dxvk/src/dxgi/dxgi_output.cpp

700 lines
24 KiB
C++

#include <algorithm>
#include <numeric>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <string>
#include "dxgi_adapter.h"
#include "dxgi_factory.h"
#include "dxgi_output.h"
#include "dxgi_swapchain.h"
#include "../dxvk/dxvk_format.h"
#include "../util/util_misc.h"
#include "../util/util_sleep.h"
#include "../util/util_time.h"
namespace dxvk {
DxgiOutput::DxgiOutput(
const Com<DxgiFactory>& factory,
const Com<DxgiAdapter>& adapter,
HMONITOR monitor)
: m_monitorInfo(factory->GetMonitorInfo()),
m_adapter(adapter),
m_monitor(monitor) {
CacheMonitorData();
}
DxgiOutput::~DxgiOutput() {
}
HRESULT STDMETHODCALLTYPE DxgiOutput::QueryInterface(REFIID riid, void** ppvObject) {
if (ppvObject == nullptr)
return E_POINTER;
*ppvObject = nullptr;
if (riid == __uuidof(IUnknown)
|| riid == __uuidof(IDXGIObject)
|| riid == __uuidof(IDXGIOutput)
|| riid == __uuidof(IDXGIOutput1)
|| riid == __uuidof(IDXGIOutput2)
|| riid == __uuidof(IDXGIOutput3)
|| riid == __uuidof(IDXGIOutput4)
|| riid == __uuidof(IDXGIOutput5)
|| riid == __uuidof(IDXGIOutput6)) {
*ppvObject = ref(this);
return S_OK;
}
if (logQueryInterfaceError(__uuidof(IDXGIOutput), riid)) {
Logger::warn("DxgiOutput::QueryInterface: Unknown interface query");
Logger::warn(str::format(riid));
}
return E_NOINTERFACE;
}
HRESULT STDMETHODCALLTYPE DxgiOutput::GetParent(REFIID riid, void **ppParent) {
return m_adapter->QueryInterface(riid, ppParent);
}
HRESULT STDMETHODCALLTYPE DxgiOutput::FindClosestMatchingMode(
const DXGI_MODE_DESC *pModeToMatch,
DXGI_MODE_DESC *pClosestMatch,
IUnknown *pConcernedDevice) {
if (!pModeToMatch || !pClosestMatch)
return DXGI_ERROR_INVALID_CALL;
DXGI_MODE_DESC1 modeToMatch;
modeToMatch.Width = pModeToMatch->Width;
modeToMatch.Height = pModeToMatch->Height;
modeToMatch.RefreshRate = pModeToMatch->RefreshRate;
modeToMatch.Format = pModeToMatch->Format;
modeToMatch.ScanlineOrdering = pModeToMatch->ScanlineOrdering;
modeToMatch.Scaling = pModeToMatch->Scaling;
modeToMatch.Stereo = FALSE;
DXGI_MODE_DESC1 closestMatch = { };
HRESULT hr = FindClosestMatchingMode1(
&modeToMatch, &closestMatch, pConcernedDevice);
if (FAILED(hr))
return hr;
pClosestMatch->Width = closestMatch.Width;
pClosestMatch->Height = closestMatch.Height;
pClosestMatch->RefreshRate = closestMatch.RefreshRate;
pClosestMatch->Format = closestMatch.Format;
pClosestMatch->ScanlineOrdering = closestMatch.ScanlineOrdering;
pClosestMatch->Scaling = closestMatch.Scaling;
return hr;
}
HRESULT STDMETHODCALLTYPE DxgiOutput::FindClosestMatchingMode1(
const DXGI_MODE_DESC1* pModeToMatch,
DXGI_MODE_DESC1* pClosestMatch,
IUnknown* pConcernedDevice) {
if (!pModeToMatch || !pClosestMatch)
return DXGI_ERROR_INVALID_CALL;
if (pModeToMatch->Format == DXGI_FORMAT_UNKNOWN && !pConcernedDevice)
return DXGI_ERROR_INVALID_CALL;
// Both or neither must be zero
if ((pModeToMatch->Width == 0) ^ (pModeToMatch->Height == 0))
return DXGI_ERROR_INVALID_CALL;
wsi::WsiMode activeWsiMode = { };
wsi::getCurrentDisplayMode(m_monitor, &activeWsiMode);
DXGI_MODE_DESC1 activeMode = ConvertDisplayMode(activeWsiMode);
DXGI_MODE_DESC1 defaultMode;
