mesa/src/intel/vulkan/genX_cmd_buffer.c

7447 lines
295 KiB
C

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include "anv_private.h"
#include "anv_measure.h"
#include "vk_format.h"
#include "vk_render_pass.h"
#include "vk_util.h"
#include "util/fast_idiv_by_const.h"
#include "common/intel_aux_map.h"
#include "common/intel_l3_config.h"
#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"
#include "genxml/gen_rt_pack.h"
#include "common/intel_guardband.h"
#include "compiler/brw_prim.h"
#include "nir/nir_xfb_info.h"
#include "ds/intel_tracepoints.h"
/* We reserve :
* - GPR 14 for secondary command buffer returns
* - GPR 15 for conditional rendering
*/
#define MI_BUILDER_NUM_ALLOC_GPRS 14
#define __gen_get_batch_dwords anv_batch_emit_dwords
#define __gen_address_offset anv_address_add
#define __gen_get_batch_address(b, a) anv_batch_address(b, a)
#include "common/mi_builder.h"
static void genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
uint32_t pipeline);
static enum anv_pipe_bits
convert_pc_to_bits(struct GENX(PIPE_CONTROL) *pc) {
enum anv_pipe_bits bits = 0;
bits |= (pc->DepthCacheFlushEnable) ? ANV_PIPE_DEPTH_CACHE_FLUSH_BIT : 0;
bits |= (pc->DCFlushEnable) ? ANV_PIPE_DATA_CACHE_FLUSH_BIT : 0;
#if GFX_VERx10 >= 125
bits |= (pc->PSSStallSyncEnable) ? ANV_PIPE_PSS_STALL_SYNC_BIT : 0;
#endif
#if GFX_VER >= 12
bits |= (pc->TileCacheFlushEnable) ? ANV_PIPE_TILE_CACHE_FLUSH_BIT : 0;
bits |= (pc->HDCPipelineFlushEnable) ? ANV_PIPE_HDC_PIPELINE_FLUSH_BIT : 0;
#endif
bits |= (pc->RenderTargetCacheFlushEnable) ? ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT : 0;
bits |= (pc->VFCacheInvalidationEnable) ? ANV_PIPE_VF_CACHE_INVALIDATE_BIT : 0;
bits |= (pc->StateCacheInvalidationEnable) ? ANV_PIPE_STATE_CACHE_INVALIDATE_BIT : 0;
bits |= (pc->ConstantCacheInvalidationEnable) ? ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT : 0;
bits |= (pc->TextureCacheInvalidationEnable) ? ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT : 0;
bits |= (pc->InstructionCacheInvalidateEnable) ? ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT : 0;
bits |= (pc->StallAtPixelScoreboard) ? ANV_PIPE_STALL_AT_SCOREBOARD_BIT : 0;
bits |= (pc->DepthStallEnable) ? ANV_PIPE_DEPTH_STALL_BIT : 0;
bits |= (pc->CommandStreamerStallEnable) ? ANV_PIPE_CS_STALL_BIT : 0;
return bits;
}
#define anv_debug_dump_pc(pc) \
if (INTEL_DEBUG(DEBUG_PIPE_CONTROL)) { \
fputs("pc: emit PC=( ", stderr); \
anv_dump_pipe_bits(convert_pc_to_bits(&(pc))); \
fprintf(stderr, ") reason: %s\n", __FUNCTION__); \
}
static bool
is_render_queue_cmd_buffer(const struct anv_cmd_buffer *cmd_buffer)
{
struct anv_queue_family *queue_family = cmd_buffer->queue_family;
return (queue_family->queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0;
}
void
genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_device *device = cmd_buffer->device;
uint32_t mocs = isl_mocs(&device->isl_dev, 0, false);
/* If we are emitting a new state base address we probably need to re-emit
* binding tables.
*/
cmd_buffer->state.descriptors_dirty |= ~0;
#if GFX_VERx10 >= 125
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.CommandStreamerStallEnable = true;
anv_debug_dump_pc(pc);
}
anv_batch_emit(
&cmd_buffer->batch, GENX(3DSTATE_BINDING_TABLE_POOL_ALLOC), btpa) {
btpa.BindingTablePoolBaseAddress =
anv_cmd_buffer_surface_base_address(cmd_buffer);
btpa.BindingTablePoolBufferSize = BINDING_TABLE_POOL_BLOCK_SIZE / 4096;
btpa.MOCS = mocs;
}
#else /* GFX_VERx10 < 125 */
/* Emit a render target cache flush.
*
* This isn't documented anywhere in the PRM. However, it seems to be
* necessary prior to changing the surface state base address. Without
* this, we get GPU hangs when using multi-level command buffers which
* clear depth, reset state base address, and then go render stuff.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
#if GFX_VER >= 12
pc.HDCPipelineFlushEnable = true;
#else
pc.DCFlushEnable = true;
#endif
pc.RenderTargetCacheFlushEnable = true;
pc.CommandStreamerStallEnable = true;
anv_debug_dump_pc(pc);
}
#if GFX_VERx10 == 120
/* Wa_1607854226:
*
* Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
* mode by putting the pipeline temporarily in 3D mode.
*/
uint32_t gfx12_wa_pipeline = cmd_buffer->state.current_pipeline;
genX(flush_pipeline_select_3d)(cmd_buffer);
#endif
anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
sba.GeneralStateMOCS = mocs;
sba.GeneralStateBaseAddressModifyEnable = true;
sba.StatelessDataPortAccessMOCS = mocs;
sba.SurfaceStateBaseAddress =
anv_cmd_buffer_surface_base_address(cmd_buffer);
sba.SurfaceStateMOCS = mocs;
sba.SurfaceStateBaseAddressModifyEnable = true;
sba.DynamicStateBaseAddress =
(struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 };
sba.DynamicStateMOCS = mocs;
sba.DynamicStateBaseAddressModifyEnable = true;
sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
sba.IndirectObjectMOCS = mocs;
sba.IndirectObjectBaseAddressModifyEnable = true;
sba.InstructionBaseAddress =
(struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 };
sba.InstructionMOCS = mocs;
sba.InstructionBaseAddressModifyEnable = true;
# if (GFX_VER >= 8)
/* Broadwell requires that we specify a buffer size for a bunch of
* these fields. However, since we will be growing the BO's live, we
* just set them all to the maximum.
*/
sba.GeneralStateBufferSize = 0xfffff;
sba.IndirectObjectBufferSize = 0xfffff;
if (anv_use_relocations(device->physical)) {
sba.DynamicStateBufferSize = 0xfffff;
sba.InstructionBufferSize = 0xfffff;
} else {
/* With softpin, we use fixed addresses so we actually know how big
* our base addresses are.
*/
sba.DynamicStateBufferSize = DYNAMIC_STATE_POOL_SIZE / 4096;
sba.InstructionBufferSize = INSTRUCTION_STATE_POOL_SIZE / 4096;
}
sba.GeneralStateBufferSizeModifyEnable = true;
sba.IndirectObjectBufferSizeModifyEnable = true;
sba.DynamicStateBufferSizeModifyEnable = true;
sba.InstructionBuffersizeModifyEnable = true;
# else
/* On gfx7, we have upper bounds instead. According to the docs,
* setting an upper bound of zero means that no bounds checking is
* performed so, in theory, we should be able to leave them zero.
* However, border color is broken and the GPU bounds-checks anyway.
* To avoid this and other potential problems, we may as well set it
* for everything.
*/
sba.GeneralStateAccessUpperBound =
(struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
sba.GeneralStateAccessUpperBoundModifyEnable = true;
sba.DynamicStateAccessUpperBound =
(struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
sba.DynamicStateAccessUpperBoundModifyEnable = true;
sba.InstructionAccessUpperBound =
(struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
sba.InstructionAccessUpperBoundModifyEnable = true;
# endif
# if (GFX_VER >= 9)
sba.BindlessSurfaceStateBaseAddress =
(struct anv_address) { device->surface_state_pool.block_pool.bo, 0 };
sba.BindlessSurfaceStateSize = (1 << 20) - 1;
sba.BindlessSurfaceStateMOCS = mocs;
sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
# endif
# if (GFX_VER >= 10)
sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
sba.BindlessSamplerStateMOCS = mocs;
sba.BindlessSamplerStateBaseAddressModifyEnable = true;
sba.BindlessSamplerStateBufferSize = 0;
# endif
}
#if GFX_VERx10 == 120
/* Wa_1607854226:
*
* Put the pipeline back into its current mode.
*/
if (gfx12_wa_pipeline != UINT32_MAX)
genX(flush_pipeline_select)(cmd_buffer, gfx12_wa_pipeline);
#endif
#endif /* GFX_VERx10 < 125 */
/* After re-setting the surface state base address, we have to do some
* cache flushing so that the sampler engine will pick up the new
* SURFACE_STATE objects and binding tables. From the Broadwell PRM,
* Shared Function > 3D Sampler > State > State Caching (page 96):
*
* Coherency with system memory in the state cache, like the texture
* cache is handled partially by software. It is expected that the
* command stream or shader will issue Cache Flush operation or
* Cache_Flush sampler message to ensure that the L1 cache remains
* coherent with system memory.
*
* [...]
*
* Whenever the value of the Dynamic_State_Base_Addr,
* Surface_State_Base_Addr are altered, the L1 state cache must be
* invalidated to ensure the new surface or sampler state is fetched
* from system memory.
*
* The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
* which, according the PIPE_CONTROL instruction documentation in the
* Broadwell PRM:
*
* Setting this bit is independent of any other bit in this packet.
* This bit controls the invalidation of the L1 and L2 state caches
* at the top of the pipe i.e. at the parsing time.
*
* Unfortunately, experimentation seems to indicate that state cache
* invalidation through a PIPE_CONTROL does nothing whatsoever in
* regards to surface state and binding tables. In stead, it seems that
* invalidating the texture cache is what is actually needed.
*
* XXX: As far as we have been able to determine through
* experimentation, shows that flush the texture cache appears to be
* sufficient. The theory here is that all of the sampling/rendering
* units cache the binding table in the texture cache. However, we have
* yet to be able to actually confirm this.
*
* Wa_14013910100:
*
* "DG2 128/256/512-A/B: S/W must program STATE_BASE_ADDRESS command twice
* or program pipe control with Instruction cache invalidate post
* STATE_BASE_ADDRESS command"
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.TextureCacheInvalidationEnable = true;
pc.ConstantCacheInvalidationEnable = true;
pc.StateCacheInvalidationEnable = true;
#if GFX_VERx10 == 125
pc.InstructionCacheInvalidateEnable = true;
#endif
anv_debug_dump_pc(pc);
}
}
static void
add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
struct anv_state state, struct anv_address addr)
{
VkResult result;
if (anv_use_relocations(cmd_buffer->device->physical)) {
const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
result = anv_reloc_list_add(&cmd_buffer->surface_relocs,
&cmd_buffer->vk.pool->alloc,
state.offset + isl_dev->ss.addr_offset,
addr.bo, addr.offset, NULL);
} else {
result = anv_reloc_list_add_bo(&cmd_buffer->surface_relocs,
&cmd_buffer->vk.pool->alloc,
addr.bo);
}
if (unlikely(result != VK_SUCCESS))
anv_batch_set_error(&cmd_buffer->batch, result);
}
static void
add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
struct anv_surface_state state)
{
const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
assert(!anv_address_is_null(state.address));
add_surface_reloc(cmd_buffer, state.state, state.address);
if (!anv_address_is_null(state.aux_address)) {
VkResult result =
anv_reloc_list_add(&cmd_buffer->surface_relocs,
&cmd_buffer->vk.pool->alloc,
state.state.offset + isl_dev->ss.aux_addr_offset,
state.aux_address.bo,
state.aux_address.offset,
NULL);
if (result != VK_SUCCESS)
anv_batch_set_error(&cmd_buffer->batch, result);
}
if (!anv_address_is_null(state.clear_address)) {
VkResult result =
anv_reloc_list_add(&cmd_buffer->surface_relocs,
&cmd_buffer->vk.pool->alloc,
state.state.offset +
isl_dev->ss.clear_color_state_offset,
state.clear_address.bo,
state.clear_address.offset,
NULL);
if (result != VK_SUCCESS)
anv_batch_set_error(&cmd_buffer->batch, result);
}
}
static bool
isl_color_value_requires_conversion(union isl_color_value color,
const struct isl_surf *surf,
const struct isl_view *view)
{
if (surf->format == view->format && isl_swizzle_is_identity(view->swizzle))
return false;
uint32_t surf_pack[4] = { 0, 0, 0, 0 };
isl_color_value_pack(&color, surf->format, surf_pack);
uint32_t view_pack[4] = { 0, 0, 0, 0 };
union isl_color_value swiz_color =
isl_color_value_swizzle_inv(color, view->swizzle);
isl_color_value_pack(&swiz_color, view->format, view_pack);
return memcmp(surf_pack, view_pack, sizeof(surf_pack)) != 0;
}
static bool
anv_can_fast_clear_color_view(struct anv_device * device,
struct anv_image_view *iview,
VkImageLayout layout,
union isl_color_value clear_color,
uint32_t num_layers,
VkRect2D render_area)
{
if (iview->planes[0].isl.base_array_layer >=
anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
iview->planes[0].isl.base_level))
return false;
/* Start by getting the fast clear type. We use the first subpass
* layout here because we don't want to fast-clear if the first subpass
* to use the attachment can't handle fast-clears.
*/
enum anv_fast_clear_type fast_clear_type =
anv_layout_to_fast_clear_type(&device->info, iview->image,
VK_IMAGE_ASPECT_COLOR_BIT,
layout);
switch (fast_clear_type) {
case ANV_FAST_CLEAR_NONE:
return false;
case ANV_FAST_CLEAR_DEFAULT_VALUE:
if (!isl_color_value_is_zero(clear_color, iview->planes[0].isl.format))
return false;
break;
case ANV_FAST_CLEAR_ANY:
break;
}
/* Potentially, we could do partial fast-clears but doing so has crazy
* alignment restrictions. It's easier to just restrict to full size
* fast clears for now.
*/
if (render_area.offset.x != 0 ||
render_area.offset.y != 0 ||
render_area.extent.width != iview->vk.extent.width ||
render_area.extent.height != iview->vk.extent.height)
return false;
/* On Broadwell and earlier, we can only handle 0/1 clear colors */
if (GFX_VER <= 8 &&
!isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format))
return false;
/* If the clear color is one that would require non-trivial format
* conversion on resolve, we don't bother with the fast clear. This
* shouldn't be common as most clear colors are 0/1 and the most common
* format re-interpretation is for sRGB.
*/
if (isl_color_value_requires_conversion(clear_color,
&iview->image->planes[0].primary_surface.isl,
&iview->planes[0].isl)) {
anv_perf_warn(VK_LOG_OBJS(&iview->vk.base),
"Cannot fast-clear to colors which would require "
"format conversion on resolve");
return false;
}
/* We only allow fast clears to the first slice of an image (level 0,
* layer 0) and only for the entire slice. This guarantees us that, at
* any given time, there is only one clear color on any given image at
* any given time. At the time of our testing (Jan 17, 2018), there
* were no known applications which would benefit from fast-clearing
* more than just the first slice.
*/
if (iview->planes[0].isl.base_level > 0 ||
iview->planes[0].isl.base_array_layer > 0) {
anv_perf_warn(VK_LOG_OBJS(&iview->image->vk.base),
"Rendering with multi-lod or multi-layer framebuffer "
"with LOAD_OP_LOAD and baseMipLevel > 0 or "
"baseArrayLayer > 0. Not fast clearing.");
return false;
}
if (num_layers > 1) {
anv_perf_warn(VK_LOG_OBJS(&iview->image->vk.base),
"Rendering to a multi-layer framebuffer with "
"LOAD_OP_CLEAR. Only fast-clearing the first slice");
}
return true;
}
static bool
anv_can_hiz_clear_ds_view(struct anv_device *device,
const struct anv_image_view *iview,
VkImageLayout layout,
VkImageAspectFlags clear_aspects,
float depth_clear_value,
VkRect2D render_area)
{
/* We don't do any HiZ or depth fast-clears on gfx7 yet */
if (GFX_VER == 7)
return false;
/* If we're just clearing stencil, we can always HiZ clear */
if (!(clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
return true;
/* We must have depth in order to have HiZ */
if (!(iview->image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
return false;
const enum isl_aux_usage clear_aux_usage =
anv_layout_to_aux_usage(&device->info, iview->image,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
layout);
if (!blorp_can_hiz_clear_depth(&device->info,
&iview->image->planes[0].primary_surface.isl,
clear_aux_usage,
iview->planes[0].isl.base_level,
iview->planes[0].isl.base_array_layer,
render_area.offset.x,
render_area.offset.y,
render_area.offset.x +
render_area.extent.width,
render_area.offset.y +
render_area.extent.height))
return false;
if (depth_clear_value != ANV_HZ_FC_VAL)
return false;
/* Only gfx9+ supports returning ANV_HZ_FC_VAL when sampling a fast-cleared
* portion of a HiZ buffer. Testing has revealed that Gfx8 only supports
* returning 0.0f. Gens prior to gfx8 do not support this feature at all.
*/
if (GFX_VER == 8 && anv_can_sample_with_hiz(&device->info, iview->image))
return false;
/* If we got here, then we can fast clear */
return true;
}
#define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
#if GFX_VER == 12
static void
anv_image_init_aux_tt(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
uint32_t base_level, uint32_t level_count,
uint32_t base_layer, uint32_t layer_count)
{
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
const struct anv_surface *surface = &image->planes[plane].primary_surface;
uint64_t base_address =
anv_address_physical(anv_image_address(image, &surface->memory_range));
const struct isl_surf *isl_surf = &image->planes[plane].primary_surface.isl;
uint64_t format_bits = intel_aux_map_format_bits_for_isl_surf(isl_surf);
/* We're about to live-update the AUX-TT. We really don't want anyone else
* trying to read it while we're doing this. We could probably get away
* with not having this stall in some cases if we were really careful but
* it's better to play it safe. Full stall the GPU.
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_END_OF_PIPE_SYNC_BIT,
"before update AUX-TT");
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
struct mi_builder b;
mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
for (uint32_t a = 0; a < layer_count; a++) {
const uint32_t layer = base_layer + a;
uint64_t start_offset_B = UINT64_MAX, end_offset_B = 0;
for (uint32_t l = 0; l < level_count; l++) {
const uint32_t level = base_level + l;
uint32_t logical_array_layer, logical_z_offset_px;
if (image->vk.image_type == VK_IMAGE_TYPE_3D) {
logical_array_layer = 0;
/* If the given miplevel does not have this layer, then any higher
* miplevels won't either because miplevels only get smaller the
* higher the LOD.
*/
assert(layer < image->vk.extent.depth);
if (layer >= anv_minify(image->vk.extent.depth, level))
break;
logical_z_offset_px = layer;
} else {
assert(layer < image->vk.array_layers);
logical_array_layer = layer;
logical_z_offset_px = 0;
}
uint64_t slice_start_offset_B, slice_end_offset_B;
isl_surf_get_image_range_B_tile(isl_surf, level,
logical_array_layer,
logical_z_offset_px,
&slice_start_offset_B,
&slice_end_offset_B);
start_offset_B = MIN2(start_offset_B, slice_start_offset_B);
end_offset_B = MAX2(end_offset_B, slice_end_offset_B);
}
/* Aux operates 64K at a time */
start_offset_B = align_down_u64(start_offset_B, 64 * 1024);
end_offset_B = align_u64(end_offset_B, 64 * 1024);
for (uint64_t offset = start_offset_B;
offset < end_offset_B; offset += 64 * 1024) {
uint64_t address = base_address + offset;
uint64_t aux_entry_addr64, *aux_entry_map;
aux_entry_map = intel_aux_map_get_entry(cmd_buffer->device->aux_map_ctx,
address, &aux_entry_addr64);
assert(!anv_use_relocations(cmd_buffer->device->physical));
struct anv_address aux_entry_address = {
.bo = NULL,
.offset = aux_entry_addr64,
};
const uint64_t old_aux_entry = READ_ONCE(*aux_entry_map);
uint64_t new_aux_entry =
(old_aux_entry & INTEL_AUX_MAP_ADDRESS_MASK) | format_bits;
if (isl_aux_usage_has_ccs(image->planes[plane].aux_usage))
new_aux_entry |= INTEL_AUX_MAP_ENTRY_VALID_BIT;
mi_store(&b, mi_mem64(aux_entry_address), mi_imm(new_aux_entry));
}
}
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_AUX_TABLE_INVALIDATE_BIT,
"after update AUX-TT");
}
#endif /* GFX_VER == 12 */
/* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
* the initial layout is undefined, the HiZ buffer and depth buffer will
* represent the same data at the end of this operation.
*/
static void
transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
uint32_t base_layer, uint32_t layer_count,
VkImageLayout initial_layout,
VkImageLayout final_layout,
bool will_full_fast_clear)
{
const uint32_t depth_plane =
anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_DEPTH_BIT);
if (image->planes[depth_plane].aux_usage == ISL_AUX_USAGE_NONE)
return;
#if GFX_VER == 12
if ((initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) &&
cmd_buffer->device->physical->has_implicit_ccs &&
cmd_buffer->device->info.has_aux_map) {
anv_image_init_aux_tt(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
0, 1, base_layer, layer_count);
}
#endif
/* If will_full_fast_clear is set, the caller promises to fast-clear the
* largest portion of the specified range as it can. For depth images,
* that means the entire image because we don't support multi-LOD HiZ.
*/
assert(image->planes[0].primary_surface.isl.levels == 1);
if (will_full_fast_clear)
return;
const enum isl_aux_state initial_state =
anv_layout_to_aux_state(&cmd_buffer->device->info, image,
VK_IMAGE_ASPECT_DEPTH_BIT,
initial_layout);
const enum isl_aux_state final_state =
anv_layout_to_aux_state(&cmd_buffer->device->info, image,
VK_IMAGE_ASPECT_DEPTH_BIT,
final_layout);
const bool initial_depth_valid =
isl_aux_state_has_valid_primary(initial_state);
const bool initial_hiz_valid =
isl_aux_state_has_valid_aux(initial_state);
const bool final_needs_depth =
isl_aux_state_has_valid_primary(final_state);
const bool final_needs_hiz =
isl_aux_state_has_valid_aux(final_state);
/* Getting into the pass-through state for Depth is tricky and involves
* both a resolve and an ambiguate. We don't handle that state right now
* as anv_layout_to_aux_state never returns it.
*/
assert(final_state != ISL_AUX_STATE_PASS_THROUGH);
if (final_needs_depth && !initial_depth_valid) {
assert(initial_hiz_valid);
anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
0, base_layer, layer_count, ISL_AUX_OP_FULL_RESOLVE);
} else if (final_needs_hiz && !initial_hiz_valid) {
assert(initial_depth_valid);
anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
0, base_layer, layer_count, ISL_AUX_OP_AMBIGUATE);
}
}
#if GFX_VER == 7
static inline bool
vk_image_layout_stencil_write_optimal(VkImageLayout layout)
{
return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL ||
layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL;
}
#endif
/* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
* the initial layout is undefined, the HiZ buffer and depth buffer will
* represent the same data at the end of this operation.
*/
static void
transition_stencil_buffer(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
uint32_t base_level, uint32_t level_count,
uint32_t base_layer, uint32_t layer_count,
VkImageLayout initial_layout,
VkImageLayout final_layout,
bool will_full_fast_clear)
{
#if GFX_VER == 7
const uint32_t plane =
anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_STENCIL_BIT);
/* On gfx7, we have to store a texturable version of the stencil buffer in
* a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
* forth at strategic points. Stencil writes are only allowed in following
* layouts:
*
* - VK_IMAGE_LAYOUT_GENERAL
* - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
* - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
* - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
* - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL
*
* For general, we have no nice opportunity to transition so we do the copy
* to the shadow unconditionally at the end of the subpass. For transfer
* destinations, we can update it as part of the transfer op. For the other
* layouts, we delay the copy until a transition into some other layout.
*/
if (anv_surface_is_valid(&image->planes[plane].shadow_surface) &&
vk_image_layout_stencil_write_optimal(initial_layout) &&
!vk_image_layout_stencil_write_optimal(final_layout)) {
anv_image_copy_to_shadow(cmd_buffer, image,
VK_IMAGE_ASPECT_STENCIL_BIT,
base_level, level_count,
base_layer, layer_count);
}
#elif GFX_VER == 12
const uint32_t plane =
anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_STENCIL_BIT);
if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
return;
if ((initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) &&
cmd_buffer->device->physical->has_implicit_ccs &&
cmd_buffer->device->info.has_aux_map) {
anv_image_init_aux_tt(cmd_buffer, image, VK_IMAGE_ASPECT_STENCIL_BIT,
base_level, level_count, base_layer, layer_count);
/* If will_full_fast_clear is set, the caller promises to fast-clear the
* largest portion of the specified range as it can.
*/
if (will_full_fast_clear)
return;
for (uint32_t l = 0; l < level_count; l++) {
const uint32_t level = base_level + l;
const VkRect2D clear_rect = {
.offset.x = 0,
.offset.y = 0,
.extent.width = anv_minify(image->vk.extent.width, level),
.extent.height = anv_minify(image->vk.extent.height, level),
};
uint32_t aux_layers =
anv_image_aux_layers(image, VK_IMAGE_ASPECT_STENCIL_BIT, level);
uint32_t level_layer_count =
MIN2(layer_count, aux_layers - base_layer);
/* From Bspec's 3DSTATE_STENCIL_BUFFER_BODY > Stencil Compression
* Enable:
*
* "When enabled, Stencil Buffer needs to be initialized via
* stencil clear (HZ_OP) before any renderpass."
*/
anv_image_hiz_clear(cmd_buffer, image, VK_IMAGE_ASPECT_STENCIL_BIT,
level, base_layer, level_layer_count,
clear_rect, 0 /* Stencil clear value */);
}
}
#endif
}
#define MI_PREDICATE_SRC0 0x2400
#define MI_PREDICATE_SRC1 0x2408
#define MI_PREDICATE_RESULT 0x2418
static void
set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
uint32_t level,
uint32_t base_layer, uint32_t layer_count,
bool compressed)
{
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
/* We only have compression tracking for CCS_E */
if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
return;
for (uint32_t a = 0; a < layer_count; a++) {
uint32_t layer = base_layer + a;
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
image, aspect,
level, layer);
sdi.ImmediateData = compressed ? UINT32_MAX : 0;
}
}
}
static void
set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
enum anv_fast_clear_type fast_clear)
{
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
image, aspect);
sdi.ImmediateData = fast_clear;
}
/* Whenever we have fast-clear, we consider that slice to be compressed.
* This makes building predicates much easier.
*/
if (fast_clear != ANV_FAST_CLEAR_NONE)
set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
}
/* This is only really practical on haswell and above because it requires
* MI math in order to get it correct.
*/
#if GFX_VERx10 >= 75
static void
anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
uint32_t level, uint32_t array_layer,
enum isl_aux_op resolve_op,
enum anv_fast_clear_type fast_clear_supported)
{
struct mi_builder b;
mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
const struct mi_value fast_clear_type =
mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
image, aspect));
if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
/* In this case, we're doing a full resolve which means we want the
* resolve to happen if any compression (including fast-clears) is
* present.
*
* In order to simplify the logic a bit, we make the assumption that,
* if the first slice has been fast-cleared, it is also marked as
* compressed. See also set_image_fast_clear_state.
*/
const struct mi_value compression_state =
mi_mem32(anv_image_get_compression_state_addr(cmd_buffer->device,
image, aspect,
level, array_layer));
mi_store(&b, mi_reg64(MI_PREDICATE_SRC0), compression_state);
mi_store(&b, compression_state, mi_imm(0));
if (level == 0 && array_layer == 0) {
/* If the predicate is true, we want to write 0 to the fast clear type
* and, if it's false, leave it alone. We can do this by writing
*
* clear_type = clear_type & ~predicate;
*/
struct mi_value new_fast_clear_type =
mi_iand(&b, fast_clear_type,
mi_inot(&b, mi_reg64(MI_PREDICATE_SRC0)));
mi_store(&b, fast_clear_type, new_fast_clear_type);
}
} else if (level == 0 && array_layer == 0) {
/* In this case, we are doing a partial resolve to get rid of fast-clear
* colors. We don't care about the compression state but we do care
* about how much fast clear is allowed by the final layout.
*/
assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
/* We need to compute (fast_clear_supported < image->fast_clear) */
struct mi_value pred =
mi_ult(&b, mi_imm(fast_clear_supported), fast_clear_type);
mi_store(&b, mi_reg64(MI_PREDICATE_SRC0), mi_value_ref(&b, pred));
/* If the predicate is true, we want to write 0 to the fast clear type
* and, if it's false, leave it alone. We can do this by writing
*
* clear_type = clear_type & ~predicate;
*/
struct mi_value new_fast_clear_type =
mi_iand(&b, fast_clear_type, mi_inot(&b, pred));
mi_store(&b, fast_clear_type, new_fast_clear_type);
} else {
/* In this case, we're trying to do a partial resolve on a slice that
* doesn't have clear color. There's nothing to do.
