/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include "anv_private.h" #include "anv_measure.h" #include "vk_format.h" #include "vk_render_pass.h" #include "vk_util.h" #include "util/fast_idiv_by_const.h" #include "common/intel_aux_map.h" #include "common/intel_l3_config.h" #include "genxml/gen_macros.h" #include "genxml/genX_pack.h" #include "genxml/gen_rt_pack.h" #include "common/intel_guardband.h" #include "compiler/brw_prim.h" #include "nir/nir_xfb_info.h" #include "ds/intel_tracepoints.h" /* We reserve : * - GPR 14 for secondary command buffer returns * - GPR 15 for conditional rendering */ #define MI_BUILDER_NUM_ALLOC_GPRS 14 #define __gen_get_batch_dwords anv_batch_emit_dwords #define __gen_address_offset anv_address_add #define __gen_get_batch_address(b, a) anv_batch_address(b, a) #include "common/mi_builder.h" static void genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer, uint32_t pipeline); static enum anv_pipe_bits convert_pc_to_bits(struct GENX(PIPE_CONTROL) *pc) { enum anv_pipe_bits bits = 0; bits |= (pc->DepthCacheFlushEnable) ? ANV_PIPE_DEPTH_CACHE_FLUSH_BIT : 0; bits |= (pc->DCFlushEnable) ? ANV_PIPE_DATA_CACHE_FLUSH_BIT : 0; #if GFX_VERx10 >= 125 bits |= (pc->PSSStallSyncEnable) ? ANV_PIPE_PSS_STALL_SYNC_BIT : 0; #endif #if GFX_VER >= 12 bits |= (pc->TileCacheFlushEnable) ? ANV_PIPE_TILE_CACHE_FLUSH_BIT : 0; bits |= (pc->HDCPipelineFlushEnable) ? ANV_PIPE_HDC_PIPELINE_FLUSH_BIT : 0; #endif bits |= (pc->RenderTargetCacheFlushEnable) ? ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT : 0; bits |= (pc->VFCacheInvalidationEnable) ? ANV_PIPE_VF_CACHE_INVALIDATE_BIT : 0; bits |= (pc->StateCacheInvalidationEnable) ? ANV_PIPE_STATE_CACHE_INVALIDATE_BIT : 0; bits |= (pc->ConstantCacheInvalidationEnable) ? ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT : 0; bits |= (pc->TextureCacheInvalidationEnable) ? ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT : 0; bits |= (pc->InstructionCacheInvalidateEnable) ? ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT : 0; bits |= (pc->StallAtPixelScoreboard) ? ANV_PIPE_STALL_AT_SCOREBOARD_BIT : 0; bits |= (pc->DepthStallEnable) ? ANV_PIPE_DEPTH_STALL_BIT : 0; bits |= (pc->CommandStreamerStallEnable) ? ANV_PIPE_CS_STALL_BIT : 0; return bits; } #define anv_debug_dump_pc(pc) \ if (INTEL_DEBUG(DEBUG_PIPE_CONTROL)) { \ fputs("pc: emit PC=( ", stderr); \ anv_dump_pipe_bits(convert_pc_to_bits(&(pc))); \ fprintf(stderr, ") reason: %s\n", __FUNCTION__); \ } static bool is_render_queue_cmd_buffer(const struct anv_cmd_buffer *cmd_buffer) { struct anv_queue_family *queue_family = cmd_buffer->queue_family; return (queue_family->queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0; } void genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer) { struct anv_device *device = cmd_buffer->device; uint32_t mocs = isl_mocs(&device->isl_dev, 0, false); /* If we are emitting a new state base address we probably need to re-emit * binding tables. */ cmd_buffer->state.descriptors_dirty |= ~0; #if GFX_VERx10 >= 125 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.CommandStreamerStallEnable = true; anv_debug_dump_pc(pc); } anv_batch_emit( &cmd_buffer->batch, GENX(3DSTATE_BINDING_TABLE_POOL_ALLOC), btpa) { btpa.BindingTablePoolBaseAddress = anv_cmd_buffer_surface_base_address(cmd_buffer); btpa.BindingTablePoolBufferSize = BINDING_TABLE_POOL_BLOCK_SIZE / 4096; btpa.MOCS = mocs; } #else /* GFX_VERx10 < 125 */ /* Emit a render target cache flush. * * This isn't documented anywhere in the PRM. However, it seems to be * necessary prior to changing the surface state base address. Without * this, we get GPU hangs when using multi-level command buffers which * clear depth, reset state base address, and then go render stuff. */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { #if GFX_VER >= 12 pc.HDCPipelineFlushEnable = true; #else pc.DCFlushEnable = true; #endif pc.RenderTargetCacheFlushEnable = true; pc.CommandStreamerStallEnable = true; anv_debug_dump_pc(pc); } #if GFX_VERx10 == 120 /* Wa_1607854226: * * Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline * mode by putting the pipeline temporarily in 3D mode. */ uint32_t gfx12_wa_pipeline = cmd_buffer->state.current_pipeline; genX(flush_pipeline_select_3d)(cmd_buffer); #endif anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) { sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 }; sba.GeneralStateMOCS = mocs; sba.GeneralStateBaseAddressModifyEnable = true; sba.StatelessDataPortAccessMOCS = mocs; sba.SurfaceStateBaseAddress = anv_cmd_buffer_surface_base_address(cmd_buffer); sba.SurfaceStateMOCS = mocs; sba.SurfaceStateBaseAddressModifyEnable = true; sba.DynamicStateBaseAddress = (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 }; sba.DynamicStateMOCS = mocs; sba.DynamicStateBaseAddressModifyEnable = true; sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 }; sba.IndirectObjectMOCS = mocs; sba.IndirectObjectBaseAddressModifyEnable = true; sba.InstructionBaseAddress = (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 }; sba.InstructionMOCS = mocs; sba.InstructionBaseAddressModifyEnable = true; # if (GFX_VER >= 8) /* Broadwell requires that we specify a buffer size for a bunch of * these fields. However, since we will be growing the BO's live, we * just set them all to the maximum. */ sba.GeneralStateBufferSize = 0xfffff; sba.IndirectObjectBufferSize = 0xfffff; if (anv_use_relocations(device->physical)) { sba.DynamicStateBufferSize = 0xfffff; sba.InstructionBufferSize = 0xfffff; } else { /* With softpin, we use fixed addresses so we actually know how big * our base addresses are. */ sba.DynamicStateBufferSize = DYNAMIC_STATE_POOL_SIZE / 4096; sba.InstructionBufferSize = INSTRUCTION_STATE_POOL_SIZE / 4096; } sba.GeneralStateBufferSizeModifyEnable = true; sba.IndirectObjectBufferSizeModifyEnable = true; sba.DynamicStateBufferSizeModifyEnable = true; sba.InstructionBuffersizeModifyEnable = true; # else /* On gfx7, we have upper bounds instead. According to the docs, * setting an upper bound of zero means that no bounds checking is * performed so, in theory, we should be able to leave them zero. * However, border color is broken and the GPU bounds-checks anyway. * To avoid this and other potential problems, we may as well set it * for everything. */ sba.GeneralStateAccessUpperBound = (struct anv_address) { .bo = NULL, .offset = 0xfffff000 }; sba.GeneralStateAccessUpperBoundModifyEnable = true; sba.DynamicStateAccessUpperBound = (struct anv_address) { .bo = NULL, .offset = 0xfffff000 }; sba.DynamicStateAccessUpperBoundModifyEnable = true; sba.InstructionAccessUpperBound = (struct anv_address) { .bo = NULL, .offset = 0xfffff000 }; sba.InstructionAccessUpperBoundModifyEnable = true; # endif # if (GFX_VER >= 9) sba.BindlessSurfaceStateBaseAddress = (struct anv_address) { device->surface_state_pool.block_pool.bo, 0 }; sba.BindlessSurfaceStateSize = (1 << 20) - 1; sba.BindlessSurfaceStateMOCS = mocs; sba.BindlessSurfaceStateBaseAddressModifyEnable = true; # endif # if (GFX_VER >= 10) sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 }; sba.BindlessSamplerStateMOCS = mocs; sba.BindlessSamplerStateBaseAddressModifyEnable = true; sba.BindlessSamplerStateBufferSize = 0; # endif } #if GFX_VERx10 == 120 /* Wa_1607854226: * * Put the pipeline back into its current mode. */ if (gfx12_wa_pipeline != UINT32_MAX) genX(flush_pipeline_select)(cmd_buffer, gfx12_wa_pipeline); #endif #endif /* GFX_VERx10 < 125 */ /* After re-setting the surface state base address, we have to do some * cache flushing so that the sampler engine will pick up the new * SURFACE_STATE objects and binding tables. From the Broadwell PRM, * Shared Function > 3D Sampler > State > State Caching (page 96): * * Coherency with system memory in the state cache, like the texture * cache is handled partially by software. It is expected that the * command stream or shader will issue Cache Flush operation or * Cache_Flush sampler message to ensure that the L1 cache remains * coherent with system memory. * * [...] * * Whenever the value of the Dynamic_State_Base_Addr, * Surface_State_Base_Addr are altered, the L1 state cache must be * invalidated to ensure the new surface or sampler state is fetched * from system memory. * * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit * which, according the PIPE_CONTROL instruction documentation in the * Broadwell PRM: * * Setting this bit is independent of any other bit in this packet. * This bit controls the invalidation of the L1 and L2 state caches * at the top of the pipe i.e. at the parsing time. * * Unfortunately, experimentation seems to indicate that state cache * invalidation through a PIPE_CONTROL does nothing whatsoever in * regards to surface state and binding tables. In stead, it seems that * invalidating the texture cache is what is actually needed. * * XXX: As far as we have been able to determine through * experimentation, shows that flush the texture cache appears to be * sufficient. The theory here is that all of the sampling/rendering * units cache the binding table in the texture cache. However, we have * yet to be able to actually confirm this. * * Wa_14013910100: * * "DG2 128/256/512-A/B: S/W must program STATE_BASE_ADDRESS command twice * or program pipe control with Instruction cache invalidate post * STATE_BASE_ADDRESS command" */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.TextureCacheInvalidationEnable = true; pc.ConstantCacheInvalidationEnable = true; pc.StateCacheInvalidationEnable = true; #if GFX_VERx10 == 125 pc.InstructionCacheInvalidateEnable = true; #endif anv_debug_dump_pc(pc); } } static void add_surface_reloc(struct anv_cmd_buffer *cmd_buffer, struct anv_state state, struct anv_address addr) { VkResult result; if (anv_use_relocations(cmd_buffer->device->physical)) { const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev; result = anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->vk.pool->alloc, state.offset + isl_dev->ss.addr_offset, addr.bo, addr.offset, NULL); } else { result = anv_reloc_list_add_bo(&cmd_buffer->surface_relocs, &cmd_buffer->vk.pool->alloc, addr.bo); } if (unlikely(result != VK_SUCCESS)) anv_batch_set_error(&cmd_buffer->batch, result); } static void add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer, struct anv_surface_state state) { const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev; assert(!anv_address_is_null(state.address)); add_surface_reloc(cmd_buffer, state.state, state.address); if (!anv_address_is_null(state.aux_address)) { VkResult result = anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->vk.pool->alloc, state.state.offset + isl_dev->ss.aux_addr_offset, state.aux_address.bo, state.aux_address.offset, NULL); if (result != VK_SUCCESS) anv_batch_set_error(&cmd_buffer->batch, result); } if (!anv_address_is_null(state.clear_address)) { VkResult result = anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->vk.pool->alloc, state.state.offset + isl_dev->ss.clear_color_state_offset, state.clear_address.bo, state.clear_address.offset, NULL); if (result != VK_SUCCESS) anv_batch_set_error(&cmd_buffer->batch, result); } } static bool isl_color_value_requires_conversion(union isl_color_value color, const struct isl_surf *surf, const struct isl_view *view) { if (surf->format == view->format && isl_swizzle_is_identity(view->swizzle)) return false; uint32_t surf_pack[4] = { 0, 0, 0, 0 }; isl_color_value_pack(&color, surf->format, surf_pack); uint32_t view_pack[4] = { 0, 0, 0, 0 }; union isl_color_value swiz_color = isl_color_value_swizzle_inv(color, view->swizzle); isl_color_value_pack(&swiz_color, view->format, view_pack); return memcmp(surf_pack, view_pack, sizeof(surf_pack)) != 0; } static bool anv_can_fast_clear_color_view(struct anv_device * device, struct anv_image_view *iview, VkImageLayout layout, union isl_color_value clear_color, uint32_t num_layers, VkRect2D render_area) { if (iview->planes[0].isl.base_array_layer >= anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT, iview->planes[0].isl.base_level)) return false; /* Start by getting the fast clear type. We use the first subpass * layout here because we don't want to fast-clear if the first subpass * to use the attachment can't handle fast-clears. */ enum anv_fast_clear_type fast_clear_type = anv_layout_to_fast_clear_type(&device->info, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, layout); switch (fast_clear_type) { case ANV_FAST_CLEAR_NONE: return false; case ANV_FAST_CLEAR_DEFAULT_VALUE: if (!isl_color_value_is_zero(clear_color, iview->planes[0].isl.format)) return false; break; case ANV_FAST_CLEAR_ANY: break; } /* Potentially, we could do partial fast-clears but doing so has crazy * alignment restrictions. It's easier to just restrict to full size * fast clears for now. */ if (render_area.offset.x != 0 || render_area.offset.y != 0 || render_area.extent.width != iview->vk.extent.width || render_area.extent.height != iview->vk.extent.height) return false; /* On Broadwell and earlier, we can only handle 0/1 clear colors */ if (GFX_VER <= 8 && !isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format)) return false; /* If the clear color is one that would require non-trivial format * conversion on resolve, we don't bother with the fast clear. This * shouldn't be common as most clear colors are 0/1 and the most common * format re-interpretation is for sRGB. */ if (isl_color_value_requires_conversion(clear_color, &iview->image->planes[0].primary_surface.isl, &iview->planes[0].isl)) { anv_perf_warn(VK_LOG_OBJS(&iview->vk.base), "Cannot fast-clear to colors which would require " "format conversion on resolve"); return false; } /* We only allow fast clears to the first slice of an image (level 0, * layer 0) and only for the entire slice. This guarantees us that, at * any given time, there is only one clear color on any given image at * any given time. At the time of our testing (Jan 17, 2018), there * were no known applications which would benefit from fast-clearing * more than just the first slice. */ if (iview->planes[0].isl.base_level > 0 || iview->planes[0].isl.base_array_layer > 0) { anv_perf_warn(VK_LOG_OBJS(&iview->image->vk.base), "Rendering with multi-lod or multi-layer framebuffer " "with LOAD_OP_LOAD and baseMipLevel > 0 or " "baseArrayLayer > 0. Not fast clearing."); return false; } if (num_layers > 1) { anv_perf_warn(VK_LOG_OBJS(&iview->image->vk.base), "Rendering to a multi-layer framebuffer with " "LOAD_OP_CLEAR. Only fast-clearing the first slice"); } return true; } static bool anv_can_hiz_clear_ds_view(struct anv_device *device, const struct anv_image_view *iview, VkImageLayout layout, VkImageAspectFlags clear_aspects, float depth_clear_value, VkRect2D render_area) { /* We don't do any HiZ or depth fast-clears on gfx7 yet */ if (GFX_VER == 7) return false; /* If we're just clearing stencil, we can always HiZ clear */ if (!(clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) return true; /* We must have depth in order to have HiZ */ if (!(iview->image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) return false; const enum isl_aux_usage clear_aux_usage = anv_layout_to_aux_usage(&device->info, iview->image, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, layout); if (!blorp_can_hiz_clear_depth(&device->info, &iview->image->planes[0].primary_surface.isl, clear_aux_usage, iview->planes[0].isl.base_level, iview->planes[0].isl.base_array_layer, render_area.offset.x, render_area.offset.y, render_area.offset.x + render_area.extent.width, render_area.offset.y + render_area.extent.height)) return false; if (depth_clear_value != ANV_HZ_FC_VAL) return false; /* Only gfx9+ supports returning ANV_HZ_FC_VAL when sampling a fast-cleared * portion of a HiZ buffer. Testing has revealed that Gfx8 only supports * returning 0.0f. Gens prior to gfx8 do not support this feature at all. */ if (GFX_VER == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) return false; /* If we got here, then we can fast clear */ return true; } #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x)) #if GFX_VER == 12 static void anv_image_init_aux_tt(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, uint32_t base_level, uint32_t level_count, uint32_t base_layer, uint32_t layer_count) { const uint32_t plane = anv_image_aspect_to_plane(image, aspect); const struct anv_surface *surface = &image->planes[plane].primary_surface; uint64_t base_address = anv_address_physical(anv_image_address(image, &surface->memory_range)); const struct isl_surf *isl_surf = &image->planes[plane].primary_surface.isl; uint64_t format_bits = intel_aux_map_format_bits_for_isl_surf(isl_surf); /* We're about to live-update the AUX-TT. We really don't want anyone else * trying to read it while we're doing this. We could probably get away * with not having this stall in some cases if we were really careful but * it's better to play it safe. Full stall the GPU. */ anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_END_OF_PIPE_SYNC_BIT, "before update AUX-TT"); genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); struct mi_builder b; mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch); for (uint32_t a = 0; a < layer_count; a++) { const uint32_t layer = base_layer + a; uint64_t start_offset_B = UINT64_MAX, end_offset_B = 0; for (uint32_t l = 0; l < level_count; l++) { const uint32_t level = base_level + l; uint32_t logical_array_layer, logical_z_offset_px; if (image->vk.image_type == VK_IMAGE_TYPE_3D) { logical_array_layer = 0; /* If the given miplevel does not have this layer, then any higher * miplevels won't either because miplevels only get smaller the * higher the LOD. */ assert(layer < image->vk.extent.depth); if (layer >= anv_minify(image->vk.extent.depth, level)) break; logical_z_offset_px = layer; } else { assert(layer < image->vk.array_layers); logical_array_layer = layer; logical_z_offset_px = 0; } uint64_t slice_start_offset_B, slice_end_offset_B; isl_surf_get_image_range_B_tile(isl_surf, level, logical_array_layer, logical_z_offset_px, &slice_start_offset_B, &slice_end_offset_B); start_offset_B = MIN2(start_offset_B, slice_start_offset_B); end_offset_B = MAX2(end_offset_B, slice_end_offset_B); } /* Aux operates 64K at a time */ start_offset_B = align_down_u64(start_offset_B, 64 * 1024); end_offset_B = align_u64(end_offset_B, 64 * 1024); for (uint64_t offset = start_offset_B; offset < end_offset_B; offset += 64 * 1024) { uint64_t address = base_address + offset; uint64_t aux_entry_addr64, *aux_entry_map; aux_entry_map = intel_aux_map_get_entry(cmd_buffer->device->aux_map_ctx, address, &aux_entry_addr64); assert(!anv_use_relocations(cmd_buffer->device->physical)); struct anv_address aux_entry_address = { .bo = NULL, .offset = aux_entry_addr64, }; const uint64_t old_aux_entry = READ_ONCE(*aux_entry_map); uint64_t new_aux_entry = (old_aux_entry & INTEL_AUX_MAP_ADDRESS_MASK) | format_bits; if (isl_aux_usage_has_ccs(image->planes[plane].aux_usage)) new_aux_entry |= INTEL_AUX_MAP_ENTRY_VALID_BIT; mi_store(&b, mi_mem64(aux_entry_address), mi_imm(new_aux_entry)); } } anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_AUX_TABLE_INVALIDATE_BIT, "after update AUX-TT"); } #endif /* GFX_VER == 12 */ /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless * the initial layout is undefined, the HiZ buffer and depth buffer will * represent the same data at the end of this operation. */ static void transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, uint32_t base_layer, uint32_t layer_count, VkImageLayout initial_layout, VkImageLayout final_layout, bool will_full_fast_clear) { const uint32_t depth_plane = anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_DEPTH_BIT); if (image->planes[depth_plane].aux_usage == ISL_AUX_USAGE_NONE) return; #if GFX_VER == 12 if ((initial_layout == VK_IMAGE_LAYOUT_UNDEFINED || initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) && cmd_buffer->device->physical->has_implicit_ccs && cmd_buffer->device->info.has_aux_map) { anv_image_init_aux_tt(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT, 0, 1, base_layer, layer_count); } #endif /* If will_full_fast_clear is set, the caller promises to fast-clear the * largest portion of the specified range as it can. For depth images, * that means the entire image because we don't support multi-LOD HiZ. */ assert(image->planes[0].primary_surface.isl.levels == 1); if (will_full_fast_clear) return; const enum isl_aux_state initial_state = anv_layout_to_aux_state(&cmd_buffer->device->info, image, VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout); const enum isl_aux_state final_state = anv_layout_to_aux_state(&cmd_buffer->device->info, image, VK_IMAGE_ASPECT_DEPTH_BIT, final_layout); const bool initial_depth_valid = isl_aux_state_has_valid_primary(initial_state); const bool initial_hiz_valid = isl_aux_state_has_valid_aux(initial_state); const bool final_needs_depth = isl_aux_state_has_valid_primary(final_state); const bool final_needs_hiz = isl_aux_state_has_valid_aux(final_state); /* Getting into the pass-through state for Depth is tricky and involves * both a resolve and an ambiguate. We don't handle that state right now * as anv_layout_to_aux_state never returns it. */ assert(final_state != ISL_AUX_STATE_PASS_THROUGH); if (final_needs_depth && !initial_depth_valid) { assert(initial_hiz_valid); anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT, 0, base_layer, layer_count, ISL_AUX_OP_FULL_RESOLVE); } else if (final_needs_hiz && !initial_hiz_valid) { assert(initial_depth_valid); anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT, 0, base_layer, layer_count, ISL_AUX_OP_AMBIGUATE); } } #if GFX_VER == 7 static inline bool vk_image_layout_stencil_write_optimal(VkImageLayout layout) { return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL || layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL || layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL; } #endif /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless * the initial layout is undefined, the HiZ buffer and depth buffer will * represent the same data at the end of this operation. */ static void transition_stencil_buffer(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, uint32_t base_level, uint32_t level_count, uint32_t base_layer, uint32_t layer_count, VkImageLayout initial_layout, VkImageLayout final_layout, bool will_full_fast_clear) { #if GFX_VER == 7 const uint32_t plane = anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_STENCIL_BIT); /* On gfx7, we have to store a texturable version of the stencil buffer in * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and * forth at strategic points. Stencil writes are only allowed in following * layouts: * * - VK_IMAGE_LAYOUT_GENERAL * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL * * For general, we have no nice opportunity to transition so we do the copy * to the shadow unconditionally at the end of the subpass. For transfer * destinations, we can update it as part of the transfer op. For the other * layouts, we delay the copy until a transition into some other layout. */ if (anv_surface_is_valid(&image->planes[plane].shadow_surface) && vk_image_layout_stencil_write_optimal(initial_layout) && !vk_image_layout_stencil_write_optimal(final_layout)) { anv_image_copy_to_shadow(cmd_buffer, image, VK_IMAGE_ASPECT_STENCIL_BIT, base_level, level_count, base_layer, layer_count); } #elif GFX_VER == 12 const uint32_t plane = anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_STENCIL_BIT); if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE) return; if ((initial_layout == VK_IMAGE_LAYOUT_UNDEFINED || initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) && cmd_buffer->device->physical->has_implicit_ccs && cmd_buffer->device->info.has_aux_map) { anv_image_init_aux_tt(cmd_buffer, image, VK_IMAGE_ASPECT_STENCIL_BIT, base_level, level_count, base_layer, layer_count); /* If will_full_fast_clear is set, the caller promises to fast-clear the * largest portion of the specified range as it can. */ if (will_full_fast_clear) return; for (uint32_t l = 0; l < level_count; l++) { const uint32_t level = base_level + l; const VkRect2D clear_rect = { .offset.x = 0, .offset.y = 0, .extent.width = anv_minify(image->vk.extent.width, level), .extent.height = anv_minify(image->vk.extent.height, level), }; uint32_t aux_layers = anv_image_aux_layers(image, VK_IMAGE_ASPECT_STENCIL_BIT, level); uint32_t level_layer_count = MIN2(layer_count, aux_layers - base_layer); /* From Bspec's 3DSTATE_STENCIL_BUFFER_BODY > Stencil Compression * Enable: * * "When enabled, Stencil Buffer needs to be initialized via * stencil clear (HZ_OP) before any renderpass." */ anv_image_hiz_clear(cmd_buffer, image, VK_IMAGE_ASPECT_STENCIL_BIT, level, base_layer, level_layer_count, clear_rect, 0 /* Stencil clear value */); } } #endif } #define MI_PREDICATE_SRC0 0x2400 #define MI_PREDICATE_SRC1 0x2408 #define MI_PREDICATE_RESULT 0x2418 static void set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, uint32_t level, uint32_t base_layer, uint32_t layer_count, bool compressed) { const uint32_t plane = anv_image_aspect_to_plane(image, aspect); /* We only have compression tracking for CCS_E */ if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E) return; for (uint32_t a = 0; a < layer_count; a++) { uint32_t layer = base_layer + a; anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) { sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device, image, aspect, level, layer); sdi.ImmediateData = compressed ? UINT32_MAX : 0; } } } static void set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, enum anv_fast_clear_type fast_clear) { anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) { sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect); sdi.ImmediateData = fast_clear; } /* Whenever we have fast-clear, we consider that slice to be compressed. * This makes building predicates much easier. */ if (fast_clear != ANV_FAST_CLEAR_NONE) set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true); } /* This