dxvk/src/dxvk/dxvk_image.cpp

220 lines
9.1 KiB
C++

#include "dxvk_image.h"
namespace dxvk {
DxvkImage::DxvkImage(
const Rc<vk::DeviceFn>& vkd,
const DxvkImageCreateInfo& createInfo,
DxvkMemoryAllocator& memAlloc,
VkMemoryPropertyFlags memFlags)
: m_vkd(vkd), m_info(createInfo), m_memFlags(memFlags) {
// Copy the compatible view formats to a persistent array
m_viewFormats.resize(createInfo.viewFormatCount);
for (uint32_t i = 0; i < createInfo.viewFormatCount; i++)
m_viewFormats[i] = createInfo.viewFormats[i];
m_info.viewFormats = m_viewFormats.data();
// If defined, we should provide a format list, which
// allows some drivers to enable image compression
VkImageFormatListCreateInfoKHR formatList;
formatList.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO_KHR;
formatList.pNext = nullptr;
formatList.viewFormatCount = createInfo.viewFormatCount;
formatList.pViewFormats = createInfo.viewFormats;
// FIXME enable the image format list. We cannot
// currently use this because of regressions.
VkImageCreateInfo info;
info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
info.pNext = nullptr;
info.flags = createInfo.flags;
info.imageType = createInfo.type;
info.format = createInfo.format;
info.extent = createInfo.extent;
info.mipLevels = createInfo.mipLevels;
info.arrayLayers = createInfo.numLayers;
info.samples = createInfo.sampleCount;
info.tiling = createInfo.tiling;
info.usage = createInfo.usage;
info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
info.queueFamilyIndexCount = 0;
info.pQueueFamilyIndices = nullptr;
info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
if (m_vkd->vkCreateImage(m_vkd->device(),
&info, nullptr, &m_image) != VK_SUCCESS) {
throw DxvkError(str::format(
"DxvkImage: Failed to create image:",
"\n Type: ", info.imageType,
"\n Format: ", info.format,
"\n Extent: ", "(", info.extent.width,
",", info.extent.height,
",", info.extent.depth, ")",
"\n Mip levels: ", info.mipLevels,
"\n Array layers: ", info.arrayLayers,
"\n Samples: ", info.samples,
"\n Usage: ", info.usage,
"\n Tiling: ", info.tiling));
}
// Get memory requirements for the image. We may enforce strict
// alignment on non-linear images in order not to violate the
// bufferImageGranularity limit, which may be greater than the
// required resource memory alignment on some GPUs.
VkMemoryDedicatedRequirementsKHR dedicatedRequirements;
dedicatedRequirements.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR;
dedicatedRequirements.pNext = VK_NULL_HANDLE;
dedicatedRequirements.prefersDedicatedAllocation = VK_FALSE;
dedicatedRequirements.requiresDedicatedAllocation = VK_FALSE;
VkMemoryRequirements2KHR memReq;
memReq.sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR;
memReq.pNext = &dedicatedRequirements;
VkImageMemoryRequirementsInfo2KHR memReqInfo;
memReqInfo.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR;
memReqInfo.image = m_image;
memReqInfo.pNext = VK_NULL_HANDLE;
VkMemoryDedicatedAllocateInfoKHR dedMemoryAllocInfo;
dedMemoryAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR;
dedMemoryAllocInfo.pNext = VK_NULL_HANDLE;
dedMemoryAllocInfo.buffer = VK_NULL_HANDLE;
dedMemoryAllocInfo.image = m_image;
m_vkd->vkGetImageMemoryRequirements2KHR(
m_vkd->device(), &memReqInfo, &memReq);
if (info.tiling != VK_IMAGE_TILING_LINEAR) {
memReq.memoryRequirements.size = align(memReq.memoryRequirements.size, memAlloc.bufferImageGranularity());
memReq.memoryRequirements.alignment = align(memReq.memoryRequirements.alignment , memAlloc.bufferImageGranularity());
}
bool useDedicated = dedicatedRequirements.prefersDedicatedAllocation;
m_memory = memAlloc.alloc(&memReq.memoryRequirements,
useDedicated ? &dedMemoryAllocInfo : nullptr, memFlags);
// Try to bind the allocated memory slice to the image