*/
assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
return;
}
/* Set src1 to 0 and use a != condition */
mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0));
anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
mip.LoadOperation = LOAD_LOADINV;
mip.CombineOperation = COMBINE_SET;
mip.CompareOperation = COMPARE_SRCS_EQUAL;
}
}
#endif /* GFX_VERx10 >= 75 */
#if GFX_VER <= 8
static void
anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
uint32_t level, uint32_t array_layer,
enum isl_aux_op resolve_op,
enum anv_fast_clear_type fast_clear_supported)
{
struct mi_builder b;
mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
struct mi_value fast_clear_type_mem =
mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
image, aspect));
/* This only works for partial resolves and only when the clear color is
* all or nothing. On the upside, this emits less command streamer code
* and works on Ivybridge and Bay Trail.
*/
assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
/* We don't support fast clears on anything other than the first slice. */
if (level > 0 || array_layer > 0)
return;
/* On gfx8, we don't have a concept of default clear colors because we
* can't sample from CCS surfaces. It's enough to just load the fast clear
* state into the predicate register.
*/
mi_store(&b, mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem);
mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0));
mi_store(&b, fast_clear_type_mem, mi_imm(0));
anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
mip.LoadOperation = LOAD_LOADINV;
mip.CombineOperation = COMBINE_SET;
mip.CompareOperation = COMPARE_SRCS_EQUAL;
}
}
#endif /* GFX_VER <= 8 */
static void
anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
enum isl_format format,
struct isl_swizzle swizzle,
VkImageAspectFlagBits aspect,
uint32_t level, uint32_t array_layer,
enum isl_aux_op resolve_op,
enum anv_fast_clear_type fast_clear_supported)
{
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
#if GFX_VER >= 9
anv_cmd_compute_resolve_predicate(cmd_buffer, image,
aspect, level, array_layer,
resolve_op, fast_clear_supported);
#else /* GFX_VER <= 8 */
anv_cmd_simple_resolve_predicate(cmd_buffer, image,
aspect, level, array_layer,
resolve_op, fast_clear_supported);
#endif
/* CCS_D only supports full resolves and BLORP will assert on us if we try
* to do a partial resolve on a CCS_D surface.
*/
if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D)
resolve_op = ISL_AUX_OP_FULL_RESOLVE;
anv_image_ccs_op(cmd_buffer, image, format, swizzle, aspect,
level, array_layer, 1, resolve_op, NULL, true);
}
static void
anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
enum isl_format format,
struct isl_swizzle swizzle,
VkImageAspectFlagBits aspect,
uint32_t array_layer,
enum isl_aux_op resolve_op,
enum anv_fast_clear_type fast_clear_supported)
{
assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
#if GFX_VERx10 >= 75
anv_cmd_compute_resolve_predicate(cmd_buffer, image,
aspect, 0, array_layer,
resolve_op, fast_clear_supported);
anv_image_mcs_op(cmd_buffer, image, format, swizzle, aspect,
array_layer, 1, resolve_op, NULL, true);
#else
unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
#endif
}
void
genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
enum isl_aux_usage aux_usage,
uint32_t level,
uint32_t base_layer,
uint32_t layer_count)
{
/* The aspect must be exactly one of the image aspects. */
assert(util_bitcount(aspect) == 1 && (aspect & image->vk.aspects));
/* The only compression types with more than just fast-clears are MCS,
* CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
* track the current fast-clear and compression state. This leaves us
* with just MCS and CCS_E.
*/
if (aux_usage != ISL_AUX_USAGE_CCS_E &&
aux_usage != ISL_AUX_USAGE_MCS)
return;
set_image_compressed_bit(cmd_buffer, image, aspect,
level, base_layer, layer_count, true);
}
static void
init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect)
{
assert(cmd_buffer && image);
assert(image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
set_image_fast_clear_state(cmd_buffer, image, aspect,
ANV_FAST_CLEAR_NONE);
/* Initialize the struct fields that are accessed for fast-clears so that
* the HW restrictions on the field values are satisfied.
*/
struct anv_address addr =
anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
if (GFX_VER >= 9) {
const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
const unsigned num_dwords = GFX_VER >= 10 ?
isl_dev->ss.clear_color_state_size / 4 :
isl_dev->ss.clear_value_size / 4;
for (unsigned i = 0; i < num_dwords; i++) {
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
sdi.Address = addr;
sdi.Address.offset += i * 4;
sdi.ImmediateData = 0;
}
}
} else {
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
sdi.Address = addr;
if (GFX_VERx10 >= 75) {
/* Pre-SKL, the dword containing the clear values also contains
* other fields, so we need to initialize those fields to match the
* values that would be in a color attachment.
*/
sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
ISL_CHANNEL_SELECT_GREEN << 22 |
ISL_CHANNEL_SELECT_BLUE << 19 |
ISL_CHANNEL_SELECT_ALPHA << 16;
} else if (GFX_VER == 7) {
/* On IVB, the dword containing the clear values also contains
* other fields that must be zero or can be zero.
*/
sdi.ImmediateData = 0;
}
}
}
}
/* Copy the fast-clear value dword(s) between a surface state object and an
* image's fast clear state buffer.
*/
static void
genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
struct anv_state surface_state,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
bool copy_from_surface_state)
{
assert(cmd_buffer && image);
assert(image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
struct anv_address ss_clear_addr = {
.bo = cmd_buffer->device->surface_state_pool.block_pool.bo,
.offset = surface_state.offset +
cmd_buffer->device->isl_dev.ss.clear_value_offset,
};
const struct anv_address entry_addr =
anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
#if GFX_VER == 7
/* On gfx7, the combination of commands used here(MI_LOAD_REGISTER_MEM
* and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
* in-flight when they are issued even if the memory touched is not
* currently active for rendering. The weird bit is that it is not the
* MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
* rendering hangs such that the next stalling command after the
* MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
*
* It is unclear exactly why this hang occurs. Both MI commands come with
* warnings about the 3D pipeline but that doesn't seem to fully explain
* it. My (Jason's) best theory is that it has something to do with the
* fact that we're using a GPU state register as our temporary and that
* something with reading/writing it is causing problems.
*
* In order to work around this issue, we emit a PIPE_CONTROL with the
* command streamer stall bit set.
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_CS_STALL_BIT,
"after copy_fast_clear_dwords. Avoid potential hang");
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
#endif
struct mi_builder b;
mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
if (copy_from_surface_state) {
mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size);
} else {
mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size);
/* Updating a surface state object may require that the state cache be
* invalidated. From the SKL PRM, Shared Functions -> State -> State
* Caching:
*
* Whenever the RENDER_SURFACE_STATE object in memory pointed to by
* the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
* modified [...], the L1 state cache must be invalidated to ensure
* the new surface or sampler state is fetched from system memory.
*
* In testing, SKL doesn't actually seem to need this, but HSW does.
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_STATE_CACHE_INVALIDATE_BIT,
"after copy_fast_clear_dwords surface state update");
}
}
/**
* @brief Transitions a color buffer from one layout to another.
*
* See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
* more information.
*
* @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
* @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
* this represents the maximum layers to transition at each
* specified miplevel.
*/
static void
transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
const uint32_t base_level, uint32_t level_count,
uint32_t base_layer, uint32_t layer_count,
VkImageLayout initial_layout,
VkImageLayout final_layout,
uint64_t src_queue_family,
uint64_t dst_queue_family,
bool will_full_fast_clear)
{
struct anv_device *device = cmd_buffer->device;
const struct intel_device_info *devinfo = &device->info;
/* Validate the inputs. */
assert(cmd_buffer);
assert(image && image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
/* These values aren't supported for simplicity's sake. */
assert(level_count != VK_REMAINING_MIP_LEVELS &&
layer_count != VK_REMAINING_ARRAY_LAYERS);
/* Ensure the subresource range is valid. */
UNUSED uint64_t last_level_num = base_level + level_count;
const uint32_t max_depth = anv_minify(image->vk.extent.depth, base_level);
UNUSED const uint32_t image_layers = MAX2(image->vk.array_layers, max_depth);
assert((uint64_t)base_layer + layer_count <= image_layers);
assert(last_level_num <= image->vk.mip_levels);
/* If there is a layout transfer, the final layout cannot be undefined or
* preinitialized (VUID-VkImageMemoryBarrier-newLayout-01198).
*/
assert(initial_layout == final_layout ||
(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED));
const struct isl_drm_modifier_info *isl_mod_info =
image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT
? isl_drm_modifier_get_info(image->vk.drm_format_mod)
: NULL;
const bool src_queue_external =
src_queue_family == VK_QUEUE_FAMILY_FOREIGN_EXT ||
src_queue_family == VK_QUEUE_FAMILY_EXTERNAL;
const bool dst_queue_external =
dst_queue_family == VK_QUEUE_FAMILY_FOREIGN_EXT ||
dst_queue_family == VK_QUEUE_FAMILY_EXTERNAL;
/* Simultaneous acquire and release on external queues is illegal. */
assert(!src_queue_external || !dst_queue_external);
/* Ownership transition on an external queue requires special action if the
* image has a DRM format modifier because we store image data in
* a driver-private bo which is inaccessible to the external queue.
*/
const bool private_binding_acquire =
src_queue_external &&
anv_image_is_externally_shared(image) &&
anv_image_has_private_binding(image);
const bool private_binding_release =
dst_queue_external &&
anv_image_is_externally_shared(image) &&
anv_image_has_private_binding(image);
if (initial_layout == final_layout &&
!private_binding_acquire && !private_binding_release) {
/* No work is needed. */
return;
}
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
if (anv_surface_is_valid(&image->planes[plane].shadow_surface) &&
final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
/* This surface is a linear compressed image with a tiled shadow surface
* for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
* we need to ensure the shadow copy is up-to-date.
*/
assert(image->vk.tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT);
assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT);
assert(image->planes[plane].primary_surface.isl.tiling == ISL_TILING_LINEAR);
assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
assert(isl_format_is_compressed(image->planes[plane].primary_surface.isl.format));
assert(plane == 0);
anv_image_copy_to_shadow(cmd_buffer, image,
VK_IMAGE_ASPECT_COLOR_BIT,
base_level, level_count,
base_layer, layer_count);
}
if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
return;
assert(image->planes[plane].primary_surface.isl.tiling != ISL_TILING_LINEAR);
/* The following layouts are equivalent for non-linear images. */
const bool initial_layout_undefined =
initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED;
bool must_init_fast_clear_state = false;
bool must_init_aux_surface = false;
if (initial_layout_undefined) {
/* The subresource may have been aliased and populated with arbitrary
* data.
*/
must_init_fast_clear_state = true;
must_init_aux_surface = true;
} else if (private_binding_acquire) {
/* The fast clear state lives in a driver-private bo, and therefore the
* external/foreign queue is unaware of it.
*
* If this is the first time we are accessing the image, then the fast
* clear state is uninitialized.
*
* If this is NOT the first time we are accessing the image, then the fast
* clear state may still be valid and correct due to the resolve during
* our most recent ownership release. However, we do not track the aux
* state with MI stores, and therefore must assume the worst-case: that
* this is the first time we are accessing the image.
*/
assert(image->planes[plane].fast_clear_memory_range.binding ==
ANV_IMAGE_MEMORY_BINDING_PRIVATE);
must_init_fast_clear_state = true;
if (image->planes[plane].aux_surface.memory_range.binding ==
ANV_IMAGE_MEMORY_BINDING_PRIVATE) {
assert(isl_mod_info->aux_usage == ISL_AUX_USAGE_NONE);
/* The aux surface, like the fast clear state, lives in
* a driver-private bo. We must initialize the aux surface for the
* same reasons we must initialize the fast clear state.
*/
must_init_aux_surface = true;
} else {
assert(isl_mod_info->aux_usage != ISL_AUX_USAGE_NONE);
/* The aux surface, unlike the fast clear state, lives in
* application-visible VkDeviceMemory and is shared with the
* external/foreign queue. Therefore, when we acquire ownership of the
* image with a defined VkImageLayout, the aux surface is valid and has
* the aux state required by the modifier.
*/
must_init_aux_surface = false;
}
}
#if GFX_VER == 12
if (initial_layout_undefined) {
if (device->physical->has_implicit_ccs && devinfo->has_aux_map) {
anv_image_init_aux_tt(cmd_buffer, image, aspect,
base_level, level_count,
base_layer, layer_count);
}
}
#else
assert(!(device->physical->has_implicit_ccs && devinfo->has_aux_map));
#endif
if (must_init_fast_clear_state) {
if (base_level == 0 && base_layer == 0)
init_fast_clear_color(cmd_buffer, image, aspect);
}
if (must_init_aux_surface) {
assert(must_init_fast_clear_state);
/* Initialize the aux buffers to enable correct rendering. In order to
* ensure that things such as storage images work correctly, aux buffers
* need to be initialized to valid data.
*
* Having an aux buffer with invalid data is a problem for two reasons:
*
* 1) Having an invalid value in the buffer can confuse the hardware.
* For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
* invalid and leads to the hardware doing strange things. It
* doesn't hang as far as we can tell but rendering corruption can
* occur.
*
* 2) If this transition is into the GENERAL layout and we then use the
* image as a storage image, then we must have the aux buffer in the
* pass-through state so that, if we then go to texture from the
* image, we get the results of our storage image writes and not the
* fast clear color or other random data.
*
* For CCS both of the problems above are real demonstrable issues. In
* that case, the only thing we can do is to perform an ambiguate to
* transition the aux surface into the pass-through state.
*
* For MCS, (2) is never an issue because we don't support multisampled
* storage images. In theory, issue (1) is a problem with MCS but we've
* never seen it in the wild. For 4x and 16x, all bit patters could, in
* theory, be interpreted as something but we don't know that all bit
* patterns are actually valid. For 2x and 8x, you could easily end up
* with the MCS referring to an invalid plane because not all bits of
* the MCS value are actually used. Even though we've never seen issues
* in the wild, it's best to play it safe and initialize the MCS. We
* can use a fast-clear for MCS because we only ever touch from render
* and texture (no image load store).
*/
if (image->vk.samples == 1) {
for (uint32_t l = 0; l < level_count; l++) {
const uint32_t level = base_level + l;
uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
if (base_layer >= aux_layers)
break; /* We will only get fewer layers as level increases */
uint32_t level_layer_count =
MIN2(layer_count, aux_layers - base_layer);
/* If will_full_fast_clear is set, the caller promises to
* fast-clear the largest portion of the specified range as it can.
* For color images, that means only the first LOD and array slice.
*/
if (level == 0 && base_layer == 0 && will_full_fast_clear) {
base_layer++;
level_layer_count--;
if (level_layer_count == 0)
continue;
}
anv_image_ccs_op(cmd_buffer, image,
image->planes[plane].primary_surface.isl.format,
ISL_SWIZZLE_IDENTITY,
aspect, level, base_layer, level_layer_count,
ISL_AUX_OP_AMBIGUATE, NULL, false);
if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
set_image_compressed_bit(cmd_buffer, image, aspect,
level, base_layer, level_layer_count,
false);
}
}
} else {
if (image->vk.samples == 4 || image->vk.samples == 16) {
anv_perf_warn(VK_LOG_OBJS(&image->vk.base),
"Doing a potentially unnecessary fast-clear to "
"define an MCS buffer.");
}
/* If will_full_fast_clear is set, the caller promises to fast-clear
* the largest portion of the specified range as it can.
*/
if (will_full_fast_clear)
return;
assert(base_level == 0 && level_count == 1);
anv_image_mcs_op(cmd_buffer, image,
image->planes[plane].primary_surface.isl.format,
ISL_SWIZZLE_IDENTITY,
aspect, base_layer, layer_count,
ISL_AUX_OP_FAST_CLEAR, NULL, false);
}
return;
}
enum isl_aux_usage initial_aux_usage =
anv_layout_to_aux_usage(devinfo, image, aspect, 0, initial_layout);
enum isl_aux_usage final_aux_usage =
anv_layout_to_aux_usage(devinfo, image, aspect, 0, final_layout);
enum anv_fast_clear_type initial_fast_clear =
anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
enum anv_fast_clear_type final_fast_clear =
anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
/* We must override the anv_layout_to_* functions because they are unaware of
* acquire/release direction.
*/
if (private_binding_acquire) {
initial_aux_usage = isl_mod_info->aux_usage;
initial_fast_clear = isl_mod_info->supports_clear_color ?
initial_fast_clear : ANV_FAST_CLEAR_NONE;
} else if (private_binding_release) {
final_aux_usage = isl_mod_info->aux_usage;
final_fast_clear = isl_mod_info->supports_clear_color ?
final_fast_clear : ANV_FAST_CLEAR_NONE;
}
/* The current code assumes that there is no mixing of CCS_E and CCS_D.
* We can handle transitions between CCS_D/E to and from NONE. What we
* don't yet handle is switching between CCS_E and CCS_D within a given
* image. Doing so in a performant way requires more detailed aux state
* tracking such as what is done in i965. For now, just assume that we
* only have one type of compression.
*/
assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
final_aux_usage == ISL_AUX_USAGE_NONE ||
initial_aux_usage == final_aux_usage);
/* If initial aux usage is NONE, there is nothing to resolve */
if (initial_aux_usage == ISL_AUX_USAGE_NONE)
return;
enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
/* If the initial layout supports more fast clear than the final layout
* then we need at least a partial resolve.
*/
if (final_fast_clear < initial_fast_clear)
resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
final_aux_usage != ISL_AUX_USAGE_CCS_E)
resolve_op = ISL_AUX_OP_FULL_RESOLVE;
if (resolve_op == ISL_AUX_OP_NONE)
return;
/* Perform a resolve to synchronize data between the main and aux buffer.
* Before we begin, we must satisfy the cache flushing requirement specified
* in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
*
* Any transition from any value in {Clear, Render, Resolve} to a
* different value in {Clear, Render, Resolve} requires end of pipe
* synchronization.
*
* We perform a flush of the write cache before and after the clear and
* resolve operations to meet this requirement.
*
* Unlike other drawing, fast clear operations are not properly
* synchronized. The first PIPE_CONTROL here likely ensures that the
* contents of the previous render or clear hit the render target before we
* resolve and the second likely ensures that the resolve is complete before
* we do any more rendering or clearing.
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
ANV_PIPE_END_OF_PIPE_SYNC_BIT,
"after transition RT");
for (uint32_t l = 0; l < level_count; l++) {
uint32_t level = base_level + l;
uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
if (base_layer >= aux_layers)
break; /* We will only get fewer layers as level increases */
uint32_t level_layer_count =
MIN2(layer_count, aux_layers - base_layer);
for (uint32_t a = 0; a < level_layer_count; a++) {
uint32_t array_layer = base_layer + a;
/* If will_full_fast_clear is set, the caller promises to fast-clear
* the largest portion of the specified range as it can. For color
* images, that means only the first LOD and array slice.
*/
if (level == 0 && array_layer == 0 && will_full_fast_clear)
continue;
if (image->vk.samples == 1) {
anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
image->planes[plane].primary_surface.isl.format,
ISL_SWIZZLE_IDENTITY,
aspect, level, array_layer, resolve_op,
final_fast_clear);
} else {
/* We only support fast-clear on the first layer so partial
* resolves should not be used on other layers as they will use
* the clear color stored in memory that is only valid for layer0.
*/
if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
array_layer != 0)
continue;
anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
image->planes[plane].primary_surface.isl.format,
ISL_SWIZZLE_IDENTITY,
aspect, array_layer, resolve_op,
final_fast_clear);
}
}
}
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
ANV_PIPE_END_OF_PIPE_SYNC_BIT,
"after transition RT");
}
static MUST_CHECK VkResult
anv_cmd_buffer_init_attachments(struct anv_cmd_buffer *cmd_buffer,
uint32_t color_att_count)
{
struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
/* Reserve one for the NULL state. */
unsigned num_states = 1 + color_att_count;
const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
gfx->att_states =
anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
num_states * ss_stride, isl_dev->ss.align);
if (gfx->att_states.map == NULL) {
return anv_batch_set_error(&cmd_buffer->batch,
VK_ERROR_OUT_OF_DEVICE_MEMORY);
}
struct anv_state next_state = gfx->att_states;
next_state.alloc_size = isl_dev->ss.size;
gfx->null_surface_state = next_state;
next_state.offset += ss_stride;
next_state.map += ss_stride;
gfx->color_att_count = color_att_count;
for (uint32_t i = 0; i < color_att_count; i++) {
gfx->color_att[i] = (struct anv_attachment) {
.surface_state.state = next_state,
};
next_state.offset += ss_stride;
next_state.map += ss_stride;
}
gfx->depth_att = (struct anv_attachment) { };
gfx->stencil_att = (struct anv_attachment) { };
return VK_SUCCESS;
}
static void
anv_cmd_buffer_reset_rendering(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
gfx->render_area = (VkRect2D) { };
gfx->layer_count = 0;
gfx->samples = 0;
gfx->color_att_count = 0;
gfx->depth_att = (struct anv_attachment) { };
gfx->stencil_att = (struct anv_attachment) { };
gfx->null_surface_state = ANV_STATE_NULL;
}
VkResult
genX(BeginCommandBuffer)(
VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo* pBeginInfo)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
VkResult result;
/* If this is the first vkBeginCommandBuffer, we must *initialize* the
* command buffer's state. Otherwise, we must *reset* its state. In both
* cases we reset it.
*
* From the Vulkan 1.0 spec:
*
* If a command buffer is in the executable state and the command buffer
* was allocated from a command pool with the
* VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
* vkBeginCommandBuffer implicitly resets the command buffer, behaving
* as if vkResetCommandBuffer had been called with
* VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
* the command buffer in the recording state.
*/
anv_cmd_buffer_reset(cmd_buffer);
anv_cmd_buffer_reset_rendering(cmd_buffer);
cmd_buffer->usage_flags = pBeginInfo->flags;
/* VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT must be ignored for
* primary level command buffers.
*
* From the Vulkan 1.0 spec:
*
* VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT specifies that a
* secondary command buffer is considered to be entirely inside a render
* pass. If this is a primary command buffer, then this bit is ignored.
*/
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
cmd_buffer->usage_flags &= ~VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT;
trace_intel_begin_cmd_buffer(&cmd_buffer->trace);
genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
/* We sometimes store vertex data in the dynamic state buffer for blorp
* operations and our dynamic state stream may re-use data from previous
* command buffers. In order to prevent stale cache data, we flush the VF
* cache. We could do this on every blorp call but that's not really
* needed as all of the data will get written by the CPU prior to the GPU
* executing anything. The chances are fairly high that they will use
* blorp at least once per primary command buffer so it shouldn't be
* wasted.
*
* There is also a workaround on gfx8 which requires us to invalidate the
* VF cache occasionally. It's easier if we can assume we start with a
* fresh cache (See also genX(cmd_buffer_set_binding_for_gfx8_vb_flush).)
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_VF_CACHE_INVALIDATE_BIT,
"new cmd buffer");
/* Re-emit the aux table register in every command buffer. This way we're
* ensured that we have the table even if this command buffer doesn't
* initialize any images.
*/
if (cmd_buffer->device->info.has_aux_map) {
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_AUX_TABLE_INVALIDATE_BIT,
"new cmd buffer with aux-tt");
}
/* We send an "Indirect State Pointers Disable" packet at
* EndCommandBuffer, so all push constant packets are ignored during a
* context restore. Documentation says after that command, we need to
* emit push constants again before any rendering operation. So we
* flag them dirty here to make sure they get emitted.
*/
cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
if (cmd_buffer->usage_flags &
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
char gcbiar_data[VK_GCBIARR_DATA_SIZE(MAX_RTS)];
const VkRenderingInfo *resume_info =
vk_get_command_buffer_inheritance_as_rendering_resume(cmd_buffer->vk.level,
pBeginInfo,
gcbiar_data);
if (resume_info != NULL) {
genX(CmdBeginRendering)(commandBuffer, resume_info);
} else {
const VkCommandBufferInheritanceRenderingInfo *inheritance_info =
vk_get_command_buffer_inheritance_rendering_info(cmd_buffer->vk.level,
pBeginInfo);
assert(inheritance_info);
gfx->rendering_flags = inheritance_info->flags;
gfx->render_area = (VkRect2D) { };
gfx->layer_count = 0;
gfx->samples = inheritance_info->rasterizationSamples;
gfx->view_mask = inheritance_info->viewMask;
uint32_t color_att_count = inheritance_info->colorAttachmentCount;
result = anv_cmd_buffer_init_attachments(cmd_buffer, color_att_count);
if (result != VK_SUCCESS)
return result;
for (uint32_t i = 0; i < color_att_count; i++) {
gfx->color_att[i].vk_format =
inheritance_info->pColorAttachmentFormats[i];
}
gfx->depth_att.vk_format =
inheritance_info->depthAttachmentFormat;
gfx->stencil_att.vk_format =
inheritance_info->stencilAttachmentFormat;
cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
}
}
#if GFX_VER >= 8
/* Emit the sample pattern at the beginning of the batch because the
* default locations emitted at the device initialization might have been
* changed by a previous command buffer.
*
* Do not change that when we're continuing a previous renderpass.
*/
if (cmd_buffer->device->vk.enabled_extensions.EXT_sample_locations &&
!(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT))
genX(emit_sample_pattern)(&cmd_buffer->batch, NULL);
#endif
#if GFX_VERx10 >= 75
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info =
vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT);
/* If secondary buffer supports conditional rendering
* we should emit commands as if conditional rendering is enabled.
*/
cmd_buffer->state.conditional_render_enabled =
conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable;
}
#endif
return VK_SUCCESS;
}
/* From the PRM, Volume 2a:
*
* "Indirect State Pointers Disable
*
* At the completion of the post-sync operation associated with this pipe
* control packet, the indirect state pointers in the hardware are
* considered invalid; the indirect pointers are not saved in the context.
* If any new indirect state commands are executed in the command stream
* while the pipe control is pending, the new indirect state commands are
* preserved.
*
* [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
* restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
* commands are only considered as Indirect State Pointers. Once ISP is
* issued in a context, SW must initialize by programming push constant
* commands for all the shaders (at least to zero length) before attempting
* any rendering operation for the same context."
*
* 3DSTATE_CONSTANT_* packets are restored during a context restore,
* even though they point to a BO that has been already unreferenced at
* the end of the previous batch buffer. This has been fine so far since
* we are protected by these scratch page (every address not covered by
* a BO should be pointing to the scratch page). But on CNL, it is
* causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
* instruction.
*
* The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
* hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
* context restore, so the mentioned hang doesn't happen. However,
* software must program push constant commands for all stages prior to
* rendering anything. So we flag them dirty in BeginCommandBuffer.
*
* Finally, we also make sure to stall at pixel scoreboard to make sure the
* constants have been loaded into the EUs prior to disable the push constants
* so that it doesn't hang a previous 3DPRIMITIVE.
*/
static void
emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
{
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.StallAtPixelScoreboard = true;
pc.CommandStreamerStallEnable = true;
anv_debug_dump_pc(pc);
}
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.IndirectStatePointersDisable = true;
pc.CommandStreamerStallEnable = true;
anv_debug_dump_pc(pc);
}
}
VkResult
genX(EndCommandBuffer)(
VkCommandBuffer commandBuffer)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
if (anv_batch_has_error(&cmd_buffer->batch))
return cmd_buffer->batch.status;
anv_measure_endcommandbuffer(cmd_buffer);
/* We want every command buffer to start with the PMA fix in a known state,
* so we disable it at the end of the command buffer.
*/
genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
emit_isp_disable(cmd_buffer);
trace_intel_end_cmd_buffer(&cmd_buffer->trace, cmd_buffer->vk.level);
anv_cmd_buffer_end_batch_buffer(cmd_buffer);
return VK_SUCCESS;
}
void
genX(CmdExecuteCommands)(
VkCommandBuffer commandBuffer,
uint32_t commandBufferCount,
const VkCommandBuffer* pCmdBuffers)
{
ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
assert(primary->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
if (anv_batch_has_error(&primary->batch))
return;
/* The secondary command buffers will assume that the PMA fix is disabled
* when they begin executing. Make sure this is true.
*/
genX(cmd_buffer_enable_pma_fix)(primary, false);
/* The secondary command buffer doesn't know which textures etc. have been
* flushed prior to their execution. Apply those flushes now.
*/
genX(cmd_buffer_apply_pipe_flushes)(primary);
for (uint32_t i = 0; i < commandBufferCount; i++) {
ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
assert(secondary->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
assert(!anv_batch_has_error(&secondary->batch));
#if GFX_VERx10 >= 75
if (secondary->state.conditional_render_enabled) {
if (!primary->state.conditional_render_enabled) {
/* Secondary buffer is constructed as if it will be executed
* with conditional rendering, we should satisfy this dependency
* regardless of conditional rendering being enabled in primary.
*/
struct mi_builder b;
mi_builder_init(&b, &primary->device->info, &primary->batch);
mi_store(&b, mi_reg64(ANV_PREDICATE_RESULT_REG),
mi_imm(UINT64_MAX));
}
}
#endif
if (secondary->usage_flags &
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
/* If we're continuing a render pass from the primary, we need to
* copy the surface states for the current subpass into the storage
* we allocated for them in BeginCommandBuffer.
*/
struct anv_bo *ss_bo =
primary->device->surface_state_pool.block_pool.bo;
struct anv_state src_state = primary->state.gfx.att_states;
struct anv_state dst_state = secondary->state.gfx.att_states;
assert(src_state.alloc_size == dst_state.alloc_size);
genX(cmd_buffer_so_memcpy)(primary,
(struct anv_address) {
.bo = ss_bo,
.offset = dst_state.offset,
},
(struct anv_address) {
.bo = ss_bo,
.offset = src_state.offset,
},
src_state.alloc_size);
}
anv_cmd_buffer_add_secondary(primary, secondary);
assert(secondary->perf_query_pool == NULL || primary->perf_query_pool == NULL ||
secondary->perf_query_pool == primary->perf_query_pool);
if (secondary->perf_query_pool)
primary->perf_query_pool = secondary->perf_query_pool;
#if GFX_VERx10 == 120
if (secondary->state.depth_reg_mode != ANV_DEPTH_REG_MODE_UNKNOWN)
primary->state.depth_reg_mode = secondary->state.depth_reg_mode;
#endif
}
/* The secondary isn't counted in our VF cache tracking so we need to
* invalidate the whole thing.