is only really practical on haswell and above because it requires * MI math in order to get it correct. */ #if GFX_VERx10 >= 75 static void anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, uint32_t level, uint32_t array_layer, enum isl_aux_op resolve_op, enum anv_fast_clear_type fast_clear_supported) { struct mi_builder b; mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch); const struct mi_value fast_clear_type = mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect)); if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) { /* In this case, we're doing a full resolve which means we want the * resolve to happen if any compression (including fast-clears) is * present. * * In order to simplify the logic a bit, we make the assumption that, * if the first slice has been fast-cleared, it is also marked as * compressed. See also set_image_fast_clear_state. */ const struct mi_value compression_state = mi_mem32(anv_image_get_compression_state_addr(cmd_buffer->device, image, aspect, level, array_layer)); mi_store(&b, mi_reg64(MI_PREDICATE_SRC0), compression_state); mi_store(&b, compression_state, mi_imm(0)); if (level == 0 && array_layer == 0) { /* If the predicate is true, we want to write 0 to the fast clear type * and, if it's false, leave it alone. We can do this by writing * * clear_type = clear_type & ~predicate; */ struct mi_value new_fast_clear_type = mi_iand(&b, fast_clear_type, mi_inot(&b, mi_reg64(MI_PREDICATE_SRC0))); mi_store(&b, fast_clear_type, new_fast_clear_type); } } else if (level == 0 && array_layer == 0) { /* In this case, we are doing a partial resolve to get rid of fast-clear * colors. We don't care about the compression state but we do care * about how much fast clear is allowed by the final layout. */ assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE); assert(fast_clear_supported < ANV_FAST_CLEAR_ANY); /* We need to compute (fast_clear_supported < image->fast_clear) */ struct mi_value pred = mi_ult(&b, mi_imm(fast_clear_supported), fast_clear_type); mi_store(&b, mi_reg64(MI_PREDICATE_SRC0), mi_value_ref(&b, pred)); /* If the predicate is true, we want to write 0 to the fast clear type * and, if it's false, leave it alone. We can do this by writing * * clear_type = clear_type & ~predicate; */ struct mi_value new_fast_clear_type = mi_iand(&b, fast_clear_type, mi_inot(&b, pred)); mi_store(&b, fast_clear_type, new_fast_clear_type); } else { /* In this case, we're trying to do a partial resolve on a slice that * doesn't have clear color. There's nothing to do. */ assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE); return; } /* Set src1 to 0 and use a != condition */ mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0)); anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOADINV; mip.CombineOperation = COMBINE_SET; mip.CompareOperation = COMPARE_SRCS_EQUAL; } } #endif /* GFX_VERx10 >= 75 */ #if GFX_VER <= 8 static void anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, uint32_t level, uint32_t array_layer, enum isl_aux_op resolve_op, enum anv_fast_clear_type fast_clear_supported) { struct mi_builder b; mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch); struct mi_value fast_clear_type_mem = mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect)); /* This only works for partial resolves and only when the clear color is * all or nothing. On the upside, this emits less command streamer code * and works on Ivybridge and Bay Trail. */ assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE); assert(fast_clear_supported != ANV_FAST_CLEAR_ANY); /* We don't support fast clears on anything other than the first slice. */ if (level > 0 || array_layer > 0) return; /* On gfx8, we don't have a concept of default clear colors because we * can't sample from CCS surfaces. It's enough to just load the fast clear * state into the predicate register. */ mi_store(&b, mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem); mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0)); mi_store(&b, fast_clear_type_mem, mi_imm(0)); anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOADINV; mip.CombineOperation = COMBINE_SET; mip.CompareOperation = COMPARE_SRCS_EQUAL; } } #endif /* GFX_VER <= 8 */ static void anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, enum isl_format format, struct isl_swizzle swizzle, VkImageAspectFlagBits aspect, uint32_t level, uint32_t array_layer, enum isl_aux_op resolve_op, enum anv_fast_clear_type fast_clear_supported) { const uint32_t plane = anv_image_aspect_to_plane(image, aspect); #if GFX_VER >= 9 anv_cmd_compute_resolve_predicate(cmd_buffer, image, aspect, level, array_layer, resolve_op, fast_clear_supported); #else /* GFX_VER <= 8 */ anv_cmd_simple_resolve_predicate(cmd_buffer, image, aspect, level, array_layer, resolve_op, fast_clear_supported); #endif /* CCS_D only supports full resolves and BLORP will assert on us if we try * to do a partial resolve on a CCS_D surface. */ if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE && image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D) resolve_op = ISL_AUX_OP_FULL_RESOLVE; anv_image_ccs_op(cmd_buffer, image, format, swizzle, aspect, level, array_layer, 1, resolve_op, NULL, true); } static void anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, enum isl_format format, struct isl_swizzle swizzle, VkImageAspectFlagBits aspect, uint32_t array_layer, enum isl_aux_op resolve_op, enum anv_fast_clear_type fast_clear_supported) { assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT); assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE); #if GFX_VERx10 >= 75 anv_cmd_compute_resolve_predicate(cmd_buffer, image, aspect, 0, array_layer, resolve_op, fast_clear_supported); anv_image_mcs_op(cmd_buffer, image, format, swizzle, aspect, array_layer, 1, resolve_op, NULL, true); #else unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail"); #endif } void genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, enum isl_aux_usage aux_usage, uint32_t level, uint32_t base_layer, uint32_t layer_count) { /* The aspect must be exactly one of the image aspects. */ assert(util_bitcount(aspect) == 1 && (aspect & image->vk.aspects)); /* The only compression types with more than just fast-clears are MCS, * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually * track the current fast-clear and compression state. This leaves us * with just MCS and CCS_E. */ if (aux_usage != ISL_AUX_USAGE_CCS_E && aux_usage != ISL_AUX_USAGE_MCS) return; set_image_compressed_bit(cmd_buffer, image, aspect, level, base_layer, layer_count, true); } static void init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect) { assert(cmd_buffer && image); assert(image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); set_image_fast_clear_state(cmd_buffer, image, aspect, ANV_FAST_CLEAR_NONE); /* Initialize the struct fields that are accessed for fast-clears so that * the HW restrictions on the field values are satisfied. */ struct anv_address addr = anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect); if (GFX_VER >= 9) { const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev; const unsigned num_dwords = GFX_VER >= 10 ? isl_dev->ss.clear_color_state_size / 4 : isl_dev->ss.clear_value_size / 4; for (unsigned i = 0; i < num_dwords; i++) { anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) { sdi.Address = addr; sdi.Address.offset += i * 4; sdi.ImmediateData = 0; } } } else { anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) { sdi.Address = addr; if (GFX_VERx10 >= 75) { /* Pre-SKL, the dword containing the clear values also contains * other fields, so we need to initialize those fields to match the * values that would be in a color attachment. */ sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 | ISL_CHANNEL_SELECT_GREEN << 22 | ISL_CHANNEL_SELECT_BLUE << 19 | ISL_CHANNEL_SELECT_ALPHA << 16; } else if (GFX_VER == 7) { /* On IVB, the dword containing the clear values also contains * other fields that must be zero or can be zero. */ sdi.ImmediateData = 0; } } } } /* Copy the fast-clear value dword(s) between a surface state object and an * image's fast clear state buffer. */ static void genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer, struct anv_state surface_state, const struct anv_image *image, VkImageAspectFlagBits aspect, bool copy_from_surface_state) { assert(cmd_buffer && image); assert(image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); struct anv_address ss_clear_addr = { .bo = cmd_buffer->device->surface_state_pool.block_pool.bo, .offset = surface_state.offset + cmd_buffer->device->isl_dev.ss.clear_value_offset, }; const struct anv_address entry_addr = anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect); unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size; #if GFX_VER == 7 /* On gfx7, the combination of commands used here(MI_LOAD_REGISTER_MEM * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is * in-flight when they are issued even if the memory touched is not * currently active for rendering. The weird bit is that it is not the * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight * rendering hangs such that the next stalling command after the * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang. * * It is unclear exactly why this hang occurs. Both MI commands come with * warnings about the 3D pipeline but that doesn't seem to fully explain * it. My (Jason's) best theory is that it has something to do with the * fact that we're using a GPU state register as our temporary and that * something with reading/writing it is causing problems. * * In order to work around this issue, we emit a PIPE_CONTROL with the * command streamer stall bit set. */ anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_CS_STALL_BIT, "after copy_fast_clear_dwords. Avoid potential hang"); genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); #endif struct mi_builder b; mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch); if (copy_from_surface_state) { mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size); } else { mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size); /* Updating a surface state object may require that the state cache be * invalidated. From the SKL PRM, Shared Functions -> State -> State * Caching: * * Whenever the RENDER_SURFACE_STATE object in memory pointed to by * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is * modified [...], the L1 state cache must be invalidated to ensure * the new surface or sampler state is fetched from system memory. * * In testing, SKL doesn't actually seem to need this, but HSW does. */ anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_STATE_CACHE_INVALIDATE_BIT, "after copy_fast_clear_dwords surface state update"); } } /** * @brief Transitions a color buffer from one layout to another. * * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for * more information. * * @param level_count VK_REMAINING_MIP_LEVELS isn't supported. * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images, * this represents the maximum layers to transition at each * specified miplevel. */ static void transition_color_buffer(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, const uint32_t base_level, uint32_t level_count, uint32_t base_layer, uint32_t layer_count, VkImageLayout initial_layout, VkImageLayout final_layout, uint64_t src_queue_family, uint64_t dst_queue_family, bool will_full_fast_clear) { struct anv_device *device = cmd_buffer->device; const struct intel_device_info *devinfo = &device->info; /* Validate the inputs. */ assert(cmd_buffer); assert(image && image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); /* These values aren't supported for simplicity's sake. */ assert(level_count != VK_REMAINING_MIP_LEVELS && layer_count != VK_REMAINING_ARRAY_LAYERS); /* Ensure the subresource range is valid. */ UNUSED uint64_t last_level_num = base_level + level_count; const uint32_t max_depth = anv_minify(image->vk.extent.depth, base_level); UNUSED const uint32_t image_layers = MAX2(image->vk.array_layers, max_depth); assert((uint64_t)base_layer + layer_count <= image_layers); assert(last_level_num <= image->vk.mip_levels); /* If there is a layout transfer, the final layout cannot be undefined or * preinitialized (VUID-VkImageMemoryBarrier-newLayout-01198). */ assert(initial_layout == final_layout || (final_layout != VK_IMAGE_LAYOUT_UNDEFINED && final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED)); const struct isl_drm_modifier_info *isl_mod_info = image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT ? isl_drm_modifier_get_info(image->vk.drm_format_mod) : NULL; const bool src_queue_external = src_queue_family == VK_QUEUE_FAMILY_FOREIGN_EXT || src_queue_family == VK_QUEUE_FAMILY_EXTERNAL; const bool dst_queue_external = dst_queue_family == VK_QUEUE_FAMILY_FOREIGN_EXT || dst_queue_family == VK_QUEUE_FAMILY_EXTERNAL; /* Simultaneous acquire and release on external queues is illegal. */ assert(!src_queue_external || !dst_queue_external); /* Ownership transition on an external queue requires special action if the * image has a DRM format modifier because we store image data in * a driver-private bo which is inaccessible to the external queue. */ const bool private_binding_acquire = src_queue_external && anv_image_is_externally_shared(image) && anv_image_has_private_binding(image); const bool private_binding_release = dst_queue_external && anv_image_is_externally_shared(image) && anv_image_has_private_binding(image); if (initial_layout == final_layout && !private_binding_acquire && !private_binding_release) { /* No work is needed. */ return; } const uint32_t plane = anv_image_aspect_to_plane(image, aspect); if (anv_surface_is_valid(&image->planes[plane].shadow_surface) && final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) { /* This surface is a linear compressed image with a tiled shadow surface * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so * we need to ensure the shadow copy is up-to-date. */ assert(image->vk.tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT); assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT); assert(image->planes[plane].primary_surface.isl.tiling == ISL_TILING_LINEAR); assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR); assert(isl_format_is_compressed(image->planes[plane].primary_surface.isl.format)); assert(plane == 0); anv_image_copy_to_shadow(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT, base_level, level_count, base_layer, layer_count); } if (base_layer >= anv_image_aux_layers(image, aspect, base_level)) return; assert(image->planes[plane].primary_surface.isl.tiling != ISL_TILING_LINEAR); /* The following layouts are equivalent for non-linear images. */ const bool initial_layout_undefined = initial_layout == VK_IMAGE_LAYOUT_UNDEFINED || initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED; bool must_init_fast_clear_state = false; bool must_init_aux_surface = false; if (initial_layout_undefined) { /* The subresource may have been aliased and populated with arbitrary * data. */ must_init_fast_clear_state = true; must_init_aux_surface = true; } else if (private_binding_acquire) { /* The fast clear state lives in a driver-private bo, and therefore the * external/foreign queue is unaware of it. * * If this is the first time we are accessing the image, then the fast * clear state is uninitialized. * * If this is NOT the first time we are accessing the image, then the fast * clear state may still be valid and correct due to the resolve during * our most recent ownership release. However, we do not track the aux * state with MI stores, and therefore must assume the worst-case: that * this is the first time we are accessing the image. */ assert(image->planes[plane].fast_clear_memory_range.binding == ANV_IMAGE_MEMORY_BINDING_PRIVATE); must_init_fast_clear_state = true; if (image->planes[plane].aux_surface.memory_range.binding == ANV_IMAGE_MEMORY_BINDING_PRIVATE) { assert(isl_mod_info->aux_usage == ISL_AUX_USAGE_NONE); /* The aux surface, like the fast clear state, lives in * a driver-private bo. We must initialize the aux surface for the * same reasons we must initialize the fast clear state. */ must_init_aux_surface = true; } else { assert(isl_mod_info->aux_usage != ISL_AUX_USAGE_NONE); /* The aux surface, unlike the fast clear state, lives in * application-visible VkDeviceMemory and is shared with the * external/foreign queue. Therefore, when we acquire ownership of the * image with a defined VkImageLayout, the aux surface is valid and has * the aux state required by the modifier. */ must_init_aux_surface = false; } } #if GFX_VER == 12 if (initial_layout_undefined) { if (device->physical->has_implicit_ccs && devinfo->has_aux_map) { anv_image_init_aux_tt(cmd_buffer, image, aspect, base_level, level_count, base_layer, layer_count); } } #else assert(!(device->physical->has_implicit_ccs && devinfo->has_aux_map)); #endif if (must_init_fast_clear_state) { if (base_level == 0 && base_layer == 0) init_fast_clear_color(cmd_buffer, image, aspect); } if (must_init_aux_surface) { assert(must_init_fast_clear_state); /* Initialize the aux buffers to enable correct rendering. In order to * ensure that things such as storage images work correctly, aux buffers * need to be initialized to valid data. * * Having an aux buffer with invalid data is a problem for two reasons: * * 1) Having an invalid value in the buffer can confuse the hardware. * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is * invalid and leads to the hardware doing strange things. It * doesn't hang as far as we can tell but rendering corruption can * occur. * * 2) If this transition is into the GENERAL layout and we then use the * image as a storage image, then we must have the aux buffer in the * pass-through state so that, if we then go to texture from the * image, we get the results of our storage image writes and not the * fast clear color or other random data. * * For CCS both of the problems above are real demonstrable issues. In * that case, the only thing we can do is to perform an ambiguate to * transition the aux surface into the pass-through state. * * For MCS, (2) is never an issue because we don't support multisampled * storage images. In theory, issue (1) is a problem with MCS but we've * never seen it in the wild. For 4x and 16x, all bit patters could, in * theory, be interpreted as something but we don't know that all bit * patterns are actually valid. For 2x and 8x, you could easily end up * with the MCS referring to an invalid plane because not all bits of * the MCS value are actually used. Even though we've never seen issues * in the wild, it's best to play it safe and initialize the MCS. We * can use a fast-clear for MCS because we only ever touch from render * and texture (no image load store). */ if (image->vk.samples == 1) { for (uint32_t l = 0; l < level_count; l++) { const uint32_t level = base_level + l; uint32_t aux_layers = anv_image_aux_layers(image, aspect, level); if (base_layer >= aux_layers) break; /* We will only get fewer layers as level increases */ uint32_t level_layer_count = MIN2(layer_count, aux_layers - base_layer); /* If will_full_fast_clear is set, the caller promises to * fast-clear the largest portion of the specified range as it can. * For color images, that means only the first LOD and array slice. */ if (level == 0 && base_layer == 0 && will_full_fast_clear) { base_layer++; level_layer_count--; if (level_layer_count == 0) continue; } anv_image_ccs_op(cmd_buffer, image, image->planes[plane].primary_surface.isl.format, ISL_SWIZZLE_IDENTITY, aspect, level, base_layer, level_layer_count, ISL_AUX_OP_AMBIGUATE, NULL, false); if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) { set_image_compressed_bit(cmd_buffer, image, aspect, level, base_layer, level_layer_count, false); } } } else { if (image->vk.samples == 4 || image->vk.samples == 16) { anv_perf_warn(VK_LOG_OBJS(&image->vk.base), "Doing a potentially unnecessary fast-clear to " "define an MCS buffer."); } /* If will_full_fast_clear is set, the caller promises to fast-clear * the largest portion of the specified range as it can. */ if (will_full_fast_clear) return; assert(base_level == 0 && level_count == 1); anv_image_mcs_op(cmd_buffer, image, image->planes[plane].primary_surface.isl.format, ISL_SWIZZLE_IDENTITY, aspect, base_layer, layer_count, ISL_AUX_OP_FAST_CLEAR, NULL, false); } return; } enum isl_aux_usage initial_aux_usage = anv_layout_to_aux_usage(devinfo, image, aspect, 0, initial_layout); enum isl_aux_usage final_aux_usage = anv_layout_to_aux_usage(devinfo, image, aspect, 0, final_layout); enum anv_fast_clear_type initial_fast_clear = anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout); enum anv_fast_clear_type final_fast_clear = anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout); /* We must override the anv_layout_to_* functions because they are unaware of * acquire/release direction. */ if (private_binding_acquire) { initial_aux_usage = isl_mod_info->aux_usage; initial_fast_clear = isl_mod_info->supports_clear_color ? initial_fast_clear : ANV_FAST_CLEAR_NONE; } else if (private_binding_release) { final_aux_usage = isl_mod_info->aux_usage; final_fast_clear = isl_mod_info->supports_clear_color ? final_fast_clear : ANV_FAST_CLEAR_NONE; } /* The current code assumes that there is no mixing of CCS_E and CCS_D. * We can handle transitions between CCS_D/E to and from NONE. What we * don't yet handle is switching between CCS_E and CCS_D within a given * image. Doing so in a performant way requires more detailed aux state * tracking such as what is done in i965. For now, just assume that we * only have one type of compression. */ assert(initial_aux_usage == ISL_AUX_USAGE_NONE || final_aux_usage == ISL_AUX_USAGE_NONE || initial_aux_usage == final_aux_usage); /* If initial aux usage is NONE, there is nothing to resolve */ if (initial_aux_usage == ISL_AUX_USAGE_NONE) return; enum isl_aux_op resolve_op = ISL_AUX_OP_NONE; /* If the initial layout supports more fast clear than the final layout * then we need at least a partial resolve. */ if (final_fast_clear < initial_fast_clear) resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE; if (initial_aux_usage == ISL_AUX_USAGE_CCS_E && final_aux_usage != ISL_AUX_USAGE_CCS_E) resolve_op = ISL_AUX_OP_FULL_RESOLVE; if (resolve_op == ISL_AUX_OP_NONE) return; /* Perform a resolve to synchronize data between the main and aux buffer. * Before we begin, we must satisfy the cache flushing requirement specified * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)": * * Any transition from any value in {Clear, Render, Resolve} to a * different value in {Clear, Render, Resolve} requires end of pipe * synchronization. * * We perform a flush of the write cache before and after the clear and * resolve operations to meet this requirement. * * Unlike other drawing, fast clear operations are not properly * synchronized. The first PIPE_CONTROL here likely ensures that the * contents of the previous render or clear hit the render target before we * resolve and the second likely ensures that the resolve is complete before * we do any more rendering or clearing. */ anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_END_OF_PIPE_SYNC_BIT, "after transition RT"); for (uint32_t l = 0; l < level_count; l++) { uint32_t level = base_level + l; uint32_t aux_layers = anv_image_aux_layers(image, aspect, level); if (base_layer >= aux_layers) break; /* We will only get fewer layers as level increases */ uint32_t level_layer_count = MIN2(layer_count, aux_layers - base_layer); for (uint32_t a = 0; a < level_layer_count; a++) { uint32_t array_layer = base_layer + a; /* If will_full_fast_clear is set, the caller promises to fast-clear * the largest portion of the specified range as it can. For color * images, that means only the first LOD and array slice. */ if (level == 0 && array_layer == 0 && will_full_fast_clear) continue; if (image->vk.samples == 1) { anv_cmd_predicated_ccs_resolve(cmd_buffer, image, image->planes[plane].primary_surface.isl.format, ISL_SWIZZLE_IDENTITY, aspect, level, array_layer, resolve_op, final_fast_clear); } else { /* We only support fast-clear on the first layer so partial * resolves should not be used on other layers as they will use * the clear color stored in memory that is only valid for layer0. */ if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE && array_layer != 0) continue; anv_cmd_predicated_mcs_resolve(cmd_buffer, image, image->planes[plane].primary_surface.isl.format, ISL_SWIZZLE_IDENTITY, aspect, array_layer, resolve_op, final_fast_clear); } } } anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_END_OF_PIPE_SYNC_BIT, "after transition RT"); } static MUST_CHECK VkResult anv_cmd_buffer_init_attachments(struct anv_cmd_buffer *cmd_buffer, uint32_t color_att_count) { struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx; /* Reserve one for the NULL state. */ unsigned num_states = 1 + color_att_count; const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev; const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align); gfx->att_states = anv_state_stream_alloc(&cmd_buffer->surface_state_stream, num_states * ss_stride, isl_dev->ss.align); if (gfx->att_states.map == NULL) { return anv_batch_set_error(&cmd_buffer->batch, VK_ERROR_OUT_OF_DEVICE_MEMORY); } struct anv_state next_state = gfx->att_states; next_state.alloc_size = isl_dev->ss.size; gfx->null_surface_state = next_state; next_state.offset += ss_stride; next_state.map += ss_stride; gfx->color_att_count = color_att_count; for (uint32_t i = 0; i < color_att_count; i++) { gfx->color_att[i] = (struct anv_attachment) { .surface_state.state = next_state, }; next_state.offset += ss_stride; next_state.map += ss_stride; } gfx->depth_att = (struct anv_attachment) { }; gfx->stencil_att = (struct anv_attachment) { }; return VK_SUCCESS; } static void anv_cmd_buffer_reset_rendering(struct anv_cmd_buffer *cmd_buffer) { struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx; gfx->render_area = (VkRect2D) { }; gfx->layer_count = 0; gfx->samples = 0; gfx->color_att_count = 0; gfx->depth_att = (struct anv_attachment) { }; gfx->stencil_att = (struct anv_attachment) { }; gfx->null_surface_state = ANV_STATE_NULL; } VkResult genX(BeginCommandBuffer)( VkCommandBuffer commandBuffer, const VkCommandBufferBeginInfo* pBeginInfo) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); VkResult result; /* If this is the first vkBeginCommandBuffer, we must *initialize* the * command buffer's state. Otherwise, we must *reset* its state. In both * cases we reset it. * * From the Vulkan 1.0 spec: * * If a command buffer is in the executable state and the command buffer * was allocated from a command pool with the * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then * vkBeginCommandBuffer implicitly resets the command buffer, behaving * as if vkResetCommandBuffer had been called with * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts * the command buffer in the recording state. */ anv_cmd_buffer_reset(cmd_buffer); anv_cmd_buffer_reset_rendering(cmd_buffer); cmd_buffer->usage_flags = pBeginInfo->flags; /* VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT must be ignored for * primary level command buffers. * * From the Vulkan 1.0 spec: * * VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT specifies that a * secondary command buffer is considered to be entirely inside a render * pass. If this is a primary command buffer, then this bit is ignored. */ if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) cmd_buffer->usage_flags &= ~VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT; trace_intel_begin_cmd_buffer(&cmd_buffer->trace); genX(cmd_buffer_emit_state_base_address)(cmd_buffer); /* We sometimes store vertex data in the dynamic state buffer for blorp * operations and our dynamic state stream may re-use data from previous * command buffers. In order to prevent stale cache data, we flush the VF * cache. We could do this on every blorp call but that's not really * needed as all of the data will get written by the CPU prior to the GPU * executing anything. The chances are fairly high that they will use * blorp at least once per primary command buffer so it shouldn't be * wasted. * * There is also a workaround on gfx8 which requires us to invalidate the * VF cache occasionally. It's easier if we can assume we start with a * fresh cache (See also genX(cmd_buffer_set_binding_for_gfx8_vb_flush).) */ anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_VF_CACHE_INVALIDATE_BIT, "new cmd buffer"); /* Re-emit the aux table register in every command buffer. This way we're * ensured that we have the table even if this command buffer doesn't * initialize any images. */ if (cmd_buffer->device->info.has_aux_map) { anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_AUX_TABLE_INVALIDATE_BIT, "new cmd buffer with aux-tt"); } /* We send an "Indirect State Pointers Disable" packet at * EndCommandBuffer, so all push constant packets are ignored during a * context restore. Documentation says after that command, we need to * emit push constants again before any rendering operation. So we * flag them dirty here to make sure they get emitted. */ cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS; if (cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) { struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx; char gcbiar_data[VK_GCBIARR_DATA_SIZE(MAX_RTS)]; const VkRenderingInfo *resume_info = vk_get_command_buffer_inheritance_as_rendering_resume(cmd_buffer->vk.level, pBeginInfo, gcbiar_data); if (resume_info != NULL) { genX(CmdBeginRendering)(commandBuffer, resume_info); } else { const VkCommandBufferInheritanceRenderingInfo *inheritance_info = vk_get_command_buffer_inheritance_rendering_info(cmd_buffer->vk.level, pBeginInfo); assert(inheritance_info); gfx->rendering_flags = inheritance_info->flags; gfx->render_area = (VkRect2D) { }; gfx->layer_count = 0; gfx->samples = inheritance_info->rasterizationSamples; gfx->view_mask = inheritance_info->viewMask; uint32_t color_att_count = inheritance_info->colorAttachmentCount; result = anv_cmd_buffer_init_attachments(cmd_buffer, color_att_count); if (result != VK_SUCCESS) return result; for (uint32_t i = 0; i < color_att_count; i++) { gfx->color_att[i].vk_format = inheritance_info->pColorAttachmentFormats[i]; } gfx->depth_att.vk_format = inheritance_info->depthAttachmentFormat; gfx->stencil_att.vk_format = inheritance_info->stencilAttachmentFormat; cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS; } } #if GFX_VER >= 8 /* Emit the sample pattern at the beginning of the batch because the * default locations emitted at the device initialization might have been * changed by a previous command buffer. * * Do not change that when we're continuing a previous renderpass. */ if (cmd_buffer->device->vk.enabled_extensions.EXT_sample_locations && !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT)) genX(emit_sample_pattern)(&cmd_buffer->batch, NULL); #endif #if GFX_VERx10 >= 75 if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) { const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info = vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT); /* If secondary buffer supports conditional rendering * we should emit commands as if conditional rendering is enabled. */ cmd_buffer->state.conditional_render_enabled = conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable; } #endif return VK_SUCCESS; } /* From the PRM, Volume 2a: * * "Indirect State Pointers Disable * * At the completion of the post-sync operation associated with this pipe * control packet, the indirect state pointers in the hardware are * considered invalid; the indirect pointers are not saved in the context. * If any new indirect state commands are executed in the command stream * while the pipe control is pending, the new indirect state commands are * preserved. * * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant * commands are only considered as Indirect State Pointers. Once ISP is * issued in a context, SW must initialize by programming push constant * commands for all the shaders (at least to zero length) before attempting * any rendering operation for the same context." * * 3DSTATE_CONSTANT_* packets are restored during a context restore, * even though they point to a BO that has been already unreferenced at * the end of the previous batch buffer. This has been fine so far since * we are protected by these scratch page (every address not covered by * a BO should be pointing to the scratch page). But on CNL, it is * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_* * instruction. * * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a * context restore, so the mentioned hang doesn't happen. However, * software must program push constant commands for all stages prior to * rendering anything. So we flag them dirty in BeginCommandBuffer. * * Finally, we also make sure to stall at pixel scoreboard to make sure the * constants have been loaded into the EUs prior to disable the push constants * so that it doesn't hang a previous 3DPRIMITIVE. */ static void emit_isp_disable(struct anv_cmd_buffer *cmd_buffer) { anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.StallAtPixelScoreboard = true; pc.CommandStreamerStallEnable = true; anv_debug_dump_pc(pc); } anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.IndirectStatePointersDisable = true; pc.CommandStreamerStallEnable = true; anv_debug_dump_pc(pc); } } VkResult genX(EndCommandBuffer)( VkCommandBuffer commandBuffer) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); if (anv_batch_has_error(&cmd_buffer->batch)) return cmd_buffer->batch.status; anv_measure_endcommandbuffer(cmd_buffer); /* We want every command buffer to start with the PMA fix in a known state, * so we disable it at the end of the command buffer. */ genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false); genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); emit_isp_disable(cmd_buffer); trace_intel_end_cmd_buffer(&cmd_buffer->trace, cmd_buffer->vk.level); anv_cmd_buffer_end_batch_buffer(cmd_buffer); return VK_SUCCESS; } void genX(CmdExecuteCommands)( VkCommandBuffer commandBuffer, uint32_t commandBufferCount, const VkCommandBuffer* pCmdBuffers) { ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer); assert(primary->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY); if (anv_batch_has_error(&primary->batch)) return; /* The secondary command buffers will assume that the PMA fix is disabled * when they begin executing. Make sure this is true. */ genX(cmd_buffer_enable_pma_fix)(primary, false); /* The secondary command buffer doesn't know which textures etc. have been * flushed prior to their execution. Apply those flushes now. */ genX(cmd_buffer_apply_pipe_flushes)(primary); for (uint32_t i = 0; i < commandBufferCount; i++) { ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]); assert(secondary->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY); assert(!anv_batch_has_error(&secondary->batch)); #if GFX_VERx10 >= 75 if (secondary->state.conditional_render_enabled) { if (!primary->state.conditional_render_enabled) { /* Secondary buffer is constructed as if it will be executed * with conditional rendering, we should satisfy this dependency * regardless of conditional rendering being enabled in primary. */ struct mi_builder b; mi_builder_init(&b, &primary->device->info, &primary->batch); mi_store(&b, mi_reg64(ANV_PREDICATE_RESULT_REG), mi_imm(UINT64_MAX)); } } #endif if (secondary->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) { /* If we're continuing a render pass from the primary, we need to * copy the surface states for the current subpass into the storage * we allocated for them in BeginCommandBuffer. */ struct anv_bo *ss_bo = primary->device->surface_state_pool.block_pool.bo; struct anv_state src_state = primary->state.gfx.att_states; struct anv_state dst_state = secondary->state.gfx.att_states; assert(src_state.alloc_size == dst_state.alloc_size); genX(cmd_buffer_so_memcpy)(primary, (struct anv_address) { .bo = ss_bo, .offset = dst_state.offset, }, (struct anv_address) { .bo = ss_bo, .offset = src_state.offset, }, src_state.alloc_size); } anv_cmd_buffer_add_secondary(primary, secondary); assert(secondary->perf_query_pool == NULL || primary->perf_query_pool == NULL || secondary->perf_query_pool == primary->perf_query_pool); if (secondary->perf_query_pool) primary->perf_query_pool = secondary->perf_query_pool; #if GFX_VERx10 == 120 if (secondary->state.depth_reg_mode != ANV_DEPTH_REG_MODE_UNKNOWN) primary->state.depth_reg_mode = secondary->state.depth_reg_mode; #endif } /* The secondary isn't counted in our VF cache tracking so we need to * invalidate the whole thing. */ if (GFX_VER >= 8 && GFX_VER <= 9) { anv_add_pending_pipe_bits(primary, ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT, "Secondary cmd buffer not tracked in VF cache"); } /* The secondary may have selected a different pipeline (3D or compute) and * may have changed the current L3$ configuration. Reset our tracking * variables to invalid values to ensure that we re-emit these in the case * where we do any draws or compute dispatches from the primary after the * secondary has returned. */ primary->state.current_pipeline = UINT32_MAX; primary->state.current_l3_config = NULL; primary->state.current_hash_scale = 0; primary->state.gfx.push_constant_stages = 0; vk_dynamic_graphics_state_dirty_all(&primary->vk.dynamic_graphics_state); /* Each of the secondary command buffers will use its own state base * address. We need to re-emit state base address for the primary after * all of the secondaries are done. * * TODO: Maybe we want to make this a dirty bit to avoid extra state base * address calls? */ genX(cmd_buffer_emit_state_base_address)(primary); } /** * Program the hardware to use the specified L3 configuration. */ void genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer, const struct intel_l3_config *cfg) { assert(cfg || GFX_VER >= 12); if (cfg == cmd_buffer->state.current_l3_config) return; #if GFX_VER >= 11 /* On Gfx11+ we use only one config, so verify it remains the same and skip * the stalling programming entirely. */ assert(cfg == cmd_buffer->device->l3_config); #else if (INTEL_DEBUG(DEBUG_L3)) { mesa_logd("L3 config transition: "); intel_dump_l3_config(cfg, stderr); } /* According to the hardware docs, the L3 partitioning can only be changed * while the pipeline is completely drained and the caches are flushed, * which involves a first PIPE_CONTROL flush which stalls the pipeline... */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.DCFlushEnable = true; pc.PostSyncOperation = NoWrite; pc.CommandStreamerStallEnable = true; anv_debug_dump_pc(pc); } /* ...followed by a second pipelined PIPE_CONTROL that initiates * invalidation of the relevant caches. Note that because RO invalidation * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL * command is processed by the CS) we cannot combine it with the previous * stalling flush as the hardware documentation suggests, because that * would cause the CS to stall on previous rendering *after* RO * invalidation and wouldn't prevent the RO caches from being polluted by * concurrent rendering before the stall completes. This intentionally * doesn't implement the SKL+ hardware workaround suggesting to enable CS * stall on PIPE_CONTROLs with the texture cache invalidation bit set for * GPGPU workloads because the previous and subsequent PIPE_CONTROLs * already guarantee that there is no concurrent GPGPU kernel execution * (see SKL HSD 2132585). */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.TextureCacheInvalidationEnable = true; pc.ConstantCacheInvalidationEnable = true; pc.InstructionCacheInvalidateEnable = true; pc.StateCacheInvalidationEnable = true; pc.PostSyncOperation = NoWrite; anv_debug_dump_pc(pc); } /* Now send a third stalling flush to make sure that invalidation is * complete when the L3 configuration registers are modified. */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.DCFlushEnable = true; pc.PostSyncOperation = NoWrite; pc.CommandStreamerStallEnable = true; anv_debug_dump_pc(pc); } genX(emit_l3_config)(&cmd_buffer->batch, cmd_buffer->device, cfg); #endif /* GFX_VER >= 11 */ cmd_buffer->state.current_l3_config = cfg; } enum anv_pipe_bits genX(emit_apply_pipe_flushes)(struct anv_batch *batch, struct anv_device *device, uint32_t current_pipeline, enum anv_pipe_bits bits) { /* * From Sandybridge PRM, volume 2, "1.7.2 End-of-Pipe Synchronization": * * Write synchronization is a special case of end-of-pipe * synchronization that requires that the render cache and/or depth * related caches are flushed to memory, where the data will become * globally visible. This type of synchronization is required prior to * SW (CPU) actually reading the result data from memory, or initiating * an operation that will use as a read surface (such as a texture * surface) a previous render target and/or depth/stencil buffer * * * From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization": * * Exercising the write cache flush bits (Render Target Cache Flush * Enable, Depth Cache Flush Enable, DC Flush) in PIPE_CONTROL only * ensures the write caches are flushed and doesn't guarantee the data * is globally visible. * * SW can track the completion of the end-of-pipe-synchronization by * using "Notify Enable" and "PostSync Operation - Write Immediate * Data" in the PIPE_CONTROL command. * * In other words, flushes are pipelined while invalidations are handled * immediately. Therefore, if we're flushing anything then we need to * schedule an end-of-pipe sync before any invalidations can happen. */ if (bits & ANV_PIPE_FLUSH_BITS) bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT; /* HSD 1209978178: docs say that before programming the aux table: * * "Driver must ensure that the engine is IDLE but ensure it doesn't * add extra flushes in the case it knows that the engine is already * IDLE." */ if (GFX_VER == 12 && (bits & ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)) bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT; /* If we're going to do an invalidate and we have a pending end-of-pipe * sync that has yet to be resolved, we do the end-of-pipe sync now. */ if ((bits & ANV_PIPE_INVALIDATE_BITS) && (bits & ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT)) { bits |= ANV_PIPE_END_OF_PIPE_SYNC_BIT; bits &= ~ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT; } /* Project: SKL / Argument: LRI Post Sync Operation [23] * * "PIPECONTROL command with “Command Streamer Stall Enable” must be * programmed prior to programming a PIPECONTROL command with "LRI * Post Sync Operation" in GPGPU mode of operation (i.e when * PIPELINE_SELECT command is set to GPGPU mode of operation)." * * The same text exists a few rows below for Post Sync Op. */ if (bits & ANV_PIPE_POST_SYNC_BIT) { if (GFX_VER == 9 && current_pipeline == GPGPU) bits |= ANV_PIPE_CS_STALL_BIT; bits &= ~ANV_PIPE_POST_SYNC_BIT; } if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_STALL_BITS | ANV_PIPE_END_OF_PIPE_SYNC_BIT)) { anv_batch_emit(batch, GENX(PIPE_CONTROL), pipe) { #if GFX_VER >= 12 pipe.TileCacheFlushEnable = bits & ANV_PIPE_TILE_CACHE_FLUSH_BIT; pipe.HDCPipelineFlushEnable |= bits & ANV_PIPE_HDC_PIPELINE_FLUSH_BIT; #else /* Flushing HDC pipeline requires DC Flush on earlier HW. */ pipe.DCFlushEnable |= bits & ANV_PIPE_HDC_PIPELINE_FLUSH_BIT; #endif pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT; pipe.DCFlushEnable |= bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT; pipe.RenderTargetCacheFlushEnable = bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT; /* Wa_1409600907: "PIPE_CONTROL with Depth Stall Enable bit must * be set with any PIPE_CONTROL with Depth Flush Enable bit set. */ #if GFX_VER >= 12 pipe.DepthStallEnable = pipe.DepthCacheFlushEnable || (bits & ANV_PIPE_DEPTH_STALL_BIT); #else pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT; #endif #if GFX_VERx10 >= 125 pipe.PSSStallSyncEnable = bits & ANV_PIPE_PSS_STALL_SYNC_BIT; #endif pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT; pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT; /* From Sandybridge PRM, volume 2, "1.7.3.1 Writing a Value to Memory": * * "The most common action to perform upon reaching a * synchronization point is to write a value out to memory. An * immediate value (included with the synchronization command) may * be written." * * * From Broadwell PRM, volume 7, "End-of-Pipe Synchronization": * * "In case the data flushed out by the render engine is to be * read back in to the render engine in coherent manner, then the * render engine has to wait for the fence completion before * accessing the flushed data. This can be achieved by following * means on various products: PIPE_CONTROL command with CS Stall * and the required write caches flushed with Post-Sync-Operation * as Write Immediate Data. * * Example: * - Workload-1 (3D/GPGPU/MEDIA) * - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write * Immediate Data, Required Write Cache Flush bits set) * - Workload-2 (Can use the data produce or output by * Workload-1) */ if (bits & ANV_PIPE_END_OF_PIPE_SYNC_BIT) { pipe.CommandStreamerStallEnable = true; pipe.PostSyncOperation = WriteImmediateData; pipe.Address = device->workaround_address; } /* * According to the Broadwell documentation, any PIPE_CONTROL with the * "Command Streamer Stall" bit set must also have another bit set, * with five different options: * * - Render Target Cache Flush * - Depth Cache Flush * - Stall at Pixel Scoreboard * - Post-Sync Operation * - Depth Stall * - DC Flush Enable * * I chose "Stall at Pixel Scoreboard" since that's what we use in * mesa and it seems to work fine. The choice is fairly arbitrary. */ if (pipe.CommandStreamerStallEnable && !pipe.RenderTargetCacheFlushEnable && !pipe.DepthCacheFlushEnable && !pipe.StallAtPixelScoreboard && !pipe.PostSyncOperation && !pipe.DepthStallEnable && !pipe.DCFlushEnable) pipe.StallAtPixelScoreboard = true; anv_debug_dump_pc(pipe); } /* If a render target flush was emitted, then we can toggle off the bit * saying that render target writes are ongoing. */ if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT) bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES); if (GFX_VERx10 == 75) { /* Haswell needs addition work-arounds: * * From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization": * * Option 1: * PIPE_CONTROL command with the CS Stall and the required write * caches flushed with Post-SyncOperation as Write Immediate Data * followed by eight dummy MI_STORE_DATA_IMM (write to scratch * spce) commands. * * Example: * - Workload-1 * - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write * Immediate Data, Required Write Cache Flush bits set) * - MI_STORE_DATA_IMM (8 times) (Dummy data, Scratch Address) * - Workload-2 (Can use the data produce or output by * Workload-1) * * Unfortunately, both the PRMs and the internal docs are a bit * out-of-date in this regard. What the windows driver does (and * this appears to actually work) is to emit a register read from the * memory address written by the pipe control above. * * What register we load into doesn't matter. We choose an indirect * rendering register because we know it always exists and it's one * of the first registers the command parser allows us to write. If * you don't have command parser support in your kernel (pre-4.2), * this will get turned into MI_NOOP and you won't get the * workaround. Unfortunately, there's just not much we can do in * that case. This register is perfectly safe to write since we * always re-load all of the indirect draw registers right before * 3DPRIMITIVE when needed anyway. */ anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) { lrm.RegisterAddress = 0x243C; /* GFX7_3DPRIM_START_INSTANCE */ lrm.MemoryAddress = device->workaround_address; } } bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_STALL_BITS | ANV_PIPE_END_OF_PIPE_SYNC_BIT); } if (bits & ANV_PIPE_INVALIDATE_BITS) { /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL", * * "If the VF Cache Invalidation Enable is set to a 1 in a * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to * a 1." * * This appears to hang Broadwell, so we restrict it to just gfx9. */ if (GFX_VER == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) anv_batch_emit(batch, GENX(PIPE_CONTROL), pipe); anv_batch_emit(batch, GENX(PIPE_CONTROL), pipe) { pipe.StateCacheInvalidationEnable = bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT; pipe.ConstantCacheInvalidationEnable = bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT; #if GFX_VER >= 12 /* Invalidates the L3 cache part in which index & vertex data is loaded * when VERTEX_BUFFER_STATE::L3BypassDisable is set. */ pipe.L3ReadOnlyCacheInvalidationEnable = bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT; #endif pipe.VFCacheInvalidationEnable = bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT; pipe.TextureCacheInvalidationEnable = bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT; pipe.InstructionCacheInvalidateEnable = bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT; /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL", * * "When VF Cache Invalidate is set “Post Sync Operation” must be * enabled to “Write Immediate Data” or “Write PS Depth Count” or * “Write Timestamp”. */ if (GFX_VER == 9 && pipe.VFCacheInvalidationEnable) { pipe.PostSyncOperation = WriteImmediateData; pipe.Address = device->workaround_address; } anv_debug_dump_pc(pipe); } #if GFX_VER == 12 if ((bits & ANV_PIPE_AUX_TABLE_INVALIDATE_BIT) && device->info.has_aux_map) { anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) { lri.RegisterOffset = GENX(GFX_CCS_AUX_INV_num); lri.DataDWord = 1; } } #endif bits &= ~ANV_PIPE_INVALIDATE_BITS; } return bits; } void genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer) { enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits; if (unlikely(cmd_buffer->device->physical->always_flush_cache)) bits |= ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS; else if (bits == 0) return; bool trace_flush = (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_STALL_BITS | ANV_PIPE_INVALIDATE_BITS)) != 0; if (trace_flush) trace_intel_begin_stall(&cmd_buffer->trace); if ((GFX_VER >= 8 && GFX_VER <= 9) && (bits & ANV_PIPE_CS_STALL_BIT) && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) { /* If we are doing a VF cache invalidate AND a CS stall (it must be * both) then we can reset our vertex cache tracking. */ memset(cmd_buffer->state.gfx.vb_dirty_ranges, 0, sizeof(cmd_buffer->state.gfx.vb_dirty_ranges)); memset(&cmd_buffer->state.gfx.ib_dirty_range, 0, sizeof(cmd_buffer->state.gfx.ib_dirty_range)); } cmd_buffer->state.pending_pipe_bits = genX(emit_apply_pipe_flushes)(&cmd_buffer->batch, cmd_buffer->device, cmd_buffer->state.current_pipeline, bits); if (trace_flush) { trace_intel_end_stall(&cmd_buffer->trace, bits, anv_pipe_flush_bit_to_ds_stall_flag, NULL); } } static void cmd_buffer_barrier(struct anv_cmd_buffer *cmd_buffer, const VkDependencyInfo *dep_info, const char *reason) { /* XXX: Right now, we're really dumb and just flush whatever categories * the app asks for. One of these days we may make this a bit better * but right now that's all the hardware allows for in most areas. */ VkAccessFlags2 src_flags = 0; VkAccessFlags2 dst_flags = 0; for (uint32_t i = 0; i < dep_info->memoryBarrierCount; i++) { src_flags |= dep_info->pMemoryBarriers[i].srcAccessMask; dst_flags |= dep_info->pMemoryBarriers[i].dstAccessMask; } for (uint32_t i = 0; i < dep_info->bufferMemoryBarrierCount; i++) { src_flags |= dep_info->pBufferMemoryBarriers[i].srcAccessMask; dst_flags |= dep_info->pBufferMemoryBarriers[i].dstAccessMask; } for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) { const VkImageMemoryBarrier2 *img_barrier = &dep_info->pImageMemoryBarriers[i]; src_flags |= img_barrier->srcAccessMask; dst_flags |= img_barrier->dstAccessMask; ANV_FROM_HANDLE(anv_image, image, img_barrier->image); const VkImageSubresourceRange *range = &img_barrier->subresourceRange; uint32_t base_layer, layer_count; if (image->vk.image_type == VK_IMAGE_TYPE_3D) { base_layer = 0; layer_count = anv_minify(image->vk.extent.depth, range->baseMipLevel); } else { base_layer = range->baseArrayLayer; layer_count = vk_image_subresource_layer_count(&image->vk, range); } const uint32_t level_count = vk_image_subresource_level_count(&image->vk, range); if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) { transition_depth_buffer(cmd_buffer, image, base_layer, layer_count, img_barrier->oldLayout, img_barrier->newLayout, false /* will_full_fast_clear */); } if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) { transition_stencil_buffer(cmd_buffer, image, range->baseMipLevel, level_count, base_layer, layer_count, img_barrier->oldLayout, img_barrier->newLayout, false /* will_full_fast_clear */); } if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) { VkImageAspectFlags color_aspects = vk_image_expand_aspect_mask(&image->vk, range->aspectMask); anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) { transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit, range->baseMipLevel, level_count, base_layer, layer_count, img_barrier->oldLayout, img_barrier->newLayout, img_barrier->srcQueueFamilyIndex, img_barrier->dstQueueFamilyIndex, false /* will_full_fast_clear */); } } } enum anv_pipe_bits bits = anv_pipe_flush_bits_for_access_flags(cmd_buffer->device, src_flags) | anv_pipe_invalidate_bits_for_access_flags(cmd_buffer->device, dst_flags); anv_add_pending_pipe_bits(cmd_buffer, bits, reason); } void genX(CmdPipelineBarrier2)( VkCommandBuffer commandBuffer, const VkDependencyInfo* pDependencyInfo) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); cmd_buffer_barrier(cmd_buffer, pDependencyInfo, "pipe barrier"); } static void cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer) { VkShaderStageFlags stages = cmd_buffer->state.gfx.pipeline->active_stages; /* In order to avoid thrash, we assume that vertex and fragment stages * always exist. In the rare case where one is missing *and* the other * uses push concstants, this may be suboptimal. However, avoiding stalls * seems more important. */ stages |= VK_SHADER_STAGE_FRAGMENT_BIT; if (anv_pipeline_is_primitive(cmd_buffer->state.gfx.pipeline)) stages |= VK_SHADER_STAGE_VERTEX_BIT; if (stages == cmd_buffer->state.gfx.push_constant_stages) return; const unsigned push_constant_kb = cmd_buffer->device->info.max_constant_urb_size_kb; const unsigned num_stages = util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS); unsigned size_per_stage = push_constant_kb / num_stages; /* Broadwell+ and Haswell gt3 require that the push constant sizes be in * units of 2KB. Incidentally, these are the same platforms that have * 32KB worth of push constant space. */ if (push_constant_kb == 32) size_per_stage &= ~1u; uint32_t kb_used = 0; for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) { unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0; anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) { alloc._3DCommandSubOpcode = 18 + i; alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0; alloc.ConstantBufferSize = push_size; } kb_used += push_size; } anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) { alloc.ConstantBufferOffset = kb_used; alloc.ConstantBufferSize = push_constant_kb - kb_used; } #if GFX_VERx10 == 125 /* Wa_22011440098 * * In 3D mode, after programming push constant alloc command immediately * program push constant command(ZERO length) without any commit between * them. */ if (intel_device_info_is_dg2(&cmd_buffer->device->info)) { anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_ALL), c) { c.MOCS = anv_mocs(cmd_buffer->device, NULL, 0); } } #endif cmd_buffer->state.gfx.push_constant_stages = stages; /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS: * * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to * the next 3DPRIMITIVE command after programming the * 3DSTATE_PUSH_CONSTANT_ALLOC_VS" * * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of * pipeline setup, we need to dirty push constants. */ cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS; } static VkResult emit_binding_table(struct anv_cmd_buffer *cmd_buffer, struct anv_cmd_pipeline_state *pipe_state, struct anv_shader_bin *shader, struct anv_state *bt_state) { uint32_t state_offset; struct anv_pipeline_bind_map *map = &shader->bind_map; if (map->surface_count == 0) { *bt_state = (struct anv_state) { 0, }; return VK_SUCCESS; } *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer, map->surface_count, &state_offset); uint32_t *bt_map = bt_state->map; if (bt_state->map == NULL) return VK_ERROR_OUT_OF_DEVICE_MEMORY; /* We only need to emit relocs if we're not using softpin. If we are using * softpin then we always keep all user-allocated memory objects resident. */ const bool need_client_mem_relocs = anv_use_relocations(cmd_buffer->device->physical); struct anv_push_constants *push = &pipe_state->push_constants; for (uint32_t s = 0; s < map->surface_count; s++) { struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s]; struct anv_state surface_state; switch (binding->set) { case ANV_DESCRIPTOR_SET_NULL: bt_map[s] = 0; break; case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS: /* Color attachment binding */ assert(shader->stage == MESA_SHADER_FRAGMENT); if (binding->index < cmd_buffer->state.gfx.color_att_count) { const struct anv_attachment *att = &cmd_buffer->state.gfx.color_att[binding->index]; surface_state = att->surface_state.state; } else { surface_state = cmd_buffer->state.gfx.null_surface_state; } assert(surface_state.map); bt_map[s] = surface_state.offset + state_offset; break; case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS: { struct anv_state surface_state = anv_cmd_buffer_alloc_surface_state(cmd_buffer); struct anv_address constant_data = { .bo = cmd_buffer->device->instruction_state_pool.block_pool.bo, .offset = shader->kernel.offset + shader->prog_data->const_data_offset, }; unsigned constant_data_size = shader->prog_data->const_data_size; const enum isl_format format = anv_isl_format_for_descriptor_type(cmd_buffer->device, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER); anv_fill_buffer_surface_state(cmd_buffer->device, surface_state, format, ISL_SWIZZLE_IDENTITY, ISL_SURF_USAGE_CONSTANT_BUFFER_BIT, constant_data, constant_data_size, 1); assert(surface_state.map); bt_map[s] = surface_state.offset + state_offset; add_surface_reloc(cmd_buffer, surface_state, constant_data); break; } case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS: { /* This is always the first binding for compute shaders */ assert(shader->stage == MESA_SHADER_COMPUTE && s == 0); struct anv_state surface_state = anv_cmd_buffer_alloc_surface_state(cmd_buffer); const enum isl_format format = anv_isl_format_for_descriptor_type(cmd_buffer->device, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER); anv_fill_buffer_surface_state(cmd_buffer->device, surface_state, format, ISL_SWIZZLE_IDENTITY, ISL_SURF_USAGE_CONSTANT_BUFFER_BIT, cmd_buffer->state.compute.num_workgroups, 12, 1); assert(surface_state.map); bt_map[s] = surface_state.offset + state_offset; if (need_client_mem_relocs) { add_surface_reloc(cmd_buffer, surface_state, cmd_buffer->state.compute.num_workgroups); } break; } case ANV_DESCRIPTOR_SET_DESCRIPTORS: { /* This is a descriptor set buffer so the set index is actually * given by binding->binding. (Yes, that's confusing.) */ struct anv_descriptor_set *set = pipe_state->descriptors[binding->index]; assert(set->desc_mem.alloc_size); assert(set->desc_surface_state.alloc_size); bt_map[s] = set->desc_surface_state.offset + state_offset; add_surface_reloc(cmd_buffer, set->desc_surface_state, anv_descriptor_set_address(set)); break; } default: { assert(binding->set < MAX_SETS); const struct anv_descriptor_set *set = pipe_state->descriptors[binding->set]; if (binding->index >= set->descriptor_count) { /* From the Vulkan spec section entitled "DescriptorSet and * Binding Assignment": * * "If the array is runtime-sized, then array elements greater * than or equal to the size of that binding in the bound * descriptor set must not be used." * * Unfortunately, the compiler isn't smart enough to figure out * when a dynamic binding isn't used so it may grab the whole * array and stick it in the binding table. In this case, it's * safe to just skip those bindings that are OOB. */ assert(binding->index < set->layout->descriptor_count); continue; } const struct anv_descriptor *desc = &set->descriptors[binding->index]; switch (desc->type) { case VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR: case VK_DESCRIPTOR_TYPE_SAMPLER: /* Nothing for us to do here */ continue; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: { if (desc->image_view) { struct anv_surface_state sstate = (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ? desc->image_view->planes[binding->plane].general_sampler_surface_state : desc->image_view->planes[binding->plane].optimal_sampler_surface_state; surface_state = sstate.state; assert(surface_state.alloc_size); if (need_client_mem_relocs) add_surface_state_relocs(cmd_buffer, sstate); } else { surface_state = cmd_buffer->device->null_surface_state; } break; } case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: { if (desc->image_view) { struct anv_surface_state sstate = binding->lowered_storage_surface ? desc->image_view->planes[binding->plane].lowered_storage_surface_state : desc->image_view->planes[binding->plane].storage_surface_state; surface_state = sstate.state; assert(surface_state.alloc_size); if (surface_state.offset == 0) { mesa_loge("Bound a image to a descriptor where the " "descriptor does not have NonReadable " "set and the image does not have a " "corresponding SPIR-V format enum."); vk_debug_report(&cmd_buffer->device->physical->instance->vk, VK_DEBUG_REPORT_ERROR_BIT_EXT, &desc->image_view->vk.base, __LINE__, 0, "anv", "Bound a image to a descriptor where the " "descriptor does not have NonReadable " "set and the image does not have a " "corresponding SPIR-V format enum."); } if (surface_state.offset && need_client_mem_relocs) add_surface_state_relocs(cmd_buffer, sstate); } else { surface_state = cmd_buffer->device->null_surface_state; } break; } case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: if (desc->set_buffer_view) { surface_state = desc->set_buffer_view->surface_state; assert(surface_state.alloc_size); if (need_client_mem_relocs) { add_surface_reloc(cmd_buffer, surface_state, desc->set_buffer_view->address); } } else { surface_state = cmd_buffer->device->null_surface_state; } break; case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: if (desc->buffer_view) { surface_state = desc->buffer_view->surface_state; assert(surface_state.alloc_size); if (need_client_mem_relocs) { add_surface_reloc(cmd_buffer, surface_state, desc->buffer_view->address); } } else { surface_state = cmd_buffer->device->null_surface_state; } break; case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: { if (desc->buffer) { /* Compute the offset within the buffer */ uint32_t dynamic_offset = push->dynamic_offsets[binding->dynamic_offset_index]; uint64_t offset = desc->offset + dynamic_offset; /* Clamp to the buffer size */ offset = MIN2(offset, desc->buffer->vk.size); /* Clamp the range to the buffer size */ uint32_t range = MIN2(desc->range, desc->buffer->vk.size - offset); /* Align the range for consistency */ if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) range = align_u32(range, ANV_UBO_ALIGNMENT); struct anv_address address = anv_address_add(desc->buffer->address, offset); surface_state = anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64); enum isl_format format = anv_isl_format_for_descriptor_type(cmd_buffer->device, desc->type); isl_surf_usage_flags_t usage = desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ? ISL_SURF_USAGE_CONSTANT_BUFFER_BIT : ISL_SURF_USAGE_STORAGE_BIT; anv_fill_buffer_surface_state(cmd_buffer->device, surface_state, format, ISL_SWIZZLE_IDENTITY, usage, address, range, 1); if (need_client_mem_relocs) add_surface_reloc(cmd_buffer, surface_state, address); } else { surface_state = cmd_buffer->device->null_surface_state; } break; } case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: if (desc->buffer_view) { surface_state = binding->lowered_storage_surface ? desc->buffer_view->lowered_storage_surface_state : desc->buffer_view->storage_surface_state; assert(surface_state.alloc_size); if (need_client_mem_relocs) { add_surface_reloc(cmd_buffer, surface_state, desc->buffer_view->address); } } else { surface_state = cmd_buffer->device->null_surface_state; } break; default: assert(!"Invalid descriptor type"); continue; } assert(surface_state.map); bt_map[s] = surface_state.offset + state_offset; break; } } } return VK_SUCCESS; } static VkResult emit_samplers(struct anv_cmd_buffer *cmd_buffer, struct anv_cmd_pipeline_state *pipe_state, struct anv_shader_bin *shader, struct anv_state *state) { struct anv_pipeline_bind_map *map = &shader->bind_map; if (map->sampler_count == 0) { *state = (struct anv_state) { 0, }; return VK_SUCCESS; } uint32_t size = map->sampler_count * 16; *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32); if (state->map == NULL) return VK_ERROR_OUT_OF_DEVICE_MEMORY; for (uint32_t s = 0; s < map->sampler_count; s++) { struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s]; const struct anv_descriptor *desc = &pipe_state->descriptors[binding->set]->descriptors[binding->index]; if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER && desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) continue; struct anv_sampler *sampler = desc->sampler; /* This can happen if we have an unfilled slot since TYPE_SAMPLER * happens to be zero. */ if (sampler == NULL) continue; memcpy(state->map + (s * 16), sampler->state[binding->plane], sizeof(sampler->state[0])); } return VK_SUCCESS; } static uint32_t flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer, struct anv_cmd_pipeline_state *pipe_state, const VkShaderStageFlags dirty, struct anv_shader_bin **shaders, uint32_t num_shaders) { VkShaderStageFlags flushed = 0; VkResult result = VK_SUCCESS; for (uint32_t i = 0; i < num_shaders; i++) { if (!shaders[i]) continue; gl_shader_stage stage = shaders[i]->stage; VkShaderStageFlags vk_stage = mesa_to_vk_shader_stage(stage); if ((vk_stage & dirty) == 0) continue; assert(stage < ARRAY_SIZE(cmd_buffer->state.samplers)); result = emit_samplers(cmd_buffer, pipe_state, shaders[i], &cmd_buffer->state.samplers[stage]); if (result != VK_SUCCESS) break; assert(stage < ARRAY_SIZE(cmd_buffer->state.binding_tables)); result = emit_binding_table(cmd_buffer, pipe_state, shaders[i], &cmd_buffer->state.binding_tables[stage]); if (result != VK_SUCCESS) break; flushed |= vk_stage; } if (result != VK_SUCCESS) { assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY); result = anv_cmd_buffer_new_binding_table_block(cmd_buffer); if (result != VK_SUCCESS) return 0; /* Re-emit state base addresses so we get the new surface state base * address before we start emitting binding tables etc. */ genX(cmd_buffer_emit_state_base_address)(cmd_buffer); /* Re-emit all active binding tables */ flushed = 0; for (uint32_t i = 0; i < num_shaders; i++) { if (!shaders[i]) continue; gl_shader_stage stage = shaders[i]->stage; result = emit_samplers(cmd_buffer, pipe_state, shaders[i], &cmd_buffer->state.samplers[stage]); if (result != VK_SUCCESS) { anv_batch_set_error(&cmd_buffer->batch, result); return 0; } result = emit_binding_table(cmd_buffer, pipe_state, shaders[i], &cmd_buffer->state.binding_tables[stage]); if (result != VK_SUCCESS) { anv_batch_set_error(&cmd_buffer->batch, result); return 0; } flushed |= mesa_to_vk_shader_stage(stage); } } return flushed; } static void cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer, uint32_t stages) { static const uint32_t sampler_state_opcodes[] = { [MESA_SHADER_VERTEX] = 43, [MESA_SHADER_TESS_CTRL] = 44, /* HS */ [MESA_SHADER_TESS_EVAL] = 45, /* DS */ [MESA_SHADER_GEOMETRY] = 46, [MESA_SHADER_FRAGMENT] = 47, }; static const uint32_t binding_table_opcodes[] = { [MESA_SHADER_VERTEX] = 38, [MESA_SHADER_TESS_CTRL] = 39, [MESA_SHADER_TESS_EVAL] = 40, [MESA_SHADER_GEOMETRY] = 41, [MESA_SHADER_FRAGMENT] = 42, }; anv_foreach_stage(s, stages) { assert(s < ARRAY_SIZE(binding_table_opcodes)); if (cmd_buffer->state.samplers[s].alloc_size > 0) { anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) { ssp._3DCommandSubOpcode = sampler_state_opcodes[s]; ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset; } } /* Always emit binding table pointers if we're asked to, since on SKL * this is what flushes push constants. */ anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) { btp._3DCommandSubOpcode = binding_table_opcodes[s]; btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset; } } } static struct anv_address get_push_range_address(struct anv_cmd_buffer *cmd_buffer, const struct anv_shader_bin *shader, const struct anv_push_range *range) { struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx; switch (range->set) { case ANV_DESCRIPTOR_SET_DESCRIPTORS: { /* This is a descriptor set buffer so the set index is * actually given by binding->binding. (Yes, that's * confusing.) */ struct anv_descriptor_set *set = gfx_state->base.descriptors[range->index]; return anv_descriptor_set_address(set); } case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: { if (gfx_state->base.push_constants_state.alloc_size == 0) { gfx_state->base.push_constants_state = anv_cmd_buffer_gfx_push_constants(cmd_buffer); } return (struct anv_address) { .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo, .offset = gfx_state->base.push_constants_state.offset, }; } case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS: return (struct anv_address) { .bo = cmd_buffer->device->instruction_state_pool.block_pool.bo, .offset = shader->kernel.offset + shader->prog_data->const_data_offset, }; default: { assert(range->set < MAX_SETS); struct anv_descriptor_set *set = gfx_state->base.descriptors[range->set]; const struct anv_descriptor *desc = &set->descriptors[range->index]; if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) { if (desc->buffer_view) return desc->buffer_view->address; } else { assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC); if (desc->buffer) { const struct anv_push_constants *push = &gfx_state->base.push_constants; uint32_t dynamic_offset = push->dynamic_offsets[range->dynamic_offset_index]; return anv_address_add(desc->buffer->address, desc->offset + dynamic_offset); } } /* For NULL UBOs, we just return an address in the workaround BO. We do * writes to it for workarounds but always at the bottom. The higher * bytes should be all zeros. */ assert(range->length * 32 <= 2048); return (struct anv_address) { .bo = cmd_buffer->device->workaround_bo, .offset = 1024, }; } } } /** Returns the size in bytes of the bound buffer * * The range is relative to the start of the buffer, not the start of the * range. The returned range may be smaller than * * (range->start + range->length) * 32; */ static uint32_t get_push_range_bound_size(struct anv_cmd_buffer *cmd_buffer, const struct anv_shader_bin *shader, const struct anv_push_range *range) { assert(shader->stage != MESA_SHADER_COMPUTE); const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx; switch (range->set) { case ANV_DESCRIPTOR_SET_DESCRIPTORS: { struct anv_descriptor_set *set = gfx_state->base.descriptors[range->index]; assert(range->start * 32 < set->desc_mem.alloc_size); assert((range->start + range->length) * 32 <= set->desc_mem.alloc_size); return set->desc_mem.alloc_size; } case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: return (range->start + range->length) * 32; case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS: return ALIGN(shader->prog_data->const_data_size, ANV_UBO_ALIGNMENT); default: { assert(range->set < MAX_SETS); struct anv_descriptor_set *set = gfx_state->base.descriptors[range->set]; const struct anv_descriptor *desc = &set->descriptors[range->index]; if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) { /* Here we promote a UBO to a binding table entry so that we can avoid a layer of indirection. * We use the descriptor set's internally allocated surface state to fill the binding table entry. */ if (!desc->set_buffer_view) return 0; if (range->start * 32 > desc->set_buffer_view->range) return 0; return desc->set_buffer_view->range; } else { if (!desc->buffer) return 0; assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC); /* Compute the offset within the buffer */ const struct anv_push_constants *push = &gfx_state->base.push_constants; uint32_t dynamic_offset = push->dynamic_offsets[range->dynamic_offset_index]; uint64_t offset = desc->offset + dynamic_offset; /* Clamp to the buffer size */ offset = MIN2(offset, desc->buffer->vk.size); /* Clamp the range to the buffer size */ uint32_t bound_range = MIN2(desc->range, desc->buffer->vk.size - offset); /* Align the range for consistency */ bound_range = align_u32(bound_range, ANV_UBO_ALIGNMENT); return bound_range; } } } } static void cmd_buffer_emit_push_constant(struct anv_cmd_buffer *cmd_buffer, gl_shader_stage stage, struct anv_address *buffers, unsigned buffer_count) { const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx; const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline; static const uint32_t push_constant_opcodes[] = { [MESA_SHADER_VERTEX] = 21, [MESA_SHADER_TESS_CTRL] = 25, /* HS */ [MESA_SHADER_TESS_EVAL] = 26, /* DS */ [MESA_SHADER_GEOMETRY] = 22, [MESA_SHADER_FRAGMENT] = 23, }; assert(stage < ARRAY_SIZE(push_constant_opcodes)); UNUSED uint32_t mocs = anv_mocs(cmd_buffer->device, NULL, 0); anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) { c._3DCommandSubOpcode = push_constant_opcodes[stage]; /* Set MOCS, except on Gfx8, because the Broadwell PRM says: * * "Constant Buffer Object Control State must be always * programmed to zero." * * This restriction does not exist on any newer platforms. * * We only have one MOCS field for the whole packet, not one per * buffer. We could go out of our way here to walk over all of * the buffers and see if any of them are used externally and use * the external MOCS. However, the notion that someone would use * the same bit of memory for both scanout and a UBO is nuts. * * Let's not bother and assume it's all internal. */ #if GFX_VER >= 9 c.MOCS = mocs; #elif GFX_VER < 8 c.ConstantBody.MOCS = mocs; #endif if (anv_pipeline_has_stage(pipeline, stage)) { const struct anv_pipeline_bind_map *bind_map = &pipeline->shaders[stage]->bind_map; #if GFX_VERx10 >= 75 /* The Skylake PRM contains the following restriction: * * "The driver must ensure The following case does not occur * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with * buffer 3 read length equal to zero committed followed by a * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to * zero committed." * * To avoid this, we program the buffers in the highest slots. * This way, slot 0 is only used if slot 3 is also used. */ assert(buffer_count <= 4); const unsigned shift = 4 - buffer_count; for (unsigned i = 0; i < buffer_count; i++) { const struct anv_push_range *range = &bind_map->push_ranges[i]; /* At this point we only have non-empty ranges */ assert(range->length > 0); /* For Ivy Bridge, make sure we only set the first range (actual * push constants) */ assert((GFX_VERx10 >= 75) || i == 0); c.ConstantBody.ReadLength[i + shift] = range->length; c.ConstantBody.Buffer[i + shift] = anv_address_add(buffers[i], range->start * 32); } #else /* For Ivy Bridge, push constants are relative to dynamic state * base address and we only ever push actual push constants. */ if (bind_map->push_ranges[0].length > 0) { assert(buffer_count == 1); assert(bind_map->push_ranges[0].set == ANV_DESCRIPTOR_SET_PUSH_CONSTANTS); assert(buffers[0].bo == cmd_buffer->device->dynamic_state_pool.block_pool.bo); c.ConstantBody.ReadLength[0] = bind_map->push_ranges[0].length; c.ConstantBody.Buffer[0].bo = NULL; c.ConstantBody.Buffer[0].offset = buffers[0].offset; } assert(bind_map->push_ranges[1].length == 0); assert(bind_map->push_ranges[2].length == 0); assert(bind_map->push_ranges[3].length == 0); #endif } } } #if GFX_VER >= 12 static void cmd_buffer_emit_push_constant_all(struct anv_cmd_buffer *cmd_buffer, uint32_t shader_mask, struct anv_address *buffers, uint32_t buffer_count) { if (buffer_count == 0) { anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_ALL), c) { c.ShaderUpdateEnable = shader_mask; c.MOCS = isl_mocs(&cmd_buffer->device->isl_dev, 0, false); } return; } const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx; const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline; static const UNUSED uint32_t push_constant_opcodes[] = { [MESA_SHADER_VERTEX] = 21, [MESA_SHADER_TESS_CTRL] = 25, /* HS */ [MESA_SHADER_TESS_EVAL] = 26, /* DS */ [MESA_SHADER_GEOMETRY] = 22, [MESA_SHADER_FRAGMENT] = 23, }; gl_shader_stage stage = vk_to_mesa_shader_stage(shader_mask); assert(stage < ARRAY_SIZE(push_constant_opcodes)); const struct anv_pipeline_bind_map *bind_map = &pipeline->shaders[stage]->bind_map; uint32_t *dw; const uint32_t buffer_mask = (1 << buffer_count) - 1; const uint32_t num_dwords = 2 + 2 * buffer_count; dw = anv_batch_emitn(&cmd_buffer->batch, num_dwords, GENX(3DSTATE_CONSTANT_ALL), .ShaderUpdateEnable = shader_mask, .PointerBufferMask = buffer_mask, .MOCS = isl_mocs(&cmd_buffer->device->isl_dev, 0, false)); for (int i = 0; i < buffer_count; i++) { const struct anv_push_range *range = &bind_map->push_ranges[i]; GENX(3DSTATE_CONSTANT_ALL_DATA_pack)( &cmd_buffer->batch, dw + 2 + i * 2, &(struct