLayouts.depth);
m_rtLayouts.depth = depth.view->imageInfo().layout;
}
}
void DxvkContext::transitionColorAttachment(
DxvkBarrierSet& barriers,
const DxvkAttachment& attachment,
VkImageLayout oldLayout) {
if (oldLayout != attachment.view->imageInfo().layout) {
barriers.accessImage(
attachment.view->image(),
attachment.view->imageSubresources(), oldLayout,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
attachment.view->imageInfo().layout,
attachment.view->imageInfo().stages,
attachment.view->imageInfo().access);
m_cmd->trackResource<DxvkAccess::Write>(attachment.view->image());
}
}
void DxvkContext::transitionDepthAttachment(
DxvkBarrierSet& barriers,
const DxvkAttachment& attachment,
VkImageLayout oldLayout) {
if (oldLayout != attachment.view->imageInfo().layout) {
barriers.accessImage(
attachment.view->image(),
attachment.view->imageSubresources(), oldLayout,
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,
oldLayout != VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL
? VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT : 0,
attachment.view->imageInfo().layout,
attachment.view->imageInfo().stages,
attachment.view->imageInfo().access);
m_cmd->trackResource<DxvkAccess::Write>(attachment.view->image());
}
}
void DxvkContext::updateRenderTargetLayouts(
const Rc<DxvkFramebuffer>& newFb,
const Rc<DxvkFramebuffer>& oldFb) {
DxvkRenderTargetLayouts layouts = { };
for (uint32_t i = 0; i < MaxNumRenderTargets; i++) {
if (newFb->getColorTarget(i).view != nullptr)
layouts.color[i] = newFb->getColorTarget(i).view->imageInfo().layout;
}
if (newFb->getDepthTarget().view != nullptr)
layouts.depth = newFb->getDepthTarget().view->imageInfo().layout;
if (oldFb != nullptr) {
// Check whether any of the previous attachments have been moved
// around or been rebound with a different view. This may help
// reduce the number of image layout transitions between passes.
for (uint32_t i = 0; i < MaxNumRenderTargets; i++) {
const DxvkAttachment& oldAttachment = oldFb->getColorTarget(i);
if (oldAttachment.view != nullptr) {
bool found = false;
for (uint32_t j = 0; j < MaxNumRenderTargets && !found; j++) {
const DxvkAttachment& newAttachment = newFb->getColorTarget(j);
found = newAttachment.view == oldAttachment.view || (newAttachment.view != nullptr
&& newAttachment.view->image() == oldAttachment.view->image()
&& newAttachment.view->subresources() == oldAttachment.view->subresources());
if (found)
layouts.color[j] = m_rtLayouts.color[i];
}
if (!found && m_flags.test(DxvkContextFlag::GpRenderPassSuspended))
this->transitionColorAttachment(m_execBarriers, oldAttachment, m_rtLayouts.color[i]);
}
}
const DxvkAttachment& oldAttachment = oldFb->getDepthTarget();
if (oldAttachment.view != nullptr) {
const DxvkAttachment& newAttachment = newFb->getDepthTarget();
bool found = newAttachment.view == oldAttachment.view || (newAttachment.view != nullptr
&& newAttachment.view->image() == oldAttachment.view->image()
&& newAttachment.view->subresources() == oldAttachment.view->subresources());
if (found)
layouts.depth = m_rtLayouts.depth;
else if (m_flags.test(DxvkContextFlag::GpRenderPassSuspended))
this->transitionDepthAttachment(m_execBarriers, oldAttachment, m_rtLayouts.depth);
}
}
m_rtLayouts = layouts;
}
void DxvkContext::prepareImage(
DxvkBarrierSet& barriers,
const Rc<DxvkImage>& image,
const VkImageSubresourceRange& subresources,
bool flushClears) {
