dxvk/src/dxvk/dxvk_device.cpp

287 lines
8.8 KiB
C++

#include "dxvk_device.h"
#include "dxvk_instance.h"
namespace dxvk {
DxvkDevice::DxvkDevice(
const Rc<DxvkAdapter>& adapter,
const Rc<vk::DeviceFn>& vkd,
const Rc<DxvkDeviceExtensions>& extensions,
const VkPhysicalDeviceFeatures& features)
: m_adapter (adapter),
m_vkd (vkd),
m_extensions (extensions),
m_features (features),
m_properties (adapter->deviceProperties()),
m_memory (new DxvkMemoryAllocator (adapter, vkd)),
m_renderPassPool (new DxvkRenderPassPool (vkd)),
m_pipelineManager (new DxvkPipelineManager (this)),
m_metaClearObjects (new DxvkMetaClearObjects (vkd)),
m_metaMipGenObjects (new DxvkMetaMipGenObjects (vkd)),
m_metaResolveObjects(new DxvkMetaResolveObjects (vkd)),
m_unboundResources (this),
m_submissionQueue (this) {
m_graphicsQueue.queueFamily = m_adapter->graphicsQueueFamily();
m_presentQueue.queueFamily = m_adapter->presentQueueFamily();
m_vkd->vkGetDeviceQueue(m_vkd->device(),
m_graphicsQueue.queueFamily, 0,
&m_graphicsQueue.queueHandle);
m_vkd->vkGetDeviceQueue(m_vkd->device(),
m_presentQueue.queueFamily, 0,
&m_presentQueue.queueHandle);
}
DxvkDevice::~DxvkDevice() {
// Wait for all pending Vulkan commands to be
// executed before we destroy any resources.
m_vkd->vkDeviceWaitIdle(m_vkd->device());
}
DxvkDeviceOptions DxvkDevice::options() const {
DxvkDeviceOptions options;
options.maxNumDynamicUniformBuffers = m_properties.limits.maxDescriptorSetUniformBuffersDynamic;
options.maxNumDynamicStorageBuffers = m_properties.limits.maxDescriptorSetStorageBuffersDynamic;
return options;
}
Rc<DxvkPhysicalBuffer> DxvkDevice::allocPhysicalBuffer(
const DxvkBufferCreateInfo& createInfo,
VkMemoryPropertyFlags memoryType) {
return new DxvkPhysicalBuffer(m_vkd,
createInfo, *m_memory, memoryType);
}
Rc<DxvkStagingBuffer> DxvkDevice::allocStagingBuffer(VkDeviceSize size) {
// In case we need a standard-size staging buffer, try
// to recycle an old one that has been returned earlier
if (size <= DefaultStagingBufferSize) {
const Rc<DxvkStagingBuffer> buffer
= m_recycledStagingBuffers.retrieveObject();
if (buffer != nullptr)
return buffer;
}
// Staging buffers only need to be able to handle transfer
// operations, and they need to be in host-visible memory.
DxvkBufferCreateInfo info;
info.size = size;
info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
info.stages = VK_PIPELINE_STAGE_TRANSFER_BIT
| VK_PIPELINE_STAGE_HOST_BIT;
info.access = VK_ACCESS_TRANSFER_READ_BIT
| VK_ACCESS_HOST_WRITE_BIT;
VkMemoryPropertyFlags memFlags
= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
| VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
// Don't create buffers that are too small. A staging
// buffer should be able to serve multiple uploads.
if (info.size < DefaultStagingBufferSize)
info.size = DefaultStagingBufferSize;
return new DxvkStagingBuffer(this->createBuffer(info, memFlags));
}
void DxvkDevice::recycleStagingBuffer(const Rc<DxvkStagingBuffer>& buffer) {
// Drop staging buffers that are bigger than the
// standard ones to save memory, recycle the rest
if (buffer->size() == DefaultStagingBufferSize) {
m_recycledStagingBuffers.returnObject(buffer);
buffer->reset();
}
}
Rc<DxvkCommandList> DxvkDevice::createCommandList() {
Rc<DxvkCommandList> cmdList = m_recycledCommandLists.retrieveObject();
if (cmdList == nullptr) {
cmdList = new DxvkCommandList(m_vkd,
this, m_adapter->graphicsQueueFamily());
}
return cmdList;
}
Rc<DxvkContext> DxvkDevice::createContext() {
return new DxvkContext(this,
m_pipelineManager,
m_metaClearObjects,
m_metaMipGenObjects,
m_metaResolveObjects);
}
Rc<DxvkFramebuffer> DxvkDevice::createFramebuffer(
const DxvkRenderTargets& renderTargets) {
const DxvkFramebufferSize defaultSize = {
m_properties.limits.maxFramebufferWidth,
m_properties.limits.maxFramebufferHeight,
m_properties.limits.maxFramebufferLayers };