defaultMode.Width = 0;
defaultMode.Height = 0;
defaultMode.RefreshRate = { 0, 0 };
defaultMode.Format = DXGI_FORMAT_UNKNOWN;
defaultMode.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED;
defaultMode.Scaling = DXGI_MODE_SCALING_UNSPECIFIED;
defaultMode.Stereo = pModeToMatch->Stereo;
if (pModeToMatch->ScanlineOrdering == DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED)
defaultMode.ScanlineOrdering = activeMode.ScanlineOrdering;
if (pModeToMatch->Scaling == DXGI_MODE_SCALING_UNSPECIFIED)
defaultMode.Scaling = activeMode.Scaling;
DXGI_FORMAT targetFormat = pModeToMatch->Format;
if (pModeToMatch->Format == DXGI_FORMAT_UNKNOWN) {
defaultMode.Format = activeMode.Format;
targetFormat = activeMode.Format;
}
if (!pModeToMatch->Width) {
defaultMode.Width = activeMode.Width;
defaultMode.Height = activeMode.Height;
}
if (!pModeToMatch->RefreshRate.Numerator || !pModeToMatch->RefreshRate.Denominator) {
defaultMode.RefreshRate.Numerator = activeMode.RefreshRate.Numerator;
defaultMode.RefreshRate.Denominator = activeMode.RefreshRate.Denominator;
}
UINT modeCount = 0;
GetDisplayModeList1(targetFormat, DXGI_ENUM_MODES_SCALING, &modeCount, nullptr);
if (modeCount == 0) {
Logger::err("DXGI: FindClosestMatchingMode: No modes found");
return DXGI_ERROR_NOT_FOUND;
}
std::vector<DXGI_MODE_DESC1> modes(modeCount);
GetDisplayModeList1(targetFormat, DXGI_ENUM_MODES_SCALING, &modeCount, modes.data());
FilterModesByDesc(modes, *pModeToMatch);
FilterModesByDesc(modes, defaultMode);
if (modes.empty())
return DXGI_ERROR_NOT_FOUND;
*pClosestMatch = modes[0];
Logger::debug(str::format(
"DXGI: For mode ",
pModeToMatch->Width, "x", pModeToMatch->Height, "@",
pModeToMatch->RefreshRate.Denominator ? (pModeToMatch->RefreshRate.Numerator / pModeToMatch->RefreshRate.Denominator) : 0,
" found closest mode ",
pClosestMatch->Width, "x", pClosestMatch->Height, "@",
pClosestMatch->RefreshRate.Denominator ? (pClosestMatch->RefreshRate.Numerator / pClosestMatch->RefreshRate.Denominator) : 0));
return S_OK;
}
HRESULT STDMETHODCALLTYPE DxgiOutput::GetDesc(DXGI_OUTPUT_DESC *pDesc) {
if (pDesc == nullptr)
return DXGI_ERROR_INVALID_CALL;
DXGI_OUTPUT_DESC1 desc;
HRESULT hr = GetDesc1(&desc);
if (SUCCEEDED(hr)) {
std::memcpy(pDesc->DeviceName, desc.DeviceName, sizeof(pDesc->DeviceName));
pDesc->DesktopCoordinates = desc.DesktopCoordinates;
pDesc->AttachedToDesktop = desc.AttachedToDesktop;
pDesc->Rotation = desc.Rotation;
pDesc->Monitor = desc.Monitor;
}
return hr;
}
HRESULT STDMETHODCALLTYPE DxgiOutput::GetDesc1(
DXGI_OUTPUT_DESC1* pDesc) {
if (pDesc == nullptr)
return DXGI_ERROR_INVALID_CALL;
if (!wsi::getDesktopCoordinates(m_monitor, &pDesc->DesktopCoordinates)) {
Logger::err("DXGI: Failed to query monitor coords");
return E_FAIL;
}
if (!wsi::getDisplayName(m_monitor, pDesc->DeviceName)) {
Logger::err("DXGI: Failed to query monitor name");
return E_FAIL;
}
pDesc->AttachedToDesktop = 1;
pDesc->Rotation = DXGI_MODE_ROTATION_UNSPECIFIED;
pDesc->Monitor = m_monitor;
pDesc->BitsPerColor = 8;
// This should only return DXGI_COLOR_SPACE_RGB_FULL_G2084_NONE_P2020
// (HDR) if the user has the HDR setting enabled in Windows.