// Images that can't be used as attachments are always in their
// default layout, so we don't have to do anything in this case
if (!(image->info().usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)))
return;
// Flush clears if there are any since they may affect the image
if (!m_deferredClears.empty() && flushClears)
this->spillRenderPass(false);
// All images are in their default layout for suspended passes
if (!m_flags.test(DxvkContextFlag::GpRenderPassSuspended))
return;
// 3D images require special care because they only have one
// layer, but views may address individual 2D slices as layers
bool is3D = image->info().type == VK_IMAGE_TYPE_3D;
// Transition any attachment with overlapping subresources
if (image->info().usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
for (uint32_t i = 0; i < MaxNumRenderTargets; i++) {
const DxvkAttachment& attachment = m_state.om.framebuffer->getColorTarget(i);
if (attachment.view != nullptr && attachment.view->image() == image
&& (is3D || vk::checkSubresourceRangeOverlap(attachment.view->subresources(), subresources))) {
this->transitionColorAttachment(barriers, attachment, m_rtLayouts.color[i]);
m_rtLayouts.color[i] = image->info().layout;
}
}
} else {
const DxvkAttachment& attachment = m_state.om.framebuffer->getDepthTarget();
if (attachment.view != nullptr && attachment.view->image() == image
&& (is3D || vk::checkSubresourceRangeOverlap(attachment.view->subresources(), subresources))) {
this->transitionDepthAttachment(barriers, attachment, m_rtLayouts.depth);
m_rtLayouts.depth = image->info().layout;
}
}
}
bool DxvkContext::updateIndexBufferBinding() {
if (unlikely(!m_state.vi.indexBuffer.defined()))
return false;
m_flags.clr(DxvkContextFlag::GpDirtyIndexBuffer);
auto bufferInfo = m_state.vi.indexBuffer.getDescriptor();
m_cmd->cmdBindIndexBuffer(
bufferInfo.buffer.buffer,
bufferInfo.buffer.offset,
m_state.vi.indexType);
if (m_vbTracked.set(MaxNumVertexBindings))
m_cmd->trackResource<DxvkAccess::Read>(m_state.vi.indexBuffer.buffer());
return true;
}
void DxvkContext::updateVertexBufferBindings() {
m_flags.clr(DxvkContextFlag::GpDirtyVertexBuffers);
if (unlikely(!m_state.gp.state.il.bindingCount()))
return;
std::array<VkBuffer, MaxNumVertexBindings> buffers;
std::array<VkDeviceSize, MaxNumVertexBindings> offsets;
std::array<VkDeviceSize, MaxNumVertexBindings> lengths;
// Set buffer handles and offsets for active bindings
for (uint32_t i = 0; i < m_state.gp.state.il.bindingCount(); i++) {
uint32_t binding = m_state.gp.state.ilBindings[i].binding();
if (likely(m_state.vi.vertexBuffers[binding].defined())) {
auto vbo = m_state.vi.vertexBuffers[binding].getDescriptor();
buffers[i] = vbo.buffer.buffer;
offsets[i] = vbo.buffer.offset;
lengths[i] = vbo.buffer.range;
if (m_vbTracked.set(binding))
m_cmd->trackResource<DxvkAccess::Read>(m_state.vi.vertexBuffers[binding].buffer());
} else if (m_features.test(DxvkContextFeature::NullDescriptors)) {
buffers[i] = VK_NULL_HANDLE;
offsets[i] = 0;
lengths[i] = 0;
} else {
buffers[i] = m_common->dummyResources().bufferHandle();
offsets[i] = 0;
lengths[i] = 0;
}
}
// Vertex bindigs get remapped when compiling the
// pipeline, so this actually does the right thing
if (m_features.test(DxvkContextFeature::ExtendedDynamicState)) {
m_cmd->cmdBindVertexBuffers2(0, m_state.gp.state.il.bindingCount(),
buffers.data(), offsets.data(), lengths.data(), nullptr);
} else {