*/
if (GFX_VER >= 8 && GFX_VER <= 9) {
anv_add_pending_pipe_bits(primary,
ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT,
"Secondary cmd buffer not tracked in VF cache");
}
/* The secondary may have selected a different pipeline (3D or compute) and
* may have changed the current L3$ configuration. Reset our tracking
* variables to invalid values to ensure that we re-emit these in the case
* where we do any draws or compute dispatches from the primary after the
* secondary has returned.
*/
primary->state.current_pipeline = UINT32_MAX;
primary->state.current_l3_config = NULL;
primary->state.current_hash_scale = 0;
primary->state.gfx.push_constant_stages = 0;
vk_dynamic_graphics_state_dirty_all(&primary->vk.dynamic_graphics_state);
/* Each of the secondary command buffers will use its own state base
* address. We need to re-emit state base address for the primary after
* all of the secondaries are done.
*
* TODO: Maybe we want to make this a dirty bit to avoid extra state base
* address calls?
*/
genX(cmd_buffer_emit_state_base_address)(primary);
}
/**
* Program the hardware to use the specified L3 configuration.
*/
void
genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
const struct intel_l3_config *cfg)
{
assert(cfg || GFX_VER >= 12);
if (cfg == cmd_buffer->state.current_l3_config)
return;
#if GFX_VER >= 11
/* On Gfx11+ we use only one config, so verify it remains the same and skip
* the stalling programming entirely.
*/
assert(cfg == cmd_buffer->device->l3_config);
#else
if (INTEL_DEBUG(DEBUG_L3)) {
mesa_logd("L3 config transition: ");
intel_dump_l3_config(cfg, stderr);
}
/* According to the hardware docs, the L3 partitioning can only be changed
* while the pipeline is completely drained and the caches are flushed,
* which involves a first PIPE_CONTROL flush which stalls the pipeline...
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.DCFlushEnable = true;
pc.PostSyncOperation = NoWrite;
pc.CommandStreamerStallEnable = true;
anv_debug_dump_pc(pc);
}
/* ...followed by a second pipelined PIPE_CONTROL that initiates
* invalidation of the relevant caches. Note that because RO invalidation
* happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
* command is processed by the CS) we cannot combine it with the previous
* stalling flush as the hardware documentation suggests, because that
* would cause the CS to stall on previous rendering *after* RO
* invalidation and wouldn't prevent the RO caches from being polluted by
* concurrent rendering before the stall completes. This intentionally
* doesn't implement the SKL+ hardware workaround suggesting to enable CS
* stall on PIPE_CONTROLs with the texture cache invalidation bit set for
* GPGPU workloads because the previous and subsequent PIPE_CONTROLs
* already guarantee that there is no concurrent GPGPU kernel execution
* (see SKL HSD 2132585).
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.TextureCacheInvalidationEnable = true;
pc.ConstantCacheInvalidationEnable = true;
pc.InstructionCacheInvalidateEnable = true;
pc.StateCacheInvalidationEnable = true;
pc.PostSyncOperation = NoWrite;
anv_debug_dump_pc(pc);
}
/* Now send a third stalling flush to make sure that invalidation is
* complete when the L3 configuration registers are modified.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.DCFlushEnable = true;
pc.PostSyncOperation = NoWrite;
pc.CommandStreamerStallEnable = true;
anv_debug_dump_pc(pc);
}
genX(emit_l3_config)(&cmd_buffer->batch, cmd_buffer->device, cfg);
#endif /* GFX_VER >= 11 */
cmd_buffer->state.current_l3_config = cfg;
}
enum anv_pipe_bits
genX(emit_apply_pipe_flushes)(struct anv_batch *batch,
struct anv_device *device,
uint32_t current_pipeline,
enum anv_pipe_bits bits)
{
/*
* From Sandybridge PRM, volume 2, "1.7.2 End-of-Pipe Synchronization":
*
* Write synchronization is a special case of end-of-pipe
* synchronization that requires that the render cache and/or depth
* related caches are flushed to memory, where the data will become
* globally visible. This type of synchronization is required prior to
* SW (CPU) actually reading the result data from memory, or initiating
* an operation that will use as a read surface (such as a texture
* surface) a previous render target and/or depth/stencil buffer
*
*
* From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization":
*
* Exercising the write cache flush bits (Render Target Cache Flush
* Enable, Depth Cache Flush Enable, DC Flush) in PIPE_CONTROL only
* ensures the write caches are flushed and doesn't guarantee the data
* is globally visible.
*
* SW can track the completion of the end-of-pipe-synchronization by
* using "Notify Enable" and "PostSync Operation - Write Immediate
* Data" in the PIPE_CONTROL command.
*
* In other words, flushes are pipelined while invalidations are handled
* immediately. Therefore, if we're flushing anything then we need to
* schedule an end-of-pipe sync before any invalidations can happen.
*/
if (bits & ANV_PIPE_FLUSH_BITS)
bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
/* HSD 1209978178: docs say that before programming the aux table:
*
* "Driver must ensure that the engine is IDLE but ensure it doesn't
* add extra flushes in the case it knows that the engine is already
* IDLE."
*/
if (GFX_VER == 12 && (bits & ANV_PIPE_AUX_TABLE_INVALIDATE_BIT))
bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
/* If we're going to do an invalidate and we have a pending end-of-pipe
* sync that has yet to be resolved, we do the end-of-pipe sync now.
*/
if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
(bits & ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT)) {
bits |= ANV_PIPE_END_OF_PIPE_SYNC_BIT;
bits &= ~ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
}
/* Project: SKL / Argument: LRI Post Sync Operation [23]
*
* "PIPECONTROL command with “Command Streamer Stall Enable” must be
* programmed prior to programming a PIPECONTROL command with "LRI
* Post Sync Operation" in GPGPU mode of operation (i.e when
* PIPELINE_SELECT command is set to GPGPU mode of operation)."
*
* The same text exists a few rows below for Post Sync Op.
*/
if (bits & ANV_PIPE_POST_SYNC_BIT) {
if (GFX_VER == 9 && current_pipeline == GPGPU)
bits |= ANV_PIPE_CS_STALL_BIT;
bits &= ~ANV_PIPE_POST_SYNC_BIT;
}
if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_STALL_BITS |
ANV_PIPE_END_OF_PIPE_SYNC_BIT)) {
anv_batch_emit(batch, GENX(PIPE_CONTROL), pipe) {
#if GFX_VER >= 12
pipe.TileCacheFlushEnable = bits & ANV_PIPE_TILE_CACHE_FLUSH_BIT;
pipe.HDCPipelineFlushEnable |= bits & ANV_PIPE_HDC_PIPELINE_FLUSH_BIT;
#else
/* Flushing HDC pipeline requires DC Flush on earlier HW. */
pipe.DCFlushEnable |= bits & ANV_PIPE_HDC_PIPELINE_FLUSH_BIT;
#endif
pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
pipe.DCFlushEnable |= bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
pipe.RenderTargetCacheFlushEnable =
bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
/* Wa_1409600907: "PIPE_CONTROL with Depth Stall Enable bit must
* be set with any PIPE_CONTROL with Depth Flush Enable bit set.
*/
#if GFX_VER >= 12
pipe.DepthStallEnable =
pipe.DepthCacheFlushEnable || (bits & ANV_PIPE_DEPTH_STALL_BIT);
#else
pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
#endif
#if GFX_VERx10 >= 125
pipe.PSSStallSyncEnable = bits & ANV_PIPE_PSS_STALL_SYNC_BIT;
#endif
pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
/* From Sandybridge PRM, volume 2, "1.7.3.1 Writing a Value to Memory":
*
* "The most common action to perform upon reaching a
* synchronization point is to write a value out to memory. An
* immediate value (included with the synchronization command) may
* be written."
*
*
* From Broadwell PRM, volume 7, "End-of-Pipe Synchronization":
*
* "In case the data flushed out by the render engine is to be
* read back in to the render engine in coherent manner, then the
* render engine has to wait for the fence completion before
* accessing the flushed data. This can be achieved by following
* means on various products: PIPE_CONTROL command with CS Stall
* and the required write caches flushed with Post-Sync-Operation
* as Write Immediate Data.
*
* Example:
* - Workload-1 (3D/GPGPU/MEDIA)
* - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write
* Immediate Data, Required Write Cache Flush bits set)
* - Workload-2 (Can use the data produce or output by
* Workload-1)
*/
if (bits & ANV_PIPE_END_OF_PIPE_SYNC_BIT) {
pipe.CommandStreamerStallEnable = true;
pipe.PostSyncOperation = WriteImmediateData;
pipe.Address = device->workaround_address;
}
/*
* According to the Broadwell documentation, any PIPE_CONTROL with the
* "Command Streamer Stall" bit set must also have another bit set,
* with five different options:
*
* - Render Target Cache Flush
* - Depth Cache Flush
* - Stall at Pixel Scoreboard
* - Post-Sync Operation
* - Depth Stall
* - DC Flush Enable
*
* I chose "Stall at Pixel Scoreboard" since that's what we use in
* mesa and it seems to work fine. The choice is fairly arbitrary.
*/
if (pipe.CommandStreamerStallEnable &&
!pipe.RenderTargetCacheFlushEnable &&
!pipe.DepthCacheFlushEnable &&
!pipe.StallAtPixelScoreboard &&
!pipe.PostSyncOperation &&
!pipe.DepthStallEnable &&
!pipe.DCFlushEnable)
pipe.StallAtPixelScoreboard = true;
anv_debug_dump_pc(pipe);
}
/* If a render target flush was emitted, then we can toggle off the bit
* saying that render target writes are ongoing.
*/
if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES);
if (GFX_VERx10 == 75) {
/* Haswell needs addition work-arounds:
*
* From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization":
*
* Option 1:
* PIPE_CONTROL command with the CS Stall and the required write
* caches flushed with Post-SyncOperation as Write Immediate Data
* followed by eight dummy MI_STORE_DATA_IMM (write to scratch
* spce) commands.
*
* Example:
* - Workload-1
* - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write
* Immediate Data, Required Write Cache Flush bits set)
* - MI_STORE_DATA_IMM (8 times) (Dummy data, Scratch Address)
* - Workload-2 (Can use the data produce or output by
* Workload-1)
*
* Unfortunately, both the PRMs and the internal docs are a bit
* out-of-date in this regard. What the windows driver does (and
* this appears to actually work) is to emit a register read from the
* memory address written by the pipe control above.
*
* What register we load into doesn't matter. We choose an indirect
* rendering register because we know it always exists and it's one
* of the first registers the command parser allows us to write. If
* you don't have command parser support in your kernel (pre-4.2),
* this will get turned into MI_NOOP and you won't get the
* workaround. Unfortunately, there's just not much we can do in
* that case. This register is perfectly safe to write since we
* always re-load all of the indirect draw registers right before
* 3DPRIMITIVE when needed anyway.
*/
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = 0x243C; /* GFX7_3DPRIM_START_INSTANCE */
lrm.MemoryAddress = device->workaround_address;
}
}
bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_STALL_BITS |
ANV_PIPE_END_OF_PIPE_SYNC_BIT);
}
if (bits & ANV_PIPE_INVALIDATE_BITS) {
/* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
*
* "If the VF Cache Invalidation Enable is set to a 1 in a
* PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
* 0, with the VF Cache Invalidation Enable set to 0 needs to be sent
* prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
* a 1."
*
* This appears to hang Broadwell, so we restrict it to just gfx9.
*/
if (GFX_VER == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
anv_batch_emit(batch, GENX(PIPE_CONTROL), pipe);
anv_batch_emit(batch, GENX(PIPE_CONTROL), pipe) {
pipe.StateCacheInvalidationEnable =
bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
pipe.ConstantCacheInvalidationEnable =
bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
#if GFX_VER >= 12
/* Invalidates the L3 cache part in which index & vertex data is loaded
* when VERTEX_BUFFER_STATE::L3BypassDisable is set.
*/
pipe.L3ReadOnlyCacheInvalidationEnable =
bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
#endif
pipe.VFCacheInvalidationEnable =
bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
pipe.TextureCacheInvalidationEnable =
bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
pipe.InstructionCacheInvalidateEnable =
bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
/* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
*
* "When VF Cache Invalidate is set “Post Sync Operation” must be
* enabled to “Write Immediate Data” or “Write PS Depth Count” or
* “Write Timestamp”.
*/
if (GFX_VER == 9 && pipe.VFCacheInvalidationEnable) {
pipe.PostSyncOperation = WriteImmediateData;
pipe.Address = device->workaround_address;
}
anv_debug_dump_pc(pipe);
}
#if GFX_VER == 12
if ((bits & ANV_PIPE_AUX_TABLE_INVALIDATE_BIT) && device->info.has_aux_map) {
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
lri.RegisterOffset = GENX(GFX_CCS_AUX_INV_num);
lri.DataDWord = 1;
}
}
#endif
bits &= ~ANV_PIPE_INVALIDATE_BITS;
}
return bits;
}
void
genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
{
enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
if (unlikely(cmd_buffer->device->physical->always_flush_cache))
bits |= ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS;
else if (bits == 0)
return;
bool trace_flush =
(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_STALL_BITS | ANV_PIPE_INVALIDATE_BITS)) != 0;
if (trace_flush)
trace_intel_begin_stall(&cmd_buffer->trace);
if ((GFX_VER >= 8 && GFX_VER <= 9) &&
(bits & ANV_PIPE_CS_STALL_BIT) &&
(bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) {
/* If we are doing a VF cache invalidate AND a CS stall (it must be
* both) then we can reset our vertex cache tracking.
*/
memset(cmd_buffer->state.gfx.vb_dirty_ranges, 0,
sizeof(cmd_buffer->state.gfx.vb_dirty_ranges));
memset(&cmd_buffer->state.gfx.ib_dirty_range, 0,
sizeof(cmd_buffer->state.gfx.ib_dirty_range));
}
cmd_buffer->state.pending_pipe_bits =
genX(emit_apply_pipe_flushes)(&cmd_buffer->batch,
cmd_buffer->device,
cmd_buffer->state.current_pipeline,
bits);
if (trace_flush) {
trace_intel_end_stall(&cmd_buffer->trace, bits,
anv_pipe_flush_bit_to_ds_stall_flag, NULL);
}
}
static void
cmd_buffer_barrier(struct anv_cmd_buffer *cmd_buffer,
const VkDependencyInfo *dep_info,
const char *reason)
{
/* XXX: Right now, we're really dumb and just flush whatever categories
* the app asks for. One of these days we may make this a bit better
* but right now that's all the hardware allows for in most areas.
*/
VkAccessFlags2 src_flags = 0;
VkAccessFlags2 dst_flags = 0;
for (uint32_t i = 0; i < dep_info->memoryBarrierCount; i++) {
src_flags |= dep_info->pMemoryBarriers[i].srcAccessMask;
dst_flags |= dep_info->pMemoryBarriers[i].dstAccessMask;
}
for (uint32_t i = 0; i < dep_info->bufferMemoryBarrierCount; i++) {
src_flags |= dep_info->pBufferMemoryBarriers[i].srcAccessMask;
dst_flags |= dep_info->pBufferMemoryBarriers[i].dstAccessMask;
}
for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
const VkImageMemoryBarrier2 *img_barrier =
&dep_info->pImageMemoryBarriers[i];
src_flags |= img_barrier->srcAccessMask;
dst_flags |= img_barrier->dstAccessMask;
ANV_FROM_HANDLE(anv_image, image, img_barrier->image);
const VkImageSubresourceRange *range = &img_barrier->subresourceRange;
uint32_t base_layer, layer_count;
if (image->vk.image_type == VK_IMAGE_TYPE_3D) {
base_layer = 0;
layer_count = anv_minify(image->vk.extent.depth, range->baseMipLevel);
} else {
base_layer = range->baseArrayLayer;
layer_count = vk_image_subresource_layer_count(&image->vk, range);
}
const uint32_t level_count =
vk_image_subresource_level_count(&image->vk, range);
if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
transition_depth_buffer(cmd_buffer, image,
base_layer, layer_count,
img_barrier->oldLayout,
img_barrier->newLayout,
false /* will_full_fast_clear */);
}
if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
transition_stencil_buffer(cmd_buffer, image,
range->baseMipLevel, level_count,
base_layer, layer_count,
img_barrier->oldLayout,
img_barrier->newLayout,
false /* will_full_fast_clear */);
}
if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
VkImageAspectFlags color_aspects =
vk_image_expand_aspect_mask(&image->vk, range->aspectMask);
anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
range->baseMipLevel, level_count,
base_layer, layer_count,
img_barrier->oldLayout,
img_barrier->newLayout,
img_barrier->srcQueueFamilyIndex,
img_barrier->dstQueueFamilyIndex,
false /* will_full_fast_clear */);
}
}
}
enum anv_pipe_bits bits =
anv_pipe_flush_bits_for_access_flags(cmd_buffer->device, src_flags) |
anv_pipe_invalidate_bits_for_access_flags(cmd_buffer->device, dst_flags);
anv_add_pending_pipe_bits(cmd_buffer, bits, reason);
}
void genX(CmdPipelineBarrier2)(
VkCommandBuffer commandBuffer,
const VkDependencyInfo* pDependencyInfo)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
cmd_buffer_barrier(cmd_buffer, pDependencyInfo, "pipe barrier");
}
static void
cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
{
VkShaderStageFlags stages =
cmd_buffer->state.gfx.pipeline->active_stages;
/* In order to avoid thrash, we assume that vertex and fragment stages
* always exist. In the rare case where one is missing *and* the other
* uses push concstants, this may be suboptimal. However, avoiding stalls
* seems more important.
*/
stages |= VK_SHADER_STAGE_FRAGMENT_BIT;
if (anv_pipeline_is_primitive(cmd_buffer->state.gfx.pipeline))
stages |= VK_SHADER_STAGE_VERTEX_BIT;
if (stages == cmd_buffer->state.gfx.push_constant_stages)
return;
const unsigned push_constant_kb =
cmd_buffer->device->info.max_constant_urb_size_kb;
const unsigned num_stages =
util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
unsigned size_per_stage = push_constant_kb / num_stages;
/* Broadwell+ and Haswell gt3 require that the push constant sizes be in
* units of 2KB. Incidentally, these are the same platforms that have
* 32KB worth of push constant space.
*/
if (push_constant_kb == 32)
size_per_stage &= ~1u;
uint32_t kb_used = 0;
for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
anv_batch_emit(&cmd_buffer->batch,
GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
alloc._3DCommandSubOpcode = 18 + i;
alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
alloc.ConstantBufferSize = push_size;
}
kb_used += push_size;
}
anv_batch_emit(&cmd_buffer->batch,
GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
alloc.ConstantBufferOffset = kb_used;
alloc.ConstantBufferSize = push_constant_kb - kb_used;
}
#if GFX_VERx10 == 125
/* Wa_22011440098
*
* In 3D mode, after programming push constant alloc command immediately
* program push constant command(ZERO length) without any commit between
* them.
*/
if (intel_device_info_is_dg2(&cmd_buffer->device->info)) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_ALL), c) {
c.MOCS = anv_mocs(cmd_buffer->device, NULL, 0);
}
}
#endif
cmd_buffer->state.gfx.push_constant_stages = stages;
/* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
*
* "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
* the next 3DPRIMITIVE command after programming the
* 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
*
* Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
* pipeline setup, we need to dirty push constants.
*/
cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
}
static VkResult
emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
struct anv_cmd_pipeline_state *pipe_state,
struct anv_shader_bin *shader,
struct anv_state *bt_state)
{
uint32_t state_offset;
struct anv_pipeline_bind_map *map = &shader->bind_map;
if (map->surface_count == 0) {
*bt_state = (struct anv_state) { 0, };
return VK_SUCCESS;
}
*bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
map->surface_count,
&state_offset);
uint32_t *bt_map = bt_state->map;
if (bt_state->map == NULL)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
/* We only need to emit relocs if we're not using softpin. If we are using
* softpin then we always keep all user-allocated memory objects resident.
*/
const bool need_client_mem_relocs =
anv_use_relocations(cmd_buffer->device->physical);
struct anv_push_constants *push = &pipe_state->push_constants;
for (uint32_t s = 0; s < map->surface_count; s++) {
struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
struct anv_state surface_state;
switch (binding->set) {
case ANV_DESCRIPTOR_SET_NULL:
bt_map[s] = 0;
break;
case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
/* Color attachment binding */
assert(shader->stage == MESA_SHADER_FRAGMENT);
if (binding->index < cmd_buffer->state.gfx.color_att_count) {
const struct anv_attachment *att =
&cmd_buffer->state.gfx.color_att[binding->index];
surface_state = att->surface_state.state;
} else {
surface_state = cmd_buffer->state.gfx.null_surface_state;
}
assert(surface_state.map);
bt_map[s] = surface_state.offset + state_offset;
break;
case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS: {
struct anv_state surface_state =
anv_cmd_buffer_alloc_surface_state(cmd_buffer);
struct anv_address constant_data = {
.bo = cmd_buffer->device->instruction_state_pool.block_pool.bo,
.offset = shader->kernel.offset +
shader->prog_data->const_data_offset,
};
unsigned constant_data_size = shader->prog_data->const_data_size;
const enum isl_format format =
anv_isl_format_for_descriptor_type(cmd_buffer->device,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
format, ISL_SWIZZLE_IDENTITY,
ISL_SURF_USAGE_CONSTANT_BUFFER_BIT,
constant_data, constant_data_size, 1);
assert(surface_state.map);
bt_map[s] = surface_state.offset + state_offset;
add_surface_reloc(cmd_buffer, surface_state, constant_data);
break;
}
case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS: {
/* This is always the first binding for compute shaders */
assert(shader->stage == MESA_SHADER_COMPUTE && s == 0);
struct anv_state surface_state =
anv_cmd_buffer_alloc_surface_state(cmd_buffer);
const enum isl_format format =
anv_isl_format_for_descriptor_type(cmd_buffer->device,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
format, ISL_SWIZZLE_IDENTITY,
ISL_SURF_USAGE_CONSTANT_BUFFER_BIT,
cmd_buffer->state.compute.num_workgroups,
12, 1);
assert(surface_state.map);
bt_map[s] = surface_state.offset + state_offset;
if (need_client_mem_relocs) {
add_surface_reloc(cmd_buffer, surface_state,
cmd_buffer->state.compute.num_workgroups);
}
break;
}
case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
/* This is a descriptor set buffer so the set index is actually
* given by binding->binding. (Yes, that's confusing.)
*/
struct anv_descriptor_set *set =
pipe_state->descriptors[binding->index];
assert(set->desc_mem.alloc_size);
assert(set->desc_surface_state.alloc_size);
bt_map[s] = set->desc_surface_state.offset + state_offset;
add_surface_reloc(cmd_buffer, set->desc_surface_state,
anv_descriptor_set_address(set));
break;
}
default: {
assert(binding->set < MAX_SETS);
const struct anv_descriptor_set *set =
pipe_state->descriptors[binding->set];
if (binding->index >= set->descriptor_count) {
/* From the Vulkan spec section entitled "DescriptorSet and
* Binding Assignment":
*
* "If the array is runtime-sized, then array elements greater
* than or equal to the size of that binding in the bound
* descriptor set must not be used."
*
* Unfortunately, the compiler isn't smart enough to figure out
* when a dynamic binding isn't used so it may grab the whole
* array and stick it in the binding table. In this case, it's
* safe to just skip those bindings that are OOB.
*/
assert(binding->index < set->layout->descriptor_count);
continue;
}
const struct anv_descriptor *desc = &set->descriptors[binding->index];
switch (desc->type) {
case VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR:
case VK_DESCRIPTOR_TYPE_SAMPLER:
/* Nothing for us to do here */
continue;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: {
if (desc->image_view) {
struct anv_surface_state sstate =
(desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
desc->image_view->planes[binding->plane].general_sampler_surface_state :
desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
surface_state = sstate.state;
assert(surface_state.alloc_size);
if (need_client_mem_relocs)
add_surface_state_relocs(cmd_buffer, sstate);
} else {
surface_state = cmd_buffer->device->null_surface_state;
}
break;
}
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
if (desc->image_view) {
struct anv_surface_state sstate =
binding->lowered_storage_surface
? desc->image_view->planes[binding->plane].lowered_storage_surface_state
: desc->image_view->planes[binding->plane].storage_surface_state;
surface_state = sstate.state;
assert(surface_state.alloc_size);
if (surface_state.offset == 0) {
mesa_loge("Bound a image to a descriptor where the "
"descriptor does not have NonReadable "
"set and the image does not have a "
"corresponding SPIR-V format enum.");
vk_debug_report(&cmd_buffer->device->physical->instance->vk,
VK_DEBUG_REPORT_ERROR_BIT_EXT,
&desc->image_view->vk.base,
__LINE__, 0, "anv",
"Bound a image to a descriptor where the "
"descriptor does not have NonReadable "
"set and the image does not have a "
"corresponding SPIR-V format enum.");
}
if (surface_state.offset && need_client_mem_relocs)
add_surface_state_relocs(cmd_buffer, sstate);
} else {
surface_state = cmd_buffer->device->null_surface_state;
}
break;
}
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
if (desc->set_buffer_view) {
surface_state = desc->set_buffer_view->surface_state;
assert(surface_state.alloc_size);
if (need_client_mem_relocs) {
add_surface_reloc(cmd_buffer, surface_state,
desc->set_buffer_view->address);
}
} else {
surface_state = cmd_buffer->device->null_surface_state;
}
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
if (desc->buffer_view) {
surface_state = desc->buffer_view->surface_state;
assert(surface_state.alloc_size);
if (need_client_mem_relocs) {
add_surface_reloc(cmd_buffer, surface_state,
desc->buffer_view->address);
}
} else {
surface_state = cmd_buffer->device->null_surface_state;
}
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
if (desc->buffer) {
/* Compute the offset within the buffer */
uint32_t dynamic_offset =
push->dynamic_offsets[binding->dynamic_offset_index];
uint64_t offset = desc->offset + dynamic_offset;
/* Clamp to the buffer size */
offset = MIN2(offset, desc->buffer->vk.size);
/* Clamp the range to the buffer size */
uint32_t range = MIN2(desc->range, desc->buffer->vk.size - offset);
/* Align the range for consistency */
if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC)
range = align_u32(range, ANV_UBO_ALIGNMENT);
struct anv_address address =
anv_address_add(desc->buffer->address, offset);
surface_state =
anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
enum isl_format format =
anv_isl_format_for_descriptor_type(cmd_buffer->device,
desc->type);
isl_surf_usage_flags_t usage =
desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ?
ISL_SURF_USAGE_CONSTANT_BUFFER_BIT :
ISL_SURF_USAGE_STORAGE_BIT;
anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
format, ISL_SWIZZLE_IDENTITY,
usage, address, range, 1);
if (need_client_mem_relocs)
add_surface_reloc(cmd_buffer, surface_state, address);
} else {
surface_state = cmd_buffer->device->null_surface_state;
}
break;
}
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
if (desc->buffer_view) {
surface_state = binding->lowered_storage_surface
? desc->buffer_view->lowered_storage_surface_state
: desc->buffer_view->storage_surface_state;
assert(surface_state.alloc_size);
if (need_client_mem_relocs) {
add_surface_reloc(cmd_buffer, surface_state,
desc->buffer_view->address);
}
} else {
surface_state = cmd_buffer->device->null_surface_state;
}
break;
default:
assert(!"Invalid descriptor type");
continue;
}
assert(surface_state.map);
bt_map[s] = surface_state.offset + state_offset;
break;
}
}
}
return VK_SUCCESS;
}
static VkResult
emit_samplers(struct anv_cmd_buffer *cmd_buffer,
struct anv_cmd_pipeline_state *pipe_state,
struct anv_shader_bin *shader,
struct anv_state *state)
{
struct anv_pipeline_bind_map *map = &shader->bind_map;
if (map->sampler_count == 0) {
*state = (struct anv_state) { 0, };
return VK_SUCCESS;
}
uint32_t size = map->sampler_count * 16;
*state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
if (state->map == NULL)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
for (uint32_t s = 0; s < map->sampler_count; s++) {
struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
const struct anv_descriptor *desc =
&pipe_state->descriptors[binding->set]->descriptors[binding->index];
if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
continue;
struct anv_sampler *sampler = desc->sampler;
/* This can happen if we have an unfilled slot since TYPE_SAMPLER
* happens to be zero.