GENX(3DSTATE_CONSTANT_ALL_DATA)) { .PointerToConstantBuffer = anv_address_add(buffers[i], range->start * 32), .ConstantBufferReadLength = range->length, }); } } #endif static void cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer, VkShaderStageFlags dirty_stages) { VkShaderStageFlags flushed = 0; struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx; const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline; #if GFX_VER >= 12 uint32_t nobuffer_stages = 0; #endif /* Compute robust pushed register access mask for each stage. */ if (cmd_buffer->device->robust_buffer_access) { anv_foreach_stage(stage, dirty_stages) { if (!anv_pipeline_has_stage(pipeline, stage)) continue; const struct anv_shader_bin *shader = pipeline->shaders[stage]; const struct anv_pipeline_bind_map *bind_map = &shader->bind_map; struct anv_push_constants *push = &gfx_state->base.push_constants; push->push_reg_mask[stage] = 0; /* Start of the current range in the shader, relative to the start of * push constants in the shader. */ unsigned range_start_reg = 0; for (unsigned i = 0; i < 4; i++) { const struct anv_push_range *range = &bind_map->push_ranges[i]; if (range->length == 0) continue; unsigned bound_size = get_push_range_bound_size(cmd_buffer, shader, range); if (bound_size >= range->start * 32) { unsigned bound_regs = MIN2(DIV_ROUND_UP(bound_size, 32) - range->start, range->length); assert(range_start_reg + bound_regs <= 64); push->push_reg_mask[stage] |= BITFIELD64_RANGE(range_start_reg, bound_regs); } cmd_buffer->state.push_constants_dirty |= mesa_to_vk_shader_stage(stage); range_start_reg += range->length; } } } /* Resets the push constant state so that we allocate a new one if * needed. */ gfx_state->base.push_constants_state = ANV_STATE_NULL; anv_foreach_stage(stage, dirty_stages) { unsigned buffer_count = 0; flushed |= mesa_to_vk_shader_stage(stage); UNUSED uint32_t max_push_range = 0; struct anv_address buffers[4] = {}; if (anv_pipeline_has_stage(pipeline, stage)) { const struct anv_shader_bin *shader = pipeline->shaders[stage]; const struct anv_pipeline_bind_map *bind_map = &shader->bind_map; /* We have to gather buffer addresses as a second step because the * loop above puts data into the push constant area and the call to * get_push_range_address is what locks our push constants and copies * them into the actual GPU buffer. If we did the two loops at the * same time, we'd risk only having some of the sizes in the push * constant buffer when we did the copy. */ for (unsigned i = 0; i < 4; i++) { const struct anv_push_range *range = &bind_map->push_ranges[i]; if (range->length == 0) break; buffers[i] = get_push_range_address(cmd_buffer, shader, range); max_push_range = MAX2(max_push_range, range->length); buffer_count++; } /* We have at most 4 buffers but they should be tightly packed */ for (unsigned i = buffer_count; i < 4; i++) assert(bind_map->push_ranges[i].length == 0); } #if GFX_VER >= 12 /* If this stage doesn't have any push constants, emit it later in a * single CONSTANT_ALL packet. */ if (buffer_count == 0) { nobuffer_stages |= 1 << stage; continue; } /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL * contains only 5 bits, so we can only use it for buffers smaller than * 32. */ if (max_push_range < 32) { cmd_buffer_emit_push_constant_all(cmd_buffer, 1 << stage, buffers, buffer_count); continue; } #endif cmd_buffer_emit_push_constant(cmd_buffer, stage, buffers, buffer_count); } #if GFX_VER >= 12 if (nobuffer_stages) cmd_buffer_emit_push_constant_all(cmd_buffer, nobuffer_stages, NULL, 0); #endif cmd_buffer->state.push_constants_dirty &= ~flushed; } #if GFX_VERx10 >= 125 static void cmd_buffer_flush_mesh_inline_data(struct anv_cmd_buffer *cmd_buffer, VkShaderStageFlags dirty_stages) { struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx; const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline; if (dirty_stages & VK_SHADER_STAGE_TASK_BIT_NV && anv_pipeline_has_stage(pipeline, MESA_SHADER_TASK)) { const struct anv_shader_bin *shader = pipeline->shaders[MESA_SHADER_TASK]; const struct anv_pipeline_bind_map *bind_map = &shader->bind_map; anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_TASK_SHADER_DATA), data) { const struct anv_push_range *range = &bind_map->push_ranges[0]; if (range->length > 0) { struct anv_address buffer = get_push_range_address(cmd_buffer, shader, range); uint64_t addr = anv_address_physical(buffer); data.InlineData[0] = addr & 0xffffffff; data.InlineData[1] = addr >> 32; memcpy(&data.InlineData[BRW_TASK_MESH_PUSH_CONSTANTS_START_DW], cmd_buffer->state.gfx.base.push_constants.client_data, BRW_TASK_MESH_PUSH_CONSTANTS_SIZE_DW * 4); } } } if (dirty_stages & VK_SHADER_STAGE_MESH_BIT_NV && anv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) { const struct anv_shader_bin *shader = pipeline->shaders[MESA_SHADER_MESH]; const struct anv_pipeline_bind_map *bind_map = &shader->bind_map; anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_MESH_SHADER_DATA), data) { const struct anv_push_range *range = &bind_map->push_ranges[0]; if (range->length > 0) { struct anv_address buffer = get_push_range_address(cmd_buffer, shader, range); uint64_t addr = anv_address_physical(buffer); data.InlineData[0] = addr & 0xffffffff; data.InlineData[1] = addr >> 32; memcpy(&data.InlineData[BRW_TASK_MESH_PUSH_CONSTANTS_START_DW], cmd_buffer->state.gfx.base.push_constants.client_data, BRW_TASK_MESH_PUSH_CONSTANTS_SIZE_DW * 4); } } } cmd_buffer->state.push_constants_dirty &= ~dirty_stages; } #endif static void cmd_buffer_emit_clip(struct anv_cmd_buffer *cmd_buffer) { const struct vk_dynamic_graphics_state *dyn = &cmd_buffer->vk.dynamic_graphics_state; if (!(cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) && !BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_IA_PRIMITIVE_TOPOLOGY) && #if GFX_VER <= 7 !BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_CULL_MODE) && !BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_FRONT_FACE) && #endif !BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_VP_VIEWPORT_COUNT)) return; /* Take dynamic primitive topology in to account with * 3DSTATE_CLIP::ViewportXYClipTestEnable */ VkPolygonMode dynamic_raster_mode = genX(raster_polygon_mode)(cmd_buffer->state.gfx.pipeline, dyn->ia.primitive_topology); bool xy_clip_test_enable = (dynamic_raster_mode == VK_POLYGON_MODE_FILL); struct GENX(3DSTATE_CLIP) clip = { GENX(3DSTATE_CLIP_header), #if GFX_VER <= 7 .FrontWinding = genX(vk_to_intel_front_face)[dyn->rs.front_face], .CullMode = genX(vk_to_intel_cullmode)[dyn->rs.cull_mode], #endif .ViewportXYClipTestEnable = xy_clip_test_enable, }; uint32_t dwords[GENX(3DSTATE_CLIP_length)]; /* TODO(mesh): Multiview. */ struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; if (anv_pipeline_is_primitive(pipeline)) { const struct brw_vue_prog_data *last = anv_pipeline_get_last_vue_prog_data(pipeline); if (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT) { clip.MaximumVPIndex = dyn->vp.viewport_count > 0 ? dyn->vp.viewport_count - 1 : 0; } } else if (anv_pipeline_is_mesh(pipeline)) { const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline); if (mesh_prog_data->map.start_dw[VARYING_SLOT_VIEWPORT] >= 0) { clip.MaximumVPIndex = dyn->vp.viewport_count > 0 ? dyn->vp.viewport_count - 1 : 0; } } GENX(3DSTATE_CLIP_pack)(NULL, dwords, &clip); anv_batch_emit_merge(&cmd_buffer->batch, dwords, pipeline->gfx7.clip); } static void cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer) { struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx; const struct vk_dynamic_graphics_state *dyn = &cmd_buffer->vk.dynamic_graphics_state; uint32_t count = dyn->vp.viewport_count; const VkViewport *viewports = dyn->vp.viewports; struct anv_state sf_clip_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 64, 64); bool negative_one_to_one = cmd_buffer->state.gfx.pipeline->negative_one_to_one; float scale = negative_one_to_one ? 0.5f : 1.0f; for (uint32_t i = 0; i < count; i++) { const VkViewport *vp = &viewports[i]; /* The gfx7 state struct has just the matrix and guardband fields, the * gfx8 struct adds the min/max viewport fields. */ struct GENX(SF_CLIP_VIEWPORT) sfv = { .ViewportMatrixElementm00 = vp->width / 2, .ViewportMatrixElementm11 = vp->height / 2, .ViewportMatrixElementm22 = (vp->maxDepth - vp->minDepth) * scale, .ViewportMatrixElementm30 = vp->x + vp->width / 2, .ViewportMatrixElementm31 = vp->y + vp->height / 2, .ViewportMatrixElementm32 = negative_one_to_one ? (vp->minDepth + vp->maxDepth) * scale : vp->minDepth, .XMinClipGuardband = -1.0f, .XMaxClipGuardband = 1.0f, .YMinClipGuardband = -1.0f, .YMaxClipGuardband = 1.0f, #if GFX_VER >= 8 .XMinViewPort = vp->x, .XMaxViewPort = vp->x + vp->width - 1, .YMinViewPort = MIN2(vp->y, vp->y + vp->height), .YMaxViewPort = MAX2(vp->y, vp->y + vp->height) - 1, #endif }; const uint32_t fb_size_max = 1 << 14; uint32_t x_min = 0, x_max = fb_size_max; uint32_t y_min = 0, y_max = fb_size_max; /* If we have a valid renderArea, include that */ if (gfx->render_area.extent.width > 0 && gfx->render_area.extent.height > 0) { x_min = MAX2(x_min, gfx->render_area.offset.x); x_max = MIN2(x_min, gfx->render_area.offset.x + gfx->render_area.extent.width); y_min = MAX2(y_min, gfx->render_area.offset.y); y_max = MIN2(y_min, gfx->render_area.offset.y + gfx->render_area.extent.height); } /* The client is required to have enough scissors for whatever it sets * as ViewportIndex but it's possible that they've got more viewports * set from a previous command. Also, from the Vulkan 1.3.207: * * "The application must ensure (using scissor if necessary) that * all rendering is contained within the render area." * * If the client doesn't set a scissor, that basically means it * guarantees everything is in-bounds already. If we end up using a * guardband of [-1, 1] in that case, there shouldn't be much loss. * It's theoretically possible that they could do all their clipping * with clip planes but that'd be a bit odd. */ if (i < dyn->vp.scissor_count) { const VkRect2D *scissor = &dyn->vp.scissors[i]; x_min = MAX2(x_min, scissor->offset.x); x_max = MIN2(x_min, scissor->offset.x + scissor->extent.width); y_min = MAX2(y_min, scissor->offset.y); y_max = MIN2(y_min, scissor->offset.y + scissor->extent.height); } /* Only bother calculating the guardband if our known render area is * less than the maximum size. Otherwise, it will calculate [-1, 1] * anyway but possibly with precision loss. */ if (x_min > 0 || x_max < fb_size_max || y_min > 0 || y_max < fb_size_max) { intel_calculate_guardband_size(x_min, x_max, y_min, y_max, sfv.ViewportMatrixElementm00, sfv.ViewportMatrixElementm11, sfv.ViewportMatrixElementm30, sfv.ViewportMatrixElementm31, &sfv.XMinClipGuardband, &sfv.XMaxClipGuardband, &sfv.YMinClipGuardband, &sfv.YMaxClipGuardband); } GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_state.map + i * 64, &sfv); } anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), clip) { clip.SFClipViewportPointer = sf_clip_state.offset; } } static void cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer, bool depth_clamp_enable) { const struct vk_dynamic_graphics_state *dyn = &cmd_buffer->vk.dynamic_graphics_state; uint32_t count = dyn->vp.viewport_count; const VkViewport *viewports = dyn->vp.viewports; struct anv_state cc_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, 32); for (uint32_t i = 0; i < count; i++) { const VkViewport *vp = &viewports[i]; /* From the Vulkan spec: * * "It is valid for minDepth to be greater than or equal to * maxDepth." */ float min_depth = MIN2(vp->minDepth, vp->maxDepth); float max_depth = MAX2(vp->minDepth, vp->maxDepth); struct GENX(CC_VIEWPORT) cc_viewport = { .MinimumDepth = depth_clamp_enable ? min_depth : 0.0f, .MaximumDepth = depth_clamp_enable ? max_depth : 1.0f, }; GENX(CC_VIEWPORT_pack)(NULL, cc_state.map + i * 8, &cc_viewport); } anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), cc) { cc.CCViewportPointer = cc_state.offset; } } static int64_t clamp_int64(int64_t x, int64_t min, int64_t max) { if (x < min) return min; else if (x < max) return x; else return max; } static void cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer) { struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx; const struct vk_dynamic_graphics_state *dyn = &cmd_buffer->vk.dynamic_graphics_state; uint32_t count = dyn->vp.scissor_count; const VkRect2D *scissors = dyn->vp.scissors; const VkViewport *viewports = dyn->vp.viewports; /* Wa_1409725701: * "The viewport-specific state used by the SF unit (SCISSOR_RECT) is * stored as an array of up to 16 elements. The location of first * element of the array, as specified by Pointer to SCISSOR_RECT, should * be aligned to a 64-byte boundary. */ uint32_t alignment = 64; struct anv_state scissor_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, alignment); for (uint32_t i = 0; i < count; i++) { const VkRect2D *s = &scissors[i]; const VkViewport *vp = &viewports[i]; /* Since xmax and ymax are inclusive, we have to have xmax < xmin or * ymax < ymin for empty clips. In case clip x, y, width height are all * 0, the clamps below produce 0 for xmin, ymin, xmax, ymax, which isn't * what we want. Just special case empty clips and produce a canonical * empty clip. */ static const struct GENX(SCISSOR_RECT) empty_scissor = { .ScissorRectangleYMin = 1, .ScissorRectangleXMin = 1, .ScissorRectangleYMax = 0, .ScissorRectangleXMax = 0 }; const int max = 0xffff; uint32_t y_min = MAX2(s->offset.y, MIN2(vp->y, vp->y + vp->height)); uint32_t x_min = MAX2(s->offset.x, vp->x); uint32_t y_max = MIN2(s->offset.y + s->extent.height - 1, MAX2(vp->y, vp->y + vp->height) - 1); uint32_t x_max = MIN2(s->offset.x + s->extent.width - 1, vp->x + vp->width - 1); /* Do this math using int64_t so overflow gets clamped correctly. */ if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) { y_min = clamp_int64((uint64_t) y_min, gfx->render_area.offset.y, max); x_min = clamp_int64((uint64_t) x_min, gfx->render_area.offset.x, max); y_max = clamp_int64((uint64_t) y_max, 0, gfx->render_area.offset.y + gfx->render_area.extent.height - 1); x_max = clamp_int64((uint64_t) x_max, 0, gfx->render_area.offset.x + gfx->render_area.extent.width - 1); } struct GENX(SCISSOR_RECT) scissor = { .ScissorRectangleYMin = y_min, .ScissorRectangleXMin = x_min, .ScissorRectangleYMax = y_max, .ScissorRectangleXMax = x_max }; if (s->extent.width <= 0 || s->extent.height <= 0) { GENX(SCISSOR_RECT_pack)(NULL, scissor_state.map + i * 8, &empty_scissor); } else { GENX(SCISSOR_RECT_pack)(NULL, scissor_state.map + i * 8, &scissor); } } anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ssp) { ssp.ScissorRectPointer = scissor_state.offset; } } static void cmd_buffer_emit_streamout(struct anv_cmd_buffer *cmd_buffer) { const struct vk_dynamic_graphics_state *dyn = &cmd_buffer->vk.dynamic_graphics_state; struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; #if GFX_VER == 7 # define streamout_state_dw pipeline->gfx7.streamout_state #else # define streamout_state_dw pipeline->gfx8.streamout_state #endif uint32_t dwords[GENX(3DSTATE_STREAMOUT_length)]; struct GENX(3DSTATE_STREAMOUT) so = { GENX(3DSTATE_STREAMOUT_header), .RenderingDisable = dyn->rs.rasterizer_discard_enable, }; GENX(3DSTATE_STREAMOUT_pack)(NULL, dwords, &so); anv_batch_emit_merge(&cmd_buffer->batch, dwords, streamout_state_dw); } void genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer) { struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; const struct vk_dynamic_graphics_state *dyn = &cmd_buffer->vk.dynamic_graphics_state; uint32_t *p; assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0); genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->base.l3_config); genX(cmd_buffer_emit_hashing_mode)(cmd_buffer, UINT_MAX, UINT_MAX, 1); genX(flush_pipeline_select_3d)(cmd_buffer); /* Apply any pending pipeline flushes we may have. We want to apply them * now because, if any of those flushes are for things like push constants, * the GPU will read the state at weird times. */ genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used; if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) vb_emit |= pipeline->vb_used; if (vb_emit) { const uint32_t num_buffers = __builtin_popcount(vb_emit); const uint32_t num_dwords = 1 + num_buffers * 4; p = anv_batch_emitn(&cmd_buffer->batch, num_dwords, GENX(3DSTATE_VERTEX_BUFFERS)); uint32_t i = 0; u_foreach_bit(vb, vb_emit) { struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer; uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset; struct GENX(VERTEX_BUFFER_STATE) state; if (buffer) { uint32_t stride = dyn->vi_binding_strides[vb]; UNUSED uint32_t size = cmd_buffer->state.vertex_bindings[vb].size; #if GFX_VER <= 7 bool per_instance = pipeline->vb[vb].instanced; uint32_t divisor = pipeline->vb[vb].instance_divisor * pipeline->instance_multiplier; #endif state = (struct GENX(VERTEX_BUFFER_STATE)) { .VertexBufferIndex = vb, .MOCS = anv_mocs(cmd_buffer->device, buffer->address.bo, ISL_SURF_USAGE_VERTEX_BUFFER_BIT), #if GFX_VER <= 7 .BufferAccessType = per_instance ? INSTANCEDATA : VERTEXDATA, .InstanceDataStepRate = per_instance ? divisor : 1, #endif .AddressModifyEnable = true, .BufferPitch = stride, .BufferStartingAddress = anv_address_add(buffer->address, offset), .NullVertexBuffer = offset >= buffer->vk.size, #if GFX_VER >= 12 .L3BypassDisable = true, #endif #if GFX_VER >= 8 .BufferSize = size, #else /* XXX: to handle dynamic offset for older gens we might want * to modify Endaddress, but there are issues when doing so: * * https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/7439 */ .EndAddress = anv_address_add(buffer->address, buffer->vk.size - 1), #endif }; } else { state = (struct GENX(VERTEX_BUFFER_STATE)) { .VertexBufferIndex = vb, .NullVertexBuffer = true, .MOCS = anv_mocs(cmd_buffer->device, NULL, ISL_SURF_USAGE_VERTEX_BUFFER_BIT), }; } #if GFX_VER >= 8 && GFX_VER <= 9 genX(cmd_buffer_set_binding_for_gfx8_vb_flush)(cmd_buffer, vb, state.BufferStartingAddress, state.BufferSize); #endif GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state); i++; } } cmd_buffer->state.gfx.vb_dirty &= ~vb_emit; uint32_t descriptors_dirty = cmd_buffer->state.descriptors_dirty & pipeline->active_stages; if (!cmd_buffer->state.gfx.dirty && !descriptors_dirty && !vk_dynamic_graphics_state_any_dirty(dyn) && !cmd_buffer->state.push_constants_dirty) return; if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) || (GFX_VER == 7 && (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE))) { /* Wa_16011411144: * * SW must insert a PIPE_CONTROL cmd before and after the * 3dstate_so_buffer_index_0/1/2/3 states to ensure so_buffer_index_* * state is not combined with other state changes. */ if (intel_device_info_is_dg2(&cmd_buffer->device->info)) { anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_CS_STALL_BIT, "before SO_BUFFER change WA"); genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); } /* We don't need any per-buffer dirty tracking because you're not * allowed to bind different XFB buffers while XFB is enabled. */ for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) { struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx]; anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) { #if GFX_VER < 12 sob.SOBufferIndex = idx; #else sob._3DCommandOpcode = 0; sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + idx; #endif if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) { sob.MOCS = anv_mocs(cmd_buffer->device, xfb->buffer->address.bo, 0); sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address, xfb->offset); #if GFX_VER >= 8 sob.SOBufferEnable = true; sob.StreamOffsetWriteEnable = false; /* Size is in DWords - 1 */ sob.SurfaceSize = DIV_ROUND_UP(xfb->size, 4) - 1; #else /* We don't have SOBufferEnable in 3DSTATE_SO_BUFFER on Gfx7 so * we trust in SurfaceEndAddress = SurfaceBaseAddress = 0 (the * default for an empty SO_BUFFER packet) to disable them. */ sob.SurfacePitch = pipeline->gfx7.xfb_bo_pitch[idx]; sob.SurfaceEndAddress = anv_address_add(xfb->buffer->address, xfb->offset + xfb->size); #endif } else { sob.MOCS = anv_mocs(cmd_buffer->device, NULL, 0); } } } if (intel_device_info_is_dg2(&cmd_buffer->device->info)) { /* Wa_16011411144: also CS_STALL after touching SO_BUFFER change */ anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_CS_STALL_BIT, "after SO_BUFFER change WA"); genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); } else if (GFX_VER >= 10) { /* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */ anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_CS_STALL_BIT, "after 3DSTATE_SO_BUFFER call"); } } if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) { anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->base.batch); /* If the pipeline changed, we may need to re-allocate push constant * space in the URB. */ cmd_buffer_alloc_push_constants(cmd_buffer); } #if GFX_VER <= 7 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT || cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) { /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1: * * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth * stall needs to be sent just prior to any 3DSTATE_VS, * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS, * 3DSTATE_BINDING_TABLE_POINTER_VS, * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one * PIPE_CONTROL needs to be sent before any combination of VS * associated 3DSTATE." */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.DepthStallEnable = true; pc.PostSyncOperation = WriteImmediateData; pc.Address = cmd_buffer->device->workaround_address; anv_debug_dump_pc(pc); } } #endif /* Render targets live in the same binding table as fragment descriptors */ if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS) descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT; /* We emit the binding tables and sampler tables first, then emit push * constants and then finally emit binding table and sampler table * pointers. It has to happen in this order, since emitting the binding * tables may change the push constants (in case of storage images). After * emitting push constants, on SKL+ we have to emit the corresponding * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect. */ uint32_t dirty = 0; if (descriptors_dirty) { dirty = flush_descriptor_sets(cmd_buffer, &cmd_buffer->state.gfx.base, descriptors_dirty, pipeline->shaders, ARRAY_SIZE(pipeline->shaders)); cmd_buffer->state.descriptors_dirty &= ~dirty; } if (dirty || cmd_buffer->state.push_constants_dirty) { /* Because we're pushing UBOs, we have to push whenever either * descriptors or push constants is dirty. */ dirty |= cmd_buffer->state.push_constants_dirty; cmd_buffer_flush_push_constants(cmd_buffer, dirty & VK_SHADER_STAGE_ALL_GRAPHICS); #if GFX_VERx10 >= 125 cmd_buffer_flush_mesh_inline_data( cmd_buffer, dirty & (VK_SHADER_STAGE_TASK_BIT_NV | VK_SHADER_STAGE_MESH_BIT_NV)); #endif } if (dirty & VK_SHADER_STAGE_ALL_GRAPHICS) { cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty & VK_SHADER_STAGE_ALL_GRAPHICS); } cmd_buffer_emit_clip(cmd_buffer); if ((cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_XFB_ENABLE)) || BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_RASTERIZER_DISCARD_ENABLE)) cmd_buffer_emit_streamout(cmd_buffer); if ((cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_RENDER_TARGETS)) || BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_VP_VIEWPORTS) || BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_VP_SCISSORS)) { cmd_buffer_emit_viewport(cmd_buffer); cmd_buffer_emit_depth_viewport(cmd_buffer, pipeline->depth_clamp_enable); } if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS) || BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_VP_VIEWPORTS) || BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_VP_SCISSORS)) cmd_buffer_emit_scissor(cmd_buffer); if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) || BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_IA_PRIMITIVE_TOPOLOGY)) { uint32_t topology; if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) topology = _3DPRIM_PATCHLIST(pipeline->patch_control_points); else topology = genX(vk_to_intel_primitive_type)[dyn->ia.primitive_topology]; cmd_buffer->state.gfx.primitive_topology = topology; #if (GFX_VER >= 8) anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF_TOPOLOGY), vft) { vft.PrimitiveTopologyType = topology; } #endif } genX(cmd_buffer_flush_dynamic_state)(cmd_buffer); } static void emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer, struct anv_address addr, uint32_t size, uint32_t index) { uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(3DSTATE_VERTEX_BUFFERS)); GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1, &(struct GENX(VERTEX_BUFFER_STATE)) { .VertexBufferIndex = index, .AddressModifyEnable = true, .BufferPitch = 0, .MOCS = anv_mocs(cmd_buffer->device, addr.bo, ISL_SURF_USAGE_VERTEX_BUFFER_BIT), .NullVertexBuffer = size == 0, #if GFX_VER >= 12 .L3BypassDisable = true, #endif #if (GFX_VER >= 8) .BufferStartingAddress = addr, .BufferSize = size #else .BufferStartingAddress = addr, .EndAddress = anv_address_add(addr, size), #endif }); genX(cmd_buffer_set_binding_for_gfx8_vb_flush)(cmd_buffer, index, addr, size); } static void emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer, struct anv_address addr) { emit_vertex_bo(cmd_buffer, addr, addr.bo ? 8 : 0, ANV_SVGS_VB_INDEX); } static void emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer, uint32_t base_vertex, uint32_t base_instance) { if (base_vertex == 0 && base_instance == 0) { emit_base_vertex_instance_bo(cmd_buffer, ANV_NULL_ADDRESS); } else { struct anv_state id_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4); ((uint32_t *)id_state.map)[0] = base_vertex; ((uint32_t *)id_state.map)[1] = base_instance; struct anv_address addr = { .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo, .offset = id_state.offset, }; emit_base_vertex_instance_bo(cmd_buffer, addr); } } static void emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index) { struct anv_state state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4); ((uint32_t *)state.map)[0] = draw_index; struct anv_address addr = { .