// Games can still punt into HDR mode by using CheckColorSpaceSupport
// and SetColorSpace1.
//
// We have no way of checking the actual Windows colorspace as the
// only public method for this *is* DXGI which we are re-implementing.
// So we just pick our color space based on the DXVK_HDR env var
// and the punting from SetColorSpace1.
pDesc->ColorSpace = m_monitorInfo->CurrentColorSpace();
pDesc->RedPrimary[0] = m_metadata.redPrimary[0];
pDesc->RedPrimary[1] = m_metadata.redPrimary[1];
pDesc->GreenPrimary[0] = m_metadata.greenPrimary[0];
pDesc->GreenPrimary[1] = m_metadata.greenPrimary[1];
pDesc->BluePrimary[0] = m_metadata.bluePrimary[0];
pDesc->BluePrimary[1] = m_metadata.bluePrimary[1];
pDesc->WhitePoint[0] = m_metadata.whitePoint[0];
pDesc->WhitePoint[1] = m_metadata.whitePoint[1];
pDesc->MinLuminance = m_metadata.minLuminance;
pDesc->MaxLuminance = m_metadata.maxLuminance;
pDesc->MaxFullFrameLuminance = m_metadata.maxFullFrameLuminance;
return S_OK;
}
HRESULT STDMETHODCALLTYPE DxgiOutput::GetDisplayModeList(
DXGI_FORMAT EnumFormat,
UINT Flags,
UINT* pNumModes,
DXGI_MODE_DESC* pDesc) {
if (pNumModes == nullptr)
return DXGI_ERROR_INVALID_CALL;
std::vector<DXGI_MODE_DESC1> modes;
if (pDesc)
modes.resize(std::max(1u, *pNumModes));
HRESULT hr = GetDisplayModeList1(
EnumFormat, Flags, pNumModes,
pDesc ? modes.data() : nullptr);
for (uint32_t i = 0; i < *pNumModes && i < modes.size(); i++) {
pDesc[i].Width = modes[i].Width;
pDesc[i].Height = modes[i].Height;
pDesc[i].RefreshRate = modes[i].RefreshRate;
pDesc[i].Format = modes[i].Format;
pDesc[i].ScanlineOrdering = modes[i].ScanlineOrdering;
pDesc[i].Scaling = modes[i].Scaling;
}
return hr;
}
HRESULT STDMETHODCALLTYPE DxgiOutput::GetDisplayModeList1(
DXGI_FORMAT EnumFormat,
UINT Flags,
UINT* pNumModes,
DXGI_MODE_DESC1* pDesc) {
if (pNumModes == nullptr)
return DXGI_ERROR_INVALID_CALL;
// Special case, just return zero modes
if (EnumFormat == DXGI_FORMAT_UNKNOWN) {
*pNumModes = 0;
return S_OK;
}
// Walk over all modes that the display supports and
// return those that match the requested format etc.
wsi::WsiMode devMode = { };
uint32_t srcModeId = 0;
uint32_t dstModeId = 0;
std::vector<DXGI_MODE_DESC1> modeList;
while (wsi::getDisplayMode(m_monitor, srcModeId++, &devMode)) {
// Only enumerate interlaced modes if requested.