*/
if (sampler == NULL)
continue;
memcpy(state->map + (s * 16),
sampler->state[binding->plane], sizeof(sampler->state[0]));
}
return VK_SUCCESS;
}
static uint32_t
flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer,
struct anv_cmd_pipeline_state *pipe_state,
const VkShaderStageFlags dirty,
struct anv_shader_bin **shaders,
uint32_t num_shaders)
{
VkShaderStageFlags flushed = 0;
VkResult result = VK_SUCCESS;
for (uint32_t i = 0; i < num_shaders; i++) {
if (!shaders[i])
continue;
gl_shader_stage stage = shaders[i]->stage;
VkShaderStageFlags vk_stage = mesa_to_vk_shader_stage(stage);
if ((vk_stage & dirty) == 0)
continue;
assert(stage < ARRAY_SIZE(cmd_buffer->state.samplers));
result = emit_samplers(cmd_buffer, pipe_state, shaders[i],
&cmd_buffer->state.samplers[stage]);
if (result != VK_SUCCESS)
break;
assert(stage < ARRAY_SIZE(cmd_buffer->state.binding_tables));
result = emit_binding_table(cmd_buffer, pipe_state, shaders[i],
&cmd_buffer->state.binding_tables[stage]);
if (result != VK_SUCCESS)
break;
flushed |= vk_stage;
}
if (result != VK_SUCCESS) {
assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
if (result != VK_SUCCESS)
return 0;
/* Re-emit state base addresses so we get the new surface state base
* address before we start emitting binding tables etc.
*/
genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
/* Re-emit all active binding tables */
flushed = 0;
for (uint32_t i = 0; i < num_shaders; i++) {
if (!shaders[i])
continue;
gl_shader_stage stage = shaders[i]->stage;
result = emit_samplers(cmd_buffer, pipe_state, shaders[i],
&cmd_buffer->state.samplers[stage]);
if (result != VK_SUCCESS) {
anv_batch_set_error(&cmd_buffer->batch, result);
return 0;
}
result = emit_binding_table(cmd_buffer, pipe_state, shaders[i],
&cmd_buffer->state.binding_tables[stage]);
if (result != VK_SUCCESS) {
anv_batch_set_error(&cmd_buffer->batch, result);
return 0;
}
flushed |= mesa_to_vk_shader_stage(stage);
}
}
return flushed;
}
static void
cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
uint32_t stages)
{
static const uint32_t sampler_state_opcodes[] = {
[MESA_SHADER_VERTEX] = 43,
[MESA_SHADER_TESS_CTRL] = 44, /* HS */
[MESA_SHADER_TESS_EVAL] = 45, /* DS */
[MESA_SHADER_GEOMETRY] = 46,
[MESA_SHADER_FRAGMENT] = 47,
};
static const uint32_t binding_table_opcodes[] = {
[MESA_SHADER_VERTEX] = 38,
[MESA_SHADER_TESS_CTRL] = 39,
[MESA_SHADER_TESS_EVAL] = 40,
[MESA_SHADER_GEOMETRY] = 41,
[MESA_SHADER_FRAGMENT] = 42,
};
anv_foreach_stage(s, stages) {
assert(s < ARRAY_SIZE(binding_table_opcodes));
if (cmd_buffer->state.samplers[s].alloc_size > 0) {
anv_batch_emit(&cmd_buffer->batch,
GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
}
}
/* Always emit binding table pointers if we're asked to, since on SKL
* this is what flushes push constants. */
anv_batch_emit(&cmd_buffer->batch,
GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
btp._3DCommandSubOpcode = binding_table_opcodes[s];
btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
}
}
}
static struct anv_address
get_push_range_address(struct anv_cmd_buffer *cmd_buffer,
const struct anv_shader_bin *shader,
const struct anv_push_range *range)
{
struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
switch (range->set) {
case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
/* This is a descriptor set buffer so the set index is
* actually given by binding->binding. (Yes, that's
* confusing.)
*/
struct anv_descriptor_set *set =
gfx_state->base.descriptors[range->index];
return anv_descriptor_set_address(set);
}
case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: {
if (gfx_state->base.push_constants_state.alloc_size == 0) {
gfx_state->base.push_constants_state =
anv_cmd_buffer_gfx_push_constants(cmd_buffer);
}
return (struct anv_address) {
.bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
.offset = gfx_state->base.push_constants_state.offset,
};
}
case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS:
return (struct anv_address) {
.bo = cmd_buffer->device->instruction_state_pool.block_pool.bo,
.offset = shader->kernel.offset +
shader->prog_data->const_data_offset,
};
default: {
assert(range->set < MAX_SETS);
struct anv_descriptor_set *set =
gfx_state->base.descriptors[range->set];
const struct anv_descriptor *desc =
&set->descriptors[range->index];
if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
if (desc->buffer_view)
return desc->buffer_view->address;
} else {
assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
if (desc->buffer) {
const struct anv_push_constants *push =
&gfx_state->base.push_constants;
uint32_t dynamic_offset =
push->dynamic_offsets[range->dynamic_offset_index];
return anv_address_add(desc->buffer->address,
desc->offset + dynamic_offset);
}
}
/* For NULL UBOs, we just return an address in the workaround BO. We do
* writes to it for workarounds but always at the bottom. The higher
* bytes should be all zeros.
*/
assert(range->length * 32 <= 2048);
return (struct anv_address) {
.bo = cmd_buffer->device->workaround_bo,
.offset = 1024,
};
}
}
}
/** Returns the size in bytes of the bound buffer
*
* The range is relative to the start of the buffer, not the start of the
* range. The returned range may be smaller than
*
* (range->start + range->length) * 32;
*/
static uint32_t
get_push_range_bound_size(struct anv_cmd_buffer *cmd_buffer,
const struct anv_shader_bin *shader,
const struct anv_push_range *range)
{
assert(shader->stage != MESA_SHADER_COMPUTE);
const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
switch (range->set) {
case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
struct anv_descriptor_set *set =
gfx_state->base.descriptors[range->index];
assert(range->start * 32 < set->desc_mem.alloc_size);
assert((range->start + range->length) * 32 <= set->desc_mem.alloc_size);
return set->desc_mem.alloc_size;
}
case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS:
return (range->start + range->length) * 32;
case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS:
return ALIGN(shader->prog_data->const_data_size, ANV_UBO_ALIGNMENT);
default: {
assert(range->set < MAX_SETS);
struct anv_descriptor_set *set =
gfx_state->base.descriptors[range->set];
const struct anv_descriptor *desc =
&set->descriptors[range->index];
if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
/* Here we promote a UBO to a binding table entry so that we can avoid a layer of indirection.
* We use the descriptor set's internally allocated surface state to fill the binding table entry.
*/
if (!desc->set_buffer_view)
return 0;
if (range->start * 32 > desc->set_buffer_view->range)
return 0;
return desc->set_buffer_view->range;
} else {
if (!desc->buffer)
return 0;
assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
/* Compute the offset within the buffer */
const struct anv_push_constants *push =
&gfx_state->base.push_constants;
uint32_t dynamic_offset =
push->dynamic_offsets[range->dynamic_offset_index];
uint64_t offset = desc->offset + dynamic_offset;
/* Clamp to the buffer size */
offset = MIN2(offset, desc->buffer->vk.size);
/* Clamp the range to the buffer size */
uint32_t bound_range = MIN2(desc->range, desc->buffer->vk.size - offset);
/* Align the range for consistency */
bound_range = align_u32(bound_range, ANV_UBO_ALIGNMENT);
return bound_range;
}
}
}
}
static void
cmd_buffer_emit_push_constant(struct anv_cmd_buffer *cmd_buffer,
gl_shader_stage stage,
struct anv_address *buffers,
unsigned buffer_count)
{
const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline;
static const uint32_t push_constant_opcodes[] = {
[MESA_SHADER_VERTEX] = 21,
[MESA_SHADER_TESS_CTRL] = 25, /* HS */
[MESA_SHADER_TESS_EVAL] = 26, /* DS */
[MESA_SHADER_GEOMETRY] = 22,
[MESA_SHADER_FRAGMENT] = 23,
};
assert(stage < ARRAY_SIZE(push_constant_opcodes));
UNUSED uint32_t mocs = anv_mocs(cmd_buffer->device, NULL, 0);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
c._3DCommandSubOpcode = push_constant_opcodes[stage];
/* Set MOCS, except on Gfx8, because the Broadwell PRM says:
*
* "Constant Buffer Object Control State must be always
* programmed to zero."
*
* This restriction does not exist on any newer platforms.
*
* We only have one MOCS field for the whole packet, not one per
* buffer. We could go out of our way here to walk over all of
* the buffers and see if any of them are used externally and use
* the external MOCS. However, the notion that someone would use
* the same bit of memory for both scanout and a UBO is nuts.
*
* Let's not bother and assume it's all internal.
*/
#if GFX_VER >= 9
c.MOCS = mocs;
#elif GFX_VER < 8
c.ConstantBody.MOCS = mocs;
#endif
if (anv_pipeline_has_stage(pipeline, stage)) {
const struct anv_pipeline_bind_map *bind_map =
&pipeline->shaders[stage]->bind_map;
#if GFX_VERx10 >= 75
/* The Skylake PRM contains the following restriction:
*
* "The driver must ensure The following case does not occur
* without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
* buffer 3 read length equal to zero committed followed by a
* 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
* zero committed."
*
* To avoid this, we program the buffers in the highest slots.
* This way, slot 0 is only used if slot 3 is also used.
*/
assert(buffer_count <= 4);
const unsigned shift = 4 - buffer_count;
for (unsigned i = 0; i < buffer_count; i++) {
const struct anv_push_range *range = &bind_map->push_ranges[i];
/* At this point we only have non-empty ranges */
assert(range->length > 0);
/* For Ivy Bridge, make sure we only set the first range (actual
* push constants)
*/
assert((GFX_VERx10 >= 75) || i == 0);
c.ConstantBody.ReadLength[i + shift] = range->length;
c.ConstantBody.Buffer[i + shift] =
anv_address_add(buffers[i], range->start * 32);
}
#else
/* For Ivy Bridge, push constants are relative to dynamic state
* base address and we only ever push actual push constants.
*/
if (bind_map->push_ranges[0].length > 0) {
assert(buffer_count == 1);
assert(bind_map->push_ranges[0].set ==
ANV_DESCRIPTOR_SET_PUSH_CONSTANTS);
assert(buffers[0].bo ==
cmd_buffer->device->dynamic_state_pool.block_pool.bo);
c.ConstantBody.ReadLength[0] = bind_map->push_ranges[0].length;
c.ConstantBody.Buffer[0].bo = NULL;
c.ConstantBody.Buffer[0].offset = buffers[0].offset;
}
assert(bind_map->push_ranges[1].length == 0);
assert(bind_map->push_ranges[2].length == 0);
assert(bind_map->push_ranges[3].length == 0);
#endif
}
}
}
#if GFX_VER >= 12
static void
cmd_buffer_emit_push_constant_all(struct anv_cmd_buffer *cmd_buffer,
uint32_t shader_mask,
struct anv_address *buffers,
uint32_t buffer_count)
{
if (buffer_count == 0) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_ALL), c) {
c.ShaderUpdateEnable = shader_mask;
c.MOCS = isl_mocs(&cmd_buffer->device->isl_dev, 0, false);
}
return;
}
const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline;
static const UNUSED uint32_t push_constant_opcodes[] = {
[MESA_SHADER_VERTEX] = 21,
[MESA_SHADER_TESS_CTRL] = 25, /* HS */
[MESA_SHADER_TESS_EVAL] = 26, /* DS */
[MESA_SHADER_GEOMETRY] = 22,
[MESA_SHADER_FRAGMENT] = 23,
};
gl_shader_stage stage = vk_to_mesa_shader_stage(shader_mask);
assert(stage < ARRAY_SIZE(push_constant_opcodes));
const struct anv_pipeline_bind_map *bind_map =
&pipeline->shaders[stage]->bind_map;
uint32_t *dw;
const uint32_t buffer_mask = (1 << buffer_count) - 1;
const uint32_t num_dwords = 2 + 2 * buffer_count;
dw = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
GENX(3DSTATE_CONSTANT_ALL),
.ShaderUpdateEnable = shader_mask,
.PointerBufferMask = buffer_mask,
.MOCS = isl_mocs(&cmd_buffer->device->isl_dev, 0, false));
for (int i = 0; i < buffer_count; i++) {
const struct anv_push_range *range = &bind_map->push_ranges[i];
GENX(3DSTATE_CONSTANT_ALL_DATA_pack)(
&cmd_buffer->batch, dw + 2 + i * 2,
&(struct GENX(3DSTATE_CONSTANT_ALL_DATA)) {
.PointerToConstantBuffer =
anv_address_add(buffers[i], range->start * 32),
.ConstantBufferReadLength = range->length,
});
}
}
#endif
static void
cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
VkShaderStageFlags dirty_stages)
{
VkShaderStageFlags flushed = 0;
struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline;
#if GFX_VER >= 12
uint32_t nobuffer_stages = 0;
#endif
/* Compute robust pushed register access mask for each stage. */
if (cmd_buffer->device->robust_buffer_access) {
anv_foreach_stage(stage, dirty_stages) {
if (!anv_pipeline_has_stage(pipeline, stage))
continue;
const struct anv_shader_bin *shader = pipeline->shaders[stage];
const struct anv_pipeline_bind_map *bind_map = &shader->bind_map;
struct anv_push_constants *push = &gfx_state->base.push_constants;
push->push_reg_mask[stage] = 0;
/* Start of the current range in the shader, relative to the start of
* push constants in the shader.
*/
unsigned range_start_reg = 0;
for (unsigned i = 0; i < 4; i++) {
const struct anv_push_range *range = &bind_map->push_ranges[i];
if (range->length == 0)
continue;
unsigned bound_size =
get_push_range_bound_size(cmd_buffer, shader, range);
if (bound_size >= range->start * 32) {
unsigned bound_regs =
MIN2(DIV_ROUND_UP(bound_size, 32) - range->start,
range->length);
assert(range_start_reg + bound_regs <= 64);
push->push_reg_mask[stage] |= BITFIELD64_RANGE(range_start_reg,
bound_regs);
}
cmd_buffer->state.push_constants_dirty |=
mesa_to_vk_shader_stage(stage);
range_start_reg += range->length;
}
}
}
/* Resets the push constant state so that we allocate a new one if
* needed.
*/
gfx_state->base.push_constants_state = ANV_STATE_NULL;
anv_foreach_stage(stage, dirty_stages) {
unsigned buffer_count = 0;
flushed |= mesa_to_vk_shader_stage(stage);
UNUSED uint32_t max_push_range = 0;
struct anv_address buffers[4] = {};
if (anv_pipeline_has_stage(pipeline, stage)) {
const struct anv_shader_bin *shader = pipeline->shaders[stage];
const struct anv_pipeline_bind_map *bind_map = &shader->bind_map;
/* We have to gather buffer addresses as a second step because the
* loop above puts data into the push constant area and the call to
* get_push_range_address is what locks our push constants and copies
* them into the actual GPU buffer. If we did the two loops at the
* same time, we'd risk only having some of the sizes in the push
* constant buffer when we did the copy.
*/
for (unsigned i = 0; i < 4; i++) {
const struct anv_push_range *range = &bind_map->push_ranges[i];
if (range->length == 0)
break;
buffers[i] = get_push_range_address(cmd_buffer, shader, range);
max_push_range = MAX2(max_push_range, range->length);
buffer_count++;
}
/* We have at most 4 buffers but they should be tightly packed */
for (unsigned i = buffer_count; i < 4; i++)
assert(bind_map->push_ranges[i].length == 0);
}
#if GFX_VER >= 12
/* If this stage doesn't have any push constants, emit it later in a
* single CONSTANT_ALL packet.
*/
if (buffer_count == 0) {
nobuffer_stages |= 1 << stage;
continue;
}
/* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
* contains only 5 bits, so we can only use it for buffers smaller than
* 32.
*/
if (max_push_range < 32) {
cmd_buffer_emit_push_constant_all(cmd_buffer, 1 << stage,
buffers, buffer_count);
continue;
}
#endif
cmd_buffer_emit_push_constant(cmd_buffer, stage, buffers, buffer_count);
}
#if GFX_VER >= 12
if (nobuffer_stages)
cmd_buffer_emit_push_constant_all(cmd_buffer, nobuffer_stages, NULL, 0);
#endif
cmd_buffer->state.push_constants_dirty &= ~flushed;
}
#if GFX_VERx10 >= 125
static void
cmd_buffer_flush_mesh_inline_data(struct anv_cmd_buffer *cmd_buffer,
VkShaderStageFlags dirty_stages)
{
struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline;
if (dirty_stages & VK_SHADER_STAGE_TASK_BIT_NV &&
anv_pipeline_has_stage(pipeline, MESA_SHADER_TASK)) {
const struct anv_shader_bin *shader = pipeline->shaders[MESA_SHADER_TASK];
const struct anv_pipeline_bind_map *bind_map = &shader->bind_map;
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_TASK_SHADER_DATA), data) {
const struct anv_push_range *range = &bind_map->push_ranges[0];
if (range->length > 0) {
struct anv_address buffer =
get_push_range_address(cmd_buffer, shader, range);
uint64_t addr = anv_address_physical(buffer);
data.InlineData[0] = addr & 0xffffffff;
data.InlineData[1] = addr >> 32;
memcpy(&data.InlineData[BRW_TASK_MESH_PUSH_CONSTANTS_START_DW],
cmd_buffer->state.gfx.base.push_constants.client_data,
BRW_TASK_MESH_PUSH_CONSTANTS_SIZE_DW * 4);
}
}
}
if (dirty_stages & VK_SHADER_STAGE_MESH_BIT_NV &&
anv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) {
const struct anv_shader_bin *shader = pipeline->shaders[MESA_SHADER_MESH];
const struct anv_pipeline_bind_map *bind_map = &shader->bind_map;
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_MESH_SHADER_DATA), data) {
const struct anv_push_range *range = &bind_map->push_ranges[0];
if (range->length > 0) {
struct anv_address buffer =
get_push_range_address(cmd_buffer, shader, range);
uint64_t addr = anv_address_physical(buffer);
data.InlineData[0] = addr & 0xffffffff;
data.InlineData[1] = addr >> 32;
memcpy(&data.InlineData[BRW_TASK_MESH_PUSH_CONSTANTS_START_DW],
cmd_buffer->state.gfx.base.push_constants.client_data,
BRW_TASK_MESH_PUSH_CONSTANTS_SIZE_DW * 4);
}
}
}
cmd_buffer->state.push_constants_dirty &= ~dirty_stages;
}
#endif
static void
cmd_buffer_emit_clip(struct anv_cmd_buffer *cmd_buffer)
{
const struct vk_dynamic_graphics_state *dyn =
&cmd_buffer->vk.dynamic_graphics_state;
if (!(cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) &&
!BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_IA_PRIMITIVE_TOPOLOGY) &&
#if GFX_VER <= 7
!BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_CULL_MODE) &&
!BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_FRONT_FACE) &&
#endif
!BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_VP_VIEWPORT_COUNT))
return;
/* Take dynamic primitive topology in to account with
* 3DSTATE_CLIP::ViewportXYClipTestEnable
*/
VkPolygonMode dynamic_raster_mode =
genX(raster_polygon_mode)(cmd_buffer->state.gfx.pipeline,
dyn->ia.primitive_topology);
bool xy_clip_test_enable = (dynamic_raster_mode == VK_POLYGON_MODE_FILL);
struct GENX(3DSTATE_CLIP) clip = {
GENX(3DSTATE_CLIP_header),
#if GFX_VER <= 7
.FrontWinding = genX(vk_to_intel_front_face)[dyn->rs.front_face],
.CullMode = genX(vk_to_intel_cullmode)[dyn->rs.cull_mode],
#endif
.ViewportXYClipTestEnable = xy_clip_test_enable,
};
uint32_t dwords[GENX(3DSTATE_CLIP_length)];
/* TODO(mesh): Multiview. */
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
if (anv_pipeline_is_primitive(pipeline)) {
const struct brw_vue_prog_data *last =
anv_pipeline_get_last_vue_prog_data(pipeline);
if (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT) {
clip.MaximumVPIndex = dyn->vp.viewport_count > 0 ?
dyn->vp.viewport_count - 1 : 0;
}
} else if (anv_pipeline_is_mesh(pipeline)) {
const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline);
if (mesh_prog_data->map.start_dw[VARYING_SLOT_VIEWPORT] >= 0) {
clip.MaximumVPIndex = dyn->vp.viewport_count > 0 ?
dyn->vp.viewport_count - 1 : 0;
}
}
GENX(3DSTATE_CLIP_pack)(NULL, dwords, &clip);
anv_batch_emit_merge(&cmd_buffer->batch, dwords,
pipeline->gfx7.clip);
}
static void
cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
const struct vk_dynamic_graphics_state *dyn =
&cmd_buffer->vk.dynamic_graphics_state;
uint32_t count = dyn->vp.viewport_count;
const VkViewport *viewports = dyn->vp.viewports;
struct anv_state sf_clip_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 64, 64);
bool negative_one_to_one =
cmd_buffer->state.gfx.pipeline->negative_one_to_one;
float scale = negative_one_to_one ? 0.5f : 1.0f;
for (uint32_t i = 0; i < count; i++) {
const VkViewport *vp = &viewports[i];
/* The gfx7 state struct has just the matrix and guardband fields, the
* gfx8 struct adds the min/max viewport fields. */
struct GENX(SF_CLIP_VIEWPORT) sfv = {
.ViewportMatrixElementm00 = vp->width / 2,
.ViewportMatrixElementm11 = vp->height / 2,
.ViewportMatrixElementm22 = (vp->maxDepth - vp->minDepth) * scale,
.ViewportMatrixElementm30 = vp->x + vp->width / 2,
.ViewportMatrixElementm31 = vp->y + vp->height / 2,
.ViewportMatrixElementm32 = negative_one_to_one ?
(vp->minDepth + vp->maxDepth) * scale : vp->minDepth,
.XMinClipGuardband = -1.0f,
.XMaxClipGuardband = 1.0f,
.YMinClipGuardband = -1.0f,
.YMaxClipGuardband = 1.0f,
#if GFX_VER >= 8
.XMinViewPort = vp->x,
.XMaxViewPort = vp->x + vp->width - 1,
.YMinViewPort = MIN2(vp->y, vp->y + vp->height),
.YMaxViewPort = MAX2(vp->y, vp->y + vp->height) - 1,
#endif
};
const uint32_t fb_size_max = 1 << 14;
uint32_t x_min = 0, x_max = fb_size_max;
uint32_t y_min = 0, y_max = fb_size_max;
/* If we have a valid renderArea, include that */
if (gfx->render_area.extent.width > 0 &&
gfx->render_area.extent.height > 0) {
x_min = MAX2(x_min, gfx->render_area.offset.x);
x_max = MIN2(x_min, gfx->render_area.offset.x +
gfx->render_area.extent.width);
y_min = MAX2(y_min, gfx->render_area.offset.y);
y_max = MIN2(y_min, gfx->render_area.offset.y +
gfx->render_area.extent.height);
}
/* The client is required to have enough scissors for whatever it sets
* as ViewportIndex but it's possible that they've got more viewports
* set from a previous command. Also, from the Vulkan 1.3.207:
*
* "The application must ensure (using scissor if necessary) that
* all rendering is contained within the render area."
*
* If the client doesn't set a scissor, that basically means it
* guarantees everything is in-bounds already. If we end up using a
* guardband of [-1, 1] in that case, there shouldn't be much loss.
* It's theoretically possible that they could do all their clipping
* with clip planes but that'd be a bit odd.
*/
if (i < dyn->vp.scissor_count) {
const VkRect2D *scissor = &dyn->vp.scissors[i];
x_min = MAX2(x_min, scissor->offset.x);
x_max = MIN2(x_min, scissor->offset.x + scissor->extent.width);
y_min = MAX2(y_min, scissor->offset.y);
y_max = MIN2(y_min, scissor->offset.y + scissor->extent.height);
}
/* Only bother calculating the guardband if our known render area is
* less than the maximum size. Otherwise, it will calculate [-1, 1]
* anyway but possibly with precision loss.
*/
if (x_min > 0 || x_max < fb_size_max ||
y_min > 0 || y_max < fb_size_max) {
intel_calculate_guardband_size(x_min, x_max, y_min, y_max,
sfv.ViewportMatrixElementm00,
sfv.ViewportMatrixElementm11,
sfv.ViewportMatrixElementm30,
sfv.ViewportMatrixElementm31,
&sfv.XMinClipGuardband,
&sfv.XMaxClipGuardband,
&sfv.YMinClipGuardband,
&sfv.YMaxClipGuardband);
}
GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_state.map + i * 64, &sfv);
}
anv_batch_emit(&cmd_buffer->batch,
GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), clip) {
clip.SFClipViewportPointer = sf_clip_state.offset;
}
}
static void
cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
bool depth_clamp_enable)
{
const struct vk_dynamic_graphics_state *dyn =
&cmd_buffer->vk.dynamic_graphics_state;
uint32_t count = dyn->vp.viewport_count;
const VkViewport *viewports = dyn->vp.viewports;
struct anv_state cc_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, 32);
for (uint32_t i = 0; i < count; i++) {
const VkViewport *vp = &viewports[i];
/* From the Vulkan spec:
*
* "It is valid for minDepth to be greater than or equal to
* maxDepth."
*/
float min_depth = MIN2(vp->minDepth, vp->maxDepth);
float max_depth = MAX2(vp->minDepth, vp->maxDepth);
struct GENX(CC_VIEWPORT) cc_viewport = {
.MinimumDepth = depth_clamp_enable ? min_depth : 0.0f,
.MaximumDepth = depth_clamp_enable ? max_depth : 1.0f,
};
GENX(CC_VIEWPORT_pack)(NULL, cc_state.map + i * 8, &cc_viewport);
}
anv_batch_emit(&cmd_buffer->batch,
GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), cc) {
cc.CCViewportPointer = cc_state.offset;
}
}
static int64_t
clamp_int64(int64_t x, int64_t min, int64_t max)
{
if (x < min)
return min;
else if (x < max)
return x;
else
return max;
}
static void
cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
const struct vk_dynamic_graphics_state *dyn =
&cmd_buffer->vk.dynamic_graphics_state;
uint32_t count = dyn->vp.scissor_count;
const VkRect2D *scissors = dyn->vp.scissors;
const VkViewport *viewports = dyn->vp.viewports;
/* Wa_1409725701:
* "The viewport-specific state used by the SF unit (SCISSOR_RECT) is
* stored as an array of up to 16 elements. The location of first
* element of the array, as specified by Pointer to SCISSOR_RECT, should
* be aligned to a 64-byte boundary.
*/
uint32_t alignment = 64;
struct anv_state scissor_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, alignment);
for (uint32_t i = 0; i < count; i++) {
const VkRect2D *s = &scissors[i];
const VkViewport *vp = &viewports[i];
/* Since xmax and ymax are inclusive, we have to have xmax < xmin or
* ymax < ymin for empty clips. In case clip x, y, width height are all
* 0, the clamps below produce 0 for xmin, ymin, xmax, ymax, which isn't
* what we want. Just special case empty clips and produce a canonical
* empty clip. */
static const struct GENX(SCISSOR_RECT) empty_scissor = {
.ScissorRectangleYMin = 1,
.ScissorRectangleXMin = 1,
.ScissorRectangleYMax = 0,
.ScissorRectangleXMax = 0
};
const int max = 0xffff;
uint32_t y_min = MAX2(s->offset.y, MIN2(vp->y, vp->y + vp->height));
uint32_t x_min = MAX2(s->offset.x, vp->x);
uint32_t y_max = MIN2(s->offset.y + s->extent.height - 1,
MAX2(vp->y, vp->y + vp->height) - 1);
uint32_t x_max = MIN2(s->offset.x + s->extent.width - 1,
vp->x + vp->width - 1);
/* Do this math using int64_t so overflow gets clamped correctly. */
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
y_min = clamp_int64((uint64_t) y_min, gfx->render_area.offset.y, max);
x_min = clamp_int64((uint64_t) x_min, gfx->render_area.offset.x, max);
y_max = clamp_int64((uint64_t) y_max, 0,
gfx->render_area.offset.y +
gfx->render_area.extent.height - 1);
x_max = clamp_int64((uint64_t) x_max, 0,
gfx->render_area.offset.x +
gfx->render_area.extent.width - 1);
}
struct GENX(SCISSOR_RECT) scissor = {
.ScissorRectangleYMin = y_min,
.ScissorRectangleXMin = x_min,
.ScissorRectangleYMax = y_max,
.ScissorRectangleXMax = x_max
};
if (s->extent.width <= 0 || s->extent.height <= 0) {
GENX(SCISSOR_RECT_pack)(NULL, scissor_state.map + i * 8,
&empty_scissor);
} else {
GENX(SCISSOR_RECT_pack)(NULL, scissor_state.map + i * 8, &scissor);
}
}
anv_batch_emit(&cmd_buffer->batch,
GENX(3DSTATE_SCISSOR_STATE_POINTERS), ssp) {
ssp.ScissorRectPointer = scissor_state.offset;
}
}
static void
cmd_buffer_emit_streamout(struct anv_cmd_buffer *cmd_buffer)
{
const struct vk_dynamic_graphics_state *dyn =
&cmd_buffer->vk.dynamic_graphics_state;
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
#if GFX_VER == 7
# define streamout_state_dw pipeline->gfx7.streamout_state
#else
# define streamout_state_dw pipeline->gfx8.streamout_state
#endif
uint32_t dwords[GENX(3DSTATE_STREAMOUT_length)];
struct GENX(3DSTATE_STREAMOUT) so = {
GENX(3DSTATE_STREAMOUT_header),
.RenderingDisable = dyn->rs.rasterizer_discard_enable,
};
GENX(3DSTATE_STREAMOUT_pack)(NULL, dwords, &so);
anv_batch_emit_merge(&cmd_buffer->batch, dwords, streamout_state_dw);
}
void
genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
const struct vk_dynamic_graphics_state *dyn =
&cmd_buffer->vk.dynamic_graphics_state;
uint32_t *p;
assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->base.l3_config);
genX(cmd_buffer_emit_hashing_mode)(cmd_buffer, UINT_MAX, UINT_MAX, 1);
genX(flush_pipeline_select_3d)(cmd_buffer);
/* Apply any pending pipeline flushes we may have. We want to apply them
* now because, if any of those flushes are for things like push constants,
* the GPU will read the state at weird times.