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo, .offset = state.offset, }; emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX); } static void update_dirty_vbs_for_gfx8_vb_flush(struct anv_cmd_buffer *cmd_buffer, uint32_t access_type) { struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); uint64_t vb_used = pipeline->vb_used; if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) vb_used |= 1ull << ANV_SVGS_VB_INDEX; if (vs_prog_data->uses_drawid) vb_used |= 1ull << ANV_DRAWID_VB_INDEX; genX(cmd_buffer_update_dirty_vbs_for_gfx8_vb_flush)(cmd_buffer, access_type == RANDOM, vb_used); } ALWAYS_INLINE static void cmd_buffer_emit_vertex_constants_and_flush(struct anv_cmd_buffer *cmd_buffer, const struct brw_vs_prog_data *vs_prog_data, uint32_t base_vertex, uint32_t base_instance, uint32_t draw_id, bool force_flush) { bool emitted = false; if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) { emit_base_vertex_instance(cmd_buffer, base_vertex, base_instance); emitted = true; } if (vs_prog_data->uses_drawid) { emit_draw_index(cmd_buffer, draw_id); emitted = true; } /* Emitting draw index or vertex index BOs may result in needing * additional VF cache flushes. */ if (emitted || force_flush) genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); } void genX(CmdDraw)( VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); if (anv_batch_has_error(&cmd_buffer->batch)) return; const uint32_t count = vertexCount * instanceCount * pipeline->instance_multiplier; anv_measure_snapshot(cmd_buffer, INTEL_SNAPSHOT_DRAW, "draw", count); trace_intel_begin_draw(&cmd_buffer->trace); genX(cmd_buffer_flush_state)(cmd_buffer); if (cmd_buffer->state.conditional_render_enabled) genX(cmd_emit_conditional_render_predicate)(cmd_buffer); cmd_buffer_emit_vertex_constants_and_flush(cmd_buffer, vs_prog_data, firstVertex, firstInstance, 0, true); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled; prim.VertexAccessType = SEQUENTIAL; prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology; prim.VertexCountPerInstance = vertexCount; prim.StartVertexLocation = firstVertex; prim.InstanceCount = instanceCount * pipeline->instance_multiplier; prim.StartInstanceLocation = firstInstance; prim.BaseVertexLocation = 0; } update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, SEQUENTIAL); trace_intel_end_draw(&cmd_buffer->trace, count); } void genX(CmdDrawMultiEXT)( VkCommandBuffer commandBuffer, uint32_t drawCount, const VkMultiDrawInfoEXT *pVertexInfo, uint32_t instanceCount, uint32_t firstInstance, uint32_t stride) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); if (anv_batch_has_error(&cmd_buffer->batch)) return; const uint32_t count = drawCount * instanceCount * pipeline->instance_multiplier; anv_measure_snapshot(cmd_buffer, INTEL_SNAPSHOT_DRAW, "draw_multi", count); trace_intel_begin_draw_multi(&cmd_buffer->trace); genX(cmd_buffer_flush_state)(cmd_buffer); if (cmd_buffer->state.conditional_render_enabled) genX(cmd_emit_conditional_render_predicate)(cmd_buffer); uint32_t i = 0; vk_foreach_multi_draw(draw, i, pVertexInfo, drawCount, stride) { cmd_buffer_emit_vertex_constants_and_flush(cmd_buffer, vs_prog_data, draw->firstVertex, firstInstance, i, !i); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled; prim.VertexAccessType = SEQUENTIAL; prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology; prim.VertexCountPerInstance = draw->vertexCount; prim.StartVertexLocation = draw->firstVertex; prim.InstanceCount = instanceCount * pipeline->instance_multiplier; prim.StartInstanceLocation = firstInstance; prim.BaseVertexLocation = 0; } } update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, SEQUENTIAL); trace_intel_end_draw_multi(&cmd_buffer->trace, count); } void genX(CmdDrawIndexed)( VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); if (anv_batch_has_error(&cmd_buffer->batch)) return; const uint32_t count = indexCount * instanceCount * pipeline->instance_multiplier; anv_measure_snapshot(cmd_buffer, INTEL_SNAPSHOT_DRAW, "draw indexed", count); trace_intel_begin_draw_indexed(&cmd_buffer->trace); genX(cmd_buffer_flush_state)(cmd_buffer); if (cmd_buffer->state.conditional_render_enabled) genX(cmd_emit_conditional_render_predicate)(cmd_buffer); cmd_buffer_emit_vertex_constants_and_flush(cmd_buffer, vs_prog_data, vertexOffset, firstInstance, 0, true); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled; prim.VertexAccessType = RANDOM; prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology; prim.VertexCountPerInstance = indexCount; prim.StartVertexLocation = firstIndex; prim.InstanceCount = instanceCount * pipeline->instance_multiplier; prim.StartInstanceLocation = firstInstance; prim.BaseVertexLocation = vertexOffset; } update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, RANDOM); trace_intel_end_draw_indexed(&cmd_buffer->trace, count); } void genX(CmdDrawMultiIndexedEXT)( VkCommandBuffer commandBuffer, uint32_t drawCount, const VkMultiDrawIndexedInfoEXT *pIndexInfo, uint32_t instanceCount, uint32_t firstInstance, uint32_t stride, const int32_t *pVertexOffset) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); if (anv_batch_has_error(&cmd_buffer->batch)) return; const uint32_t count = drawCount * instanceCount * pipeline->instance_multiplier; anv_measure_snapshot(cmd_buffer, INTEL_SNAPSHOT_DRAW, "draw indexed_multi", count); trace_intel_begin_draw_indexed_multi(&cmd_buffer->trace); genX(cmd_buffer_flush_state)(cmd_buffer); if (cmd_buffer->state.conditional_render_enabled) genX(cmd_emit_conditional_render_predicate)(cmd_buffer); uint32_t i = 0; if (pVertexOffset) { if (vs_prog_data->uses_drawid) { bool emitted = true; if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) { emit_base_vertex_instance(cmd_buffer, *pVertexOffset, firstInstance); emitted = true; } vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) { if (vs_prog_data->uses_drawid) { emit_draw_index(cmd_buffer, i); emitted = true; } /* Emitting draw index or vertex index BOs may result in needing * additional VF cache flushes. */ if (emitted) genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled; prim.VertexAccessType = RANDOM; prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology; prim.VertexCountPerInstance = draw->indexCount; prim.StartVertexLocation = draw->firstIndex; prim.InstanceCount = instanceCount * pipeline->instance_multiplier; prim.StartInstanceLocation = firstInstance; prim.BaseVertexLocation = *pVertexOffset; } emitted = false; } } else { if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) { emit_base_vertex_instance(cmd_buffer, *pVertexOffset, firstInstance); /* Emitting draw index or vertex index BOs may result in needing * additional VF cache flushes. */ genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); } vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) { anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled; prim.VertexAccessType = RANDOM; prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology; prim.VertexCountPerInstance = draw->indexCount; prim.StartVertexLocation = draw->firstIndex; prim.InstanceCount = instanceCount * pipeline->instance_multiplier; prim.StartInstanceLocation = firstInstance; prim.BaseVertexLocation = *pVertexOffset; } } } } else { vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) { cmd_buffer_emit_vertex_constants_and_flush(cmd_buffer, vs_prog_data, draw->vertexOffset, firstInstance, i, i != 0); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled; prim.VertexAccessType = RANDOM; prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology; prim.VertexCountPerInstance = draw->indexCount; prim.StartVertexLocation = draw->firstIndex; prim.InstanceCount = instanceCount * pipeline->instance_multiplier; prim.StartInstanceLocation = firstInstance; prim.BaseVertexLocation = draw->vertexOffset; } } } update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, RANDOM); trace_intel_end_draw_indexed_multi(&cmd_buffer->trace, count); } /* Auto-Draw / Indirect Registers */ #define GFX7_3DPRIM_END_OFFSET 0x2420 #define GFX7_3DPRIM_START_VERTEX 0x2430 #define GFX7_3DPRIM_VERTEX_COUNT 0x2434 #define GFX7_3DPRIM_INSTANCE_COUNT 0x2438 #define GFX7_3DPRIM_START_INSTANCE 0x243C #define GFX7_3DPRIM_BASE_VERTEX 0x2440 void genX(CmdDrawIndirectByteCountEXT)( VkCommandBuffer commandBuffer, uint32_t instanceCount, uint32_t firstInstance, VkBuffer counterBuffer, VkDeviceSize counterBufferOffset, uint32_t counterOffset, uint32_t vertexStride) { #if GFX_VERx10 >= 75 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer); struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); /* firstVertex is always zero for this draw function */ const uint32_t firstVertex = 0; if (anv_batch_has_error(&cmd_buffer->batch)) return; anv_measure_snapshot(cmd_buffer, INTEL_SNAPSHOT_DRAW, "draw indirect byte count", instanceCount * pipeline->instance_multiplier); trace_intel_begin_draw_indirect_byte_count(&cmd_buffer->trace); genX(cmd_buffer_flush_state)(cmd_buffer); if (cmd_buffer->state.conditional_render_enabled) genX(cmd_emit_conditional_render_predicate)(cmd_buffer); if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance); if (vs_prog_data->uses_drawid) emit_draw_index(cmd_buffer, 0); /* Emitting draw index or vertex index BOs may result in needing * additional VF cache flushes. */ genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); struct mi_builder b; mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch); struct mi_value count = mi_mem32(anv_address_add(counter_buffer->address, counterBufferOffset)); if (counterOffset) count = mi_isub(&b, count, mi_imm(counterOffset)); count = mi_udiv32_imm(&b, count, vertexStride); mi_store(&b, mi_reg32(GFX7_3DPRIM_VERTEX_COUNT), count); mi_store(&b, mi_reg32(GFX7_3DPRIM_START_VERTEX), mi_imm(firstVertex)); mi_store(&b, mi_reg32(GFX7_3DPRIM_INSTANCE_COUNT), mi_imm(instanceCount * pipeline->instance_multiplier)); mi_store(&b, mi_reg32(GFX7_3DPRIM_START_INSTANCE), mi_imm(firstInstance)); mi_store(&b, mi_reg32(GFX7_3DPRIM_BASE_VERTEX), mi_imm(0)); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.IndirectParameterEnable = true; prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled; prim.VertexAccessType = SEQUENTIAL; prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology; } update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, SEQUENTIAL); trace_intel_end_draw_indirect_byte_count(&cmd_buffer->trace, instanceCount * pipeline->instance_multiplier); #endif /* GFX_VERx10 >= 75 */ } static void load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer, struct anv_address addr, bool indexed) { struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; struct mi_builder b; mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch); mi_store(&b, mi_reg32(GFX7_3DPRIM_VERTEX_COUNT), mi_mem32(anv_address_add(addr, 0))); struct mi_value instance_count = mi_mem32(anv_address_add(addr, 4)); if (pipeline->instance_multiplier > 1) { #if GFX_VERx10 >= 75 instance_count = mi_imul_imm(&b, instance_count, pipeline->instance_multiplier); #else anv_finishme("Multiview + indirect draw requires MI_MATH; " "MI_MATH is not supported on Ivy Bridge"); #endif } mi_store(&b, mi_reg32(GFX7_3DPRIM_INSTANCE_COUNT), instance_count); mi_store(&b, mi_reg32(GFX7_3DPRIM_START_VERTEX), mi_mem32(anv_address_add(addr, 8))); if (indexed) { mi_store(&b, mi_reg32(GFX7_3DPRIM_BASE_VERTEX), mi_mem32(anv_address_add(addr, 12))); mi_store(&b, mi_reg32(GFX7_3DPRIM_START_INSTANCE), mi_mem32(anv_address_add(addr, 16))); } else { mi_store(&b, mi_reg32(GFX7_3DPRIM_START_INSTANCE), mi_mem32(anv_address_add(addr, 12))); mi_store(&b, mi_reg32(GFX7_3DPRIM_BASE_VERTEX), mi_imm(0)); } } void genX(CmdDrawIndirect)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); if (anv_batch_has_error(&cmd_buffer->batch)) return; anv_measure_snapshot(cmd_buffer, INTEL_SNAPSHOT_DRAW, "draw indirect", drawCount); trace_intel_begin_draw_indirect(&cmd_buffer->trace); genX(cmd_buffer_flush_state)(cmd_buffer); if (cmd_buffer->state.conditional_render_enabled) genX(cmd_emit_conditional_render_predicate)(cmd_buffer); for (uint32_t i = 0; i < drawCount; i++) { struct anv_address draw = anv_address_add(buffer->address, offset); if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8)); if (vs_prog_data->uses_drawid) emit_draw_index(cmd_buffer, i); /* Emitting draw index or vertex index BOs may result in needing * additional VF cache flushes. */ genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); load_indirect_parameters(cmd_buffer, draw, false); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.IndirectParameterEnable = true; prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled; prim.VertexAccessType = SEQUENTIAL; prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology; } update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, SEQUENTIAL); offset += stride; } trace_intel_end_draw_indirect(&cmd_buffer->trace, drawCount); } void genX(CmdDrawIndexedIndirect)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); if (anv_batch_has_error(&cmd_buffer->batch)) return; anv_measure_snapshot(cmd_buffer, INTEL_SNAPSHOT_DRAW, "draw indexed indirect", drawCount); trace_intel_begin_draw_indexed_indirect(&cmd_buffer->trace); genX(cmd_buffer_flush_state)(cmd_buffer); if (cmd_buffer->state.conditional_render_enabled) genX(cmd_emit_conditional_render_predicate)(cmd_buffer); for (uint32_t i = 0; i < drawCount; i++) { struct anv_address draw = anv_address_add(buffer->address, offset); /* TODO: We need to stomp base vertex to 0 somehow */ if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12)); if (vs_prog_data->uses_drawid) emit_draw_index(cmd_buffer, i); /* Emitting draw index or vertex index BOs may result in needing * additional VF cache flushes. */ genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); load_indirect_parameters(cmd_buffer, draw, true); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.IndirectParameterEnable = true; prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled; prim.VertexAccessType = RANDOM; prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology; } update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, RANDOM); offset += stride; } trace_intel_end_draw_indexed_indirect(&cmd_buffer->trace, drawCount); } static struct mi_value prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer, struct mi_builder *b, struct anv_buffer *count_buffer, uint64_t countBufferOffset) { struct anv_address count_address = anv_address_add(count_buffer->address, countBufferOffset); struct mi_value ret = mi_imm(0); if (cmd_buffer->state.conditional_render_enabled) { #if GFX_VERx10 >= 75 ret = mi_new_gpr(b); mi_store(b, mi_value_ref(b, ret), mi_mem32(count_address)); #endif } else { /* Upload the current draw count from the draw parameters buffer to * MI_PREDICATE_SRC0. */ mi_store(b, mi_reg64(MI_PREDICATE_SRC0), mi_mem32(count_address)); mi_store(b, mi_reg32(MI_PREDICATE_SRC1 + 4), mi_imm(0)); } return ret; } static void emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer, struct mi_builder *b, uint32_t draw_index) { /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */ mi_store(b, mi_reg32(MI_PREDICATE_SRC1), mi_imm(draw_index)); if (draw_index == 0) { anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOADINV; mip.CombineOperation = COMBINE_SET; mip.CompareOperation = COMPARE_SRCS_EQUAL; } } else { /* While draw_index < draw_count the predicate's result will be * (draw_index == draw_count) ^ TRUE = TRUE * When draw_index == draw_count the result is * (TRUE) ^ TRUE = FALSE * After this all results will be: * (FALSE) ^ FALSE = FALSE */ anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOAD; mip.CombineOperation = COMBINE_XOR; mip.CompareOperation = COMPARE_SRCS_EQUAL; } } } #if GFX_VERx10 >= 75 static void emit_draw_count_predicate_with_conditional_render( struct anv_cmd_buffer *cmd_buffer, struct mi_builder *b, uint32_t draw_index, struct mi_value max) { struct mi_value pred = mi_ult(b, mi_imm(draw_index), max); pred = mi_iand(b, pred, mi_reg64(ANV_PREDICATE_RESULT_REG)); #if GFX_VER >= 8 mi_store(b, mi_reg32(MI_PREDICATE_RESULT), pred); #else /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser * so we emit MI_PREDICATE to set it. */ mi_store(b, mi_reg64(MI_PREDICATE_SRC0), pred); mi_store(b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0)); anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOADINV; mip.CombineOperation = COMBINE_SET; mip.CompareOperation = COMPARE_SRCS_EQUAL; } #endif } #endif static void emit_draw_count_predicate_cond(struct anv_cmd_buffer *cmd_buffer, struct mi_builder *b, uint32_t draw_index, struct mi_value max) { #if GFX_VERx10 >= 75 if (cmd_buffer->state.conditional_render_enabled) { emit_draw_count_predicate_with_conditional_render( cmd_buffer, b, draw_index, mi_value_ref(b, max)); } else { emit_draw_count_predicate(cmd_buffer, b, draw_index); } #else emit_draw_count_predicate(cmd_buffer, b, draw_index); #endif } void genX(CmdDrawIndirectCount)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, VkBuffer _countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer); struct anv_cmd_state *cmd_state = &cmd_buffer->state; struct anv_graphics_pipeline *pipeline = cmd_state->gfx.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); if (anv_batch_has_error(&cmd_buffer->batch)) return; anv_measure_snapshot(cmd_buffer, INTEL_SNAPSHOT_DRAW, "draw indirect count", 0); trace_intel_begin_draw_indirect_count(&cmd_buffer->trace); genX(cmd_buffer_flush_state)(cmd_buffer); struct mi_builder b; mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch); struct mi_value max = prepare_for_draw_count_predicate(cmd_buffer, &b, count_buffer, countBufferOffset); for (uint32_t i = 0; i < maxDrawCount; i++) { struct anv_address draw = anv_address_add(buffer->address, offset); emit_draw_count_predicate_cond(cmd_buffer, &b, i, max); if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8)); if (vs_prog_data->uses_drawid) emit_draw_index(cmd_buffer, i); /* Emitting draw index or vertex index BOs may result in needing * additional VF cache flushes. */ genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); load_indirect_parameters(cmd_buffer, draw, false); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.IndirectParameterEnable = true; prim.PredicateEnable = true; prim.VertexAccessType = SEQUENTIAL; prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology; } update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, SEQUENTIAL); offset += stride; } mi_value_unref(&b, max); trace_intel_end_draw_indirect_count(&cmd_buffer->trace, maxDrawCount); } void genX(CmdDrawIndexedIndirectCount)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, VkBuffer _countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer); struct anv_cmd_state *cmd_state = &cmd_buffer->state; struct anv_graphics_pipeline *pipeline = cmd_state->gfx.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); if (anv_batch_has_error(&cmd_buffer->batch)) return; anv_measure_snapshot(cmd_buffer, INTEL_SNAPSHOT_DRAW, "draw indexed indirect count", 0); trace_intel_begin_draw_indexed_indirect_count(&cmd_buffer->trace); genX(cmd_buffer_flush_state)(cmd_buffer); struct mi_builder b; mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch); struct mi_value max = prepare_for_draw_count_predicate(cmd_buffer, &b, count_buffer, countBufferOffset); for (uint32_t i = 0; i < maxDrawCount; i++) { struct anv_address draw = anv_address_add(buffer->address, offset); emit_draw_count_predicate_cond(cmd_buffer, &b, i, max); /* TODO: We need to stomp base vertex to 0 somehow */ if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12)); if (vs_prog_data->uses_drawid) emit_draw_index(cmd_buffer, i); /* Emitting draw index or vertex index BOs may result in needing * additional VF cache flushes. */ genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); load_indirect_parameters(cmd_buffer, draw, true); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.IndirectParameterEnable = true; prim.PredicateEnable = true; prim.VertexAccessType = RANDOM; prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology; } update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, RANDOM); offset += stride; } mi_value_unref(&b, max); trace_intel_end_draw_indexed_indirect_count(&cmd_buffer->trace, maxDrawCount); } void genX(CmdBeginTransformFeedbackEXT)( VkCommandBuffer commandBuffer, uint32_t firstCounterBuffer, uint32_t counterBufferCount, const VkBuffer* pCounterBuffers, const VkDeviceSize* pCounterBufferOffsets) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); assert(firstCounterBuffer < MAX_XFB_BUFFERS); assert(counterBufferCount <= MAX_XFB_BUFFERS); assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS); /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET: * * "Ssoftware must ensure that no HW stream output operations can be in * process or otherwise pending at the point that the MI_LOAD/STORE * commands are processed. This will likely require a pipeline flush." */ anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_CS_STALL_BIT, "begin transform feedback"); genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) { /* If we have a counter buffer, this is a resume so we need to load the * value into the streamout offset register. Otherwise, this is a begin * and we need to reset it to zero. */ if (pCounterBuffers && idx >= firstCounterBuffer && idx - firstCounterBuffer < counterBufferCount && pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) { uint32_t cb_idx = idx - firstCounterBuffer; ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]); uint64_t offset = pCounterBufferOffsets ? pCounterBufferOffsets[cb_idx] : 0; anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) { lrm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4; lrm.MemoryAddress = anv_address_add(counter_buffer->address, offset); } } else { anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) { lri.RegisterOffset = GENX(SO_WRITE_OFFSET0_num) + idx * 4; lri.DataDWord = 0; } } } cmd_buffer->state.xfb_enabled = true; cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE; } void genX(CmdEndTransformFeedbackEXT)( VkCommandBuffer commandBuffer, uint32_t firstCounterBuffer, uint32_t counterBufferCount, const VkBuffer* pCounterBuffers, const VkDeviceSize* pCounterBufferOffsets) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); assert(firstCounterBuffer < MAX_XFB_BUFFERS); assert(counterBufferCount <= MAX_XFB_BUFFERS); assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS); /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET: * * "Ssoftware must ensure that no HW stream output operations can be in * process or otherwise pending at the point that the MI_LOAD/STORE * commands are processed. This will likely require a pipeline flush." */ anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_CS_STALL_BIT, "end transform feedback"); genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) { unsigned idx = firstCounterBuffer + cb_idx; /* If we have a counter buffer, this is a resume so we need to load the * value into the streamout offset register. Otherwise, this is a begin * and we need to reset it to zero. */ if (pCounterBuffers && cb_idx < counterBufferCount && pCounterBuffers[cb_idx] != VK_NULL_HANDLE) { ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]); uint64_t offset = pCounterBufferOffsets ? pCounterBufferOffsets[cb_idx] : 0; anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) { srm.MemoryAddress = anv_address_add(counter_buffer->address, offset); srm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4; } } } cmd_buffer->state.xfb_enabled = false; cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE; } #if GFX_VERx10 >= 125 void genX(CmdDrawMeshTasksNV)( VkCommandBuffer commandBuffer, uint32_t taskCount, uint32_t firstTask) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); if (anv_batch_has_error(&cmd_buffer->batch)) return; /* TODO(mesh): Check if this is not emitting more packets than we need. */ genX(cmd_buffer_flush_state)(cmd_buffer); if (cmd_buffer->state.conditional_render_enabled) genX(cmd_emit_conditional_render_predicate)(cmd_buffer); /* BSpec 54016 says: "The values passed for Starting ThreadGroup ID X * and ThreadGroup Count X shall not cause TGIDs to exceed (2^32)-1." */ assert((int64_t)firstTask + taskCount - 1 <= UINT32_MAX); anv_batch_emit(&cmd_buffer->batch, GENX(3DMESH_1D), m) { m.PredicateEnable = cmd_buffer->state.conditional_render_enabled; m.ThreadGroupCountX = taskCount; m.StartingThreadGroupIDX = firstTask; } } #define GFX125_3DMESH_TG_COUNT 0x26F0 #define GFX125_3DMESH_STARTING_TGID 0x26F4 #define GFX10_3DPRIM_XP(n) (0x2690 + (n) * 4) /* n = { 0, 1, 2 } */ static void mesh_load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer, struct mi_builder *b, struct anv_address addr, bool emit_xp0, uint32_t xp0) { const size_t taskCountOff = offsetof(VkDrawMeshTasksIndirectCommandNV, taskCount); const size_t firstTaskOff = offsetof(VkDrawMeshTasksIndirectCommandNV, firstTask); mi_store(b, mi_reg32(GFX125_3DMESH_TG_COUNT), mi_mem32(anv_address_add(addr, taskCountOff))); mi_store(b, mi_reg32(GFX125_3DMESH_STARTING_TGID), mi_mem32(anv_address_add(addr, firstTaskOff))); if (emit_xp0) mi_store(b, mi_reg32(GFX10_3DPRIM_XP(0)), mi_imm(xp0)); } static void emit_indirect_3dmesh_1d(struct anv_batch *batch, bool predicate_enable, bool uses_drawid) { uint32_t len = GENX(3DMESH_1D_length) + uses_drawid; uint32_t *dw = anv_batch_emitn(batch, len, GENX(3DMESH_1D), .PredicateEnable = predicate_enable, .IndirectParameterEnable = true, .ExtendedParameter0Present = uses_drawid); if (uses_drawid) dw[len - 1] = 0; } void genX(CmdDrawMeshTasksIndirectNV)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; const struct brw_task_prog_data *task_prog_data = get_task_prog_data(pipeline); const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline); struct anv_cmd_state *cmd_state = &cmd_buffer->state; if (anv_batch_has_error(&cmd_buffer->batch)) return; genX(cmd_buffer_flush_state)(cmd_buffer); if (cmd_state->conditional_render_enabled) genX(cmd_emit_conditional_render_predicate)(cmd_buffer); bool uses_drawid = (task_prog_data && task_prog_data->uses_drawid) || mesh_prog_data->uses_drawid; struct mi_builder b; mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch); for (uint32_t i = 0; i < drawCount; i++) { struct anv_address draw = anv_address_add(buffer->address, offset); mesh_load_indirect_parameters(cmd_buffer, &b, draw, uses_drawid, i); emit_indirect_3dmesh_1d(&cmd_buffer->batch, cmd_state->conditional_render_enabled, uses_drawid); offset += stride; } } void genX(CmdDrawMeshTasksIndirectCountNV)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, VkBuffer _countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer); struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; const struct brw_task_prog_data *task_prog_data = get_task_prog_data(pipeline); const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline); if (anv_batch_has_error(&cmd_buffer->batch)) return; genX(cmd_buffer_flush_state)(cmd_buffer); bool uses_drawid = (task_prog_data && task_prog_data->uses_drawid) || mesh_prog_data->uses_drawid; struct mi_builder b; mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch); struct mi_value max = prepare_for_draw_count_predicate(cmd_buffer, &b, count_buffer, countBufferOffset); for (uint32_t i = 0; i < maxDrawCount; i++) { struct anv_address draw = anv_address_add(buffer->address, offset); emit_draw_count_predicate_cond(cmd_buffer, &b, i, max); mesh_load_indirect_parameters(cmd_buffer, &b, draw, uses_drawid, i); emit_indirect_3dmesh_1d(&cmd_buffer->batch, true, uses_drawid); offset += stride; } } #endif /* GFX_VERx10 >= 125 */ void genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer) { struct anv_cmd_compute_state *comp_state = &cmd_buffer->state.compute; struct anv_compute_pipeline *pipeline = comp_state->pipeline; assert(pipeline->cs); genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->base.l3_config); genX(flush_pipeline_select_gpgpu)(cmd_buffer); /* Apply any pending pipeline flushes we may have. We want to apply them * now because, if any of those flushes are for things like push constants, * the GPU will read the state at weird times. */ genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); if (cmd_buffer->state.compute.pipeline_dirty) { /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE: * * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless * the only bits that are changed are scoreboard related: Scoreboard * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For * these scoreboard related states, a MEDIA_STATE_FLUSH is * sufficient." */ anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_CS_STALL_BIT, "flush compute state"); genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->base.batch); /* The workgroup size of the pipeline affects our push constant layout * so flag push constants as dirty if we change the pipeline. */ cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT; } if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) || cmd_buffer->state.compute.pipeline_dirty) { flush_descriptor_sets(cmd_buffer, &cmd_buffer->state.compute.base, VK_SHADER_STAGE_COMPUTE_BIT, &pipeline->cs, 1); cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT; #if GFX_VERx10 < 125 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)]; struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = { .BindingTablePointer = cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset, .SamplerStatePointer = cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset, }; GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc); struct anv_state state = anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw, pipeline->interface_descriptor_data, GENX(INTERFACE_DESCRIPTOR_DATA_length), 64); uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t); anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) { mid.InterfaceDescriptorTotalLength = size; mid.InterfaceDescriptorDataStartAddress = state.offset; } #endif } if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) { comp_state->push_data = anv_cmd_buffer_cs_push_constants(cmd_buffer); #if GFX_VERx10 < 125 if (comp_state->push_data.alloc_size) { anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) { curbe.CURBETotalDataLength = comp_state->push_data.alloc_size; curbe.CURBEDataStartAddress = comp_state->push_data.offset; } } #endif cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT; } cmd_buffer->state.compute.pipeline_dirty = false; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); } #if GFX_VER == 7 static VkResult verify_cmd_parser(const struct anv_device *device, int required_version, const char *function) { if (device->physical->cmd_parser_version < required_version) { return vk_errorf(device->physical, VK_ERROR_FEATURE_NOT_PRESENT, "cmd parser version %d is required for %s", required_version, function); } else { return VK_SUCCESS; } } #endif static void anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer, uint32_t baseGroupX, uint32_t baseGroupY, uint32_t baseGroupZ) { if (anv_batch_has_error(&cmd_buffer->batch)) return; struct anv_push_constants *push = &cmd_buffer->state.compute.base.push_constants; if (push->cs.base_work_group_id[0] != baseGroupX || push->cs.base_work_group_id[1] != baseGroupY || push->cs.base_work_group_id[2] != baseGroupZ) { push->cs.base_work_group_id[0] = baseGroupX; push->cs.base_work_group_id[1] = baseGroupY; push->cs.base_work_group_id[2] = baseGroupZ; cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT; } } void genX(CmdDispatch)( VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z) { genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z); } #if GFX_VERx10 >= 125 static inline void emit_compute_walker(struct anv_cmd_buffer *cmd_buffer, const struct anv_compute_pipeline *pipeline, bool indirect, const struct brw_cs_prog_data *prog_data, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ) { struct anv_cmd_compute_state *comp_state = &cmd_buffer->state.compute; const struct anv_shader_bin *cs_bin = pipeline->cs; bool predicate = cmd_buffer->state.conditional_render_enabled; const struct intel_device_info *devinfo = &pipeline->base.device->info; const struct brw_cs_dispatch_info dispatch = brw_cs_get_dispatch_info(devinfo, prog_data, NULL); anv_batch_emit(&cmd_buffer->batch, GENX(COMPUTE_WALKER), cw) { cw.IndirectParameterEnable = indirect; cw.PredicateEnable = predicate; cw.SIMDSize = dispatch.simd_size / 16; cw.IndirectDataStartAddress = comp_state->push_data.offset; cw.IndirectDataLength = comp_state->push_data.alloc_size; cw.LocalXMaximum = prog_data->local_size[0] - 1; cw.LocalYMaximum = prog_data->local_size[1] - 1; cw.LocalZMaximum = prog_data->local_size[2] - 1; cw.ThreadGroupIDXDimension = groupCountX; cw.ThreadGroupIDYDimension = groupCountY; cw.ThreadGroupIDZDimension = groupCountZ; cw.ExecutionMask = dispatch.right_mask; cw.PostSync.MOCS = anv_mocs(pipeline->base.device, NULL, 0); cw.InterfaceDescriptor = (struct GENX(INTERFACE_DESCRIPTOR_DATA)) { .KernelStartPointer = cs_bin->kernel.offset, .SamplerStatePointer = cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset, .BindingTablePointer = cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset, .BindingTableEntryCount = 1 + MIN2(pipeline->cs->bind_map.surface_count, 30), .NumberofThreadsinGPGPUThreadGroup = dispatch.threads, .SharedLocalMemorySize = encode_slm_size(GFX_VER, prog_data->base.total_shared), .NumberOfBarriers = prog_data->uses_barrier, }; } } #else /* #if GFX_VERx10 >= 125 */ static inline void emit_gpgpu_walker(struct anv_cmd_buffer *cmd_buffer, const struct anv_compute_pipeline *pipeline, bool indirect, const struct brw_cs_prog_data *prog_data, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ) { bool predicate = (GFX_VER <= 7 && indirect) || cmd_buffer->state.conditional_render_enabled; const struct intel_device_info *devinfo = &pipeline->base.device->info; const struct brw_cs_dispatch_info dispatch = brw_cs_get_dispatch_info(devinfo, prog_data, NULL); anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) { ggw.IndirectParameterEnable = indirect; ggw.PredicateEnable = predicate; ggw.SIMDSize = dispatch.simd_size / 16; ggw.ThreadDepthCounterMaximum = 0; ggw.ThreadHeightCounterMaximum = 0; ggw.ThreadWidthCounterMaximum = dispatch.threads - 1; ggw.ThreadGroupIDXDimension = groupCountX; ggw.ThreadGroupIDYDimension = groupCountY; ggw.ThreadGroupIDZDimension = groupCountZ; ggw.RightExecutionMask = dispatch.right_mask; ggw.BottomExecutionMask = 0xffffffff; } anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf); } #endif /* #if GFX_VERx10 >= 125 */ static inline void emit_cs_walker(struct anv_cmd_buffer *cmd_buffer, const struct anv_compute_pipeline *pipeline, bool indirect, const struct brw_cs_prog_data *prog_data, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ) { #if GFX_VERx10 >= 125 emit_compute_walker(cmd_buffer, pipeline, indirect, prog_data, groupCountX, groupCountY, groupCountZ); #else emit_gpgpu_walker(cmd_buffer, pipeline, indirect, prog_data, groupCountX, groupCountY, groupCountZ); #endif } void genX(CmdDispatchBase)( VkCommandBuffer commandBuffer, uint32_t baseGroupX, uint32_t baseGroupY, uint32_t baseGroupZ, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_compute_pipeline *pipeline = cmd_buffer->state.compute.pipeline; const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline); anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX, baseGroupY, baseGroupZ); if (anv_batch_has_error(&cmd_buffer->batch)) return; anv_measure_snapshot(cmd_buffer, INTEL_SNAPSHOT_COMPUTE, "compute", groupCountX * groupCountY * groupCountZ * prog_data->local_size[0] * prog_data->local_size[1] * prog_data->local_size[2]); trace_intel_begin_compute(&cmd_buffer->trace); if (prog_data->uses_num_work_groups) { struct anv_state state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4); uint32_t *sizes = state.map; sizes[0] = groupCountX; sizes[1] = groupCountY; sizes[2] = groupCountZ; cmd_buffer->state.compute.num_workgroups = (struct anv_address) { .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo, .offset = state.offset, }; /* The num_workgroups buffer goes in the binding table */ cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT; } genX(cmd_buffer_flush_compute_state)(cmd_buffer); if (cmd_buffer->state.conditional_render_enabled) genX(cmd_emit_conditional_render_predicate)(cmd_buffer); emit_cs_walker(cmd_buffer, pipeline, false, prog_data, groupCountX, groupCountY, groupCountZ); trace_intel_end_compute(&cmd_buffer->trace, groupCountX, groupCountY, groupCountZ); } #define GPGPU_DISPATCHDIMX 0x2500 #define GPGPU_DISPATCHDIMY 0x2504 #define GPGPU_DISPATCHDIMZ 0x2508 void genX(CmdDispatchIndirect)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); struct anv_compute_pipeline *pipeline = cmd_buffer->state.compute.pipeline; const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline); struct anv_address addr = anv_address_add(buffer->address, offset); UNUSED struct anv_batch *batch = &cmd_buffer->batch; anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0); #if GFX_VER == 7 /* Linux 4.4 added command parser version 5 which allows the GPGPU * indirect dispatch registers to be written. */ if (verify_cmd_parser(cmd_buffer->device, 5, "vkCmdDispatchIndirect") != VK_SUCCESS) return; #endif anv_measure_snapshot(cmd_buffer, INTEL_SNAPSHOT_COMPUTE, "compute indirect", 0); trace_intel_begin_compute(&cmd_buffer->trace); if (prog_data->uses_num_work_groups) { cmd_buffer->state.compute.num_workgroups = addr; /* The num_workgroups buffer goes in the binding table */ cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT; } genX(cmd_buffer_flush_compute_state)(cmd_buffer); struct mi_builder b; mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch); struct mi_value size_x = mi_mem32(anv_address_add(addr, 0)); struct mi_value size_y = mi_mem32(anv_address_add(addr, 4)); struct mi_value size_z = mi_mem32(anv_address_add(addr, 8)); mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMX), size_x); mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMY), size_y); mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMZ), size_z); #if GFX_VER <= 7 /* predicate = (compute_dispatch_indirect_x_size == 0); */ mi_store(&b, mi_reg64(MI_PREDICATE_SRC0), size_x); mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0)); anv_batch_emit(batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOAD; mip.CombineOperation = COMBINE_SET; mip.CompareOperation = COMPARE_SRCS_EQUAL; } /* predicate |= (compute_dispatch_indirect_y_size == 0); */ mi_store(&b, mi_reg32(MI_PREDICATE_SRC0), size_y); anv_batch_emit(batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOAD; mip.CombineOperation = COMBINE_OR; mip.CompareOperation = COMPARE_SRCS_EQUAL; } /* predicate |= (compute_dispatch_indirect_z_size == 0); */ mi_store(&b, mi_reg32(MI_PREDICATE_SRC0), size_z); anv_batch_emit(batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOAD; mip.CombineOperation = COMBINE_OR; mip.CompareOperation = COMPARE_SRCS_EQUAL; } /* predicate = !predicate; */ anv_batch_emit(batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOADINV; mip.CombineOperation = COMBINE_OR; mip.CompareOperation = COMPARE_FALSE; } #if GFX_VERx10 == 75 if (cmd_buffer->state.conditional_render_enabled) { /* predicate &= !(conditional_rendering_predicate == 0); */ mi_store(&b, mi_reg32(MI_PREDICATE_SRC0), mi_reg32(ANV_PREDICATE_RESULT_REG)); anv_batch_emit(batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOADINV; mip.CombineOperation = COMBINE_AND; mip.CompareOperation = COMPARE_SRCS_EQUAL; } } #endif #else /* GFX_VER > 7 */ if (cmd_buffer->state.conditional_render_enabled) genX(cmd_emit_conditional_render_predicate)(cmd_buffer); #endif emit_cs_walker(cmd_buffer, pipeline, true, prog_data, 0, 0, 0); trace_intel_end_compute(&cmd_buffer->trace, 0, 0, 0); } struct anv_state genX(cmd_buffer_ray_query_globals)(struct anv_cmd_buffer *cmd_buffer) { #if GFX_VERx10 >= 125 struct anv_device *device = cmd_buffer->device; struct anv_state state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, BRW_RT_DISPATCH_GLOBALS_SIZE, 64); struct brw_rt_scratch_layout layout; uint32_t stack_ids_per_dss = 2048; /* TODO: can we use a lower value in * some cases? */ brw_rt_compute_scratch_layout(&layout, &device->info, stack_ids_per_dss, 1 << 10); struct GFX_RT_DISPATCH_GLOBALS rtdg = { .MemBaseAddress = (struct anv_address) { /* The ray query HW computes offsets from the top of the buffer, so * let the address at the end of the buffer. */ .bo = device->ray_query_bo, .offset = device->ray_query_bo->size }, .AsyncRTStackSize = layout.ray_stack_stride / 64, .NumDSSRTStacks = layout.stack_ids_per_dss, .MaxBVHLevels = BRW_RT_MAX_BVH_LEVELS, .Flags = RT_DEPTH_TEST_LESS_EQUAL, .ResumeShaderTable = (struct anv_address) { .bo = cmd_buffer->state.ray_query_shadow_bo, }, }; GFX_RT_DISPATCH_GLOBALS_pack(NULL, state.map, &rtdg); return state; #else unreachable("Not supported"); #endif } #if GFX_VERx10 >= 125 static void calc_local_trace_size(uint8_t local_shift[3], const uint32_t global[3]) { unsigned total_shift = 0; memset(local_shift, 0, 3); bool progress; do { progress = false; for (unsigned i = 0; i < 3; i++) { assert(global[i] > 0); if ((1 << local_shift[i]) < global[i]) { progress = true; local_shift[i]++; total_shift++; } if (total_shift == 3) return; } } while(progress); /* Assign whatever's left to x */ local_shift[0] += 3 - total_shift; } static struct GFX_RT_SHADER_TABLE vk_sdar_to_shader_table(const VkStridedDeviceAddressRegionKHR *region) { return (struct GFX_RT_SHADER_TABLE) { .BaseAddress = anv_address_from_u64(region->deviceAddress), .Stride = region->stride, }; } static void cmd_buffer_trace_rays(struct anv_cmd_buffer *cmd_buffer, const VkStridedDeviceAddressRegionKHR *raygen_sbt, const VkStridedDeviceAddressRegionKHR *miss_sbt, const VkStridedDeviceAddressRegionKHR *hit_sbt, const VkStridedDeviceAddressRegionKHR *callable_sbt, bool is_indirect, uint32_t launch_width, uint32_t launch_height, uint32_t launch_depth, uint64_t launch_size_addr) { struct anv_cmd_ray_tracing_state *rt = &cmd_buffer->state.rt; struct anv_ray_tracing_pipeline *pipeline = rt->pipeline; if (anv_batch_has_error(&cmd_buffer->batch)) return; /* If we have a known degenerate launch size, just bail */ if (!is_indirect && (launch_width == 0 || launch_height == 0 || launch_depth == 0)) return; genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->base.l3_config); genX(flush_pipeline_select_gpgpu)(cmd_buffer); cmd_buffer->state.rt.pipeline_dirty = false; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); /* Add these to the reloc list as they're internal buffers that don't * actually have relocs to pick them up manually. * * TODO(RT): This is a bit of a hack */ anv_reloc_list_add_bo(cmd_buffer->batch.relocs, cmd_buffer->batch.alloc, rt->scratch.bo); /* Allocate and set up our RT_DISPATCH_GLOBALS */ struct anv_state rtdg_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, BRW_RT_PUSH_CONST_OFFSET + sizeof(struct anv_push_constants), 64); struct GFX_RT_DISPATCH_GLOBALS rtdg = { .MemBaseAddress = (struct anv_address) { .bo = rt->scratch.bo, .offset = rt->scratch.layout.ray_stack_start, }, .CallStackHandler = anv_shader_bin_get_bsr(cmd_buffer->device->rt_trivial_return, 0), .AsyncRTStackSize = rt->scratch.layout.ray_stack_stride / 64, .NumDSSRTStacks = rt->scratch.layout.stack_ids_per_dss, .MaxBVHLevels = BRW_RT_MAX_BVH_LEVELS, .Flags = RT_DEPTH_TEST_LESS_EQUAL, .HitGroupTable = vk_sdar_to_shader_table(hit_sbt), .MissGroupTable = vk_sdar_to_shader_table(miss_sbt), .SWStackSize = rt->scratch.layout.sw_stack_size / 64, .LaunchWidth = launch_width, .LaunchHeight = launch_height, .LaunchDepth = launch_depth, .CallableGroupTable = vk_sdar_to_shader_table(callable_sbt), }; GFX_RT_DISPATCH_GLOBALS_pack(NULL, rtdg_state.map, &rtdg); /* Push constants go after the RT_DISPATCH_GLOBALS */ assert(GFX_RT_DISPATCH_GLOBALS_length * 4 <= BRW_RT_PUSH_CONST_OFFSET); memcpy(rtdg_state.map + BRW_RT_PUSH_CONST_OFFSET, &cmd_buffer->state.rt.base.push_constants, sizeof(struct anv_push_constants)); struct anv_address rtdg_addr = { .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo, .offset = rtdg_state.offset, }; uint8_t local_size_log2[3]; uint32_t global_size[3] = {}; if (is_indirect) { /* Pick a local size that's probably ok. We assume most TraceRays calls * will use a two-dimensional dispatch size. Worst case, our initial * dispatch will be a little slower than it has to be. */ local_size_log2[0] = 2; local_size_log2[1] = 1; local_size_log2[2] = 0; struct mi_builder b; mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch); struct mi_value launch_size[3] = { mi_mem32(anv_address_from_u64(launch_size_addr + 0)), mi_mem32(anv_address_from_u64(launch_size_addr + 4)), mi_mem32(anv_address_from_u64(launch_size_addr + 8)), }; /* Store the original launch size into RT_DISPATCH_GLOBALS * * TODO: Pull values from genX_bits.h once RT_DISPATCH_GLOBALS gets * moved into a genX version. */ mi_store(&b, mi_mem32(anv_address_add(rtdg_addr, 52)), mi_value_ref(&b, launch_size[0])); mi_store(&b, mi_mem32(anv_address_add(rtdg_addr, 56)), mi_value_ref(&b, launch_size[1])); mi_store(&b, mi_mem32(anv_address_add(rtdg_addr, 60)), mi_value_ref(&b, launch_size[2])); /* Compute the global dispatch size */ for (unsigned i = 0; i < 3; i++) { if (local_size_log2[i] == 0) continue; /* global_size = DIV_ROUND_UP(launch_size, local_size) * * Fortunately for us MI_ALU math is 64-bit and , mi_ushr32_imm * has the semantics of shifting the enture 64-bit value and taking * the bottom 32 so we don't have to worry about roll-over. */ uint32_t local_size = 1 << local_size_log2[i]; launch_size[i] = mi_iadd(&b, launch_size[i], mi_imm(local_size - 1)); launch_size[i] = mi_ushr32_imm(&b, launch_size[i], local_size_log2[i]); } mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMX), launch_size[0]); mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMY), launch_size[1]); mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMZ), launch_size[2]); } else { uint32_t launch_size[3] = { launch_width, launch_height, launch_depth }; calc_local_trace_size(local_size_log2, launch_size); for (unsigned i = 0; i < 3; i++) { /* We have to be a bit careful here because DIV_ROUND_UP adds to the * numerator value may overflow. Cast to uint64_t to avoid this. */ uint32_t local_size = 1 << local_size_log2[i]; global_size[i] = DIV_ROUND_UP((uint64_t)launch_size[i], local_size); } } anv_batch_emit(&cmd_buffer->batch, GENX(COMPUTE_WALKER), cw) { cw.IndirectParameterEnable = is_indirect; cw.PredicateEnable = false; cw.SIMDSize = SIMD8; cw.LocalXMaximum = (1 << local_size_log2[0]) - 1; cw.LocalYMaximum = (1 << local_size_log2[1]) - 1; cw.LocalZMaximum = (1 << local_size_log2[2]) - 1; cw.ThreadGroupIDXDimension = global_size[0]; cw.ThreadGroupIDYDimension = global_size[1]; cw.ThreadGroupIDZDimension = global_size[2]; cw.ExecutionMask = 0xff; cw.EmitInlineParameter = true; cw.PostSync.MOCS = anv_mocs(pipeline->base.device, NULL, 0); const gl_shader_stage s = MESA_SHADER_RAYGEN; struct anv_device *device = cmd_buffer->device; struct anv_state *surfaces = &cmd_buffer->state.binding_tables[s]; struct anv_state *samplers = &cmd_buffer->state.samplers[s]; cw.InterfaceDescriptor = (struct GENX(INTERFACE_DESCRIPTOR_DATA)) { .KernelStartPointer = device->rt_trampoline->kernel.offset, .SamplerStatePointer = samplers->offset, /* i965: DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4), */ .SamplerCount = 0, .BindingTablePointer = surfaces->offset, .NumberofThreadsinGPGPUThreadGroup = 1, .BTDMode = true, }; struct brw_rt_raygen_trampoline_params trampoline_params = { .rt_disp_globals_addr = anv_address_physical(rtdg_addr), .raygen_bsr_addr = raygen_sbt->deviceAddress, .is_indirect = is_indirect, .local_group_size_log2 = { local_size_log2[0], local_size_log2[1], local_size_log2[2], }, }; STATIC_ASSERT(sizeof(trampoline_params) == 32); memcpy(cw.InlineData, &trampoline_params, sizeof(trampoline_params)); } } void genX(CmdTraceRaysKHR)( VkCommandBuffer commandBuffer, const VkStridedDeviceAddressRegionKHR* pRaygenShaderBindingTable, const VkStridedDeviceAddressRegionKHR* pMissShaderBindingTable, const VkStridedDeviceAddressRegionKHR* pHitShaderBindingTable, const VkStridedDeviceAddressRegionKHR* pCallableShaderBindingTable, uint32_t width, uint32_t height, uint32_t depth) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); cmd_buffer_trace_rays(cmd_buffer, pRaygenShaderBindingTable, pMissShaderBindingTable, pHitShaderBindingTable, pCallableShaderBindingTable, false /* is_indirect */, width, height, depth, 0 /* launch_size_addr */); } void genX(CmdTraceRaysIndirectKHR)( VkCommandBuffer commandBuffer, const VkStridedDeviceAddressRegionKHR* pRaygenShaderBindingTable, const VkStridedDeviceAddressRegionKHR* pMissShaderBindingTable, const VkStridedDeviceAddressRegionKHR* pHitShaderBindingTable, const VkStridedDeviceAddressRegionKHR* pCallableShaderBindingTable, VkDeviceAddress indirectDeviceAddress) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); cmd_buffer_trace_rays(cmd_buffer, pRaygenShaderBindingTable, pMissShaderBindingTable, pHitShaderBindingTable, pCallableShaderBindingTable, true /* is_indirect */, 0, 0, 0, /* width, height, depth, */ indirectDeviceAddress); } #endif /* GFX_VERx10 >= 125 */ static void genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer, uint32_t pipeline) { UNUSED const struct intel_device_info *devinfo = &cmd_buffer->device->info; if (cmd_buffer->state.current_pipeline == pipeline) return; #if GFX_VER >= 8 && GFX_VER < 10 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT: * * Software must clear the COLOR_CALC_STATE Valid field in * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT * with Pipeline Select set to GPGPU. * * The internal hardware docs recommend the same workaround for Gfx9 * hardware too. */ if (pipeline == GPGPU) anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t); #endif #if GFX_VER == 9 if (pipeline == _3D) { /* There is a mid-object preemption workaround which requires you to * re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D. However, * even without preemption, we have issues with geometry flickering when * GPGPU and 3D are back-to-back and this seems to fix it. We don't * really know why. */ anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_VFE_STATE), vfe) { vfe.MaximumNumberofThreads = devinfo->max_cs_threads * devinfo->subslice_total - 1; vfe.NumberofURBEntries = 2; vfe.URBEntryAllocationSize = 2; } /* We just emitted a dummy MEDIA_VFE_STATE so now that packet is * invalid. Set the compute pipeline to dirty to force a re-emit of the * pipeline in case we get back-to-back dispatch calls with the same * pipeline and a PIPELINE_SELECT in between. */ cmd_buffer->state.compute.pipeline_dirty = true; } #endif /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction] * PIPELINE_SELECT [DevBWR+]": * * Project: DEVSNB+ * * Software must ensure all the write caches are flushed through a * stalling PIPE_CONTROL command followed by another PIPE_CONTROL * command to invalidate read only caches prior to programming * MI_PIPELINE_SELECT command to change the Pipeline Select Mode. * * Note the cmd_buffer_apply_pipe_flushes will split this into two * PIPE_CONTROLs. */ anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | ANV_PIPE_HDC_PIPELINE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT | ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT, "flush and invalidate for PIPELINE_SELECT"); genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) { #if GFX_VER >= 9 ps.MaskBits = GFX_VER >= 12 ? 