m_cmd->cmdBindVertexBuffers(0, m_state.gp.state.il.bindingCount(),
buffers.data(), offsets.data());
}
}
void DxvkContext::updateTransformFeedbackBuffers() {
auto gsOptions = m_state.gp.shaders.gs->shaderOptions();
VkBuffer xfbBuffers[MaxNumXfbBuffers];
VkDeviceSize xfbOffsets[MaxNumXfbBuffers];
VkDeviceSize xfbLengths[MaxNumXfbBuffers];
for (size_t i = 0; i < MaxNumXfbBuffers; i++) {
auto physSlice = m_state.xfb.buffers[i].getSliceHandle();
xfbBuffers[i] = physSlice.handle;
xfbOffsets[i] = physSlice.offset;
xfbLengths[i] = physSlice.length;
if (physSlice.handle == VK_NULL_HANDLE)
xfbBuffers[i] = m_common->dummyResources().bufferHandle();
if (physSlice.handle != VK_NULL_HANDLE) {
auto buffer = m_state.xfb.buffers[i].buffer();
buffer->setXfbVertexStride(gsOptions.xfbStrides[i]);
m_cmd->trackResource<DxvkAccess::Write>(buffer);
}
}
m_cmd->cmdBindTransformFeedbackBuffers(
0, MaxNumXfbBuffers,
xfbBuffers, xfbOffsets, xfbLengths);
}
void DxvkContext::updateTransformFeedbackState() {
if (m_flags.test(DxvkContextFlag::GpDirtyXfbBuffers)) {
m_flags.clr(DxvkContextFlag::GpDirtyXfbBuffers);
this->pauseTransformFeedback();
this->updateTransformFeedbackBuffers();
}
this->startTransformFeedback();
}
void DxvkContext::updateDynamicState() {
if (!m_gpActivePipeline)
return;
if (m_flags.test(DxvkContextFlag::GpDirtyViewport)) {
m_flags.clr(DxvkContextFlag::GpDirtyViewport);
uint32_t viewportCount = m_state.gp.state.rs.viewportCount();
m_cmd->cmdSetViewport(0, viewportCount, m_state.vp.viewports.data());
m_cmd->cmdSetScissor (0, viewportCount, m_state.vp.scissorRects.data());
}
if (m_flags.all(DxvkContextFlag::GpDirtyBlendConstants,
DxvkContextFlag::GpDynamicBlendConstants)) {
m_flags.clr(DxvkContextFlag::GpDirtyBlendConstants);
m_cmd->cmdSetBlendConstants(&m_state.dyn.blendConstants.r);
}
if (m_flags.all(DxvkContextFlag::GpDirtyStencilRef,
DxvkContextFlag::GpDynamicStencilRef)) {
m_flags.clr(DxvkContextFlag::GpDirtyStencilRef);
m_cmd->cmdSetStencilReference(
VK_STENCIL_FRONT_AND_BACK,
m_state.dyn.stencilReference);
}
if (m_flags.all(DxvkContextFlag::GpDirtyDepthBias,
DxvkContextFlag::GpDynamicDepthBias)) {
m_flags.clr(DxvkContextFlag::GpDirtyDepthBias);
m_cmd->cmdSetDepthBias(
m_state.dyn.depthBias.depthBiasConstant,
m_state.dyn.depthBias.depthBiasClamp,
m_state.dyn.depthBias.depthBiasSlope);
}
if (m_flags.all(DxvkContextFlag::GpDirtyDepthBounds,
DxvkContextFlag::GpDynamicDepthBounds)) {
m_flags.clr(DxvkContextFlag::GpDirtyDepthBounds);
m_cmd->cmdSetDepthBounds(
m_state.dyn.depthBounds.minDepthBounds,
m_state.dyn.depthBounds.maxDepthBounds);
}
}
template<VkPipelineBindPoint BindPoint>
void DxvkContext::updatePushConstants() {
m_flags.clr(DxvkContextFlag::DirtyPushConstants);
auto layout = BindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS
? m_state.gp.pipeline->layout()
: m_state.cp.pipeline->layout();
if (!layout)
return;
VkPushConstantRange pushConstRange = layout->pushConstRange();
if (!pushConstRange.size)
return;
m_cmd->cmdPushConstants(
layout->pipelineLayout(),
pushConstRange.stageFlags,
pushConstRange.offset,
pushConstRange.size,
&m_state.pc.data[pushConstRange.offset]);
}
bool DxvkContext::commitComputeState() {
this->spillRenderPass(false);
if (m_flags.test(DxvkContextFlag::CpDirtyPipeline)) {
if (unlikely(!this->updateComputePipeline()))
return false;
}
if (m_flags.any(
DxvkContextFlag::CpDirtyResources,
DxvkContextFlag::CpDirtyDescriptorBinding))
this->updateComputeShaderResources();