*/
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
vb_emit |= pipeline->vb_used;
if (vb_emit) {
const uint32_t num_buffers = __builtin_popcount(vb_emit);
const uint32_t num_dwords = 1 + num_buffers * 4;
p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
GENX(3DSTATE_VERTEX_BUFFERS));
uint32_t i = 0;
u_foreach_bit(vb, vb_emit) {
struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
struct GENX(VERTEX_BUFFER_STATE) state;
if (buffer) {
uint32_t stride = dyn->vi_binding_strides[vb];
UNUSED uint32_t size = cmd_buffer->state.vertex_bindings[vb].size;
#if GFX_VER <= 7
bool per_instance = pipeline->vb[vb].instanced;
uint32_t divisor = pipeline->vb[vb].instance_divisor *
pipeline->instance_multiplier;
#endif
state = (struct GENX(VERTEX_BUFFER_STATE)) {
.VertexBufferIndex = vb,
.MOCS = anv_mocs(cmd_buffer->device, buffer->address.bo,
ISL_SURF_USAGE_VERTEX_BUFFER_BIT),
#if GFX_VER <= 7
.BufferAccessType = per_instance ? INSTANCEDATA : VERTEXDATA,
.InstanceDataStepRate = per_instance ? divisor : 1,
#endif
.AddressModifyEnable = true,
.BufferPitch = stride,
.BufferStartingAddress = anv_address_add(buffer->address, offset),
.NullVertexBuffer = offset >= buffer->vk.size,
#if GFX_VER >= 12
.L3BypassDisable = true,
#endif
#if GFX_VER >= 8
.BufferSize = size,
#else
/* XXX: to handle dynamic offset for older gens we might want
* to modify Endaddress, but there are issues when doing so:
*
* https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/7439
*/
.EndAddress = anv_address_add(buffer->address, buffer->vk.size - 1),
#endif
};
} else {
state = (struct GENX(VERTEX_BUFFER_STATE)) {
.VertexBufferIndex = vb,
.NullVertexBuffer = true,
.MOCS = anv_mocs(cmd_buffer->device, NULL,
ISL_SURF_USAGE_VERTEX_BUFFER_BIT),
};
}
#if GFX_VER >= 8 && GFX_VER <= 9
genX(cmd_buffer_set_binding_for_gfx8_vb_flush)(cmd_buffer, vb,
state.BufferStartingAddress,
state.BufferSize);
#endif
GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
i++;
}
}
cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
uint32_t descriptors_dirty = cmd_buffer->state.descriptors_dirty &
pipeline->active_stages;
if (!cmd_buffer->state.gfx.dirty && !descriptors_dirty &&
!vk_dynamic_graphics_state_any_dirty(dyn) &&
!cmd_buffer->state.push_constants_dirty)
return;
if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) ||
(GFX_VER == 7 && (cmd_buffer->state.gfx.dirty &
ANV_CMD_DIRTY_PIPELINE))) {
/* Wa_16011411144:
*
* SW must insert a PIPE_CONTROL cmd before and after the
* 3dstate_so_buffer_index_0/1/2/3 states to ensure so_buffer_index_*
* state is not combined with other state changes.
*/
if (intel_device_info_is_dg2(&cmd_buffer->device->info)) {
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_CS_STALL_BIT,
"before SO_BUFFER change WA");
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
}
/* We don't need any per-buffer dirty tracking because you're not
* allowed to bind different XFB buffers while XFB is enabled.
*/
for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx];
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
#if GFX_VER < 12
sob.SOBufferIndex = idx;
#else
sob._3DCommandOpcode = 0;
sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + idx;
#endif
if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) {
sob.MOCS = anv_mocs(cmd_buffer->device, xfb->buffer->address.bo, 0);
sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address,
xfb->offset);
#if GFX_VER >= 8
sob.SOBufferEnable = true;
sob.StreamOffsetWriteEnable = false;
/* Size is in DWords - 1 */
sob.SurfaceSize = DIV_ROUND_UP(xfb->size, 4) - 1;
#else
/* We don't have SOBufferEnable in 3DSTATE_SO_BUFFER on Gfx7 so
* we trust in SurfaceEndAddress = SurfaceBaseAddress = 0 (the
* default for an empty SO_BUFFER packet) to disable them.
*/
sob.SurfacePitch = pipeline->gfx7.xfb_bo_pitch[idx];
sob.SurfaceEndAddress = anv_address_add(xfb->buffer->address,
xfb->offset + xfb->size);
#endif
} else {
sob.MOCS = anv_mocs(cmd_buffer->device, NULL, 0);
}
}
}
if (intel_device_info_is_dg2(&cmd_buffer->device->info)) {
/* Wa_16011411144: also CS_STALL after touching SO_BUFFER change */
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_CS_STALL_BIT,
"after SO_BUFFER change WA");
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
} else if (GFX_VER >= 10) {
/* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_CS_STALL_BIT,
"after 3DSTATE_SO_BUFFER call");
}
}
if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->base.batch);
/* If the pipeline changed, we may need to re-allocate push constant
* space in the URB.
*/
cmd_buffer_alloc_push_constants(cmd_buffer);
}
#if GFX_VER <= 7
if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
/* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
*
* "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
* stall needs to be sent just prior to any 3DSTATE_VS,
* 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
* 3DSTATE_BINDING_TABLE_POINTER_VS,
* 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
* PIPE_CONTROL needs to be sent before any combination of VS
* associated 3DSTATE."
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.DepthStallEnable = true;
pc.PostSyncOperation = WriteImmediateData;
pc.Address = cmd_buffer->device->workaround_address;
anv_debug_dump_pc(pc);
}
}
#endif
/* Render targets live in the same binding table as fragment descriptors */
if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
/* We emit the binding tables and sampler tables first, then emit push
* constants and then finally emit binding table and sampler table
* pointers. It has to happen in this order, since emitting the binding
* tables may change the push constants (in case of storage images). After
* emitting push constants, on SKL+ we have to emit the corresponding
* 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
*/
uint32_t dirty = 0;
if (descriptors_dirty) {
dirty = flush_descriptor_sets(cmd_buffer,
&cmd_buffer->state.gfx.base,
descriptors_dirty,
pipeline->shaders,
ARRAY_SIZE(pipeline->shaders));
cmd_buffer->state.descriptors_dirty &= ~dirty;
}
if (dirty || cmd_buffer->state.push_constants_dirty) {
/* Because we're pushing UBOs, we have to push whenever either
* descriptors or push constants is dirty.
*/
dirty |= cmd_buffer->state.push_constants_dirty;
cmd_buffer_flush_push_constants(cmd_buffer,
dirty & VK_SHADER_STAGE_ALL_GRAPHICS);
#if GFX_VERx10 >= 125
cmd_buffer_flush_mesh_inline_data(
cmd_buffer, dirty & (VK_SHADER_STAGE_TASK_BIT_NV |
VK_SHADER_STAGE_MESH_BIT_NV));
#endif
}
if (dirty & VK_SHADER_STAGE_ALL_GRAPHICS) {
cmd_buffer_emit_descriptor_pointers(cmd_buffer,
dirty & VK_SHADER_STAGE_ALL_GRAPHICS);
}
cmd_buffer_emit_clip(cmd_buffer);
if ((cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_XFB_ENABLE)) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_RASTERIZER_DISCARD_ENABLE))
cmd_buffer_emit_streamout(cmd_buffer);
if ((cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_RENDER_TARGETS)) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_VP_VIEWPORTS) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_VP_SCISSORS)) {
cmd_buffer_emit_viewport(cmd_buffer);
cmd_buffer_emit_depth_viewport(cmd_buffer,
pipeline->depth_clamp_enable);
}
if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_VP_VIEWPORTS) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_VP_SCISSORS))
cmd_buffer_emit_scissor(cmd_buffer);
if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_IA_PRIMITIVE_TOPOLOGY)) {
uint32_t topology;
if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
topology = _3DPRIM_PATCHLIST(pipeline->patch_control_points);
else
topology = genX(vk_to_intel_primitive_type)[dyn->ia.primitive_topology];
cmd_buffer->state.gfx.primitive_topology = topology;
#if (GFX_VER >= 8)
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF_TOPOLOGY), vft) {
vft.PrimitiveTopologyType = topology;
}
#endif
}
genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
}
static void
emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
struct anv_address addr,
uint32_t size, uint32_t index)
{
uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
GENX(3DSTATE_VERTEX_BUFFERS));
GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
&(struct GENX(VERTEX_BUFFER_STATE)) {
.VertexBufferIndex = index,
.AddressModifyEnable = true,
.BufferPitch = 0,
.MOCS = anv_mocs(cmd_buffer->device, addr.bo,
ISL_SURF_USAGE_VERTEX_BUFFER_BIT),
.NullVertexBuffer = size == 0,
#if GFX_VER >= 12
.L3BypassDisable = true,
#endif
#if (GFX_VER >= 8)
.BufferStartingAddress = addr,
.BufferSize = size
#else
.BufferStartingAddress = addr,
.EndAddress = anv_address_add(addr, size),
#endif
});
genX(cmd_buffer_set_binding_for_gfx8_vb_flush)(cmd_buffer,
index, addr, size);
}
static void
emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
struct anv_address addr)
{
emit_vertex_bo(cmd_buffer, addr, addr.bo ? 8 : 0, ANV_SVGS_VB_INDEX);
}
static void
emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
uint32_t base_vertex, uint32_t base_instance)
{
if (base_vertex == 0 && base_instance == 0) {
emit_base_vertex_instance_bo(cmd_buffer, ANV_NULL_ADDRESS);
} else {
struct anv_state id_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
((uint32_t *)id_state.map)[0] = base_vertex;
((uint32_t *)id_state.map)[1] = base_instance;
struct anv_address addr = {
.bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
.offset = id_state.offset,
};
emit_base_vertex_instance_bo(cmd_buffer, addr);
}
}
static void
emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
{
struct anv_state state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
((uint32_t *)state.map)[0] = draw_index;
struct anv_address addr = {
.bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
.offset = state.offset,
};
emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
}
static void
update_dirty_vbs_for_gfx8_vb_flush(struct anv_cmd_buffer *cmd_buffer,
uint32_t access_type)
{
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
uint64_t vb_used = pipeline->vb_used;
if (vs_prog_data->uses_firstvertex ||
vs_prog_data->uses_baseinstance)
vb_used |= 1ull << ANV_SVGS_VB_INDEX;
if (vs_prog_data->uses_drawid)
vb_used |= 1ull << ANV_DRAWID_VB_INDEX;
genX(cmd_buffer_update_dirty_vbs_for_gfx8_vb_flush)(cmd_buffer,
access_type == RANDOM,
vb_used);
}
ALWAYS_INLINE static void
cmd_buffer_emit_vertex_constants_and_flush(struct anv_cmd_buffer *cmd_buffer,
const struct brw_vs_prog_data *vs_prog_data,
uint32_t base_vertex,
uint32_t base_instance,
uint32_t draw_id,
bool force_flush)
{
bool emitted = false;
if (vs_prog_data->uses_firstvertex ||
vs_prog_data->uses_baseinstance) {
emit_base_vertex_instance(cmd_buffer, base_vertex, base_instance);
emitted = true;
}
if (vs_prog_data->uses_drawid) {
emit_draw_index(cmd_buffer, draw_id);
emitted = true;
}
/* Emitting draw index or vertex index BOs may result in needing
* additional VF cache flushes.
*/
if (emitted || force_flush)
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
}
void genX(CmdDraw)(
VkCommandBuffer commandBuffer,
uint32_t vertexCount,
uint32_t instanceCount,
uint32_t firstVertex,
uint32_t firstInstance)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
if (anv_batch_has_error(&cmd_buffer->batch))
return;
const uint32_t count =
vertexCount * instanceCount * pipeline->instance_multiplier;
anv_measure_snapshot(cmd_buffer,
INTEL_SNAPSHOT_DRAW,
"draw", count);
trace_intel_begin_draw(&cmd_buffer->trace);
genX(cmd_buffer_flush_state)(cmd_buffer);
if (cmd_buffer->state.conditional_render_enabled)
genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
cmd_buffer_emit_vertex_constants_and_flush(cmd_buffer, vs_prog_data,
firstVertex, firstInstance, 0,
true);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
prim.VertexAccessType = SEQUENTIAL;
prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
prim.VertexCountPerInstance = vertexCount;
prim.StartVertexLocation = firstVertex;
prim.InstanceCount = instanceCount *
pipeline->instance_multiplier;
prim.StartInstanceLocation = firstInstance;
prim.BaseVertexLocation = 0;
}
update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, SEQUENTIAL);
trace_intel_end_draw(&cmd_buffer->trace, count);
}
void genX(CmdDrawMultiEXT)(
VkCommandBuffer commandBuffer,
uint32_t drawCount,
const VkMultiDrawInfoEXT *pVertexInfo,
uint32_t instanceCount,
uint32_t firstInstance,
uint32_t stride)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
if (anv_batch_has_error(&cmd_buffer->batch))
return;
const uint32_t count =
drawCount * instanceCount * pipeline->instance_multiplier;
anv_measure_snapshot(cmd_buffer,
INTEL_SNAPSHOT_DRAW,
"draw_multi", count);
trace_intel_begin_draw_multi(&cmd_buffer->trace);
genX(cmd_buffer_flush_state)(cmd_buffer);
if (cmd_buffer->state.conditional_render_enabled)
genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
uint32_t i = 0;
vk_foreach_multi_draw(draw, i, pVertexInfo, drawCount, stride) {
cmd_buffer_emit_vertex_constants_and_flush(cmd_buffer, vs_prog_data,
draw->firstVertex,
firstInstance, i, !i);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
prim.VertexAccessType = SEQUENTIAL;
prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
prim.VertexCountPerInstance = draw->vertexCount;
prim.StartVertexLocation = draw->firstVertex;
prim.InstanceCount = instanceCount *
pipeline->instance_multiplier;
prim.StartInstanceLocation = firstInstance;
prim.BaseVertexLocation = 0;
}
}
update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, SEQUENTIAL);
trace_intel_end_draw_multi(&cmd_buffer->trace, count);
}
void genX(CmdDrawIndexed)(
VkCommandBuffer commandBuffer,
uint32_t indexCount,
uint32_t instanceCount,
uint32_t firstIndex,
int32_t vertexOffset,
uint32_t firstInstance)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
if (anv_batch_has_error(&cmd_buffer->batch))
return;
const uint32_t count =
indexCount * instanceCount * pipeline->instance_multiplier;
anv_measure_snapshot(cmd_buffer,
INTEL_SNAPSHOT_DRAW,
"draw indexed",
count);
trace_intel_begin_draw_indexed(&cmd_buffer->trace);
genX(cmd_buffer_flush_state)(cmd_buffer);
if (cmd_buffer->state.conditional_render_enabled)
genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
cmd_buffer_emit_vertex_constants_and_flush(cmd_buffer, vs_prog_data, vertexOffset, firstInstance, 0, true);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
prim.VertexAccessType = RANDOM;
prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
prim.VertexCountPerInstance = indexCount;
prim.StartVertexLocation = firstIndex;
prim.InstanceCount = instanceCount *
pipeline->instance_multiplier;
prim.StartInstanceLocation = firstInstance;
prim.BaseVertexLocation = vertexOffset;
}
update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, RANDOM);
trace_intel_end_draw_indexed(&cmd_buffer->trace, count);
}
void genX(CmdDrawMultiIndexedEXT)(
VkCommandBuffer commandBuffer,
uint32_t drawCount,
const VkMultiDrawIndexedInfoEXT *pIndexInfo,
uint32_t instanceCount,
uint32_t firstInstance,
uint32_t stride,
const int32_t *pVertexOffset)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
if (anv_batch_has_error(&cmd_buffer->batch))
return;
const uint32_t count =
drawCount * instanceCount * pipeline->instance_multiplier;
anv_measure_snapshot(cmd_buffer,
INTEL_SNAPSHOT_DRAW,
"draw indexed_multi",
count);
trace_intel_begin_draw_indexed_multi(&cmd_buffer->trace);
genX(cmd_buffer_flush_state)(cmd_buffer);
if (cmd_buffer->state.conditional_render_enabled)
genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
uint32_t i = 0;
if (pVertexOffset) {
if (vs_prog_data->uses_drawid) {
bool emitted = true;
if (vs_prog_data->uses_firstvertex ||
vs_prog_data->uses_baseinstance) {
emit_base_vertex_instance(cmd_buffer, *pVertexOffset, firstInstance);
emitted = true;
}
vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
if (vs_prog_data->uses_drawid) {
emit_draw_index(cmd_buffer, i);
emitted = true;
}
/* Emitting draw index or vertex index BOs may result in needing
* additional VF cache flushes.
*/
if (emitted)
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
prim.VertexAccessType = RANDOM;
prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
prim.VertexCountPerInstance = draw->indexCount;
prim.StartVertexLocation = draw->firstIndex;
prim.InstanceCount = instanceCount *
pipeline->instance_multiplier;
prim.StartInstanceLocation = firstInstance;
prim.BaseVertexLocation = *pVertexOffset;
}
emitted = false;
}
} else {
if (vs_prog_data->uses_firstvertex ||
vs_prog_data->uses_baseinstance) {
emit_base_vertex_instance(cmd_buffer, *pVertexOffset, firstInstance);
/* Emitting draw index or vertex index BOs may result in needing
* additional VF cache flushes.
*/
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
}
vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
prim.VertexAccessType = RANDOM;
prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
prim.VertexCountPerInstance = draw->indexCount;
prim.StartVertexLocation = draw->firstIndex;
prim.InstanceCount = instanceCount *
pipeline->instance_multiplier;
prim.StartInstanceLocation = firstInstance;
prim.BaseVertexLocation = *pVertexOffset;
}
}
}
} else {
vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
cmd_buffer_emit_vertex_constants_and_flush(cmd_buffer, vs_prog_data,
draw->vertexOffset,
firstInstance, i, i != 0);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
prim.VertexAccessType = RANDOM;
prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
prim.VertexCountPerInstance = draw->indexCount;
prim.StartVertexLocation = draw->firstIndex;
prim.InstanceCount = instanceCount *
pipeline->instance_multiplier;
prim.StartInstanceLocation = firstInstance;
prim.BaseVertexLocation = draw->vertexOffset;
}
}
}
update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, RANDOM);
trace_intel_end_draw_indexed_multi(&cmd_buffer->trace, count);
}
/* Auto-Draw / Indirect Registers */
#define GFX7_3DPRIM_END_OFFSET 0x2420
#define GFX7_3DPRIM_START_VERTEX 0x2430
#define GFX7_3DPRIM_VERTEX_COUNT 0x2434
#define GFX7_3DPRIM_INSTANCE_COUNT 0x2438
#define GFX7_3DPRIM_START_INSTANCE 0x243C
#define GFX7_3DPRIM_BASE_VERTEX 0x2440
void genX(CmdDrawIndirectByteCountEXT)(
VkCommandBuffer commandBuffer,
uint32_t instanceCount,
uint32_t firstInstance,
VkBuffer counterBuffer,
VkDeviceSize counterBufferOffset,
uint32_t counterOffset,
uint32_t vertexStride)
{
#if GFX_VERx10 >= 75
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer);
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
/* firstVertex is always zero for this draw function */
const uint32_t firstVertex = 0;
if (anv_batch_has_error(&cmd_buffer->batch))
return;
anv_measure_snapshot(cmd_buffer,
INTEL_SNAPSHOT_DRAW,
"draw indirect byte count",
instanceCount * pipeline->instance_multiplier);
trace_intel_begin_draw_indirect_byte_count(&cmd_buffer->trace);
genX(cmd_buffer_flush_state)(cmd_buffer);
if (cmd_buffer->state.conditional_render_enabled)
genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
if (vs_prog_data->uses_firstvertex ||
vs_prog_data->uses_baseinstance)
emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
if (vs_prog_data->uses_drawid)
emit_draw_index(cmd_buffer, 0);
/* Emitting draw index or vertex index BOs may result in needing
* additional VF cache flushes.
*/
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
struct mi_builder b;
mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
struct mi_value count =
mi_mem32(anv_address_add(counter_buffer->address,
counterBufferOffset));
if (counterOffset)
count = mi_isub(&b, count, mi_imm(counterOffset));
count = mi_udiv32_imm(&b, count, vertexStride);
mi_store(&b, mi_reg32(GFX7_3DPRIM_VERTEX_COUNT), count);
mi_store(&b, mi_reg32(GFX7_3DPRIM_START_VERTEX), mi_imm(firstVertex));
mi_store(&b, mi_reg32(GFX7_3DPRIM_INSTANCE_COUNT),
mi_imm(instanceCount * pipeline->instance_multiplier));
mi_store(&b, mi_reg32(GFX7_3DPRIM_START_INSTANCE), mi_imm(firstInstance));
mi_store(&b, mi_reg32(GFX7_3DPRIM_BASE_VERTEX), mi_imm(0));
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
prim.IndirectParameterEnable = true;
prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
prim.VertexAccessType = SEQUENTIAL;
prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
}
update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, SEQUENTIAL);
trace_intel_end_draw_indirect_byte_count(&cmd_buffer->trace,
instanceCount * pipeline->instance_multiplier);
#endif /* GFX_VERx10 >= 75 */
}
static void
load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
struct anv_address addr,
bool indexed)
{
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
struct mi_builder b;
mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
mi_store(&b, mi_reg32(GFX7_3DPRIM_VERTEX_COUNT),
mi_mem32(anv_address_add(addr, 0)));
struct mi_value instance_count = mi_mem32(anv_address_add(addr, 4));
if (pipeline->instance_multiplier > 1) {
#if GFX_VERx10 >= 75
instance_count = mi_imul_imm(&b, instance_count,
pipeline->instance_multiplier);
#else
anv_finishme("Multiview + indirect draw requires MI_MATH; "
"MI_MATH is not supported on Ivy Bridge");
#endif
}
mi_store(&b, mi_reg32(GFX7_3DPRIM_INSTANCE_COUNT), instance_count);
mi_store(&b, mi_reg32(GFX7_3DPRIM_START_VERTEX),
mi_mem32(anv_address_add(addr, 8)));
if (indexed) {
mi_store(&b, mi_reg32(GFX7_3DPRIM_BASE_VERTEX),
mi_mem32(anv_address_add(addr, 12)));
mi_store(&b, mi_reg32(GFX7_3DPRIM_START_INSTANCE),
mi_mem32(anv_address_add(addr, 16)));
} else {
mi_store(&b, mi_reg32(GFX7_3DPRIM_START_INSTANCE),
mi_mem32(anv_address_add(addr, 12)));
mi_store(&b, mi_reg32(GFX7_3DPRIM_BASE_VERTEX), mi_imm(0));
}
}
void genX(CmdDrawIndirect)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
if (anv_batch_has_error(&cmd_buffer->batch))
return;
anv_measure_snapshot(cmd_buffer,
INTEL_SNAPSHOT_DRAW,
"draw indirect",
drawCount);
trace_intel_begin_draw_indirect(&cmd_buffer->trace);
genX(cmd_buffer_flush_state)(cmd_buffer);
if (cmd_buffer->state.conditional_render_enabled)
genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
for (uint32_t i = 0; i < drawCount; i++) {
struct anv_address draw = anv_address_add(buffer->address, offset);
if (vs_prog_data->uses_firstvertex ||
vs_prog_data->uses_baseinstance)
emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
if (vs_prog_data->uses_drawid)
emit_draw_index(cmd_buffer, i);
/* Emitting draw index or vertex index BOs may result in needing
* additional VF cache flushes.
*/
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
load_indirect_parameters(cmd_buffer, draw, false);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
prim.IndirectParameterEnable = true;
prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
prim.VertexAccessType = SEQUENTIAL;
prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
}
update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, SEQUENTIAL);
offset += stride;
}
trace_intel_end_draw_indirect(&cmd_buffer->trace, drawCount);
}
void genX(CmdDrawIndexedIndirect)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
if (anv_batch_has_error(&cmd_buffer->batch))
return;
anv_measure_snapshot(cmd_buffer,
INTEL_SNAPSHOT_DRAW,
"draw indexed indirect",
drawCount);
trace_intel_begin_draw_indexed_indirect(&cmd_buffer->trace);
genX(cmd_buffer_flush_state)(cmd_buffer);
if (cmd_buffer->state.conditional_render_enabled)
genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
for (uint32_t i = 0; i < drawCount; i++) {
struct anv_address draw = anv_address_add(buffer->address, offset);
/* TODO: We need to stomp base vertex to 0 somehow */
if (vs_prog_data->uses_firstvertex ||
vs_prog_data->uses_baseinstance)
emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
if (vs_prog_data->uses_drawid)
emit_draw_index(cmd_buffer, i);
/* Emitting draw index or vertex index BOs may result in needing
* additional VF cache flushes.
*/
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
load_indirect_parameters(cmd_buffer, draw, true);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
prim.IndirectParameterEnable = true;
prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
prim.VertexAccessType = RANDOM;
prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
}
update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, RANDOM);
offset += stride;
}
trace_intel_end_draw_indexed_indirect(&cmd_buffer->trace, drawCount);
}
static struct mi_value
prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
struct mi_builder *b,
struct anv_buffer *count_buffer,
uint64_t countBufferOffset)
{
struct anv_address count_address =
anv_address_add(count_buffer->address, countBufferOffset);
struct mi_value ret = mi_imm(0);
if (cmd_buffer->state.conditional_render_enabled) {
#if GFX_VERx10 >= 75
ret = mi_new_gpr(b);
mi_store(b, mi_value_ref(b, ret), mi_mem32(count_address));
#endif
} else {
/* Upload the current draw count from the draw parameters buffer to
* MI_PREDICATE_SRC0.
*/
mi_store(b, mi_reg64(MI_PREDICATE_SRC0), mi_mem32(count_address));
mi_store(b, mi_reg32(MI_PREDICATE_SRC1 + 4), mi_imm(0));
}
return ret;
}
static void
emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
struct mi_builder *b,
uint32_t draw_index)
{
/* Upload the index of the current primitive to MI_PREDICATE_SRC1. */
mi_store(b, mi_reg32(MI_PREDICATE_SRC1), mi_imm(draw_index));
if (draw_index == 0) {
anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
mip.LoadOperation = LOAD_LOADINV;
mip.CombineOperation = COMBINE_SET;
mip.CompareOperation = COMPARE_SRCS_EQUAL;
}
} else {
/* While draw_index < draw_count the predicate's result will be
* (draw_index == draw_count) ^ TRUE = TRUE
* When draw_index == draw_count the result is
* (TRUE) ^ TRUE = FALSE
* After this all results will be:
* (FALSE) ^ FALSE = FALSE
*/
anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
mip.LoadOperation = LOAD_LOAD;
mip.CombineOperation = COMBINE_XOR;
mip.CompareOperation = COMPARE_SRCS_EQUAL;
}
}
}
#if GFX_VERx10 >= 75
static void
emit_draw_count_predicate_with_conditional_render(
struct anv_cmd_buffer *cmd_buffer,
struct mi_builder *b,
uint32_t draw_index,
struct mi_value max)
{
struct mi_value pred = mi_ult(b, mi_imm(draw_index), max);
pred = mi_iand(b, pred, mi_reg64(ANV_PREDICATE_RESULT_REG));
#if GFX_VER >= 8
mi_store(b, mi_reg32(MI_PREDICATE_RESULT), pred);
#else
/* MI_PREDICATE_RESULT is not whitelisted in i915 command parser
* so we emit MI_PREDICATE to set it.
*/
mi_store(b, mi_reg64(MI_PREDICATE_SRC0), pred);
mi_store(b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0));
anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
mip.LoadOperation = LOAD_LOADINV;
mip.CombineOperation = COMBINE_SET;
mip.CompareOperation = COMPARE_SRCS_EQUAL;
}
#endif
}
#endif
static void
emit_draw_count_predicate_cond(struct anv_cmd_buffer *cmd_buffer,
struct mi_builder *b,
uint32_t draw_index,
struct mi_value max)
{
#if GFX_VERx10 >= 75
if (cmd_buffer->state.conditional_render_enabled) {
emit_draw_count_predicate_with_conditional_render(
cmd_buffer, b, draw_index, mi_value_ref(b, max));
} else {
emit_draw_count_predicate(cmd_buffer, b, draw_index);
}
#else
emit_draw_count_predicate(cmd_buffer, b, draw_index);
#endif
}
void genX(CmdDrawIndirectCount)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
VkBuffer _countBuffer,
VkDeviceSize countBufferOffset,
uint32_t maxDrawCount,
uint32_t stride)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
struct anv_cmd_state *cmd_state = &cmd_buffer->state;
struct anv_graphics_pipeline *pipeline = cmd_state->gfx.pipeline;
const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
if (anv_batch_has_error(&cmd_buffer->batch))
return;
anv_measure_snapshot(cmd_buffer,
INTEL_SNAPSHOT_DRAW,
"draw indirect count",
0);
trace_intel_begin_draw_indirect_count(&cmd_buffer->trace);
genX(cmd_buffer_flush_state)(cmd_buffer);
struct mi_builder b;
mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
struct mi_value max =
prepare_for_draw_count_predicate(cmd_buffer, &b,
count_buffer, countBufferOffset);
for (uint32_t i = 0; i < maxDrawCount; i++) {
struct anv_address draw = anv_address_add(buffer->address, offset);
emit_draw_count_predicate_cond(cmd_buffer, &b, i, max);
if (vs_prog_data->uses_firstvertex ||
vs_prog_data->uses_baseinstance)
emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
if (vs_prog_data->uses_drawid)
emit_draw_index(cmd_buffer, i);
/* Emitting draw index or vertex index BOs may result in needing
* additional VF cache flushes.
