mesa/src/gallium/drivers/llvmpipe/lp_test_arit.c

562 lines
13 KiB
C

/**************************************************************************
*
* Copyright 2011 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include "util/u_pointer.h"
#include "util/u_memory.h"
#include "util/u_math.h"
#include "util/u_cpu_detect.h"
#include "gallivm/lp_bld.h"
#include "gallivm/lp_bld_debug.h"
#include "gallivm/lp_bld_init.h"
#include "gallivm/lp_bld_arit.h"
#include "lp_test.h"
void
write_tsv_header(FILE *fp)
{
fprintf(fp,
"result\t"
"format\n");
fflush(fp);
}
typedef void (*unary_func_t)(float *out, const float *in);
/**
* Describe a test case of one unary function.
*/
struct unary_test_t
{
/*
* Test name -- name of the mathematical function under test.
*/
const char *name;
LLVMValueRef
(*builder)(struct lp_build_context *bld, LLVMValueRef a);
/*
* Reference (pure-C) function.
*/
float
(*ref)(float a);
/*
* Test values.
*/
const float *values;
unsigned num_values;
/*
* Required precision in bits.
*/
double precision;
};
static float negf(float x)
{
return -x;
}
static float sgnf(float x)
{
if (x > 0.0f) {
return 1.0f;
}
if (x < 0.0f) {
return -1.0f;
}
return 0.0f;
}
const float sgn_values[] = {
-INFINITY,
-60,
-4,
-2,
-1,
-1e-007,
0,
1e-007,
0.01,
0.1,
0.9,
0.99,
1,
2,
4,
60,
INFINITY,
NAN
};
const float exp2_values[] = {
-INFINITY,
-60,
-4,
-2,
-1,
-1e-007,
0,
1e-007,
0.01,
0.1,
0.9,
0.99,
1,
2,
4,
60,
INFINITY,
NAN
};
const float log2_values[] = {
#if 0
/*
* Smallest denormalized number; meant just for experimentation, but not
* validation.
*/
1.4012984643248171e-45,
#endif
-INFINITY,
0,
1e-007,
0.1,
0.5,
0.99,
1,
1.01,
1.1,
1.9,
1.99,
2,
4,
100000,
1e+018,
INFINITY,
NAN
};
static float rcpf(float x)
{
return 1.0/x;
}
const float rcp_values[] = {
-0.0, 0.0,
-1.0, 1.0,
-1e-007, 1e-007,
-4.0, 4.0,
-1e+035, -100000,
100000, 1e+035,
5.88e-39f, // denormal
#if (__STDC_VERSION__ >= 199901L)
INFINITY, -INFINITY,
#endif
};
static float rsqrtf(float x)
{
return 1.0/(float)sqrt(x);
}
const float rsqrt_values[] = {
// http://msdn.microsoft.com/en-us/library/windows/desktop/bb147346.aspx
0.0, // must yield infinity
1.0, // must yield 1.0
1e-007, 4.0,
100000, 1e+035,
5.88e-39f, // denormal
#if (__STDC_VERSION__ >= 199901L)
INFINITY,
#endif
};
const float sincos_values[] = {
-INFINITY,
-5*M_PI/4,
-4*M_PI/4,
-4*M_PI/4,
-3*M_PI/4,
-2*M_PI/4,
-1*M_PI/4,
1*M_PI/4,
2*M_PI/4,
3*M_PI/4,
4*M_PI/4,
5*M_PI/4,
INFINITY,
NAN
};
const float round_values[] = {
-10.0, -1, 0.0, 12.0,
-1.49, -0.25, 1.25, 2.51,
-0.99, -0.01, 0.01, 0.99,
-1.5, -0.5, 0.5, 1.5,
1.401298464324817e-45f, // smallest denormal
-1.401298464324817e-45f,
1.62981451e-08f,
-1.62981451e-08f,
1.62981451e15f, // large number not representable as 32bit int
-1.62981451e15f,
FLT_EPSILON,
-FLT_EPSILON,
1.0f - 0.5f*FLT_EPSILON,
-1.0f + FLT_EPSILON,
FLT_MAX,
-FLT_MAX
};
static float fractf(float x)
{
x -= floorf(x);
if (x >= 1.0f) {
// clamp to the largest number smaller than one
x = 1.0f - 0.5f*FLT_EPSILON;
}
return x;
}
const float fract_values[] = {
// http://en.wikipedia.org/wiki/IEEE_754-1985#Examples
0.0f,
-0.0f,
1.0f,
-1.0f,
0.5f,
-0.5f,
1.401298464324817e-45f, // smallest denormal
-1.401298464324817e-45f,
5.88e-39f, // middle denormal
1.18e-38f, // largest denormal
-1.18e-38f,
-1.62981451e-08f,
FLT_EPSILON,
-FLT_EPSILON,
1.0f - 0.5f*FLT_EPSILON,
-1.0f + FLT_EPSILON,
FLT_MAX,
-FLT_MAX
};
/*
* Unary test cases.