if (devMode.interlaced && !(Flags & DXGI_ENUM_MODES_INTERLACED))
continue;
// Skip modes with incompatible formats
if (devMode.bitsPerPixel != GetMonitorFormatBpp(EnumFormat))
continue;
if (pDesc != nullptr) {
DXGI_MODE_DESC1 mode = ConvertDisplayMode(devMode);
// Fix up the DXGI_FORMAT to match what we were enumerating.
mode.Format = EnumFormat;
modeList.push_back(mode);
}
dstModeId += 1;
}
// Sort display modes by width, height and refresh rate,
// in that order. Some games rely on correct ordering.
std::sort(modeList.begin(), modeList.end(),
[] (const DXGI_MODE_DESC1& a, const DXGI_MODE_DESC1& b) {
if (a.Width < b.Width) return true;
if (a.Width > b.Width) return false;
if (a.Height < b.Height) return true;
if (a.Height > b.Height) return false;
return (a.RefreshRate.Numerator / a.RefreshRate.Denominator)
< (b.RefreshRate.Numerator / b.RefreshRate.Denominator);
});
// If requested, write out the first set of display
// modes to the destination array.
if (pDesc != nullptr) {
for (uint32_t i = 0; i < *pNumModes && i < dstModeId; i++)
pDesc[i] = modeList[i];
if (dstModeId > *pNumModes)
return DXGI_ERROR_MORE_DATA;
}
*pNumModes = dstModeId;
return S_OK;
}
HRESULT STDMETHODCALLTYPE DxgiOutput::GetDisplaySurfaceData(IDXGISurface* pDestination) {
Logger::err("DxgiOutput::GetDisplaySurfaceData: Not implemented");
return E_NOTIMPL;
}
HRESULT STDMETHODCALLTYPE DxgiOutput::GetFrameStatistics(DXGI_FRAME_STATISTICS* pStats) {
DXGI_VK_MONITOR_DATA* monitorInfo = nullptr;
HRESULT hr = m_monitorInfo->AcquireMonitorData(m_monitor, &monitorInfo);
if (FAILED(hr))
return hr;
static bool s_errorShown = false;
if (!std::exchange(s_errorShown, true))
Logger::warn("DxgiOutput::GetFrameStatistics: Frame statistics may be inaccurate");
// Estimate vblank count based on last known display mode. Querying
// the display mode on every call would be prohibitively expensive.
auto refreshPeriod = computeRefreshPeriod(
monitorInfo->LastMode.RefreshRate.Numerator,
monitorInfo->LastMode.RefreshRate.Denominator);
// We don't really have a way to query time since boot
auto t1Counter = dxvk::high_resolution_clock::get_counter();
auto t0 = dxvk::high_resolution_clock::get_time_from_counter(monitorInfo->FrameStats.SyncQPCTime.QuadPart);
auto t1 = dxvk::high_resolution_clock::get_time_from_counter(t1Counter);
pStats->PresentCount = monitorInfo->FrameStats.PresentCount;
pStats->PresentRefreshCount = monitorInfo->FrameStats.PresentRefreshCount;
pStats->SyncRefreshCount = monitorInfo->FrameStats.SyncRefreshCount + computeRefreshCount(t0, t1, refreshPeriod);
pStats->SyncQPCTime.QuadPart = t1Counter;
pStats->SyncGPUTime.QuadPart = 0;
m_monitorInfo->ReleaseMonitorData();
return S_OK;
}
HRESULT STDMETHODCALLTYPE DxgiOutput::GetGammaControl(DXGI_GAMMA_CONTROL* pArray) {
DXGI_VK_MONITOR_DATA* monitorInfo = nullptr;
HRESULT hr = m_monitorInfo->AcquireMonitorData(m_monitor, &monitorInfo);
if (FAILED(hr))
return hr;
*pArray = monitorInfo->GammaCurve;
m_monitorInfo->ReleaseMonitorData();
return S_OK;
}
HRESULT STDMETHODCALLTYPE DxgiOutput::GetGammaControlCapabilities(DXGI_GAMMA_CONTROL_CAPABILITIES* pGammaCaps) {
pGammaCaps->ScaleAndOffsetSupported = FALSE;
pGammaCaps->MaxConvertedValue = 1.0f;