if (m_flags.test(DxvkContextFlag::CpDirtyPipelineState)) {
if (unlikely(!this->updateComputePipelineState()))
return false;
}
if (m_flags.test(DxvkContextFlag::DirtyPushConstants))
this->updatePushConstants<VK_PIPELINE_BIND_POINT_COMPUTE>();
return true;
}
template<bool Indexed, bool Indirect>
bool DxvkContext::commitGraphicsState() {
if (m_flags.test(DxvkContextFlag::GpDirtyPipeline)) {
if (unlikely(!this->updateGraphicsPipeline()))
return false;
}
if (m_state.gp.flags.any(DxvkGraphicsPipelineFlag::HasStorageDescriptors,
DxvkGraphicsPipelineFlag::HasTransformFeedback)) {
this->commitGraphicsBarriers<Indexed, Indirect, false>();
this->commitGraphicsBarriers<Indexed, Indirect, true>();
}
if (m_flags.test(DxvkContextFlag::GpDirtyFramebuffer))
this->updateFramebuffer();
if (!m_flags.test(DxvkContextFlag::GpRenderPassBound))
this->startRenderPass();
if (m_flags.test(DxvkContextFlag::GpDirtyIndexBuffer) && Indexed) {
if (unlikely(!this->updateIndexBufferBinding()))
return false;
}
if (m_flags.test(DxvkContextFlag::GpDirtyVertexBuffers))
this->updateVertexBufferBindings();
if (m_flags.any(
DxvkContextFlag::GpDirtyResources,
DxvkContextFlag::GpDirtyDescriptorBinding))
this->updateGraphicsShaderResources();
if (m_flags.test(DxvkContextFlag::GpDirtyPipelineState)) {
if (unlikely(!this->updateGraphicsPipelineState()))
return false;
}
if (m_state.gp.flags.test(DxvkGraphicsPipelineFlag::HasTransformFeedback))
this->updateTransformFeedbackState();
if (m_flags.any(
DxvkContextFlag::GpDirtyViewport,
DxvkContextFlag::GpDirtyBlendConstants,
DxvkContextFlag::GpDirtyStencilRef,
DxvkContextFlag::GpDirtyDepthBias,
DxvkContextFlag::GpDirtyDepthBounds))
this->updateDynamicState();
if (m_flags.test(DxvkContextFlag::DirtyPushConstants))
this->updatePushConstants<VK_PIPELINE_BIND_POINT_GRAPHICS>();
if (m_flags.test(DxvkContextFlag::DirtyDrawBuffer) && Indirect)
this->trackDrawBuffer();
return true;
}
void DxvkContext::commitComputeInitBarriers() {
auto layout = m_state.cp.pipeline->layout();
bool requiresBarrier = false;
for (uint32_t i = 0; i < layout->bindingCount() && !requiresBarrier; i++) {
if (m_state.cp.state.bsBindingMask.test(i)) {
const DxvkDescriptorSlot binding = layout->binding(i);
const DxvkShaderResourceSlot& slot = m_rc[binding.slot];
DxvkAccessFlags dstAccess = DxvkAccess::Read;
DxvkAccessFlags srcAccess = 0;
switch (binding.type) {
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
if (binding.access & VK_ACCESS_SHADER_WRITE_BIT)
dstAccess.set(DxvkAccess::Write);
/* fall through */
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
srcAccess = m_execBarriers.getBufferAccess(
slot.bufferSlice.getSliceHandle());
break;
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
if (binding.access & VK_ACCESS_SHADER_WRITE_BIT)
dstAccess.set(DxvkAccess::Write);
/* fall through */
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
srcAccess = m_execBarriers.getBufferAccess(
slot.bufferView->getSliceHandle());
break;
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
if (binding.access & VK_ACCESS_SHADER_WRITE_BIT)
dstAccess.set(DxvkAccess::Write);
/* fall through */
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
srcAccess = m_execBarriers.getImageAccess(
slot.imageView->image(),
slot.imageView->imageSubresources());
break;
default:
/* nothing to do */;
}
if (srcAccess == 0)
continue;
// Skip write-after-write barriers if explicitly requested