*/
#ifdef _MSC_VER
#define WRAP(func) \
static float \
wrap_ ## func(float x) \
{ \
return func(x); \
}
WRAP(expf)
WRAP(logf)
WRAP(sinf)
WRAP(cosf)
WRAP(floorf)
WRAP(ceilf)
#define expf wrap_expf
#define logf wrap_logf
#define sinf wrap_sinf
#define cosf wrap_cosf
#define floorf wrap_floorf
#define ceilf wrap_ceilf
#endif
static const struct unary_test_t
unary_tests[] = {
{"abs", &lp_build_abs, &fabsf, sgn_values, ARRAY_SIZE(sgn_values), 20.0 },
{"neg", &lp_build_negate, &negf, sgn_values, ARRAY_SIZE(sgn_values), 20.0 },
{"sgn", &lp_build_sgn, &sgnf, sgn_values, ARRAY_SIZE(sgn_values), 20.0 },
{"exp2", &lp_build_exp2, &exp2f, exp2_values, ARRAY_SIZE(exp2_values), 18.0 },
{"log2", &lp_build_log2_safe, &log2f, log2_values, ARRAY_SIZE(log2_values), 20.0 },
{"exp", &lp_build_exp, &expf, exp2_values, ARRAY_SIZE(exp2_values), 18.0 },
{"log", &lp_build_log_safe, &logf, log2_values, ARRAY_SIZE(log2_values), 20.0 },
{"rcp", &lp_build_rcp, &rcpf, rcp_values, ARRAY_SIZE(rcp_values), 20.0 },
{"rsqrt", &lp_build_rsqrt, &rsqrtf, rsqrt_values, ARRAY_SIZE(rsqrt_values), 20.0 },
{"sin", &lp_build_sin, &sinf, sincos_values, ARRAY_SIZE(sincos_values), 20.0 },
{"cos", &lp_build_cos, &cosf, sincos_values, ARRAY_SIZE(sincos_values), 20.0 },
{"sgn", &lp_build_sgn, &sgnf, sgn_values, ARRAY_SIZE(sgn_values), 20.0 },
{"round", &lp_build_round, &nearbyintf, round_values, ARRAY_SIZE(round_values), 24.0 },
{"trunc", &lp_build_trunc, &truncf, round_values, ARRAY_SIZE(round_values), 24.0 },
{"floor", &lp_build_floor, &floorf, round_values, ARRAY_SIZE(round_values), 24.0 },
{"ceil", &lp_build_ceil, &ceilf, round_values, ARRAY_SIZE(round_values), 24.0 },
{"fract", &lp_build_fract_safe, &fractf, fract_values, ARRAY_SIZE(fract_values), 24.0 },
};
/*
* Build LLVM function that exercises the unary operator builder.
*/
static LLVMValueRef
build_unary_test_func(struct gallivm_state *gallivm,
const struct unary_test_t *test,
unsigned length,
const char *test_name)
{
struct lp_type type = lp_type_float_vec(32, length * 32);
LLVMContextRef context = gallivm->context;
LLVMModuleRef module = gallivm->module;
LLVMTypeRef vf32t = lp_build_vec_type(gallivm, type);
LLVMTypeRef args[2] = { LLVMPointerType(vf32t, 0), LLVMPointerType(vf32t, 0) };
LLVMValueRef func = LLVMAddFunction(module, test_name,
LLVMFunctionType(LLVMVoidTypeInContext(context),
args, ARRAY_SIZE(args), 0));
LLVMValueRef arg0 = LLVMGetParam(func, 0);
LLVMValueRef arg1 = LLVMGetParam(func, 1);
LLVMBuilderRef builder = gallivm->builder;
LLVMBasicBlockRef block = LLVMAppendBasicBlockInContext(context, func, "entry");
LLVMValueRef ret;
struct lp_build_context bld;
lp_build_context_init(&bld, gallivm, type);
LLVMSetFunctionCallConv(func, LLVMCCallConv);
LLVMPositionBuilderAtEnd(builder, block);
arg1 = LLVMBuildLoad(builder, arg1, "");
ret = test->builder(&bld, arg1);
LLVMBuildStore(builder, ret, arg0);
LLVMBuildRetVoid(builder);
gallivm_verify_function(gallivm, func);
return func;
}
/*
* Flush denorms to zero.