pGammaCaps->MinConvertedValue = 0.0f;
pGammaCaps->NumGammaControlPoints = DXGI_VK_GAMMA_CP_COUNT;
for (uint32_t i = 0; i < pGammaCaps->NumGammaControlPoints; i++)
pGammaCaps->ControlPointPositions[i] = GammaControlPointLocation(i);
return S_OK;
}
void STDMETHODCALLTYPE DxgiOutput::ReleaseOwnership() {
Logger::warn("DxgiOutput::ReleaseOwnership: Stub");
}
HRESULT STDMETHODCALLTYPE DxgiOutput::SetDisplaySurface(IDXGISurface* pScanoutSurface) {
Logger::err("DxgiOutput::SetDisplaySurface: Not implemented");
return E_NOTIMPL;
}
HRESULT STDMETHODCALLTYPE DxgiOutput::GetDisplaySurfaceData1(IDXGIResource* pDestination) {
Logger::err("DxgiOutput::SetDisplaySurface1: Not implemented");
return E_NOTIMPL;
}
HRESULT STDMETHODCALLTYPE DxgiOutput::SetGammaControl(const DXGI_GAMMA_CONTROL* pArray) {
DXGI_VK_MONITOR_DATA* monitorInfo = nullptr;
HRESULT hr = m_monitorInfo->AcquireMonitorData(m_monitor, &monitorInfo);
if (FAILED(hr))
return hr;
monitorInfo->GammaCurve = *pArray;
if (monitorInfo->pSwapChain) {
hr = monitorInfo->pSwapChain->SetGammaControl(
DXGI_VK_GAMMA_CP_COUNT, pArray->GammaCurve);
}
m_monitorInfo->ReleaseMonitorData();
return hr;
}
HRESULT STDMETHODCALLTYPE DxgiOutput::TakeOwnership(
IUnknown *pDevice,
BOOL Exclusive) {
Logger::warn("DxgiOutput::TakeOwnership: Stub");
return S_OK;
}
HRESULT STDMETHODCALLTYPE DxgiOutput::WaitForVBlank() {
static bool s_errorShown = false;
if (!std::exchange(s_errorShown, true))
Logger::warn("DxgiOutput::WaitForVBlank: Inaccurate");
// Get monitor data to compute the sleep duration
DXGI_VK_MONITOR_DATA* monitorInfo = nullptr;
HRESULT hr = m_monitorInfo->AcquireMonitorData(m_monitor, &monitorInfo);
if (FAILED(hr))
return hr;
// Estimate number of vblanks since last mode
// change, then wait for one more refresh period
auto refreshPeriod = computeRefreshPeriod(
monitorInfo->LastMode.RefreshRate.Numerator,
monitorInfo->LastMode.RefreshRate.Denominator);
auto t0 = dxvk::high_resolution_clock::get_time_from_counter(monitorInfo->FrameStats.SyncQPCTime.QuadPart);
auto t1 = dxvk::high_resolution_clock::now();
uint64_t vblankCount = computeRefreshCount(t0, t1, refreshPeriod);
auto t2 = t0 + (vblankCount + 1) * refreshPeriod;
m_monitorInfo->ReleaseMonitorData();
// Sleep until the given time point
Sleep::sleepUntil(t1, t2);
return S_OK;
}
HRESULT STDMETHODCALLTYPE DxgiOutput::DuplicateOutput(
IUnknown* pDevice,
IDXGIOutputDuplication** ppOutputDuplication) {
return DuplicateOutput1(pDevice, 0, 0, nullptr, ppOutputDuplication);
}
HRESULT STDMETHODCALLTYPE DxgiOutput::DuplicateOutput1(
IUnknown* pDevice,
UINT Flags,
UINT SupportedFormatsCount,
const DXGI_FORMAT* pSupportedFormats,
IDXGIOutputDuplication** ppOutputDuplication) {
InitReturnPtr(ppOutputDuplication);
if (!pDevice)
return E_INVALIDARG;
static bool s_errorShown = false;
if (!std::exchange(s_errorShown, true))
Logger::err("DxgiOutput::DuplicateOutput1: Not implemented");
// At least return a valid error code
return DXGI_ERROR_UNSUPPORTED;
}
BOOL DxgiOutput::SupportsOverlays() {
return FALSE;
}
HRESULT STDMETHODCALLTYPE DxgiOutput::CheckOverlaySupport(
DXGI_FORMAT EnumFormat,
IUnknown* pConcernedDevice,
UINT* pFlags) {
Logger::warn("DxgiOutput: CheckOverlaySupport: Stub");