if ((m_barrierControl.test(DxvkBarrierControl::IgnoreWriteAfterWrite))
&& (m_execBarriers.getSrcStages() == VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT)
&& (srcAccess.test(DxvkAccess::Write))
&& (dstAccess.test(DxvkAccess::Write)))
continue;
requiresBarrier = (srcAccess | dstAccess).test(DxvkAccess::Write);
}
}
if (requiresBarrier)
m_execBarriers.recordCommands(m_cmd);
}
void DxvkContext::commitComputePostBarriers() {
auto layout = m_state.cp.pipeline->layout();
for (uint32_t i = 0; i < layout->bindingCount(); i++) {
if (m_state.cp.state.bsBindingMask.test(i)) {
const DxvkDescriptorSlot binding = layout->binding(i);
const DxvkShaderResourceSlot& slot = m_rc[binding.slot];
VkPipelineStageFlags stages = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
VkAccessFlags access = VK_ACCESS_SHADER_READ_BIT;
switch (binding.type) {
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
if (binding.access & VK_ACCESS_SHADER_WRITE_BIT)
access |= VK_ACCESS_SHADER_WRITE_BIT;
/* fall through */
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
m_execBarriers.accessBuffer(
slot.bufferSlice.getSliceHandle(),
stages, access,
slot.bufferSlice.bufferInfo().stages,
slot.bufferSlice.bufferInfo().access);
break;
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
if (binding.access & VK_ACCESS_SHADER_WRITE_BIT)
access |= VK_ACCESS_SHADER_WRITE_BIT;
/* fall through */
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
m_execBarriers.accessBuffer(
slot.bufferView->getSliceHandle(),
stages, access,
slot.bufferView->bufferInfo().stages,
slot.bufferView->bufferInfo().access);
break;
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
if (binding.access & VK_ACCESS_SHADER_WRITE_BIT)
access |= VK_ACCESS_SHADER_WRITE_BIT;
/* fall through */
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
m_execBarriers.accessImage(
slot.imageView->image(),
slot.imageView->imageSubresources(),
slot.imageView->imageInfo().layout,
stages, access,
slot.imageView->imageInfo().layout,
slot.imageView->imageInfo().stages,
slot.imageView->imageInfo().access);
break;
default:
/* nothing to do */;
}
}
}
}
template<bool Indexed, bool Indirect, bool DoEmit>
void DxvkContext::commitGraphicsBarriers() {
auto layout = m_state.gp.pipeline->layout();
constexpr auto storageBufferAccess = VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT;
constexpr auto storageImageAccess = VK_ACCESS_SHADER_WRITE_BIT;
bool requiresBarrier = false;
// Check the draw buffer for indirect draw calls
if (m_flags.test(DxvkContextFlag::DirtyDrawBuffer) && Indirect) {
std::array<DxvkBufferSlice*, 2> slices = {{
&m_state.id.argBuffer,
&m_state.id.cntBuffer,
}};
for (uint32_t i = 0; i < slices.size() && !requiresBarrier; i++) {
if ((slices[i]->defined())
&& (slices[i]->bufferInfo().access & storageBufferAccess)) {
requiresBarrier = this->checkGfxBufferBarrier<DoEmit>(*slices[i],
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT,
VK_ACCESS_INDIRECT_COMMAND_READ_BIT).test(DxvkAccess::Write);
}
}
}
// Read-only stage, so we only have to check this if
// the bindngs have actually changed between draws
if (m_flags.test(DxvkContextFlag::GpDirtyIndexBuffer) && !requiresBarrier && Indexed) {
const auto& indexBufferSlice = m_state.vi.indexBuffer;
if ((indexBufferSlice.defined())
&& (indexBufferSlice.bufferInfo().access & storageBufferAccess)) {
requiresBarrier = this->checkGfxBufferBarrier<DoEmit>(indexBufferSlice,