auto renderPassFormat = DxvkFramebuffer::getRenderPassFormat(renderTargets);
auto renderPassObject = m_renderPassPool->getRenderPass(renderPassFormat);
return new DxvkFramebuffer(m_vkd,
renderPassObject, renderTargets, defaultSize);
}
Rc<DxvkBuffer> DxvkDevice::createBuffer(
const DxvkBufferCreateInfo& createInfo,
VkMemoryPropertyFlags memoryType) {
return new DxvkBuffer(this, createInfo, memoryType);
}
Rc<DxvkBufferView> DxvkDevice::createBufferView(
const Rc<DxvkBuffer>& buffer,
const DxvkBufferViewCreateInfo& createInfo) {
return new DxvkBufferView(m_vkd, buffer, createInfo);
}
Rc<DxvkImage> DxvkDevice::createImage(
const DxvkImageCreateInfo& createInfo,
VkMemoryPropertyFlags memoryType) {
return new DxvkImage(m_vkd, createInfo, *m_memory, memoryType);
}
Rc<DxvkImageView> DxvkDevice::createImageView(
const Rc<DxvkImage>& image,
const DxvkImageViewCreateInfo& createInfo) {
return new DxvkImageView(m_vkd, image, createInfo);
}
Rc<DxvkQueryPool> DxvkDevice::createQueryPool(
VkQueryType queryType,
uint32_t queryCount) {
return new DxvkQueryPool(m_vkd, queryType, queryCount);
}
Rc<DxvkSampler> DxvkDevice::createSampler(
const DxvkSamplerCreateInfo& createInfo) {
return new DxvkSampler(m_vkd, createInfo);
}
Rc<DxvkSemaphore> DxvkDevice::createSemaphore() {
return new DxvkSemaphore(m_vkd);
}
Rc<DxvkShader> DxvkDevice::createShader(
VkShaderStageFlagBits stage,
uint32_t slotCount,
const DxvkResourceSlot* slotInfos,
const DxvkInterfaceSlots& iface,
const SpirvCodeBuffer& code) {
return new DxvkShader(stage,
slotCount, slotInfos, iface, code);
}
Rc<DxvkSwapchain> DxvkDevice::createSwapchain(
const Rc<DxvkSurface>& surface,
const DxvkSwapchainProperties& properties) {
return new DxvkSwapchain(this, surface, properties);
}
DxvkStatCounters DxvkDevice::getStatCounters() {
DxvkMemoryStats mem = m_memory->getMemoryStats();
DxvkStatCounters result;
result.setCtr(DxvkStatCounter::MemoryAllocated, mem.memoryAllocated);
result.setCtr(DxvkStatCounter::MemoryUsed, mem.memoryUsed);
std::lock_guard<sync::Spinlock> lock(m_statLock);
result.merge(m_statCounters);
return result;
}
void DxvkDevice::initResources() {
m_unboundResources.clearResources(this);
}
VkResult DxvkDevice::presentSwapImage(
const VkPresentInfoKHR& presentInfo) {
{ // Queue submissions are not thread safe
std::lock_guard<std::mutex> queueLock(m_submissionLock);
std::lock_guard<sync::Spinlock> statLock(m_statLock);
m_statCounters.addCtr(DxvkStatCounter::QueuePresentCount, 1);
return m_vkd->vkQueuePresentKHR(m_presentQueue.queueHandle, &presentInfo);
}
}
void DxvkDevice::submitCommandList(
const Rc<DxvkCommandList>& commandList,
const Rc<DxvkSemaphore>& waitSync,
const Rc<DxvkSemaphore>& wakeSync) {
VkSemaphore waitSemaphore = VK_NULL_HANDLE;
VkSemaphore wakeSemaphore = VK_NULL_HANDLE;
if (waitSync != nullptr) {
waitSemaphore = waitSync->handle();
commandList->trackResource(waitSync);
}
if (wakeSync != nullptr) {
wakeSemaphore = wakeSync->handle();
commandList->trackResource(wakeSync);
}
VkResult status;
{ // Queue submissions are not thread safe
std::lock_guard<std::mutex> queueLock(m_submissionLock);
std::lock_guard<sync::Spinlock> statLock(m_statLock);
m_statCounters.merge(commandList->statCounters());
m_statCounters.addCtr(DxvkStatCounter::QueueSubmitCount, 1);
status = commandList->submit(
m_graphicsQueue.queueHandle,
waitSemaphore, wakeSemaphore);
}
if (status == VK_SUCCESS) {
// Add this to the set of running submissions
m_submissionQueue.submit(commandList);
} else {
Logger::err(str::format(
"DxvkDevice: Command buffer submission failed: ",
status));
}
}
void DxvkDevice::waitForIdle() {
if (m_vkd->vkDeviceWaitIdle(m_vkd->device()) != VK_SUCCESS)
Logger::err("DxvkDevice: waitForIdle: Operation failed");
}
void DxvkDevice::recycleCommandList(const Rc<DxvkCommandList>& cmdList) {
m_recycledCommandLists.returnObject(cmdList);
}
}