if (m_vkd->vkBindImageMemory(m_vkd->device(),
m_image, m_memory.memory(), m_memory.offset()) != VK_SUCCESS)
throw DxvkError("DxvkImage::DxvkImage: Failed to bind device memory");
}
DxvkImage::DxvkImage(
const Rc<vk::DeviceFn>& vkd,
const DxvkImageCreateInfo& info,
VkImage image)
: m_vkd(vkd), m_info(info), m_image(image) {
}
DxvkImage::~DxvkImage() {
// This is a bit of a hack to determine whether
// the image is implementation-handled or not
if (m_memory.memory() != VK_NULL_HANDLE)
m_vkd->vkDestroyImage(m_vkd->device(), m_image, nullptr);
}
DxvkImageView::DxvkImageView(
const Rc<vk::DeviceFn>& vkd,
const Rc<DxvkImage>& image,
const DxvkImageViewCreateInfo& info)
: m_vkd(vkd), m_image(image), m_info(info) {
// Since applications tend to bind views
for (uint32_t i = 0; i < ViewCount; i++)
m_views[i] = VK_NULL_HANDLE;
switch (info.type) {
case VK_IMAGE_VIEW_TYPE_1D:
case VK_IMAGE_VIEW_TYPE_1D_ARRAY: {
this->createView(VK_IMAGE_VIEW_TYPE_1D, 1);
this->createView(VK_IMAGE_VIEW_TYPE_1D_ARRAY, info.numLayers);
} break;
case VK_IMAGE_VIEW_TYPE_2D:
case VK_IMAGE_VIEW_TYPE_2D_ARRAY:
case VK_IMAGE_VIEW_TYPE_CUBE:
case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY: {
this->createView(VK_IMAGE_VIEW_TYPE_2D, 1);
this->createView(VK_IMAGE_VIEW_TYPE_2D_ARRAY, info.numLayers);
if (m_image->info().flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) {
uint32_t cubeCount = info.numLayers / 6;
if (cubeCount > 0) {
this->createView(VK_IMAGE_VIEW_TYPE_CUBE, 6);
this->createView(VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, 6 * cubeCount);
}
}
} break;
case VK_IMAGE_VIEW_TYPE_3D: {
this->createView(VK_IMAGE_VIEW_TYPE_3D, 1);
if (m_image->info().flags & VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT_KHR) {
this->createView(VK_IMAGE_VIEW_TYPE_2D, 1);
this->createView(VK_IMAGE_VIEW_TYPE_2D_ARRAY, m_image->info().extent.depth);
}
} break;
default:
throw DxvkError(str::format("DxvkImageView: Invalid view type: ", info.type));
}
}
DxvkImageView::~DxvkImageView() {
for (uint32_t i = 0; i < ViewCount; i++)
m_vkd->vkDestroyImageView(m_vkd->device(), m_views[i], nullptr);
}
void DxvkImageView::createView(VkImageViewType type, uint32_t numLayers) {
VkImageSubresourceRange subresourceRange;
subresourceRange.aspectMask = m_info.aspect;
subresourceRange.baseMipLevel = m_info.minLevel;
subresourceRange.levelCount = m_info.numLevels;
subresourceRange.baseArrayLayer = m_info.minLayer;
subresourceRange.layerCount = numLayers;
VkImageViewCreateInfo viewInfo;
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.pNext = nullptr;
viewInfo.flags = 0;
viewInfo.image = m_image->handle();
viewInfo.viewType = type;
viewInfo.format = m_info.format;
viewInfo.components = m_info.swizzle;
viewInfo.subresourceRange = subresourceRange;
if (m_vkd->vkCreateImageView(m_vkd->device(),
&viewInfo, nullptr, &m_views[type]) != VK_SUCCESS) {
throw DxvkError(str::format(
"DxvkImageView: Failed to create image view:"
"\n View type: ", viewInfo.viewType,
"\n View format: ", viewInfo.format,
"\n Subresources: ",
"\n Aspect mask: ", std::hex, viewInfo.subresourceRange.aspectMask,
"\n Mip levels: ", viewInfo.subresourceRange.baseMipLevel, " - ",
viewInfo.subresourceRange.levelCount,
"\n Array layers: ", viewInfo.subresourceRange.baseArrayLayer, " - ",
viewInfo.subresourceRange.layerCount,
"\n Image properties:",
"\n Type: ", m_image->info().type,
"\n Format: ", m_image->info().format,
"\n Extent: ", "(", m_image->info().extent.width,
",", m_image->info().extent.height,
",", m_image->info().extent.depth, ")",
"\n Mip levels: ", m_image->info().mipLevels,
"\n Array layers: ", m_image->info().numLayers,
"\n Samples: ", m_image->info().sampleCount,
"\n Usage: ", std::hex, m_image->info().usage,
"\n Tiling: ", m_image->info().tiling));
}
}
}