*/
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
load_indirect_parameters(cmd_buffer, draw, false);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
prim.IndirectParameterEnable = true;
prim.PredicateEnable = true;
prim.VertexAccessType = SEQUENTIAL;
prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
}
update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, SEQUENTIAL);
offset += stride;
}
mi_value_unref(&b, max);
trace_intel_end_draw_indirect_count(&cmd_buffer->trace, maxDrawCount);
}
void genX(CmdDrawIndexedIndirectCount)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
VkBuffer _countBuffer,
VkDeviceSize countBufferOffset,
uint32_t maxDrawCount,
uint32_t stride)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
struct anv_cmd_state *cmd_state = &cmd_buffer->state;
struct anv_graphics_pipeline *pipeline = cmd_state->gfx.pipeline;
const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
if (anv_batch_has_error(&cmd_buffer->batch))
return;
anv_measure_snapshot(cmd_buffer,
INTEL_SNAPSHOT_DRAW,
"draw indexed indirect count",
0);
trace_intel_begin_draw_indexed_indirect_count(&cmd_buffer->trace);
genX(cmd_buffer_flush_state)(cmd_buffer);
struct mi_builder b;
mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
struct mi_value max =
prepare_for_draw_count_predicate(cmd_buffer, &b,
count_buffer, countBufferOffset);
for (uint32_t i = 0; i < maxDrawCount; i++) {
struct anv_address draw = anv_address_add(buffer->address, offset);
emit_draw_count_predicate_cond(cmd_buffer, &b, i, max);
/* TODO: We need to stomp base vertex to 0 somehow */
if (vs_prog_data->uses_firstvertex ||
vs_prog_data->uses_baseinstance)
emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
if (vs_prog_data->uses_drawid)
emit_draw_index(cmd_buffer, i);
/* Emitting draw index or vertex index BOs may result in needing
* additional VF cache flushes.
*/
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
load_indirect_parameters(cmd_buffer, draw, true);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
prim.IndirectParameterEnable = true;
prim.PredicateEnable = true;
prim.VertexAccessType = RANDOM;
prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
}
update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, RANDOM);
offset += stride;
}
mi_value_unref(&b, max);
trace_intel_end_draw_indexed_indirect_count(&cmd_buffer->trace, maxDrawCount);
}
void genX(CmdBeginTransformFeedbackEXT)(
VkCommandBuffer commandBuffer,
uint32_t firstCounterBuffer,
uint32_t counterBufferCount,
const VkBuffer* pCounterBuffers,
const VkDeviceSize* pCounterBufferOffsets)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
assert(firstCounterBuffer < MAX_XFB_BUFFERS);
assert(counterBufferCount <= MAX_XFB_BUFFERS);
assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
/* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
*
* "Ssoftware must ensure that no HW stream output operations can be in
* process or otherwise pending at the point that the MI_LOAD/STORE
* commands are processed. This will likely require a pipeline flush."
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_CS_STALL_BIT,
"begin transform feedback");
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
/* If we have a counter buffer, this is a resume so we need to load the
* value into the streamout offset register. Otherwise, this is a begin
* and we need to reset it to zero.
*/
if (pCounterBuffers &&
idx >= firstCounterBuffer &&
idx - firstCounterBuffer < counterBufferCount &&
pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) {
uint32_t cb_idx = idx - firstCounterBuffer;
ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
uint64_t offset = pCounterBufferOffsets ?
pCounterBufferOffsets[cb_idx] : 0;
anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
lrm.MemoryAddress = anv_address_add(counter_buffer->address,
offset);
}
} else {
anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
lri.RegisterOffset = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
lri.DataDWord = 0;
}
}
}
cmd_buffer->state.xfb_enabled = true;
cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
}
void genX(CmdEndTransformFeedbackEXT)(
VkCommandBuffer commandBuffer,
uint32_t firstCounterBuffer,
uint32_t counterBufferCount,
const VkBuffer* pCounterBuffers,
const VkDeviceSize* pCounterBufferOffsets)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
assert(firstCounterBuffer < MAX_XFB_BUFFERS);
assert(counterBufferCount <= MAX_XFB_BUFFERS);
assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
/* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
*
* "Ssoftware must ensure that no HW stream output operations can be in
* process or otherwise pending at the point that the MI_LOAD/STORE
* commands are processed. This will likely require a pipeline flush."
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_CS_STALL_BIT,
"end transform feedback");
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) {
unsigned idx = firstCounterBuffer + cb_idx;
/* If we have a counter buffer, this is a resume so we need to load the
* value into the streamout offset register. Otherwise, this is a begin
* and we need to reset it to zero.
*/
if (pCounterBuffers &&
cb_idx < counterBufferCount &&
pCounterBuffers[cb_idx] != VK_NULL_HANDLE) {
ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
uint64_t offset = pCounterBufferOffsets ?
pCounterBufferOffsets[cb_idx] : 0;
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
srm.MemoryAddress = anv_address_add(counter_buffer->address,
offset);
srm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
}
}
}
cmd_buffer->state.xfb_enabled = false;
cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
}
#if GFX_VERx10 >= 125
void
genX(CmdDrawMeshTasksNV)(
VkCommandBuffer commandBuffer,
uint32_t taskCount,
uint32_t firstTask)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
if (anv_batch_has_error(&cmd_buffer->batch))
return;
/* TODO(mesh): Check if this is not emitting more packets than we need. */
genX(cmd_buffer_flush_state)(cmd_buffer);
if (cmd_buffer->state.conditional_render_enabled)
genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
/* BSpec 54016 says: "The values passed for Starting ThreadGroup ID X
* and ThreadGroup Count X shall not cause TGIDs to exceed (2^32)-1."
*/
assert((int64_t)firstTask + taskCount - 1 <= UINT32_MAX);
anv_batch_emit(&cmd_buffer->batch, GENX(3DMESH_1D), m) {
m.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
m.ThreadGroupCountX = taskCount;
m.StartingThreadGroupIDX = firstTask;
}
}
#define GFX125_3DMESH_TG_COUNT 0x26F0
#define GFX125_3DMESH_STARTING_TGID 0x26F4
#define GFX10_3DPRIM_XP(n) (0x2690 + (n) * 4) /* n = { 0, 1, 2 } */
static void
mesh_load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
struct mi_builder *b,
struct anv_address addr,
bool emit_xp0,
uint32_t xp0)
{
const size_t taskCountOff = offsetof(VkDrawMeshTasksIndirectCommandNV, taskCount);
const size_t firstTaskOff = offsetof(VkDrawMeshTasksIndirectCommandNV, firstTask);
mi_store(b, mi_reg32(GFX125_3DMESH_TG_COUNT),
mi_mem32(anv_address_add(addr, taskCountOff)));
mi_store(b, mi_reg32(GFX125_3DMESH_STARTING_TGID),
mi_mem32(anv_address_add(addr, firstTaskOff)));
if (emit_xp0)
mi_store(b, mi_reg32(GFX10_3DPRIM_XP(0)), mi_imm(xp0));
}
static void
emit_indirect_3dmesh_1d(struct anv_batch *batch,
bool predicate_enable,
bool uses_drawid)
{
uint32_t len = GENX(3DMESH_1D_length) + uses_drawid;
uint32_t *dw = anv_batch_emitn(batch, len, GENX(3DMESH_1D),
.PredicateEnable = predicate_enable,
.IndirectParameterEnable = true,
.ExtendedParameter0Present = uses_drawid);
if (uses_drawid)
dw[len - 1] = 0;
}
void
genX(CmdDrawMeshTasksIndirectNV)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
const struct brw_task_prog_data *task_prog_data = get_task_prog_data(pipeline);
const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline);
struct anv_cmd_state *cmd_state = &cmd_buffer->state;
if (anv_batch_has_error(&cmd_buffer->batch))
return;
genX(cmd_buffer_flush_state)(cmd_buffer);
if (cmd_state->conditional_render_enabled)
genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
bool uses_drawid = (task_prog_data && task_prog_data->uses_drawid) ||
mesh_prog_data->uses_drawid;
struct mi_builder b;
mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
for (uint32_t i = 0; i < drawCount; i++) {
struct anv_address draw = anv_address_add(buffer->address, offset);
mesh_load_indirect_parameters(cmd_buffer, &b, draw, uses_drawid, i);
emit_indirect_3dmesh_1d(&cmd_buffer->batch,
cmd_state->conditional_render_enabled, uses_drawid);
offset += stride;
}
}
void
genX(CmdDrawMeshTasksIndirectCountNV)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
VkBuffer _countBuffer,
VkDeviceSize countBufferOffset,
uint32_t maxDrawCount,
uint32_t stride)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
const struct brw_task_prog_data *task_prog_data = get_task_prog_data(pipeline);
const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline);
if (anv_batch_has_error(&cmd_buffer->batch))
return;
genX(cmd_buffer_flush_state)(cmd_buffer);
bool uses_drawid = (task_prog_data && task_prog_data->uses_drawid) ||
mesh_prog_data->uses_drawid;
struct mi_builder b;
mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
struct mi_value max =
prepare_for_draw_count_predicate(cmd_buffer, &b,
count_buffer, countBufferOffset);
for (uint32_t i = 0; i < maxDrawCount; i++) {
struct anv_address draw = anv_address_add(buffer->address, offset);
emit_draw_count_predicate_cond(cmd_buffer, &b, i, max);
mesh_load_indirect_parameters(cmd_buffer, &b, draw, uses_drawid, i);
emit_indirect_3dmesh_1d(&cmd_buffer->batch, true, uses_drawid);
offset += stride;
}
}
#endif /* GFX_VERx10 >= 125 */
void
genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_cmd_compute_state *comp_state = &cmd_buffer->state.compute;
struct anv_compute_pipeline *pipeline = comp_state->pipeline;
assert(pipeline->cs);
genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->base.l3_config);
genX(flush_pipeline_select_gpgpu)(cmd_buffer);
/* Apply any pending pipeline flushes we may have. We want to apply them
* now because, if any of those flushes are for things like push constants,
* the GPU will read the state at weird times.
*/
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
if (cmd_buffer->state.compute.pipeline_dirty) {
/* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
*
* "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
* the only bits that are changed are scoreboard related: Scoreboard
* Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
* these scoreboard related states, a MEDIA_STATE_FLUSH is
* sufficient."
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_CS_STALL_BIT,
"flush compute state");
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->base.batch);
/* The workgroup size of the pipeline affects our push constant layout
* so flag push constants as dirty if we change the pipeline.
*/
cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
}
if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
cmd_buffer->state.compute.pipeline_dirty) {
flush_descriptor_sets(cmd_buffer,
&cmd_buffer->state.compute.base,
VK_SHADER_STAGE_COMPUTE_BIT,
&pipeline->cs, 1);
cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
#if GFX_VERx10 < 125
uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
.BindingTablePointer =
cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset,
.SamplerStatePointer =
cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset,
};
GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
struct anv_state state =
anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
pipeline->interface_descriptor_data,
GENX(INTERFACE_DESCRIPTOR_DATA_length),
64);
uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
anv_batch_emit(&cmd_buffer->batch,
GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
mid.InterfaceDescriptorTotalLength = size;
mid.InterfaceDescriptorDataStartAddress = state.offset;
}
#endif
}
if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
comp_state->push_data =
anv_cmd_buffer_cs_push_constants(cmd_buffer);
#if GFX_VERx10 < 125
if (comp_state->push_data.alloc_size) {
anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
curbe.CURBETotalDataLength = comp_state->push_data.alloc_size;
curbe.CURBEDataStartAddress = comp_state->push_data.offset;
}
}
#endif
cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
}
cmd_buffer->state.compute.pipeline_dirty = false;
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
}
#if GFX_VER == 7
static VkResult
verify_cmd_parser(const struct anv_device *device,
int required_version,
const char *function)
{
if (device->physical->cmd_parser_version < required_version) {
return vk_errorf(device->physical, VK_ERROR_FEATURE_NOT_PRESENT,
"cmd parser version %d is required for %s",
required_version, function);
} else {
return VK_SUCCESS;
}
}
#endif
static void
anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
uint32_t baseGroupX,
uint32_t baseGroupY,
uint32_t baseGroupZ)
{
if (anv_batch_has_error(&cmd_buffer->batch))
return;
struct anv_push_constants *push =
&cmd_buffer->state.compute.base.push_constants;
if (push->cs.base_work_group_id[0] != baseGroupX ||
push->cs.base_work_group_id[1] != baseGroupY ||
push->cs.base_work_group_id[2] != baseGroupZ) {
push->cs.base_work_group_id[0] = baseGroupX;
push->cs.base_work_group_id[1] = baseGroupY;
push->cs.base_work_group_id[2] = baseGroupZ;
cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
}
}
void genX(CmdDispatch)(
VkCommandBuffer commandBuffer,
uint32_t x,
uint32_t y,
uint32_t z)
{
genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
}
#if GFX_VERx10 >= 125
static inline void
emit_compute_walker(struct anv_cmd_buffer *cmd_buffer,
const struct anv_compute_pipeline *pipeline, bool indirect,
const struct brw_cs_prog_data *prog_data,
uint32_t groupCountX, uint32_t groupCountY,
uint32_t groupCountZ)
{
struct anv_cmd_compute_state *comp_state = &cmd_buffer->state.compute;
const struct anv_shader_bin *cs_bin = pipeline->cs;
bool predicate = cmd_buffer->state.conditional_render_enabled;
const struct intel_device_info *devinfo = &pipeline->base.device->info;
const struct brw_cs_dispatch_info dispatch =
brw_cs_get_dispatch_info(devinfo, prog_data, NULL);
anv_batch_emit(&cmd_buffer->batch, GENX(COMPUTE_WALKER), cw) {
cw.IndirectParameterEnable = indirect;
cw.PredicateEnable = predicate;
cw.SIMDSize = dispatch.simd_size / 16;
cw.IndirectDataStartAddress = comp_state->push_data.offset;
cw.IndirectDataLength = comp_state->push_data.alloc_size;
cw.LocalXMaximum = prog_data->local_size[0] - 1;
cw.LocalYMaximum = prog_data->local_size[1] - 1;
cw.LocalZMaximum = prog_data->local_size[2] - 1;
cw.ThreadGroupIDXDimension = groupCountX;
cw.ThreadGroupIDYDimension = groupCountY;
cw.ThreadGroupIDZDimension = groupCountZ;
cw.ExecutionMask = dispatch.right_mask;
cw.PostSync.MOCS = anv_mocs(pipeline->base.device, NULL, 0);
cw.InterfaceDescriptor = (struct GENX(INTERFACE_DESCRIPTOR_DATA)) {
.KernelStartPointer = cs_bin->kernel.offset,
.SamplerStatePointer =
cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset,
.BindingTablePointer =
cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset,
.BindingTableEntryCount =
1 + MIN2(pipeline->cs->bind_map.surface_count, 30),
.NumberofThreadsinGPGPUThreadGroup = dispatch.threads,
.SharedLocalMemorySize = encode_slm_size(GFX_VER,
prog_data->base.total_shared),
.NumberOfBarriers = prog_data->uses_barrier,
};
}
}
#else /* #if GFX_VERx10 >= 125 */
static inline void
emit_gpgpu_walker(struct anv_cmd_buffer *cmd_buffer,
const struct anv_compute_pipeline *pipeline, bool indirect,
const struct brw_cs_prog_data *prog_data,
uint32_t groupCountX, uint32_t groupCountY,
uint32_t groupCountZ)
{
bool predicate = (GFX_VER <= 7 && indirect) ||
cmd_buffer->state.conditional_render_enabled;
const struct intel_device_info *devinfo = &pipeline->base.device->info;
const struct brw_cs_dispatch_info dispatch =
brw_cs_get_dispatch_info(devinfo, prog_data, NULL);
anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
ggw.IndirectParameterEnable = indirect;
ggw.PredicateEnable = predicate;
ggw.SIMDSize = dispatch.simd_size / 16;
ggw.ThreadDepthCounterMaximum = 0;
ggw.ThreadHeightCounterMaximum = 0;
ggw.ThreadWidthCounterMaximum = dispatch.threads - 1;
ggw.ThreadGroupIDXDimension = groupCountX;
ggw.ThreadGroupIDYDimension = groupCountY;
ggw.ThreadGroupIDZDimension = groupCountZ;
ggw.RightExecutionMask = dispatch.right_mask;
ggw.BottomExecutionMask = 0xffffffff;
}
anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
}
#endif /* #if GFX_VERx10 >= 125 */
static inline void
emit_cs_walker(struct anv_cmd_buffer *cmd_buffer,
const struct anv_compute_pipeline *pipeline, bool indirect,
const struct brw_cs_prog_data *prog_data,
uint32_t groupCountX, uint32_t groupCountY,
uint32_t groupCountZ)
{
#if GFX_VERx10 >= 125
emit_compute_walker(cmd_buffer, pipeline, indirect, prog_data, groupCountX,
groupCountY, groupCountZ);
#else
emit_gpgpu_walker(cmd_buffer, pipeline, indirect, prog_data, groupCountX,
groupCountY, groupCountZ);
#endif
}
void genX(CmdDispatchBase)(
VkCommandBuffer commandBuffer,
uint32_t baseGroupX,
uint32_t baseGroupY,
uint32_t baseGroupZ,
uint32_t groupCountX,
uint32_t groupCountY,
uint32_t groupCountZ)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_compute_pipeline *pipeline = cmd_buffer->state.compute.pipeline;
const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
baseGroupY, baseGroupZ);
if (anv_batch_has_error(&cmd_buffer->batch))
return;
anv_measure_snapshot(cmd_buffer,
INTEL_SNAPSHOT_COMPUTE,
"compute",
groupCountX * groupCountY * groupCountZ *
prog_data->local_size[0] * prog_data->local_size[1] *
prog_data->local_size[2]);
trace_intel_begin_compute(&cmd_buffer->trace);
if (prog_data->uses_num_work_groups) {
struct anv_state state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
uint32_t *sizes = state.map;
sizes[0] = groupCountX;
sizes[1] = groupCountY;
sizes[2] = groupCountZ;
cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
.bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
.offset = state.offset,
};
/* The num_workgroups buffer goes in the binding table */
cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
}
genX(cmd_buffer_flush_compute_state)(cmd_buffer);
if (cmd_buffer->state.conditional_render_enabled)
genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
emit_cs_walker(cmd_buffer, pipeline, false, prog_data, groupCountX,
groupCountY, groupCountZ);
trace_intel_end_compute(&cmd_buffer->trace,
groupCountX, groupCountY, groupCountZ);
}
#define GPGPU_DISPATCHDIMX 0x2500
#define GPGPU_DISPATCHDIMY 0x2504
#define GPGPU_DISPATCHDIMZ 0x2508
void genX(CmdDispatchIndirect)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
struct anv_compute_pipeline *pipeline = cmd_buffer->state.compute.pipeline;
const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
struct anv_address addr = anv_address_add(buffer->address, offset);
UNUSED struct anv_batch *batch = &cmd_buffer->batch;
anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
#if GFX_VER == 7
/* Linux 4.4 added command parser version 5 which allows the GPGPU
* indirect dispatch registers to be written.
*/
if (verify_cmd_parser(cmd_buffer->device, 5,
"vkCmdDispatchIndirect") != VK_SUCCESS)
return;
#endif
anv_measure_snapshot(cmd_buffer,
INTEL_SNAPSHOT_COMPUTE,
"compute indirect",
0);
trace_intel_begin_compute(&cmd_buffer->trace);
if (prog_data->uses_num_work_groups) {
cmd_buffer->state.compute.num_workgroups = addr;
/* The num_workgroups buffer goes in the binding table */
cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
}
genX(cmd_buffer_flush_compute_state)(cmd_buffer);
struct mi_builder b;
mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
struct mi_value size_x = mi_mem32(anv_address_add(addr, 0));
struct mi_value size_y = mi_mem32(anv_address_add(addr, 4));
struct mi_value size_z = mi_mem32(anv_address_add(addr, 8));
mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMX), size_x);
mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMY), size_y);
mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
#if GFX_VER <= 7
/* predicate = (compute_dispatch_indirect_x_size == 0); */
mi_store(&b, mi_reg64(MI_PREDICATE_SRC0), size_x);
mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0));
anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
mip.LoadOperation = LOAD_LOAD;
mip.CombineOperation = COMBINE_SET;
mip.CompareOperation = COMPARE_SRCS_EQUAL;
}
/* predicate |= (compute_dispatch_indirect_y_size == 0); */
mi_store(&b, mi_reg32(MI_PREDICATE_SRC0), size_y);
anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
mip.LoadOperation = LOAD_LOAD;
mip.CombineOperation = COMBINE_OR;
mip.CompareOperation = COMPARE_SRCS_EQUAL;
}
/* predicate |= (compute_dispatch_indirect_z_size == 0); */
mi_store(&b, mi_reg32(MI_PREDICATE_SRC0), size_z);
anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
mip.LoadOperation = LOAD_LOAD;
mip.CombineOperation = COMBINE_OR;
mip.CompareOperation = COMPARE_SRCS_EQUAL;
}
/* predicate = !predicate; */
anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
mip.LoadOperation = LOAD_LOADINV;
mip.CombineOperation = COMBINE_OR;
mip.CompareOperation = COMPARE_FALSE;
}
#if GFX_VERx10 == 75
if (cmd_buffer->state.conditional_render_enabled) {
/* predicate &= !(conditional_rendering_predicate == 0); */
mi_store(&b, mi_reg32(MI_PREDICATE_SRC0),
mi_reg32(ANV_PREDICATE_RESULT_REG));
anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
mip.LoadOperation = LOAD_LOADINV;
mip.CombineOperation = COMBINE_AND;
mip.CompareOperation = COMPARE_SRCS_EQUAL;
}
}
#endif
#else /* GFX_VER > 7 */
if (cmd_buffer->state.conditional_render_enabled)
genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
#endif
emit_cs_walker(cmd_buffer, pipeline, true, prog_data, 0, 0, 0);
trace_intel_end_compute(&cmd_buffer->trace, 0, 0, 0);
}
struct anv_state
genX(cmd_buffer_ray_query_globals)(struct anv_cmd_buffer *cmd_buffer)
{
#if GFX_VERx10 >= 125
struct anv_device *device = cmd_buffer->device;
struct anv_state state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
BRW_RT_DISPATCH_GLOBALS_SIZE,
64);
struct brw_rt_scratch_layout layout;
uint32_t stack_ids_per_dss = 2048; /* TODO: can we use a lower value in
* some cases?
*/
brw_rt_compute_scratch_layout(&layout, &device->info,
stack_ids_per_dss, 1 << 10);
struct GFX_RT_DISPATCH_GLOBALS rtdg = {
.MemBaseAddress = (struct anv_address) {
/* The ray query HW computes offsets from the top of the buffer, so
* let the address at the end of the buffer.
*/
.bo = device->ray_query_bo,
.offset = device->ray_query_bo->size
},
.AsyncRTStackSize = layout.ray_stack_stride / 64,
.NumDSSRTStacks = layout.stack_ids_per_dss,
.MaxBVHLevels = BRW_RT_MAX_BVH_LEVELS,
.Flags = RT_DEPTH_TEST_LESS_EQUAL,
.ResumeShaderTable = (struct anv_address) {
.bo = cmd_buffer->state.ray_query_shadow_bo,
},
};
GFX_RT_DISPATCH_GLOBALS_pack(NULL, state.map, &rtdg);
return state;
#else
unreachable("Not supported");
#endif
}
#if GFX_VERx10 >= 125
static void
calc_local_trace_size(uint8_t local_shift[3], const uint32_t global[3])
{
unsigned total_shift = 0;
memset(local_shift, 0, 3);
bool progress;
do {
progress = false;
for (unsigned i = 0; i < 3; i++) {
assert(global[i] > 0);
if ((1 << local_shift[i]) < global[i]) {
progress = true;
local_shift[i]++;
total_shift++;
}
if (total_shift == 3)
return;
}
} while(progress);
/* Assign whatever's left to x */
local_shift[0] += 3 - total_shift;
}
static struct GFX_RT_SHADER_TABLE
vk_sdar_to_shader_table(const VkStridedDeviceAddressRegionKHR *region)
{
return (struct GFX_RT_SHADER_TABLE) {
.BaseAddress = anv_address_from_u64(region->deviceAddress),
.Stride = region->stride,
};
}
static void
cmd_buffer_trace_rays(struct anv_cmd_buffer *cmd_buffer,
const VkStridedDeviceAddressRegionKHR *raygen_sbt,
const VkStridedDeviceAddressRegionKHR *miss_sbt,
const VkStridedDeviceAddressRegionKHR *hit_sbt,
const VkStridedDeviceAddressRegionKHR *callable_sbt,
bool is_indirect,
uint32_t launch_width,
uint32_t launch_height,
uint32_t launch_depth,
uint64_t launch_size_addr)
{
struct anv_cmd_ray_tracing_state *rt = &cmd_buffer->state.rt;
struct anv_ray_tracing_pipeline *pipeline = rt->pipeline;
if (anv_batch_has_error(&cmd_buffer->batch))
return;
/* If we have a known degenerate launch size, just bail */
if (!is_indirect &&
(launch_width == 0 || launch_height == 0 || launch_depth == 0))
return;
genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->base.l3_config);
genX(flush_pipeline_select_gpgpu)(cmd_buffer);
cmd_buffer->state.rt.pipeline_dirty = false;
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
/* Add these to the reloc list as they're internal buffers that don't
* actually have relocs to pick them up manually.
*
* TODO(RT): This is a bit of a hack
*/
anv_reloc_list_add_bo(cmd_buffer->batch.relocs,
cmd_buffer->batch.alloc,
rt->scratch.bo);
/* Allocate and set up our RT_DISPATCH_GLOBALS */
struct anv_state rtdg_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
BRW_RT_PUSH_CONST_OFFSET +
sizeof(struct anv_push_constants),
64);
struct GFX_RT_DISPATCH_GLOBALS rtdg = {
.MemBaseAddress = (struct anv_address) {
.bo = rt->scratch.bo,
.offset = rt->scratch.layout.ray_stack_start,
},
.CallStackHandler =
anv_shader_bin_get_bsr(cmd_buffer->device->rt_trivial_return, 0),
.AsyncRTStackSize = rt->scratch.layout.ray_stack_stride / 64,
.NumDSSRTStacks = rt->scratch.layout.stack_ids_per_dss,
.MaxBVHLevels = BRW_RT_MAX_BVH_LEVELS,
.Flags = RT_DEPTH_TEST_LESS_EQUAL,
.HitGroupTable = vk_sdar_to_shader_table(hit_sbt),
.MissGroupTable = vk_sdar_to_shader_table(miss_sbt),
.SWStackSize = rt->scratch.layout.sw_stack_size / 64,
.LaunchWidth = launch_width,
.LaunchHeight = launch_height,
.LaunchDepth = launch_depth,
.CallableGroupTable = vk_sdar_to_shader_table(callable_sbt),
};
GFX_RT_DISPATCH_GLOBALS_pack(NULL, rtdg_state.map, &rtdg);
/* Push constants go after the RT_DISPATCH_GLOBALS */
assert(GFX_RT_DISPATCH_GLOBALS_length * 4 <= BRW_RT_PUSH_CONST_OFFSET);
memcpy(rtdg_state.map + BRW_RT_PUSH_CONST_OFFSET,
&cmd_buffer->state.rt.base.push_constants,
sizeof(struct anv_push_constants));
struct anv_address rtdg_addr = {
.bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
.offset = rtdg_state.offset,
};
uint8_t local_size_log2[3];
uint32_t global_size[3] = {};
if (is_indirect) {
/* Pick a local size that's probably ok. We assume most TraceRays calls
* will use a two-dimensional dispatch size. Worst case, our initial
* dispatch will be a little slower than it has to be.
*/
local_size_log2[0] = 2;
local_size_log2[1] = 1;
local_size_log2[2] = 0;
struct mi_builder b;
mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
struct mi_value launch_size[3] = {
mi_mem32(anv_address_from_u64(launch_size_addr + 0)),
mi_mem32(anv_address_from_u64(launch_size_addr + 4)),
mi_mem32(anv_address_from_u64(launch_size_addr + 8)),
};
/* Store the original launch size into RT_DISPATCH_GLOBALS
*
* TODO: Pull values from genX_bits.h once RT_DISPATCH_GLOBALS gets
* moved into a genX version.
*/
mi_store(&b, mi_mem32(anv_address_add(rtdg_addr, 52)),
mi_value_ref(&b, launch_size[0]));
mi_store(&b, mi_mem32(anv_address_add(rtdg_addr, 56)),
mi_value_ref(&b, launch_size[1]));
mi_store(&b, mi_mem32(anv_address_add(rtdg_addr, 60)),
mi_value_ref(&b, launch_size[2]));
/* Compute the global dispatch size */
for (unsigned i = 0; i < 3; i++) {
if (local_size_log2[i] == 0)
continue;
/* global_size = DIV_ROUND_UP(launch_size, local_size)
*
* Fortunately for us MI_ALU math is 64-bit and , mi_ushr32_imm
* has the semantics of shifting the enture 64-bit value and taking
* the bottom 32 so we don't have to worry about roll-over.