return DXGI_ERROR_UNSUPPORTED;
}
HRESULT STDMETHODCALLTYPE DxgiOutput::CheckOverlayColorSpaceSupport(
DXGI_FORMAT Format,
DXGI_COLOR_SPACE_TYPE ColorSpace,
IUnknown* pConcernedDevice,
UINT* pFlags) {
Logger::warn("DxgiOutput: CheckOverlayColorSpaceSupport: Stub");
return DXGI_ERROR_UNSUPPORTED;
}
HRESULT STDMETHODCALLTYPE DxgiOutput::CheckHardwareCompositionSupport(
UINT* pFlags) {
Logger::warn("DxgiOutput: CheckHardwareCompositionSupport: Stub");
*pFlags = 0;
return S_OK;
}
void DxgiOutput::FilterModesByDesc(
std::vector<DXGI_MODE_DESC1>& Modes,
const DXGI_MODE_DESC1& TargetMode) {
// Filter modes based on format properties
bool testScanlineOrder = false;
bool testScaling = false;
bool testFormat = false;
for (const auto& mode : Modes) {
testScanlineOrder |= TargetMode.ScanlineOrdering != DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED
&& TargetMode.ScanlineOrdering == mode.ScanlineOrdering;
testScaling |= TargetMode.Scaling != DXGI_MODE_SCALING_UNSPECIFIED
&& TargetMode.Scaling == mode.Scaling;
testFormat |= TargetMode.Format != DXGI_FORMAT_UNKNOWN
&& TargetMode.Format == mode.Format;
}
for (auto it = Modes.begin(); it != Modes.end(); ) {
bool skipMode = it->Stereo != TargetMode.Stereo;
if (testScanlineOrder)
skipMode |= it->ScanlineOrdering != TargetMode.ScanlineOrdering;
if (testScaling)
skipMode |= it->Scaling != TargetMode.Scaling;
if (testFormat)
skipMode |= it->Format != TargetMode.Format;
it = skipMode ? Modes.erase(it) : ++it;
}
// Filter by closest resolution
uint32_t minDiffResolution = 0;
if (TargetMode.Width) {
minDiffResolution = std::accumulate(
Modes.begin(), Modes.end(), std::numeric_limits<uint32_t>::max(),
[&TargetMode] (uint32_t current, const DXGI_MODE_DESC1& mode) {
uint32_t diff = std::abs(int32_t(TargetMode.Width - mode.Width))
+ std::abs(int32_t(TargetMode.Height - mode.Height));
return std::min(current, diff);
});
for (auto it = Modes.begin(); it != Modes.end(); ) {
uint32_t diff = std::abs(int32_t(TargetMode.Width - it->Width))
+ std::abs(int32_t(TargetMode.Height - it->Height));
bool skipMode = diff != minDiffResolution;
it = skipMode ? Modes.erase(it) : ++it;
}
}
// Filter by closest refresh rate
uint32_t minDiffRefreshRate = 0;
if (TargetMode.RefreshRate.Numerator && TargetMode.RefreshRate.Denominator) {
minDiffRefreshRate = std::accumulate(
Modes.begin(), Modes.end(), std::numeric_limits<uint64_t>::max(),
[&TargetMode] (uint64_t current, const DXGI_MODE_DESC1& mode) {
uint64_t rate = uint64_t(mode.RefreshRate.Numerator)
* uint64_t(TargetMode.RefreshRate.Denominator)
/ uint64_t(mode.RefreshRate.Denominator);
uint64_t diff = std::abs(int64_t(rate - uint64_t(TargetMode.RefreshRate.Numerator)));
return std::min(current, diff);
});
for (auto it = Modes.begin(); it != Modes.end(); ) {
uint64_t rate = uint64_t(it->RefreshRate.Numerator)
* uint64_t(TargetMode.RefreshRate.Denominator)
/ uint64_t(it->RefreshRate.Denominator);
uint64_t diff = std::abs(int64_t(rate - uint64_t(TargetMode.RefreshRate.Numerator)));
bool skipMode = diff != minDiffRefreshRate;
it = skipMode ? Modes.erase(it) : ++it;
}
}
}
void DxgiOutput::CacheMonitorData() {
// Try and find an existing monitor info.