*/
static float
flush_denorm_to_zero(float val)
{
/*
* If we have a denorm manually set it to (+-)0.
* This is because the reference may or may not do the right thing
* otherwise because we want the result according to treating all
* denormals as zero (FTZ/DAZ). Not using fpclassify because
* a) some compilers are stuck at c89 (msvc)
* b) not sure it reliably works with non-standard ftz/daz mode
* And, right now we only disable denorms with jited code on x86/sse
* (albeit this should be classified as a bug) so to get results which
* match we must only flush them to zero here in that case too.
*/
union fi fi_val;
fi_val.f = val;
#if defined(PIPE_ARCH_SSE)
if (util_get_cpu_caps()->has_sse) {
if ((fi_val.ui & 0x7f800000) == 0) {
fi_val.ui &= 0xff800000;
}
}
#endif
return fi_val.f;
}
/*
* Test one LLVM unary arithmetic builder function.
*/
static boolean
test_unary(unsigned verbose, FILE *fp, const struct unary_test_t *test, unsigned length)
{
char test_name[128];
snprintf(test_name, sizeof test_name, "%s.v%u", test->name, length);
LLVMContextRef context;
struct gallivm_state *gallivm;
LLVMValueRef test_func;
unary_func_t test_func_jit;
boolean success = TRUE;
int i, j;
float *in, *out;
in = align_malloc(length * 4, length * 4);
out = align_malloc(length * 4, length * 4);
/* random NaNs or 0s could wreak havoc */
for (i = 0; i < length; i++) {
in[i] = 1.0;
}
context = LLVMContextCreate();
gallivm = gallivm_create("test_module", context, NULL);
test_func = build_unary_test_func(gallivm, test, length, test_name);
gallivm_compile_module(gallivm);
test_func_jit = (unary_func_t) gallivm_jit_function(gallivm, test_func);
gallivm_free_ir(gallivm);
for (j = 0; j < (test->num_values + length - 1) / length; j++) {
int num_vals = ((j + 1) * length <= test->num_values) ? length :
test->num_values % length;
for (i = 0; i < num_vals; ++i) {
in[i] = test->values[i+j*length];
}
test_func_jit(out, in);
for (i = 0; i < num_vals; ++i) {
float testval, ref;
double error, precision;
boolean expected_pass = TRUE;
bool pass;
testval = flush_denorm_to_zero(in[i]);
ref = flush_denorm_to_zero(test->ref(testval));
if (util_inf_sign(ref) && util_inf_sign(out[i]) == util_inf_sign(ref)) {
error = 0;
} else {
error = fabs(out[i] - ref);
}
precision = error ? -log2(error/fabs(ref)) : FLT_MANT_DIG;
pass = precision >= test->precision;
if (isnan(ref)) {
continue;
}
if (!util_get_cpu_caps()->has_neon &&
!util_cpu_caps_has_zarch() &&
test->ref == &nearbyintf && length == 2 &&
ref != roundf(testval)) {
/* FIXME: The generic (non SSE) path in lp_build_iround, which is
* always taken for length==2 regardless of native round support,
* does not round to even. */
expected_pass = FALSE;
}
if (test->ref == &expf && util_inf_sign(testval) == -1) {
/* Some older 64-bit MSVCRT versions return -inf instead of 0
* for expf(-inf). As detecting the VC runtime version is
* non-trivial, just ignore the test result. */
#if defined(_MSC_VER) && defined(_WIN64)
expected_pass = pass;
#endif
}
if (pass != expected_pass || verbose) {
printf("%s(%.9g): ref = %.9g, out = %.9g, precision = %f bits, %s%s\n",
test_name, in[i], ref, out[i], precision,
pass ? "PASS" : "FAIL",
!expected_pass ? (pass ? " (unexpected)" : " (expected)" ): "");
fflush(stdout);
}
if (pass != expected_pass) {
success = FALSE;
}
}
}
gallivm_destroy(gallivm);
LLVMContextDispose(context);
align_free(in);
align_free(out);
return success;
}
boolean
test_all(unsigned verbose, FILE *fp)
{
boolean success = TRUE;
int i;
for (i = 0; i < ARRAY_SIZE(unary_tests); ++i) {
unsigned max_length = lp_native_vector_width / 32;
unsigned length;
for (length = 1; length <= max_length; length *= 2) {
if (!test_unary(verbose, fp, &unary_tests[i], length)) {
success = FALSE;
}
}
}
return success;
}
boolean
test_some(unsigned verbose, FILE *fp,
unsigned long n)
{
/*
* Not randomly generated test cases, so test all.
*/
return test_all(verbose, fp);
}
boolean
test_single(unsigned verbose, FILE *fp)
{
return TRUE;
}