*/
uint32_t local_size = 1 << local_size_log2[i];
launch_size[i] = mi_iadd(&b, launch_size[i],
mi_imm(local_size - 1));
launch_size[i] = mi_ushr32_imm(&b, launch_size[i],
local_size_log2[i]);
}
mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMX), launch_size[0]);
mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMY), launch_size[1]);
mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMZ), launch_size[2]);
} else {
uint32_t launch_size[3] = { launch_width, launch_height, launch_depth };
calc_local_trace_size(local_size_log2, launch_size);
for (unsigned i = 0; i < 3; i++) {
/* We have to be a bit careful here because DIV_ROUND_UP adds to the
* numerator value may overflow. Cast to uint64_t to avoid this.
*/
uint32_t local_size = 1 << local_size_log2[i];
global_size[i] = DIV_ROUND_UP((uint64_t)launch_size[i], local_size);
}
}
anv_batch_emit(&cmd_buffer->batch, GENX(COMPUTE_WALKER), cw) {
cw.IndirectParameterEnable = is_indirect;
cw.PredicateEnable = false;
cw.SIMDSize = SIMD8;
cw.LocalXMaximum = (1 << local_size_log2[0]) - 1;
cw.LocalYMaximum = (1 << local_size_log2[1]) - 1;
cw.LocalZMaximum = (1 << local_size_log2[2]) - 1;
cw.ThreadGroupIDXDimension = global_size[0];
cw.ThreadGroupIDYDimension = global_size[1];
cw.ThreadGroupIDZDimension = global_size[2];
cw.ExecutionMask = 0xff;
cw.EmitInlineParameter = true;
cw.PostSync.MOCS = anv_mocs(pipeline->base.device, NULL, 0);
const gl_shader_stage s = MESA_SHADER_RAYGEN;
struct anv_device *device = cmd_buffer->device;
struct anv_state *surfaces = &cmd_buffer->state.binding_tables[s];
struct anv_state *samplers = &cmd_buffer->state.samplers[s];
cw.InterfaceDescriptor = (struct GENX(INTERFACE_DESCRIPTOR_DATA)) {
.KernelStartPointer = device->rt_trampoline->kernel.offset,
.SamplerStatePointer = samplers->offset,
/* i965: DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4), */
.SamplerCount = 0,
.BindingTablePointer = surfaces->offset,
.NumberofThreadsinGPGPUThreadGroup = 1,
.BTDMode = true,
};
struct brw_rt_raygen_trampoline_params trampoline_params = {
.rt_disp_globals_addr = anv_address_physical(rtdg_addr),
.raygen_bsr_addr = raygen_sbt->deviceAddress,
.is_indirect = is_indirect,
.local_group_size_log2 = {
local_size_log2[0],
local_size_log2[1],
local_size_log2[2],
},
};
STATIC_ASSERT(sizeof(trampoline_params) == 32);
memcpy(cw.InlineData, &trampoline_params, sizeof(trampoline_params));
}
}
void
genX(CmdTraceRaysKHR)(
VkCommandBuffer commandBuffer,
const VkStridedDeviceAddressRegionKHR* pRaygenShaderBindingTable,
const VkStridedDeviceAddressRegionKHR* pMissShaderBindingTable,
const VkStridedDeviceAddressRegionKHR* pHitShaderBindingTable,
const VkStridedDeviceAddressRegionKHR* pCallableShaderBindingTable,
uint32_t width,
uint32_t height,
uint32_t depth)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
cmd_buffer_trace_rays(cmd_buffer,
pRaygenShaderBindingTable,
pMissShaderBindingTable,
pHitShaderBindingTable,
pCallableShaderBindingTable,
false /* is_indirect */,
width, height, depth,
0 /* launch_size_addr */);
}
void
genX(CmdTraceRaysIndirectKHR)(
VkCommandBuffer commandBuffer,
const VkStridedDeviceAddressRegionKHR* pRaygenShaderBindingTable,
const VkStridedDeviceAddressRegionKHR* pMissShaderBindingTable,
const VkStridedDeviceAddressRegionKHR* pHitShaderBindingTable,
const VkStridedDeviceAddressRegionKHR* pCallableShaderBindingTable,
VkDeviceAddress indirectDeviceAddress)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
cmd_buffer_trace_rays(cmd_buffer,
pRaygenShaderBindingTable,
pMissShaderBindingTable,
pHitShaderBindingTable,
pCallableShaderBindingTable,
true /* is_indirect */,
0, 0, 0, /* width, height, depth, */
indirectDeviceAddress);
}
#endif /* GFX_VERx10 >= 125 */
static void
genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
uint32_t pipeline)
{
UNUSED const struct intel_device_info *devinfo = &cmd_buffer->device->info;
if (cmd_buffer->state.current_pipeline == pipeline)
return;
#if GFX_VER >= 8 && GFX_VER < 10
/* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
*
* Software must clear the COLOR_CALC_STATE Valid field in
* 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
* with Pipeline Select set to GPGPU.
*
* The internal hardware docs recommend the same workaround for Gfx9
* hardware too.
*/
if (pipeline == GPGPU)
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
#endif
#if GFX_VER == 9
if (pipeline == _3D) {
/* There is a mid-object preemption workaround which requires you to
* re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D. However,
* even without preemption, we have issues with geometry flickering when
* GPGPU and 3D are back-to-back and this seems to fix it. We don't
* really know why.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_VFE_STATE), vfe) {
vfe.MaximumNumberofThreads =
devinfo->max_cs_threads * devinfo->subslice_total - 1;
vfe.NumberofURBEntries = 2;
vfe.URBEntryAllocationSize = 2;
}
/* We just emitted a dummy MEDIA_VFE_STATE so now that packet is
* invalid. Set the compute pipeline to dirty to force a re-emit of the
* pipeline in case we get back-to-back dispatch calls with the same
* pipeline and a PIPELINE_SELECT in between.
*/
cmd_buffer->state.compute.pipeline_dirty = true;
}
#endif
/* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
* PIPELINE_SELECT [DevBWR+]":
*
* Project: DEVSNB+
*
* Software must ensure all the write caches are flushed through a
* stalling PIPE_CONTROL command followed by another PIPE_CONTROL
* command to invalidate read only caches prior to programming
* MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
*
* Note the cmd_buffer_apply_pipe_flushes will split this into two
* PIPE_CONTROLs.
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
ANV_PIPE_DEPTH_CACHE_FLUSH_BIT |
ANV_PIPE_HDC_PIPELINE_FLUSH_BIT |
ANV_PIPE_CS_STALL_BIT |
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT |
ANV_PIPE_STATE_CACHE_INVALIDATE_BIT |
ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT,
"flush and invalidate for PIPELINE_SELECT");
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
#if GFX_VER >= 9
ps.MaskBits = GFX_VER >= 12 ? 0x13 : 3;
ps.MediaSamplerDOPClockGateEnable = GFX_VER >= 12;
#endif
ps.PipelineSelection = pipeline;
}
#if GFX_VER == 9
if (devinfo->platform == INTEL_PLATFORM_GLK) {
/* Project: DevGLK
*
* "This chicken bit works around a hardware issue with barrier logic
* encountered when switching between GPGPU and 3D pipelines. To
* workaround the issue, this mode bit should be set after a pipeline
* is selected."
*/
anv_batch_write_reg(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1), scec1) {
scec1.GLKBarrierMode = pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
: GLK_BARRIER_MODE_3D_HULL;
scec1.GLKBarrierModeMask = 1;
}
}
#endif
cmd_buffer->state.current_pipeline = pipeline;
}
void
genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
{
genX(flush_pipeline_select)(cmd_buffer, _3D);
}
void
genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
{
genX(flush_pipeline_select)(cmd_buffer, GPGPU);
}
void
genX(cmd_buffer_emit_gfx7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
{
if (GFX_VER >= 8)
return;
/* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
*
* "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
* combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
* 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
* issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
* set), followed by a pipelined depth cache flush (PIPE_CONTROL with
* Depth Flush Bit set, followed by another pipelined depth stall
* (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
* guarantee that the pipeline from WM onwards is already flushed (e.g.,
* via a preceding MI_FLUSH)."
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
pipe.DepthStallEnable = true;
anv_debug_dump_pc(pipe);
}
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
pipe.DepthCacheFlushEnable = true;
#if GFX_VER >= 12
pipe.TileCacheFlushEnable = true;
#endif
anv_debug_dump_pc(pipe);
}
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
pipe.DepthStallEnable = true;
anv_debug_dump_pc(pipe);
}
}
void
genX(cmd_buffer_emit_gfx12_depth_wa)(struct anv_cmd_buffer *cmd_buffer,
const struct isl_surf *surf)
{
#if GFX_VERx10 == 120
const bool fmt_is_d16 = surf->format == ISL_FORMAT_R16_UNORM;
switch (cmd_buffer->state.depth_reg_mode) {
case ANV_DEPTH_REG_MODE_HW_DEFAULT:
if (!fmt_is_d16)
return;
break;
case ANV_DEPTH_REG_MODE_D16:
if (fmt_is_d16)
return;
break;
case ANV_DEPTH_REG_MODE_UNKNOWN:
break;
}
/* We'll change some CHICKEN registers depending on the depth surface
* format. Do a depth flush and stall so the pipeline is not using these
* settings while we change the registers.
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_DEPTH_CACHE_FLUSH_BIT |
ANV_PIPE_DEPTH_STALL_BIT |
ANV_PIPE_END_OF_PIPE_SYNC_BIT,
"Workaround: Stop pipeline for 14010455700");
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
/* Wa_14010455700
*
* To avoid sporadic corruptions “Set 0x7010[9] when Depth Buffer
* Surface Format is D16_UNORM , surface type is not NULL & 1X_MSAA”.
*/
anv_batch_write_reg(&cmd_buffer->batch, GENX(COMMON_SLICE_CHICKEN1), reg) {
reg.HIZPlaneOptimizationdisablebit = fmt_is_d16 && surf->samples == 1;
reg.HIZPlaneOptimizationdisablebitMask = true;
}
/* Wa_1806527549
*
* Set HIZ_CHICKEN (7018h) bit 13 = 1 when depth buffer is D16_UNORM.
*/
anv_batch_write_reg(&cmd_buffer->batch, GENX(HIZ_CHICKEN), reg) {
reg.HZDepthTestLEGEOptimizationDisable = fmt_is_d16;
reg.HZDepthTestLEGEOptimizationDisableMask = true;
}
cmd_buffer->state.depth_reg_mode =
fmt_is_d16 ? ANV_DEPTH_REG_MODE_D16 : ANV_DEPTH_REG_MODE_HW_DEFAULT;
#endif
}
/* From the Skylake PRM, 3DSTATE_VERTEX_BUFFERS:
*
* "The VF cache needs to be invalidated before binding and then using
* Vertex Buffers that overlap with any previously bound Vertex Buffer
* (at a 64B granularity) since the last invalidation. A VF cache
* invalidate is performed by setting the "VF Cache Invalidation Enable"
* bit in PIPE_CONTROL."
*
* This is implemented by carefully tracking all vertex and index buffer
* bindings and flushing if the cache ever ends up with a range in the cache
* that would exceed 4 GiB. This is implemented in three parts:
*
* 1. genX(cmd_buffer_set_binding_for_gfx8_vb_flush)() which must be called
* every time a 3DSTATE_VERTEX_BUFFER packet is emitted and informs the
* tracking code of the new binding. If this new binding would cause
* the cache to have a too-large range on the next draw call, a pipeline
* stall and VF cache invalidate are added to pending_pipeline_bits.
*
* 2. genX(cmd_buffer_apply_pipe_flushes)() resets the cache tracking to
* empty whenever we emit a VF invalidate.
*
* 3. genX(cmd_buffer_update_dirty_vbs_for_gfx8_vb_flush)() must be called
* after every 3DPRIMITIVE and copies the bound range into the dirty
* range for each used buffer. This has to be a separate step because
* we don't always re-bind all buffers and so 1. can't know which
* buffers are actually bound.
*/
void
genX(cmd_buffer_set_binding_for_gfx8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
int vb_index,
struct anv_address vb_address,
uint32_t vb_size)
{
if (GFX_VER < 8 || GFX_VER > 9 ||
anv_use_relocations(cmd_buffer->device->physical))
return;
struct anv_vb_cache_range *bound, *dirty;
if (vb_index == -1) {
bound = &cmd_buffer->state.gfx.ib_bound_range;
dirty = &cmd_buffer->state.gfx.ib_dirty_range;
} else {
assert(vb_index >= 0);
assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
bound = &cmd_buffer->state.gfx.vb_bound_ranges[vb_index];
dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[vb_index];
}
if (anv_gfx8_9_vb_cache_range_needs_workaround(bound, dirty,
vb_address,
vb_size)) {
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_CS_STALL_BIT |
ANV_PIPE_VF_CACHE_INVALIDATE_BIT,
"vb > 32b range");
}
}
void
genX(cmd_buffer_update_dirty_vbs_for_gfx8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
uint32_t access_type,
uint64_t vb_used)
{
if (GFX_VER < 8 || GFX_VER > 9 ||
anv_use_relocations(cmd_buffer->device->physical))
return;
if (access_type == RANDOM) {
/* We have an index buffer */
struct anv_vb_cache_range *bound = &cmd_buffer->state.gfx.ib_bound_range;
struct anv_vb_cache_range *dirty = &cmd_buffer->state.gfx.ib_dirty_range;
if (bound->end > bound->start) {
dirty->start = MIN2(dirty->start, bound->start);
dirty->end = MAX2(dirty->end, bound->end);
}
}
uint64_t mask = vb_used;
while (mask) {
int i = u_bit_scan64(&mask);
assert(i >= 0);
assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
struct anv_vb_cache_range *bound, *dirty;
bound = &cmd_buffer->state.gfx.vb_bound_ranges[i];
dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[i];
if (bound->end > bound->start) {
dirty->start = MIN2(dirty->start, bound->start);
dirty->end = MAX2(dirty->end, bound->end);
}
}
}
/**
* Update the pixel hashing modes that determine the balancing of PS threads
* across subslices and slices.
*
* \param width Width bound of the rendering area (already scaled down if \p
* scale is greater than 1).
* \param height Height bound of the rendering area (already scaled down if \p
* scale is greater than 1).
* \param scale The number of framebuffer samples that could potentially be
* affected by an individual channel of the PS thread. This is
* typically one for single-sampled rendering, but for operations
* like CCS resolves and fast clears a single PS invocation may
* update a huge number of pixels, in which case a finer
* balancing is desirable in order to maximally utilize the
* bandwidth available. UINT_MAX can be used as shorthand for
* "finest hashing mode available".
*/
void
genX(cmd_buffer_emit_hashing_mode)(struct anv_cmd_buffer *cmd_buffer,
unsigned width, unsigned height,
unsigned scale)
{
#if GFX_VER == 9
const struct intel_device_info *devinfo = &cmd_buffer->device->info;
const unsigned slice_hashing[] = {
/* Because all Gfx9 platforms with more than one slice require
* three-way subslice hashing, a single "normal" 16x16 slice hashing
* block is guaranteed to suffer from substantial imbalance, with one
* subslice receiving twice as much work as the other two in the
* slice.
*
* The performance impact of that would be particularly severe when
* three-way hashing is also in use for slice balancing (which is the
* case for all Gfx9 GT4 platforms), because one of the slices
* receives one every three 16x16 blocks in either direction, which
* is roughly the periodicity of the underlying subslice imbalance
* pattern ("roughly" because in reality the hardware's
* implementation of three-way hashing doesn't do exact modulo 3
* arithmetic, which somewhat decreases the magnitude of this effect
* in practice). This leads to a systematic subslice imbalance
* within that slice regardless of the size of the primitive. The
* 32x32 hashing mode guarantees that the subslice imbalance within a
* single slice hashing block is minimal, largely eliminating this
* effect.
*/
_32x32,
/* Finest slice hashing mode available. */
NORMAL
};
const unsigned subslice_hashing[] = {
/* 16x16 would provide a slight cache locality benefit especially
* visible in the sampler L1 cache efficiency of low-bandwidth
* non-LLC platforms, but it comes at the cost of greater subslice
* imbalance for primitives of dimensions approximately intermediate
* between 16x4 and 16x16.
*/
_16x4,
/* Finest subslice hashing mode available. */
_8x4
};
/* Dimensions of the smallest hashing block of a given hashing mode. If
* the rendering area is smaller than this there can't possibly be any
* benefit from switching to this mode, so we optimize out the
* transition.
*/
const unsigned min_size[][2] = {
{ 16, 4 },
{ 8, 4 }
};
const unsigned idx = scale > 1;
if (cmd_buffer->state.current_hash_scale != scale &&
(width > min_size[idx][0] || height > min_size[idx][1])) {
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_CS_STALL_BIT |
ANV_PIPE_STALL_AT_SCOREBOARD_BIT,
"change pixel hash mode");
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
anv_batch_write_reg(&cmd_buffer->batch, GENX(GT_MODE), gt) {
gt.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
gt.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
gt.SubsliceHashing = subslice_hashing[idx];
gt.SubsliceHashingMask = -1;
}
cmd_buffer->state.current_hash_scale = scale;
}
#endif
}
static void
cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_device *device = cmd_buffer->device;
struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
/* FIXME: Width and Height are wrong */
genX(cmd_buffer_emit_gfx7_depth_flush)(cmd_buffer);
uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
device->isl_dev.ds.size / 4);
if (dw == NULL)
return;
struct isl_view isl_view = {};
struct isl_depth_stencil_hiz_emit_info info = {
.view = &isl_view,
.mocs = anv_mocs(device, NULL, ISL_SURF_USAGE_DEPTH_BIT),
};
if (gfx->depth_att.iview != NULL) {
isl_view = gfx->depth_att.iview->planes[0].isl;
} else if (gfx->stencil_att.iview != NULL) {
isl_view = gfx->stencil_att.iview->planes[0].isl;
}
if (gfx->view_mask) {
assert(isl_view.array_len == 0 ||
isl_view.array_len >= util_last_bit(gfx->view_mask));
isl_view.array_len = util_last_bit(gfx->view_mask);
} else {
assert(isl_view.array_len == 0 ||
isl_view.array_len >= util_last_bit(gfx->layer_count));
isl_view.array_len = gfx->layer_count;
}
if (gfx->depth_att.iview != NULL) {
const struct anv_image_view *iview = gfx->depth_att.iview;
const struct anv_image *image = iview->image;
const uint32_t depth_plane =
anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_DEPTH_BIT);
const struct anv_surface *depth_surface =
&image->planes[depth_plane].primary_surface;
const struct anv_address depth_address =
anv_image_address(image, &depth_surface->memory_range);
info.depth_surf = &depth_surface->isl;
info.depth_address =
anv_batch_emit_reloc(&cmd_buffer->batch,
dw + device->isl_dev.ds.depth_offset / 4,
depth_address.bo, depth_address.offset);
info.mocs =
anv_mocs(device, depth_address.bo, ISL_SURF_USAGE_DEPTH_BIT);
info.hiz_usage = gfx->depth_att.aux_usage;
if (info.hiz_usage != ISL_AUX_USAGE_NONE) {
assert(isl_aux_usage_has_hiz(info.hiz_usage));
const struct anv_surface *hiz_surface =
&image->planes[depth_plane].aux_surface;
const struct anv_address hiz_address =
anv_image_address(image, &hiz_surface->memory_range);
info.hiz_surf = &hiz_surface->isl;
info.hiz_address =
anv_batch_emit_reloc(&cmd_buffer->batch,
dw + device->isl_dev.ds.hiz_offset / 4,
hiz_address.bo, hiz_address.offset);
info.depth_clear_value = ANV_HZ_FC_VAL;
}
}
if (gfx->stencil_att.iview != NULL) {
const struct anv_image_view *iview = gfx->stencil_att.iview;
const struct anv_image *image = iview->image;
const uint32_t stencil_plane =
anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_STENCIL_BIT);
const struct anv_surface *stencil_surface =
&image->planes[stencil_plane].primary_surface;
const struct anv_address stencil_address =
anv_image_address(image, &stencil_surface->memory_range);
info.stencil_surf = &stencil_surface->isl;
info.stencil_aux_usage = image->planes[stencil_plane].aux_usage;
info.stencil_address =
anv_batch_emit_reloc(&cmd_buffer->batch,
dw + device->isl_dev.ds.stencil_offset / 4,
stencil_address.bo, stencil_address.offset);
info.mocs =
anv_mocs(device, stencil_address.bo, ISL_SURF_USAGE_STENCIL_BIT);
}
isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
if (info.depth_surf)
genX(cmd_buffer_emit_gfx12_depth_wa)(cmd_buffer, info.depth_surf);
if (GFX_VER >= 12) {
cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
/* Wa_1408224581
*
* Workaround: Gfx12LP Astep only An additional pipe control with
* post-sync = store dword operation would be required.( w/a is to
* have an additional pipe control after the stencil state whenever
* the surface state bits of this state is changing).
*
* This also seems sufficient to handle Wa_14014148106.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.PostSyncOperation = WriteImmediateData;
pc.Address = cmd_buffer->device->workaround_address;
}
}
cmd_buffer->state.hiz_enabled = isl_aux_usage_has_hiz(info.hiz_usage);
}
static void
cmd_buffer_emit_cps_control_buffer(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image_view *fsr_iview)
{
#if GFX_VERx10 >= 125
struct anv_device *device = cmd_buffer->device;
if (!device->vk.enabled_extensions.KHR_fragment_shading_rate)
return;
uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
device->isl_dev.cpb.size / 4);
if (dw == NULL)
return;
struct isl_cpb_emit_info info = { };
if (fsr_iview) {
info.view = &fsr_iview->planes[0].isl;
info.surf = &fsr_iview->image->planes[0].primary_surface.isl;
info.address =
anv_batch_emit_reloc(&cmd_buffer->batch,
dw + device->isl_dev.cpb.offset / 4,
fsr_iview->image->bindings[0].address.bo,
fsr_iview->image->bindings[0].address.offset +
fsr_iview->image->bindings[0].memory_range.offset);
info.mocs =
anv_mocs(device, fsr_iview->image->bindings[0].address.bo,
ISL_SURF_USAGE_CPB_BIT);
}
isl_emit_cpb_control_s(&device->isl_dev, dw, &info);
#endif /* GFX_VERx10 >= 125 */
}
static VkImageLayout
attachment_initial_layout(const VkRenderingAttachmentInfo *att)
{
const VkRenderingAttachmentInitialLayoutInfoMESA *layout_info =
vk_find_struct_const(att->pNext,
RENDERING_ATTACHMENT_INITIAL_LAYOUT_INFO_MESA);
if (layout_info != NULL)
return layout_info->initialLayout;
return att->imageLayout;
}
void genX(CmdBeginRendering)(
VkCommandBuffer commandBuffer,
const VkRenderingInfo* pRenderingInfo)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
VkResult result;
if (!is_render_queue_cmd_buffer(cmd_buffer)) {
assert(!"Trying to start a render pass on non-render queue!");
anv_batch_set_error(&cmd_buffer->batch, VK_ERROR_UNKNOWN);
return;
}
anv_measure_beginrenderpass(cmd_buffer);
trace_intel_begin_render_pass(&cmd_buffer->trace);
gfx->rendering_flags = pRenderingInfo->flags;
gfx->render_area = pRenderingInfo->renderArea;
gfx->view_mask = pRenderingInfo->viewMask;
gfx->layer_count = pRenderingInfo->layerCount;
gfx->samples = 0;
const bool is_multiview = gfx->view_mask != 0;
const VkRect2D render_area = gfx->render_area;
const uint32_t layers =
is_multiview ? util_last_bit(gfx->view_mask) : gfx->layer_count;
/* The framebuffer size is at least large enough to contain the render
* area. Because a zero renderArea is possible, we MAX with 1.
*/
struct isl_extent3d fb_size = {
.w = MAX2(1, render_area.offset.x + render_area.extent.width),
.h = MAX2(1, render_area.offset.y + render_area.extent.height),
.d = layers,
};
const uint32_t color_att_count = pRenderingInfo->colorAttachmentCount;
result = anv_cmd_buffer_init_attachments(cmd_buffer, color_att_count);
if (result != VK_SUCCESS)
return;
genX(flush_pipeline_select_3d)(cmd_buffer);
for (uint32_t i = 0; i < gfx->color_att_count; i++) {
if (pRenderingInfo->pColorAttachments[i].imageView == VK_NULL_HANDLE)
continue;
const VkRenderingAttachmentInfo *att =
&pRenderingInfo->pColorAttachments[i];
ANV_FROM_HANDLE(anv_image_view, iview, att->imageView);
const VkImageLayout initial_layout = attachment_initial_layout(att);
assert(render_area.offset.x + render_area.extent.width <=
iview->vk.extent.width);
assert(render_area.offset.y + render_area.extent.height <=
iview->vk.extent.height);
assert(layers <= iview->vk.layer_count);
fb_size.w = MAX2(fb_size.w, iview->vk.extent.width);
fb_size.h = MAX2(fb_size.h, iview->vk.extent.height);
assert(gfx->samples == 0 || gfx->samples == iview->vk.image->samples);
gfx->samples |= iview->vk.image->samples;
enum isl_aux_usage aux_usage =
anv_layout_to_aux_usage(&cmd_buffer->device->info,
iview->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
att->imageLayout);
union isl_color_value fast_clear_color = { .u32 = { 0, } };
if (att->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR &&
!(gfx->rendering_flags & VK_RENDERING_RESUMING_BIT)) {
const union isl_color_value clear_color =
vk_to_isl_color_with_format(att->clearValue.color,
iview->planes[0].isl.format);
/* We only support fast-clears on the first layer */
const bool fast_clear =
(!is_multiview || (gfx->view_mask & 1)) &&
anv_can_fast_clear_color_view(cmd_buffer->device, iview,
att->imageLayout, clear_color,
layers, render_area);
if (att->imageLayout != initial_layout) {
assert(render_area.offset.x == 0 && render_area.offset.y == 0 &&
render_area.extent.width == iview->vk.extent.width &&
render_area.extent.height == iview->vk.extent.height);
if (is_multiview) {
u_foreach_bit(view, gfx->view_mask) {
transition_color_buffer(cmd_buffer, iview->image,
VK_IMAGE_ASPECT_COLOR_BIT,
iview->vk.base_mip_level, 1,
iview->vk.base_array_layer + view,
1, /* layer_count */
initial_layout, att->imageLayout,
VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_IGNORED,
fast_clear);
}
} else {
transition_color_buffer(cmd_buffer, iview->image,
VK_IMAGE_ASPECT_COLOR_BIT,
iview->vk.base_mip_level, 1,
iview->vk.base_array_layer,
gfx->layer_count,
initial_layout, att->imageLayout,
VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_IGNORED,
fast_clear);
}
}
uint32_t clear_view_mask = pRenderingInfo->viewMask;
uint32_t base_clear_layer = iview->vk.base_array_layer;
uint32_t clear_layer_count = gfx->layer_count;
if (fast_clear) {
/* We only support fast-clears on the first layer */
assert(iview->vk.base_mip_level == 0 &&
iview->vk.base_array_layer == 0);
fast_clear_color = clear_color;
if (iview->image->vk.samples == 1) {
anv_image_ccs_op(cmd_buffer, iview->image,
iview->planes[0].isl.format,
iview->planes[0].isl.swizzle,
VK_IMAGE_ASPECT_COLOR_BIT,
0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
&fast_clear_color,
false);
} else {
anv_image_mcs_op(cmd_buffer, iview->image,
iview->planes[0].isl.format,
iview->planes[0].isl.swizzle,
VK_IMAGE_ASPECT_COLOR_BIT,
0, 1, ISL_AUX_OP_FAST_CLEAR,
&fast_clear_color,
false);
}
clear_view_mask &= ~1u;
base_clear_layer++;
clear_layer_count--;
if (isl_color_value_is_zero(clear_color,
iview->planes[0].isl.format)) {
/* This image has the auxiliary buffer enabled. We can mark the
* subresource as not needing a resolve because the clear color
* will match what's in every RENDER_SURFACE_STATE object when
* it's being used for sampling.