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
VK_ACCESS_INDEX_READ_BIT).test(DxvkAccess::Write);
}
}
// Same here, also ignore unused vertex bindings
if (m_flags.test(DxvkContextFlag::GpDirtyVertexBuffers)) {
uint32_t bindingCount = m_state.gp.state.il.bindingCount();
for (uint32_t i = 0; i < bindingCount && !requiresBarrier; i++) {
uint32_t binding = m_state.gp.state.ilBindings[i].binding();
const auto& vertexBufferSlice = m_state.vi.vertexBuffers[binding];
if ((vertexBufferSlice.defined())
&& (vertexBufferSlice.bufferInfo().access & storageBufferAccess)) {
requiresBarrier = this->checkGfxBufferBarrier<DoEmit>(vertexBufferSlice,
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT).test(DxvkAccess::Write);
}
}
}
// Transform feedback buffer writes won't overlap, so we
// also only need to check those when they are rebound
if (m_flags.test(DxvkContextFlag::GpDirtyXfbBuffers)
&& m_state.gp.flags.test(DxvkGraphicsPipelineFlag::HasTransformFeedback)) {
for (uint32_t i = 0; i < MaxNumXfbBuffers && !requiresBarrier; i++) {
const auto& xfbBufferSlice = m_state.xfb.buffers[i];
if (xfbBufferSlice.defined()) {
requiresBarrier = this->checkGfxBufferBarrier<DoEmit>(xfbBufferSlice,
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT,
VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT) != 0;
}
}
}
// Check shader resources on every draw to handle WAW hazards
for (uint32_t i = 0; i < layout->bindingCount() && !requiresBarrier; i++) {
const DxvkDescriptorSlot binding = layout->binding(i);
const DxvkShaderResourceSlot& slot = m_rc[binding.slot];
DxvkAccessFlags dstAccess = DxvkAccess::Read;
DxvkAccessFlags srcAccess = 0;
switch (binding.type) {
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
if (binding.access & VK_ACCESS_SHADER_WRITE_BIT)
dstAccess.set(DxvkAccess::Write);
/* fall through */
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
if ((slot.bufferSlice.defined())
&& (slot.bufferSlice.bufferInfo().access & storageBufferAccess)) {
srcAccess = this->checkGfxBufferBarrier<DoEmit>(slot.bufferSlice,
binding.stages, binding.access);
}
break;
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
if (binding.access & VK_ACCESS_SHADER_WRITE_BIT)
dstAccess.set(DxvkAccess::Write);
/* fall through */
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
if ((slot.bufferView != nullptr)
&& (slot.bufferView->bufferInfo().access & storageBufferAccess)) {
srcAccess = this->checkGfxBufferBarrier<DoEmit>(slot.bufferView->slice(),
binding.stages, binding.access);
}
break;
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
if (binding.access & VK_ACCESS_SHADER_WRITE_BIT)
dstAccess.set(DxvkAccess::Write);
/* fall through */
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
if ((slot.imageView != nullptr)
&& (slot.imageView->imageInfo().access & storageImageAccess)) {
srcAccess = this->checkGfxImageBarrier<DoEmit>(slot.imageView,
binding.stages, binding.access);
}
break;
default:
/* nothing to do */;
}
if (srcAccess == 0)
continue;
// Skip write-after-write barriers if explicitly requested
if ((m_barrierControl.test(DxvkBarrierControl::IgnoreWriteAfterWrite))
&& (srcAccess.test(DxvkAccess::Write))
&& (dstAccess.test(DxvkAccess::Write)))
continue;
requiresBarrier = (srcAccess | dstAccess).test(DxvkAccess::Write);
}
// External subpass dependencies serve as full memory
// and execution barriers, so we can use this to allow
// inter-stage synchronization.