DXGI_VK_MONITOR_DATA* pMonitorData;
if (SUCCEEDED(m_monitorInfo->AcquireMonitorData(m_monitor, &pMonitorData))) {
m_metadata = pMonitorData->DisplayMetadata;
m_monitorInfo->ReleaseMonitorData();
return;
}
// Init monitor info ourselves.
//
// If some other thread ends up beating us to it
// by another InitMonitorData, it doesn't really matter.
//
// The only thing we cache from this is the m_metadata which
// should be exactly the same.
// We don't store any pointers from the DXGI_VK_MONITOR_DATA
// sturcture, etc.
DXGI_VK_MONITOR_DATA monitorData = {};
// Query current display mode
wsi::WsiMode activeWsiMode = { };
wsi::getCurrentDisplayMode(m_monitor, &activeWsiMode);
// Get the display metadata + colorimetry
wsi::WsiEdidData edidData = wsi::getMonitorEdid(m_monitor);
std::optional<wsi::WsiDisplayMetadata> metadata = std::nullopt;
if (!edidData.empty())
metadata = wsi::parseColorimetryInfo(edidData);
if (metadata)
m_metadata = metadata.value();
else
Logger::err("DXGI: Failed to parse display metadata + colorimetry info, using blank.");
// Normalize either the display metadata we got back, or our
// blank one to get something sane here.
NormalizeDisplayMetadata(m_monitorInfo->DefaultColorSpace() != DXGI_COLOR_SPACE_RGB_FULL_G22_NONE_P709, m_metadata);
auto refreshPeriod = computeRefreshPeriod(
activeWsiMode.refreshRate.numerator,
activeWsiMode.refreshRate.denominator);
monitorData.FrameStats.SyncQPCTime.QuadPart = dxvk::high_resolution_clock::get_counter();
monitorData.FrameStats.SyncRefreshCount = computeRefreshCount(
dxvk::high_resolution_clock::time_point(),
dxvk::high_resolution_clock::get_time_from_counter(monitorData.FrameStats.SyncQPCTime.QuadPart),
refreshPeriod);
monitorData.FrameStats.PresentRefreshCount = monitorData.FrameStats.SyncRefreshCount;
monitorData.GammaCurve.Scale = { 1.0f, 1.0f, 1.0f };
monitorData.GammaCurve.Offset = { 0.0f, 0.0f, 0.0f };
monitorData.LastMode = ConvertDisplayMode(activeWsiMode);
monitorData.DisplayMetadata = m_metadata;
for (uint32_t i = 0; i < DXGI_VK_GAMMA_CP_COUNT; i++) {
const float value = GammaControlPointLocation(i);
monitorData.GammaCurve.GammaCurve[i] = { value, value, value };
}
m_monitorInfo->InitMonitorData(m_monitor, &monitorData);
}
}