*/
set_image_fast_clear_state(cmd_buffer, iview->image,
VK_IMAGE_ASPECT_COLOR_BIT,
ANV_FAST_CLEAR_DEFAULT_VALUE);
} else {
set_image_fast_clear_state(cmd_buffer, iview->image,
VK_IMAGE_ASPECT_COLOR_BIT,
ANV_FAST_CLEAR_ANY);
}
}
if (is_multiview) {
u_foreach_bit(view, clear_view_mask) {
anv_image_clear_color(cmd_buffer, iview->image,
VK_IMAGE_ASPECT_COLOR_BIT,
aux_usage,
iview->planes[0].isl.format,
iview->planes[0].isl.swizzle,
iview->vk.base_mip_level,
iview->vk.base_array_layer + view, 1,
render_area, clear_color);
}
} else {
anv_image_clear_color(cmd_buffer, iview->image,
VK_IMAGE_ASPECT_COLOR_BIT,
aux_usage,
iview->planes[0].isl.format,
iview->planes[0].isl.swizzle,
iview->vk.base_mip_level,
base_clear_layer, clear_layer_count,
render_area, clear_color);
}
} else {
/* If not LOAD_OP_CLEAR, we shouldn't have a layout transition. */
assert(att->imageLayout == initial_layout);
}
gfx->color_att[i].vk_format = iview->vk.format;
gfx->color_att[i].iview = iview;
gfx->color_att[i].layout = att->imageLayout;
gfx->color_att[i].aux_usage = aux_usage;
struct isl_view isl_view = iview->planes[0].isl;
if (pRenderingInfo->viewMask) {
assert(isl_view.array_len >= util_last_bit(pRenderingInfo->viewMask));
isl_view.array_len = util_last_bit(pRenderingInfo->viewMask);
} else {
assert(isl_view.array_len >= pRenderingInfo->layerCount);
isl_view.array_len = pRenderingInfo->layerCount;
}
anv_image_fill_surface_state(cmd_buffer->device,
iview->image,
VK_IMAGE_ASPECT_COLOR_BIT,
&isl_view,
ISL_SURF_USAGE_RENDER_TARGET_BIT,
aux_usage, &fast_clear_color,
0, /* anv_image_view_state_flags */
&gfx->color_att[i].surface_state,
NULL);
add_surface_state_relocs(cmd_buffer, gfx->color_att[i].surface_state);
if (GFX_VER < 10 &&
(att->loadOp == VK_ATTACHMENT_LOAD_OP_LOAD ||
(gfx->rendering_flags & VK_RENDERING_RESUMING_BIT)) &&
iview->image->planes[0].aux_usage != ISL_AUX_USAGE_NONE &&
iview->planes[0].isl.base_level == 0 &&
iview->planes[0].isl.base_array_layer == 0) {
genX(copy_fast_clear_dwords)(cmd_buffer,
gfx->color_att[i].surface_state.state,
iview->image,
VK_IMAGE_ASPECT_COLOR_BIT,
false /* copy to ss */);
}
if (att->resolveMode != VK_RESOLVE_MODE_NONE) {
gfx->color_att[i].resolve_mode = att->resolveMode;
gfx->color_att[i].resolve_iview =
anv_image_view_from_handle(att->resolveImageView);
gfx->color_att[i].resolve_layout = att->resolveImageLayout;
}
}
const struct anv_image_view *fsr_iview = NULL;
const VkRenderingFragmentShadingRateAttachmentInfoKHR *fsr_att =
vk_find_struct_const(pRenderingInfo->pNext,
RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR);
if (fsr_att != NULL && fsr_att->imageView != VK_NULL_HANDLE) {
fsr_iview = anv_image_view_from_handle(fsr_att->imageView);
/* imageLayout and shadingRateAttachmentTexelSize are ignored */
}
const struct anv_image_view *ds_iview = NULL;
const VkRenderingAttachmentInfo *d_att = pRenderingInfo->pDepthAttachment;
const VkRenderingAttachmentInfo *s_att = pRenderingInfo->pStencilAttachment;
if ((d_att != NULL && d_att->imageView != VK_NULL_HANDLE) ||
(s_att != NULL && s_att->imageView != VK_NULL_HANDLE)) {
const struct anv_image_view *d_iview = NULL, *s_iview = NULL;
VkImageLayout depth_layout = VK_IMAGE_LAYOUT_UNDEFINED;
VkImageLayout stencil_layout = VK_IMAGE_LAYOUT_UNDEFINED;
VkImageLayout initial_depth_layout = VK_IMAGE_LAYOUT_UNDEFINED;
VkImageLayout initial_stencil_layout = VK_IMAGE_LAYOUT_UNDEFINED;
enum isl_aux_usage depth_aux_usage = ISL_AUX_USAGE_NONE;
enum isl_aux_usage stencil_aux_usage = ISL_AUX_USAGE_NONE;
float depth_clear_value = 0;
uint32_t stencil_clear_value = 0;
if (d_att != NULL && d_att->imageView != VK_NULL_HANDLE) {
d_iview = anv_image_view_from_handle(d_att->imageView);
initial_depth_layout = attachment_initial_layout(d_att);
depth_layout = d_att->imageLayout;
depth_aux_usage =
anv_layout_to_aux_usage(&cmd_buffer->device->info,
d_iview->image,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
depth_layout);
depth_clear_value = d_att->clearValue.depthStencil.depth;
}
if (s_att != NULL && s_att->imageView != VK_NULL_HANDLE) {
s_iview = anv_image_view_from_handle(s_att->imageView);
initial_stencil_layout = attachment_initial_layout(s_att);
stencil_layout = s_att->imageLayout;
stencil_aux_usage =
anv_layout_to_aux_usage(&cmd_buffer->device->info,
s_iview->image,
VK_IMAGE_ASPECT_STENCIL_BIT,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
stencil_layout);
stencil_clear_value = s_att->clearValue.depthStencil.stencil;
}
assert(s_iview == NULL || d_iview == NULL || s_iview == d_iview);
ds_iview = d_iview != NULL ? d_iview : s_iview;
assert(ds_iview != NULL);
assert(render_area.offset.x + render_area.extent.width <=
ds_iview->vk.extent.width);
assert(render_area.offset.y + render_area.extent.height <=
ds_iview->vk.extent.height);
assert(layers <= ds_iview->vk.layer_count);
fb_size.w = MAX2(fb_size.w, ds_iview->vk.extent.width);
fb_size.h = MAX2(fb_size.h, ds_iview->vk.extent.height);
assert(gfx->samples == 0 || gfx->samples == ds_iview->vk.image->samples);
gfx->samples |= ds_iview->vk.image->samples;
VkImageAspectFlags clear_aspects = 0;
if (d_iview != NULL && d_att->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR &&
!(gfx->rendering_flags & VK_RENDERING_RESUMING_BIT))
clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
if (s_iview != NULL && s_att->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR &&
!(gfx->rendering_flags & VK_RENDERING_RESUMING_BIT))
clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
if (clear_aspects != 0) {
const bool hiz_clear =
anv_can_hiz_clear_ds_view(cmd_buffer->device, d_iview,
depth_layout, clear_aspects,
depth_clear_value,
render_area);
if (depth_layout != initial_depth_layout) {
assert(render_area.offset.x == 0 && render_area.offset.y == 0 &&
render_area.extent.width == d_iview->vk.extent.width &&
render_area.extent.height == d_iview->vk.extent.height);
if (is_multiview) {
u_foreach_bit(view, gfx->view_mask) {
transition_depth_buffer(cmd_buffer, d_iview->image,
d_iview->vk.base_array_layer + view,
1 /* layer_count */,
initial_depth_layout, depth_layout,
hiz_clear);
}
} else {
transition_depth_buffer(cmd_buffer, d_iview->image,
d_iview->vk.base_array_layer,
gfx->layer_count,
initial_depth_layout, depth_layout,
hiz_clear);
}
}
if (stencil_layout != initial_stencil_layout) {
assert(render_area.offset.x == 0 && render_area.offset.y == 0 &&
render_area.extent.width == s_iview->vk.extent.width &&
render_area.extent.height == s_iview->vk.extent.height);
if (is_multiview) {
u_foreach_bit(view, gfx->view_mask) {
transition_stencil_buffer(cmd_buffer, s_iview->image,
s_iview->vk.base_mip_level, 1,
s_iview->vk.base_array_layer + view,
1 /* layer_count */,
initial_stencil_layout,
stencil_layout,
hiz_clear);
}
} else {
transition_stencil_buffer(cmd_buffer, s_iview->image,
s_iview->vk.base_mip_level, 1,
s_iview->vk.base_array_layer,
gfx->layer_count,
initial_stencil_layout,
stencil_layout,
hiz_clear);
}
}
if (is_multiview) {
uint32_t clear_view_mask = pRenderingInfo->viewMask;
while (clear_view_mask) {
int view = u_bit_scan(&clear_view_mask);
uint32_t level = ds_iview->vk.base_mip_level;
uint32_t layer = ds_iview->vk.base_array_layer + view;
if (hiz_clear) {
anv_image_hiz_clear(cmd_buffer, ds_iview->image,
clear_aspects,
level, layer, 1,
render_area,
stencil_clear_value);
} else {
anv_image_clear_depth_stencil(cmd_buffer, ds_iview->image,
clear_aspects,
depth_aux_usage,
level, layer, 1,
render_area,
depth_clear_value,
stencil_clear_value);
}
}
} else {
uint32_t level = ds_iview->vk.base_mip_level;
uint32_t base_layer = ds_iview->vk.base_array_layer;
uint32_t layer_count = gfx->layer_count;
if (hiz_clear) {
anv_image_hiz_clear(cmd_buffer, ds_iview->image,
clear_aspects,
level, base_layer, layer_count,
render_area,
stencil_clear_value);
} else {
anv_image_clear_depth_stencil(cmd_buffer, ds_iview->image,
clear_aspects,
depth_aux_usage,
level, base_layer, layer_count,
render_area,
depth_clear_value,
stencil_clear_value);
}
}
} else {
/* If not LOAD_OP_CLEAR, we shouldn't have a layout transition. */
assert(depth_layout == initial_depth_layout);
assert(stencil_layout == initial_stencil_layout);
}
if (d_iview != NULL) {
gfx->depth_att.vk_format = d_iview->vk.format;
gfx->depth_att.iview = d_iview;
gfx->depth_att.layout = depth_layout;
gfx->depth_att.aux_usage = depth_aux_usage;
if (d_att != NULL && d_att->resolveMode != VK_RESOLVE_MODE_NONE) {
assert(d_att->resolveImageView != VK_NULL_HANDLE);
gfx->depth_att.resolve_mode = d_att->resolveMode;
gfx->depth_att.resolve_iview =
anv_image_view_from_handle(d_att->resolveImageView);
gfx->depth_att.resolve_layout = d_att->resolveImageLayout;
}
}
if (s_iview != NULL) {
gfx->stencil_att.vk_format = s_iview->vk.format;
gfx->stencil_att.iview = s_iview;
gfx->stencil_att.layout = stencil_layout;
gfx->stencil_att.aux_usage = stencil_aux_usage;
if (s_att->resolveMode != VK_RESOLVE_MODE_NONE) {
assert(s_att->resolveImageView != VK_NULL_HANDLE);
gfx->stencil_att.resolve_mode = s_att->resolveMode;
gfx->stencil_att.resolve_iview =
anv_image_view_from_handle(s_att->resolveImageView);
gfx->stencil_att.resolve_layout = s_att->resolveImageLayout;
}
}
}
/* Finally, now that we know the right size, set up the null surface */
assert(util_bitcount(gfx->samples) <= 1);
isl_null_fill_state(&cmd_buffer->device->isl_dev,
gfx->null_surface_state.map,
.size = fb_size);
for (uint32_t i = 0; i < gfx->color_att_count; i++) {
if (pRenderingInfo->pColorAttachments[i].imageView != VK_NULL_HANDLE)
continue;
isl_null_fill_state(&cmd_buffer->device->isl_dev,
gfx->color_att[i].surface_state.state.map,
.size = fb_size);
}
/****** We can now start emitting code to begin the render pass ******/
gfx->dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
/* Our implementation of VK_KHR_multiview uses instancing to draw the
* different views. If the client asks for instancing, we need to use the
* Instance Data Step Rate to ensure that we repeat the client's
* per-instance data once for each view. Since this bit is in
* VERTEX_BUFFER_STATE on gfx7, we need to dirty vertex buffers at the top
* of each subpass.
*/
if (GFX_VER == 7)
gfx->vb_dirty |= ~0;
/* It is possible to start a render pass with an old pipeline. Because the
* render pass and subpass index are both baked into the pipeline, this is
* highly unlikely. In order to do so, it requires that you have a render
* pass with a single subpass and that you use that render pass twice
* back-to-back and use the same pipeline at the start of the second render
* pass as at the end of the first. In order to avoid unpredictable issues
* with this edge case, we just dirty the pipeline at the start of every
* subpass.
*/
gfx->dirty |= ANV_CMD_DIRTY_PIPELINE;
#if GFX_VER >= 11
/* The PIPE_CONTROL command description says:
*
* "Whenever a Binding Table Index (BTI) used by a Render Target Message
* points to a different RENDER_SURFACE_STATE, SW must issue a Render
* Target Cache Flush by enabling this bit. When render target flush
* is set due to new association of BTI, PS Scoreboard Stall bit must
* be set in this packet."
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
ANV_PIPE_STALL_AT_SCOREBOARD_BIT,
"change RT");
#endif
cmd_buffer_emit_depth_stencil(cmd_buffer);
cmd_buffer_emit_cps_control_buffer(cmd_buffer, fsr_iview);
}
static void
cmd_buffer_mark_attachment_written(struct anv_cmd_buffer *cmd_buffer,
struct anv_attachment *att,
VkImageAspectFlagBits aspect)
{
struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
const struct anv_image_view *iview = att->iview;
if (gfx->view_mask == 0) {
genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
aspect, att->aux_usage,
iview->planes[0].isl.base_level,
iview->planes[0].isl.base_array_layer,
gfx->layer_count);
} else {
uint32_t res_view_mask = gfx->view_mask;
while (res_view_mask) {
int i = u_bit_scan(&res_view_mask);
const uint32_t level = iview->planes[0].isl.base_level;
const uint32_t layer = iview->planes[0].isl.base_array_layer + i;
genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
aspect, att->aux_usage,
level, layer, 1);
}
}
}
static enum blorp_filter
vk_to_blorp_resolve_mode(VkResolveModeFlagBits vk_mode)
{
switch (vk_mode) {
case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT:
return BLORP_FILTER_SAMPLE_0;
case VK_RESOLVE_MODE_AVERAGE_BIT:
return BLORP_FILTER_AVERAGE;
case VK_RESOLVE_MODE_MIN_BIT:
return BLORP_FILTER_MIN_SAMPLE;
case VK_RESOLVE_MODE_MAX_BIT:
return BLORP_FILTER_MAX_SAMPLE;
default:
return BLORP_FILTER_NONE;
}
}
static void
cmd_buffer_resolve_msaa_attachment(struct anv_cmd_buffer *cmd_buffer,
const struct anv_attachment *att,
VkImageLayout layout,
VkImageAspectFlagBits aspect)
{
struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
const struct anv_image_view *src_iview = att->iview;
const struct anv_image_view *dst_iview = att->resolve_iview;
enum isl_aux_usage src_aux_usage =
anv_layout_to_aux_usage(&cmd_buffer->device->info,
src_iview->image, aspect,
VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
layout);
enum isl_aux_usage dst_aux_usage =
anv_layout_to_aux_usage(&cmd_buffer->device->info,
dst_iview->image, aspect,
VK_IMAGE_USAGE_TRANSFER_DST_BIT,
att->resolve_layout);
enum blorp_filter filter = vk_to_blorp_resolve_mode(att->resolve_mode);
const VkRect2D render_area = gfx->render_area;
if (gfx->view_mask == 0) {
anv_image_msaa_resolve(cmd_buffer,
src_iview->image, src_aux_usage,
src_iview->planes[0].isl.base_level,
src_iview->planes[0].isl.base_array_layer,
dst_iview->image, dst_aux_usage,
dst_iview->planes[0].isl.base_level,
dst_iview->planes[0].isl.base_array_layer,
aspect,
render_area.offset.x, render_area.offset.y,
render_area.offset.x, render_area.offset.y,
render_area.extent.width,
render_area.extent.height,
gfx->layer_count, filter);
} else {
uint32_t res_view_mask = gfx->view_mask;
while (res_view_mask) {
int i = u_bit_scan(&res_view_mask);
anv_image_msaa_resolve(cmd_buffer,
src_iview->image, src_aux_usage,
src_iview->planes[0].isl.base_level,
src_iview->planes[0].isl.base_array_layer + i,
dst_iview->image, dst_aux_usage,
dst_iview->planes[0].isl.base_level,
dst_iview->planes[0].isl.base_array_layer + i,
aspect,
render_area.offset.x, render_area.offset.y,
render_area.offset.x, render_area.offset.y,
render_area.extent.width,
render_area.extent.height,
1, filter);
}
}
}
void genX(CmdEndRendering)(
VkCommandBuffer commandBuffer)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
if (anv_batch_has_error(&cmd_buffer->batch))
return;
const bool is_multiview = gfx->view_mask != 0;
const uint32_t layers =
is_multiview ? util_last_bit(gfx->view_mask) : gfx->layer_count;
bool has_color_resolve = false;
for (uint32_t i = 0; i < gfx->color_att_count; i++) {
if (gfx->color_att[i].iview == NULL)
continue;
cmd_buffer_mark_attachment_written(cmd_buffer, &gfx->color_att[i],
VK_IMAGE_ASPECT_COLOR_BIT);
/* Stash this off for later */
if (gfx->color_att[i].resolve_mode != VK_RESOLVE_MODE_NONE &&
!(gfx->rendering_flags & VK_RENDERING_SUSPENDING_BIT))
has_color_resolve = true;
}
if (gfx->depth_att.iview != NULL) {
cmd_buffer_mark_attachment_written(cmd_buffer, &gfx->depth_att,
VK_IMAGE_ASPECT_DEPTH_BIT);
}
if (gfx->stencil_att.iview != NULL) {
cmd_buffer_mark_attachment_written(cmd_buffer, &gfx->stencil_att,
VK_IMAGE_ASPECT_STENCIL_BIT);
}
if (has_color_resolve) {
/* We are about to do some MSAA resolves. We need to flush so that the
* result of writes to the MSAA color attachments show up in the sampler
* when we blit to the single-sampled resolve target.
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT,
"MSAA resolve");
}
if (gfx->depth_att.resolve_mode != VK_RESOLVE_MODE_NONE ||
gfx->stencil_att.resolve_mode != VK_RESOLVE_MODE_NONE) {
/* We are about to do some MSAA resolves. We need to flush so that the
* result of writes to the MSAA depth attachments show up in the sampler
* when we blit to the single-sampled resolve target.
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
ANV_PIPE_DEPTH_CACHE_FLUSH_BIT,
"MSAA resolve");
}
for (uint32_t i = 0; i < gfx->color_att_count; i++) {
const struct anv_attachment *att = &gfx->color_att[i];
if (att->resolve_mode == VK_RESOLVE_MODE_NONE ||
(gfx->rendering_flags & VK_RENDERING_SUSPENDING_BIT))
continue;
cmd_buffer_resolve_msaa_attachment(cmd_buffer, att, att->layout,
VK_IMAGE_ASPECT_COLOR_BIT);
}
if (gfx->depth_att.resolve_mode != VK_RESOLVE_MODE_NONE &&
!(gfx->rendering_flags & VK_RENDERING_SUSPENDING_BIT)) {
const struct anv_image_view *src_iview = gfx->depth_att.iview;
/* MSAA resolves sample from the source attachment. Transition the
* depth attachment first to get rid of any HiZ that we may not be
* able to handle.
*/
transition_depth_buffer(cmd_buffer, src_iview->image,
src_iview->planes[0].isl.base_array_layer,
layers,
gfx->depth_att.layout,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
false /* will_full_fast_clear */);
cmd_buffer_resolve_msaa_attachment(cmd_buffer, &gfx->depth_att,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_ASPECT_DEPTH_BIT);
/* Transition the source back to the original layout. This seems a bit
* inefficient but, since HiZ resolves aren't destructive, going from
* less HiZ to more is generally a no-op.
*/
transition_depth_buffer(cmd_buffer, src_iview->image,
src_iview->planes[0].isl.base_array_layer,
layers,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
gfx->depth_att.layout,
false /* will_full_fast_clear */);
}
if (gfx->stencil_att.resolve_mode != VK_RESOLVE_MODE_NONE &&
!(gfx->rendering_flags & VK_RENDERING_SUSPENDING_BIT)) {
cmd_buffer_resolve_msaa_attachment(cmd_buffer, &gfx->stencil_att,
gfx->stencil_att.layout,
VK_IMAGE_ASPECT_STENCIL_BIT);
}
#if GFX_VER == 7
/* On gfx7, we have to store a texturable version of the stencil buffer in
* a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
* forth at strategic points. Stencil writes are only allowed in following
* layouts:
*
* - VK_IMAGE_LAYOUT_GENERAL
* - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
* - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
* - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
* - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL
* - VK_IMAGE_LAYOUT_SUBPASS_SELF_DEPENDENCY_MESA
*
* For general, we have no nice opportunity to transition so we do the copy
* to the shadow unconditionally at the end of the subpass. For transfer
* destinations, we can update it as part of the transfer op. For the other
* layouts, we delay the copy until a transition into some other layout.
*/
if (gfx->stencil_att.iview != NULL) {
const struct anv_image_view *iview = gfx->stencil_att.iview;
const struct anv_image *image = iview->image;
const uint32_t plane =
anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_STENCIL_BIT);
if (anv_surface_is_valid(&image->planes[plane].shadow_surface) &&
(gfx->stencil_att.layout == VK_IMAGE_LAYOUT_GENERAL ||
gfx->stencil_att.layout == VK_IMAGE_LAYOUT_SUBPASS_SELF_DEPENDENCY_MESA)) {
anv_image_copy_to_shadow(cmd_buffer, image,
VK_IMAGE_ASPECT_STENCIL_BIT,
iview->planes[plane].isl.base_level, 1,
iview->planes[plane].isl.base_array_layer,
layers);
}
}
#endif
anv_cmd_buffer_reset_rendering(cmd_buffer);
}
void
genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer)
{
#if GFX_VERx10 >= 75
struct mi_builder b;
mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
mi_store(&b, mi_reg64(MI_PREDICATE_SRC0),
mi_reg32(ANV_PREDICATE_RESULT_REG));
mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0));
anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
mip.LoadOperation = LOAD_LOADINV;
mip.CombineOperation = COMBINE_SET;
mip.CompareOperation = COMPARE_SRCS_EQUAL;
}
#endif
}
#if GFX_VERx10 >= 75
void genX(CmdBeginConditionalRenderingEXT)(
VkCommandBuffer commandBuffer,
const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer);
struct anv_cmd_state *cmd_state = &cmd_buffer->state;
struct anv_address value_address =
anv_address_add(buffer->address, pConditionalRenderingBegin->offset);
const bool isInverted = pConditionalRenderingBegin->flags &
VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
cmd_state->conditional_render_enabled = true;
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
struct mi_builder b;
mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
/* Section 19.4 of the Vulkan 1.1.85 spec says:
*
* If the value of the predicate in buffer memory changes
* while conditional rendering is active, the rendering commands
* may be discarded in an implementation-dependent way.
* Some implementations may latch the value of the predicate
* upon beginning conditional rendering while others
* may read it before every rendering command.
*
* So it's perfectly fine to read a value from the buffer once.
*/
struct mi_value value = mi_mem32(value_address);
/* Precompute predicate result, it is necessary to support secondary
* command buffers since it is unknown if conditional rendering is
* inverted when populating them.
*/
mi_store(&b, mi_reg64(ANV_PREDICATE_RESULT_REG),
isInverted ? mi_uge(&b, mi_imm(0), value) :
mi_ult(&b, mi_imm(0), value));
}
void genX(CmdEndConditionalRenderingEXT)(
VkCommandBuffer commandBuffer)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_cmd_state *cmd_state = &cmd_buffer->state;
cmd_state->conditional_render_enabled = false;
}
#endif
/* Set of stage bits for which are pipelined, i.e. they get queued
* by the command streamer for later execution.
*/
#define ANV_PIPELINE_STAGE_PIPELINED_BITS \
~(VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT | \
VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT | \
VK_PIPELINE_STAGE_2_HOST_BIT | \
VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT)
void genX(CmdSetEvent2)(
VkCommandBuffer commandBuffer,
VkEvent _event,
const VkDependencyInfo* pDependencyInfo)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_event, event, _event);
VkPipelineStageFlags2 src_stages = 0;
for (uint32_t i = 0; i < pDependencyInfo->memoryBarrierCount; i++)
src_stages |= pDependencyInfo->pMemoryBarriers[i].srcStageMask;
for (uint32_t i = 0; i < pDependencyInfo->bufferMemoryBarrierCount; i++)
src_stages |= pDependencyInfo->pBufferMemoryBarriers[i].srcStageMask;
for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; i++)
src_stages |= pDependencyInfo->pImageMemoryBarriers[i].srcStageMask;
cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
if (src_stages & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
pc.StallAtPixelScoreboard = true;
pc.CommandStreamerStallEnable = true;
}
pc.DestinationAddressType = DAT_PPGTT,
pc.PostSyncOperation = WriteImmediateData,
pc.Address = (struct anv_address) {
cmd_buffer->device->dynamic_state_pool.block_pool.bo,
event->state.offset
};
pc.ImmediateData = VK_EVENT_SET;
anv_debug_dump_pc(pc);
}
}
void genX(CmdResetEvent2)(
VkCommandBuffer commandBuffer,
VkEvent _event,
VkPipelineStageFlags2 stageMask)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_event, event, _event);
cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
pc.StallAtPixelScoreboard = true;
pc.CommandStreamerStallEnable = true;
}
pc.DestinationAddressType = DAT_PPGTT;
pc.PostSyncOperation = WriteImmediateData;
pc.Address = (struct anv_address) {
cmd_buffer->device->dynamic_state_pool.block_pool.bo,
event->state.offset
};
pc.ImmediateData = VK_EVENT_RESET;
anv_debug_dump_pc(pc);
}
}
void genX(CmdWaitEvents2)(
VkCommandBuffer commandBuffer,
uint32_t eventCount,
const VkEvent* pEvents,
const VkDependencyInfo* pDependencyInfos)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
#if GFX_VER >= 8
for (uint32_t i = 0; i < eventCount; i++) {
ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
sem.WaitMode = PollingMode,
sem.CompareOperation = COMPARE_SAD_EQUAL_SDD,
sem.SemaphoreDataDword = VK_EVENT_SET,
sem.SemaphoreAddress = (struct anv_address) {
cmd_buffer->device->dynamic_state_pool.block_pool.bo,
event->state.offset
};
}
}
#else
anv_finishme("Implement events on gfx7");
#endif
cmd_buffer_barrier(cmd_buffer, pDependencyInfos, "wait event");
}
static uint32_t vk_to_intel_index_type(VkIndexType type)
{
switch (type) {
case VK_INDEX_TYPE_UINT8_EXT:
return INDEX_BYTE;
case VK_INDEX_TYPE_UINT16:
return INDEX_WORD;
case VK_INDEX_TYPE_UINT32:
return INDEX_DWORD;
default:
unreachable("invalid index type");
}
}
static uint32_t restart_index_for_type(VkIndexType type)
{
switch (type) {
case VK_INDEX_TYPE_UINT8_EXT:
return UINT8_MAX;
case VK_INDEX_TYPE_UINT16:
return UINT16_MAX;
case VK_INDEX_TYPE_UINT32:
return UINT32_MAX;
default:
unreachable("invalid index type");
}
}
void genX(CmdBindIndexBuffer)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
VkIndexType indexType)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
cmd_buffer->state.gfx.restart_index = restart_index_for_type(indexType);
cmd_buffer->state.gfx.index_buffer = buffer;
cmd_buffer->state.gfx.index_type = vk_to_intel_index_type(indexType);
cmd_buffer->state.gfx.index_offset = offset;
cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_INDEX_BUFFER;
}
VkResult genX(CmdSetPerformanceOverrideINTEL)(
VkCommandBuffer commandBuffer,
const VkPerformanceOverrideInfoINTEL* pOverrideInfo)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
switch (pOverrideInfo->type) {
case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL: {
#if GFX_VER >= 9
anv_batch_write_reg(&cmd_buffer->batch, GENX(CS_DEBUG_MODE2), csdm2) {
csdm2._3DRenderingInstructionDisable = pOverrideInfo->enable;
csdm2.MediaInstructionDisable = pOverrideInfo->enable;
csdm2._3DRenderingInstructionDisableMask = true;
csdm2.MediaInstructionDisableMask = true;
}
#else
anv_batch_write_reg(&cmd_buffer->batch, GENX(INSTPM), instpm) {
instpm._3DRenderingInstructionDisable = pOverrideInfo->enable;
instpm.MediaInstructionDisable = pOverrideInfo->enable;
instpm._3DRenderingInstructionDisableMask = true;
instpm.MediaInstructionDisableMask = true;
}
#endif
break;
}
case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL:
if (pOverrideInfo->enable) {
/* FLUSH ALL THE THINGS! As requested by the MDAPI team. */
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_FLUSH_BITS |
ANV_PIPE_INVALIDATE_BITS,
"perf counter isolation");
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
}
break;
default:
unreachable("Invalid override");
}
return VK_SUCCESS;
}
VkResult genX(CmdSetPerformanceStreamMarkerINTEL)(
VkCommandBuffer commandBuffer,
const VkPerformanceStreamMarkerInfoINTEL* pMarkerInfo)
{
/* TODO: Waiting on the register to write, might depend on generation. */
return VK_SUCCESS;
}
#define TIMESTAMP 0x2358
void genX(cmd_emit_timestamp)(struct anv_batch *batch,
struct anv_device *device,
struct anv_address addr,
bool end_of_pipe) {
if (end_of_pipe) {
anv_batch_emit(batch, GENX(PIPE_CONTROL), pc) {
pc.PostSyncOperation = WriteTimestamp;
pc.Address = addr;
anv_debug_dump_pc(pc);
}
} else {
struct mi_builder b;
mi_builder_init(&b, &device->info, batch);
mi_store(&b, mi_mem64(addr), mi_reg64(TIMESTAMP));
}
}