if (requiresBarrier)
this->spillRenderPass(true);
}
template<bool DoEmit>
DxvkAccessFlags DxvkContext::checkGfxBufferBarrier(
const DxvkBufferSlice& slice,
VkPipelineStageFlags stages,
VkAccessFlags access) {
if constexpr (DoEmit) {
m_gfxBarriers.accessBuffer(
slice.getSliceHandle(),
stages, access,
slice.bufferInfo().stages,
slice.bufferInfo().access);
return DxvkAccessFlags();
} else {
return m_gfxBarriers.getBufferAccess(slice.getSliceHandle());
}
}
template<bool DoEmit>
DxvkAccessFlags DxvkContext::checkGfxImageBarrier(
const Rc<DxvkImageView>& imageView,
VkPipelineStageFlags stages,
VkAccessFlags access) {
if constexpr (DoEmit) {
m_gfxBarriers.accessImage(
imageView->image(),
imageView->imageSubresources(),
imageView->imageInfo().layout,
stages, access,
imageView->imageInfo().layout,
imageView->imageInfo().stages,
imageView->imageInfo().access);
return DxvkAccessFlags();
} else {
return m_gfxBarriers.getImageAccess(
imageView->image(),
imageView->imageSubresources());
}
}
void DxvkContext::emitMemoryBarrier(
VkDependencyFlags flags,
VkPipelineStageFlags srcStages,
VkAccessFlags srcAccess,
VkPipelineStageFlags dstStages,
VkAccessFlags dstAccess) {
VkMemoryBarrier barrier;
barrier.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
barrier.pNext = nullptr;
barrier.srcAccessMask = srcAccess;
barrier.dstAccessMask = dstAccess;
m_cmd->cmdPipelineBarrier(
DxvkCmdBuffer::ExecBuffer, srcStages, dstStages,
flags, 1, &barrier, 0, nullptr, 0, nullptr);
}
void DxvkContext::initializeImage(
const Rc<DxvkImage>& image,
const VkImageSubresourceRange& subresources,
VkImageLayout dstLayout,
VkPipelineStageFlags dstStages,
VkAccessFlags dstAccess) {
if (m_execBarriers.isImageDirty(image, subresources, DxvkAccess::Write))
m_execBarriers.recordCommands(m_cmd);
VkPipelineStageFlags srcStages = 0;
if (image->isInUse())
srcStages = dstStages;
m_execAcquires.accessImage(image, subresources,
VK_IMAGE_LAYOUT_UNDEFINED, srcStages, 0,
dstLayout, dstStages, dstAccess);
}
VkDescriptorSet DxvkContext::allocateDescriptorSet(
VkDescriptorSetLayout layout) {
if (m_descPool == nullptr)
m_descPool = m_device->createDescriptorPool();
VkDescriptorSet set = m_descPool->alloc(layout);
if (set == VK_NULL_HANDLE) {
m_cmd->trackDescriptorPool(std::move(m_descPool));
m_descPool = m_device->createDescriptorPool();
set = m_descPool->alloc(layout);
}
return set;
}
void DxvkContext::trackDrawBuffer() {
if (m_flags.test(DxvkContextFlag::DirtyDrawBuffer)) {
m_flags.clr(DxvkContextFlag::DirtyDrawBuffer);
if (m_state.id.argBuffer.defined())
m_cmd->trackResource<DxvkAccess::Read>(m_state.id.argBuffer.buffer());
if (m_state.id.cntBuffer.defined())
m_cmd->trackResource<DxvkAccess::Read>(m_state.id.cntBuffer.buffer());
}
}
DxvkGraphicsPipeline* DxvkContext::lookupGraphicsPipeline(
const DxvkGraphicsPipelineShaders& shaders) {
auto idx = shaders.hash() % m_gpLookupCache.size();
if (unlikely(!m_gpLookupCache[idx] || !shaders.eq(m_gpLookupCache[idx]->shaders())))
m_gpLookupCache[idx] = m_common->pipelineManager().createGraphicsPipeline(shaders);
return m_gpLookupCache[idx];
}
DxvkComputePipeline* DxvkContext::lookupComputePipeline(
const DxvkComputePipelineShaders& shaders) {
auto idx = shaders.hash() % m_cpLookupCache.size();
if (unlikely(!m_cpLookupCache[idx] || !shaders.eq(m_cpLookupCache[idx]->shaders())))
m_cpLookupCache[idx] = m_common->pipelineManager().createComputePipeline(shaders);
return m_cpLookupCache[idx];
}
Rc<DxvkBuffer> DxvkContext::createZeroBuffer(
VkDeviceSize size) {
if (m_zeroBuffer != nullptr && m_zeroBuffer->info().size >= size)
return m_zeroBuffer;
DxvkBufferCreateInfo bufInfo;
bufInfo.size = align<VkDeviceSize>(size, 1 << 20);
bufInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufInfo.stages = VK_PIPELINE_STAGE_TRANSFER_BIT;
bufInfo.access = VK_ACCESS_TRANSFER_WRITE_BIT
| VK_ACCESS_TRANSFER_READ_BIT;
m_zeroBuffer = m_device->createBuffer(bufInfo,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
clearBuffer(m_zeroBuffer, 0, bufInfo.size, 0);
m_execBarriers.recordCommands(m_cmd);
return m_zeroBuffer;
}
}