0x13 : 3; ps.MediaSamplerDOPClockGateEnable = GFX_VER >= 12; #endif ps.PipelineSelection = pipeline; } #if GFX_VER == 9 if (devinfo->platform == INTEL_PLATFORM_GLK) { /* Project: DevGLK * * "This chicken bit works around a hardware issue with barrier logic * encountered when switching between GPGPU and 3D pipelines. To * workaround the issue, this mode bit should be set after a pipeline * is selected." */ anv_batch_write_reg(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1), scec1) { scec1.GLKBarrierMode = pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU : GLK_BARRIER_MODE_3D_HULL; scec1.GLKBarrierModeMask = 1; } } #endif cmd_buffer->state.current_pipeline = pipeline; } void genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer) { genX(flush_pipeline_select)(cmd_buffer, _3D); } void genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer) { genX(flush_pipeline_select)(cmd_buffer, GPGPU); } void genX(cmd_buffer_emit_gfx7_depth_flush)(struct anv_cmd_buffer *cmd_buffer) { if (GFX_VER >= 8) return; /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER: * * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS, * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit * set), followed by a pipelined depth cache flush (PIPE_CONTROL with * Depth Flush Bit set, followed by another pipelined depth stall * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise * guarantee that the pipeline from WM onwards is already flushed (e.g., * via a preceding MI_FLUSH)." */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) { pipe.DepthStallEnable = true; anv_debug_dump_pc(pipe); } anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) { pipe.DepthCacheFlushEnable = true; #if GFX_VER >= 12 pipe.TileCacheFlushEnable = true; #endif anv_debug_dump_pc(pipe); } anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) { pipe.DepthStallEnable = true; anv_debug_dump_pc(pipe); } } void genX(cmd_buffer_emit_gfx12_depth_wa)(struct anv_cmd_buffer *cmd_buffer, const struct isl_surf *surf) { #if GFX_VERx10 == 120 const bool fmt_is_d16 = surf->format == ISL_FORMAT_R16_UNORM; switch (cmd_buffer->state.depth_reg_mode) { case ANV_DEPTH_REG_MODE_HW_DEFAULT: if (!fmt_is_d16) return; break; case ANV_DEPTH_REG_MODE_D16: if (fmt_is_d16) return; break; case ANV_DEPTH_REG_MODE_UNKNOWN: break; } /* We'll change some CHICKEN registers depending on the depth surface * format. Do a depth flush and stall so the pipeline is not using these * settings while we change the registers. */ anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | ANV_PIPE_DEPTH_STALL_BIT | ANV_PIPE_END_OF_PIPE_SYNC_BIT, "Workaround: Stop pipeline for 14010455700"); genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); /* Wa_14010455700 * * To avoid sporadic corruptions “Set 0x7010[9] when Depth Buffer * Surface Format is D16_UNORM , surface type is not NULL & 1X_MSAA”. */ anv_batch_write_reg(&cmd_buffer->batch, GENX(COMMON_SLICE_CHICKEN1), reg) { reg.HIZPlaneOptimizationdisablebit = fmt_is_d16 && surf->samples == 1; reg.HIZPlaneOptimizationdisablebitMask = true; } /* Wa_1806527549 * * Set HIZ_CHICKEN (7018h) bit 13 = 1 when depth buffer is D16_UNORM. */ anv_batch_write_reg(&cmd_buffer->batch, GENX(HIZ_CHICKEN), reg) { reg.HZDepthTestLEGEOptimizationDisable = fmt_is_d16; reg.HZDepthTestLEGEOptimizationDisableMask = true; } cmd_buffer->state.depth_reg_mode = fmt_is_d16 ? ANV_DEPTH_REG_MODE_D16 : ANV_DEPTH_REG_MODE_HW_DEFAULT; #endif } /* From the Skylake PRM, 3DSTATE_VERTEX_BUFFERS: * * "The VF cache needs to be invalidated before binding and then using * Vertex Buffers that overlap with any previously bound Vertex Buffer * (at a 64B granularity) since the last invalidation. A VF cache * invalidate is performed by setting the "VF Cache Invalidation Enable" * bit in PIPE_CONTROL." * * This is implemented by carefully tracking all vertex and index buffer * bindings and flushing if the cache ever ends up with a range in the cache * that would exceed 4 GiB. This is implemented in three parts: * * 1. genX(cmd_buffer_set_binding_for_gfx8_vb_flush)() which must be called * every time a 3DSTATE_VERTEX_BUFFER packet is emitted and informs the * tracking code of the new binding. If this new binding would cause * the cache to have a too-large range on the next draw call, a pipeline * stall and VF cache invalidate are added to pending_pipeline_bits. * * 2. genX(cmd_buffer_apply_pipe_flushes)() resets the cache tracking to * empty whenever we emit a VF invalidate. * * 3. genX(cmd_buffer_update_dirty_vbs_for_gfx8_vb_flush)() must be called * after every 3DPRIMITIVE and copies the bound range into the dirty * range for each used buffer. This has to be a separate step because * we don't always re-bind all buffers and so 1. can't know which * buffers are actually bound. */ void genX(cmd_buffer_set_binding_for_gfx8_vb_flush)(struct anv_cmd_buffer *cmd_buffer, int vb_index, struct anv_address vb_address, uint32_t vb_size) { if (GFX_VER < 8 || GFX_VER > 9 || anv_use_relocations(cmd_buffer->device->physical)) return; struct anv_vb_cache_range *bound, *dirty; if (vb_index == -1) { bound = &cmd_buffer->state.gfx.ib_bound_range; dirty = &cmd_buffer->state.gfx.ib_dirty_range; } else { assert(vb_index >= 0); assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges)); assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges)); bound = &cmd_buffer->state.gfx.vb_bound_ranges[vb_index]; dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[vb_index]; } if (anv_gfx8_9_vb_cache_range_needs_workaround(bound, dirty, vb_address, vb_size)) { anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT, "vb > 32b range"); } } void genX(cmd_buffer_update_dirty_vbs_for_gfx8_vb_flush)(struct anv_cmd_buffer *cmd_buffer, uint32_t access_type, uint64_t vb_used) { if (GFX_VER < 8 || GFX_VER > 9 || anv_use_relocations(cmd_buffer->device->physical)) return; if (access_type == RANDOM) { /* We have an index buffer */ struct anv_vb_cache_range *bound = &cmd_buffer->state.gfx.ib_bound_range; struct anv_vb_cache_range *dirty = &cmd_buffer->state.gfx.ib_dirty_range; if (bound->end > bound->start) { dirty->start = MIN2(dirty->start, bound->start); dirty->end = MAX2(dirty->end, bound->end); } } uint64_t mask = vb_used; while (mask) { int i = u_bit_scan64(&mask); assert(i >= 0); assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges)); assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges)); struct anv_vb_cache_range *bound, *dirty; bound = &cmd_buffer->state.gfx.vb_bound_ranges[i]; dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[i]; if (bound->end > bound->start) { dirty->start = MIN2(dirty->start, bound->start); dirty->end = MAX2(dirty->end, bound->end); } } } /** * Update the pixel hashing modes that determine the balancing of PS threads * across subslices and slices. * * \param width Width bound of the rendering area (already scaled down if \p * scale is greater than 1). * \param height Height bound of the rendering area (already scaled down if \p * scale is greater than 1). * \param scale The number of framebuffer samples that could potentially be * affected by an individual channel of the PS thread. This is * typically one for single-sampled rendering, but for operations * like CCS resolves and fast clears a single PS invocation may * update a huge number of pixels, in which case a finer * balancing is desirable in order to maximally utilize the * bandwidth available. UINT_MAX can be used as shorthand for * "finest hashing mode available". */ void genX(cmd_buffer_emit_hashing_mode)(struct anv_cmd_buffer *cmd_buffer, unsigned width, unsigned height, unsigned scale) { #if GFX_VER == 9 const struct intel_device_info *devinfo = &cmd_buffer->device->info; const unsigned slice_hashing[] = { /* Because all Gfx9 platforms with more than one slice require * three-way subslice hashing, a single "normal" 16x16 slice hashing * block is guaranteed to suffer from substantial imbalance, with one * subslice receiving twice as much work as the other two in the * slice. * * The performance impact of that would be particularly severe when * three-way hashing is also in use for slice balancing (which is the * case for all Gfx9 GT4 platforms), because one of the slices * receives one every three 16x16 blocks in either direction, which * is roughly the periodicity of the underlying subslice imbalance * pattern ("roughly" because in reality the hardware's * implementation of three-way hashing doesn't do exact modulo 3 * arithmetic, which somewhat decreases the magnitude of this effect * in practice). This leads to a systematic subslice imbalance * within that slice regardless of the size of the primitive. The * 32x32 hashing mode guarantees that the subslice imbalance within a * single slice hashing block is minimal, largely eliminating this * effect. */ _32x32, /* Finest slice hashing mode available. */ NORMAL }; const unsigned subslice_hashing[] = { /* 16x16 would provide a slight cache locality benefit especially * visible in the sampler L1 cache efficiency of low-bandwidth * non-LLC platforms, but it comes at the cost of greater subslice * imbalance for primitives of dimensions approximately intermediate * between 16x4 and 16x16. */ _16x4, /* Finest subslice hashing mode available. */ _8x4 }; /* Dimensions of the smallest hashing block of a given hashing mode. If * the rendering area is smaller than this there can't possibly be any * benefit from switching to this mode, so we optimize out the * transition. */ const unsigned min_size[][2] = { { 16, 4 }, { 8, 4 } }; const unsigned idx = scale > 1; if (cmd_buffer->state.current_hash_scale != scale && (width > min_size[idx][0] || height > min_size[idx][1])) { anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT, "change pixel hash mode"); genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); anv_batch_write_reg(&cmd_buffer->batch, GENX(GT_MODE), gt) { gt.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0); gt.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0); gt.SubsliceHashing = subslice_hashing[idx]; gt.SubsliceHashingMask = -1; } cmd_buffer->state.current_hash_scale = scale; } #endif } static void cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer) { struct anv_device *device = cmd_buffer->device; struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx; /* FIXME: Width and Height are wrong */ genX(cmd_buffer_emit_gfx7_depth_flush)(cmd_buffer); uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch, device->isl_dev.ds.size / 4); if (dw == NULL) return; struct isl_view isl_view = {}; struct isl_depth_stencil_hiz_emit_info info = { .view = &isl_view, .mocs = anv_mocs(device, NULL, ISL_SURF_USAGE_DEPTH_BIT), }; if (gfx->depth_att.iview != NULL) { isl_view = gfx->depth_att.iview->planes[0].isl; } else if (gfx->stencil_att.iview != NULL) { isl_view = gfx->stencil_att.iview->planes[0].isl; } if (gfx->view_mask) { assert(isl_view.array_len == 0 || isl_view.array_len >= util_last_bit(gfx->view_mask)); isl_view.array_len = util_last_bit(gfx->view_mask); } else { assert(isl_view.array_len == 0 || isl_view.array_len >= util_last_bit(gfx->layer_count)); isl_view.array_len = gfx->layer_count; } if (gfx->depth_att.iview != NULL) { const struct anv_image_view *iview = gfx->depth_att.iview; const struct anv_image *image = iview->image; const uint32_t depth_plane = anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_DEPTH_BIT); const struct anv_surface *depth_surface = &image->planes[depth_plane].primary_surface; const struct anv_address depth_address = anv_image_address(image, &depth_surface->memory_range); info.depth_surf = &depth_surface->isl; info.depth_address = anv_batch_emit_reloc(&cmd_buffer->batch, dw + device->isl_dev.ds.depth_offset / 4, depth_address.bo, depth_address.offset); info.mocs = anv_mocs(device, depth_address.bo, ISL_SURF_USAGE_DEPTH_BIT); info.hiz_usage = gfx->depth_att.aux_usage; if (info.hiz_usage != ISL_AUX_USAGE_NONE) { assert(isl_aux_usage_has_hiz(info.hiz_usage)); const struct anv_surface *hiz_surface = &image->planes[depth_plane].aux_surface; const struct anv_address hiz_address = anv_image_address(image, &hiz_surface->memory_range); info.hiz_surf = &hiz_surface->isl; info.hiz_address = anv_batch_emit_reloc(&cmd_buffer->batch, dw + device->isl_dev.ds.hiz_offset / 4, hiz_address.bo, hiz_address.offset); info.depth_clear_value = ANV_HZ_FC_VAL; } } if (gfx->stencil_att.iview != NULL) { const struct anv_image_view *iview = gfx->stencil_att.iview; const struct anv_image *image = iview->image; const uint32_t stencil_plane = anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_STENCIL_BIT); const struct anv_surface *stencil_surface = &image->planes[stencil_plane].primary_surface; const struct anv_address stencil_address = anv_image_address(image, &stencil_surface->memory_range); info.stencil_surf = &stencil_surface->isl; info.stencil_aux_usage = image->planes[stencil_plane].aux_usage; info.stencil_address = anv_batch_emit_reloc(&cmd_buffer->batch, dw + device->isl_dev.ds.stencil_offset / 4, stencil_address.bo, stencil_address.offset); info.mocs = anv_mocs(device, stencil_address.bo, ISL_SURF_USAGE_STENCIL_BIT); } isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info); if (info.depth_surf) genX(cmd_buffer_emit_gfx12_depth_wa)(cmd_buffer, info.depth_surf); if (GFX_VER >= 12) { cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); /* Wa_1408224581 * * Workaround: Gfx12LP Astep only An additional pipe control with * post-sync = store dword operation would be required.( w/a is to * have an additional pipe control after the stencil state whenever * the surface state bits of this state is changing). * * This also seems sufficient to handle Wa_14014148106. */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.PostSyncOperation = WriteImmediateData; pc.Address = cmd_buffer->device->workaround_address; } } cmd_buffer->state.hiz_enabled = isl_aux_usage_has_hiz(info.hiz_usage); } static void cmd_buffer_emit_cps_control_buffer(struct anv_cmd_buffer *cmd_buffer, const struct anv_image_view *fsr_iview) { #if GFX_VERx10 >= 125 struct anv_device *device = cmd_buffer->device; if (!device->vk.enabled_extensions.KHR_fragment_shading_rate) return; uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch, device->isl_dev.cpb.size / 4); if (dw == NULL) return; struct isl_cpb_emit_info info = { }; if (fsr_iview) { info.view = &fsr_iview->planes[0].isl; info.surf = &fsr_iview->image->planes[0].primary_surface.isl; info.address = anv_batch_emit_reloc(&cmd_buffer->batch, dw + device->isl_dev.cpb.offset / 4, fsr_iview->image->bindings[0].address.bo, fsr_iview->image->bindings[0].address.offset + fsr_iview->image->bindings[0].memory_range.offset); info.mocs = anv_mocs(device, fsr_iview->image->bindings[0].address.bo, ISL_SURF_USAGE_CPB_BIT); } isl_emit_cpb_control_s(&device->isl_dev, dw, &info); #endif /* GFX_VERx10 >= 125 */ } static VkImageLayout attachment_initial_layout(const VkRenderingAttachmentInfo *att) { const VkRenderingAttachmentInitialLayoutInfoMESA *layout_info = vk_find_struct_const(att->pNext, RENDERING_ATTACHMENT_INITIAL_LAYOUT_INFO_MESA); if (layout_info != NULL) return layout_info->initialLayout; return att->imageLayout; } void genX(CmdBeginRendering)( VkCommandBuffer commandBuffer, const VkRenderingInfo* pRenderingInfo) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx; VkResult result; if (!is_render_queue_cmd_buffer(cmd_buffer)) { assert(!"Trying to start a render pass on non-render queue!"); anv_batch_set_error(&cmd_buffer->batch, VK_ERROR_UNKNOWN); return; } anv_measure_beginrenderpass(cmd_buffer); trace_intel_begin_render_pass(&cmd_buffer->trace); gfx->rendering_flags = pRenderingInfo->flags; gfx->render_area = pRenderingInfo->renderArea; gfx->view_mask = pRenderingInfo->viewMask; gfx->layer_count = pRenderingInfo->layerCount; gfx->samples = 0; const bool is_multiview = gfx->view_mask != 0; const VkRect2D render_area = gfx->render_area; const uint32_t layers = is_multiview ? util_last_bit(gfx->view_mask) : gfx->layer_count; /* The framebuffer size is at least large enough to contain the render * area. Because a zero renderArea is possible, we MAX with 1. */ struct isl_extent3d fb_size = { .w = MAX2(1, render_area.offset.x + render_area.extent.width), .h = MAX2(1, render_area.offset.y + render_area.extent.height), .d = layers, }; const uint32_t color_att_count = pRenderingInfo->colorAttachmentCount; result = anv_cmd_buffer_init_attachments(cmd_buffer, color_att_count); if (result != VK_SUCCESS) return; genX(flush_pipeline_select_3d)(cmd_buffer); for (uint32_t i = 0; i < gfx->color_att_count; i++) { if (pRenderingInfo->pColorAttachments[i].imageView == VK_NULL_HANDLE) continue; const VkRenderingAttachmentInfo *att = &pRenderingInfo->pColorAttachments[i]; ANV_FROM_HANDLE(anv_image_view, iview, att->imageView); const VkImageLayout initial_layout = attachment_initial_layout(att); assert(render_area.offset.x + render_area.extent.width <= iview->vk.extent.width); assert(render_area.offset.y + render_area.extent.height <= iview->vk.extent.height); assert(layers <= iview->vk.layer_count); fb_size.w = MAX2(fb_size.w, iview->vk.extent.width); fb_size.h = MAX2(fb_size.h, iview->vk.extent.height); assert(gfx->samples == 0 || gfx->samples == iview->vk.image->samples); gfx->samples |= iview->vk.image->samples; enum isl_aux_usage aux_usage = anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, att->imageLayout); union isl_color_value fast_clear_color = { .u32 = { 0, } }; if (att->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR && !(gfx->rendering_flags & VK_RENDERING_RESUMING_BIT)) { const union isl_color_value clear_color = vk_to_isl_color_with_format(att->clearValue.color, iview->planes[0].isl.format); /* We only support fast-clears on the first layer */ const bool fast_clear = (!is_multiview || (gfx->view_mask & 1)) && anv_can_fast_clear_color_view(cmd_buffer->device, iview, att->imageLayout, clear_color, layers, render_area); if (att->imageLayout != initial_layout) { assert(render_area.offset.x == 0 && render_area.offset.y == 0 && render_area.extent.width == iview->vk.extent.width && render_area.extent.height == iview->vk.extent.height); if (is_multiview) { u_foreach_bit(view, gfx->view_mask) { transition_color_buffer(cmd_buffer, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, iview->vk.base_mip_level, 1, iview->vk.base_array_layer + view, 1, /* layer_count */ initial_layout, att->imageLayout, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, fast_clear); } } else { transition_color_buffer(cmd_buffer, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, iview->vk.base_mip_level, 1, iview->vk.base_array_layer, gfx->layer_count, initial_layout, att->imageLayout, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, fast_clear); } } uint32_t clear_view_mask = pRenderingInfo->viewMask; uint32_t base_clear_layer = iview->vk.base_array_layer; uint32_t clear_layer_count = gfx->layer_count; if (fast_clear) { /* We only support fast-clears on the first layer */ assert(iview->vk.base_mip_level == 0 && iview->vk.base_array_layer == 0); fast_clear_color = clear_color; if (iview->image->vk.samples == 1) { anv_image_ccs_op(cmd_buffer, iview->image, iview->planes[0].isl.format, iview->planes[0].isl.swizzle, VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1, ISL_AUX_OP_FAST_CLEAR, &fast_clear_color, false); } else { anv_image_mcs_op(cmd_buffer, iview->image, iview->planes[0].isl.format, iview->planes[0].isl.swizzle, VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, ISL_AUX_OP_FAST_CLEAR, &fast_clear_color, false); } clear_view_mask &= ~1u; base_clear_layer++; clear_layer_count--; if (isl_color_value_is_zero(clear_color, iview->planes[0].isl.format)) { /* This image has the auxiliary buffer enabled. We can mark the * subresource as not needing a resolve because the clear color * will match what's in every RENDER_SURFACE_STATE object when * it's being used for sampling. */ set_image_fast_clear_state(cmd_buffer, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, ANV_FAST_CLEAR_DEFAULT_VALUE); } else { set_image_fast_clear_state(cmd_buffer, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, ANV_FAST_CLEAR_ANY); } } if (is_multiview) { u_foreach_bit(view, clear_view_mask) { anv_image_clear_color(cmd_buffer, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, aux_usage, iview->planes[0].isl.format, iview->planes[0].isl.swizzle, iview->vk.base_mip_level, iview->vk.base_array_layer + view, 1, render_area, clear_color); } } else { anv_image_clear_color(cmd_buffer, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, aux_usage, iview->planes[0].isl.format, iview->planes[0].isl.swizzle, iview->vk.base_mip_level, base_clear_layer, clear_layer_count, render_area, clear_color); } } else { /* If not LOAD_OP_CLEAR, we shouldn't have a layout transition. */ assert(att->imageLayout == initial_layout); } gfx->color_att[i].vk_format = iview->vk.format; gfx->color_att[i].iview = iview; gfx->color_att[i].layout = att->imageLayout; gfx->color_att[i].aux_usage = aux_usage; struct isl_view isl_view = iview->planes[0].isl; if (pRenderingInfo->viewMask) { assert(isl_view.array_len >= util_last_bit(pRenderingInfo->viewMask)); isl_view.array_len = util_last_bit(pRenderingInfo->viewMask); } else { assert(isl_view.array_len >= pRenderingInfo->layerCount); isl_view.array_len = pRenderingInfo->layerCount; } anv_image_fill_surface_state(cmd_buffer->device, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, &isl_view, ISL_SURF_USAGE_RENDER_TARGET_BIT, aux_usage, &fast_clear_color, 0, /* anv_image_view_state_flags */ &gfx->color_att[i].surface_state, NULL); add_surface_state_relocs(cmd_buffer, gfx->color_att[i].surface_state); if (GFX_VER < 10 && (att->loadOp == VK_ATTACHMENT_LOAD_OP_LOAD || (gfx->rendering_flags & VK_RENDERING_RESUMING_BIT)) && iview->image->planes[0].aux_usage != ISL_AUX_USAGE_NONE && iview->planes[0].isl.base_level == 0 && iview->planes[0].isl.base_array_layer == 0) { genX(copy_fast_clear_dwords)(cmd_buffer, gfx->color_att[i].surface_state.state, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, false /* copy to ss */); } if (att->resolveMode != VK_RESOLVE_MODE_NONE) { gfx->color_att[i].resolve_mode = att->resolveMode; gfx->color_att[i].resolve_iview = anv_image_view_from_handle(att->resolveImageView); gfx->color_att[i].resolve_layout = att->resolveImageLayout; } } const struct anv_image_view *fsr_iview = NULL; const VkRenderingFragmentShadingRateAttachmentInfoKHR *fsr_att = vk_find_struct_const(pRenderingInfo->pNext, RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR); if (fsr_att != NULL && fsr_att->imageView != VK_NULL_HANDLE) { fsr_iview = anv_image_view_from_handle(fsr_att->imageView); /* imageLayout and shadingRateAttachmentTexelSize are ignored */ } const struct anv_image_view *ds_iview = NULL; const VkRenderingAttachmentInfo *d_att = pRenderingInfo->pDepthAttachment; const VkRenderingAttachmentInfo *s_att = pRenderingInfo->pStencilAttachment; if ((d_att != NULL && d_att->imageView != VK_NULL_HANDLE) || (s_att != NULL && s_att->imageView != VK_NULL_HANDLE)) { const struct anv_image_view *d_iview = NULL, *s_iview = NULL; VkImageLayout depth_layout = VK_IMAGE_LAYOUT_UNDEFINED; VkImageLayout stencil_layout = VK_IMAGE_LAYOUT_UNDEFINED; VkImageLayout initial_depth_layout = VK_IMAGE_LAYOUT_UNDEFINED; VkImageLayout initial_stencil_layout = VK_IMAGE_LAYOUT_UNDEFINED; enum isl_aux_usage depth_aux_usage = ISL_AUX_USAGE_NONE; enum isl_aux_usage stencil_aux_usage = ISL_AUX_USAGE_NONE; float depth_clear_value = 0; uint32_t stencil_clear_value = 0; if (d_att != NULL && d_att->imageView != VK_NULL_HANDLE) { d_iview = anv_image_view_from_handle(d_att->imageView); initial_depth_layout = attachment_initial_layout(d_att); depth_layout = d_att->imageLayout; depth_aux_usage = anv_layout_to_aux_usage(&cmd_buffer->device->info, d_iview->image, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, depth_layout); depth_clear_value = d_att->clearValue.depthStencil.depth; } if (s_att != NULL && s_att->imageView != VK_NULL_HANDLE) { s_iview = anv_image_view_from_handle(s_att->imageView); initial_stencil_layout = attachment_initial_layout(s_att); stencil_layout = s_att->imageLayout; stencil_aux_usage = anv_layout_to_aux_usage(&cmd_buffer->device->info, s_iview->image, VK_IMAGE_ASPECT_STENCIL_BIT, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, stencil_layout); stencil_clear_value = s_att->clearValue.depthStencil.stencil; } assert(s_iview == NULL || d_iview == NULL || s_iview == d_iview); ds_iview = d_iview != NULL ? d_iview : s_iview; assert(ds_iview != NULL); assert(render_area.offset.x + render_area.extent.width <= ds_iview->vk.extent.width); assert(render_area.offset.y + render_area.extent.height <= ds_iview->vk.extent.height); assert(layers <= ds_iview->vk.layer_count); fb_size.w = MAX2(fb_size.w, ds_iview->vk.extent.width); fb_size.h = MAX2(fb_size.h, ds_iview->vk.extent.height); assert(gfx->samples == 0 || gfx->samples == ds_iview->vk.image->samples); gfx->samples |= ds_iview->vk.image->samples; VkImageAspectFlags clear_aspects = 0; if (d_iview != NULL && d_att->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR && !(gfx->rendering_flags & VK_RENDERING_RESUMING_BIT)) clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT; if (s_iview != NULL && s_att->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR && !(gfx->rendering_flags & VK_RENDERING_RESUMING_BIT)) clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT; if (clear_aspects != 0) { const bool hiz_clear = anv_can_hiz_clear_ds_view(cmd_buffer->device, d_iview, depth_layout, clear_aspects, depth_clear_value, render_area); if (depth_layout != initial_depth_layout) { assert(render_area.offset.x == 0 && render_area.offset.y == 0 && render_area.extent.width == d_iview->vk.extent.width && render_area.extent.height == d_iview->vk.extent.height); if (is_multiview) { u_foreach_bit(view, gfx->view_mask) { transition_depth_buffer(cmd_buffer, d_iview->image, d_iview->vk.base_array_layer + view, 1 /* layer_count */, initial_depth_layout, depth_layout, hiz_clear); } } else { transition_depth_buffer(cmd_buffer, d_iview->image, d_iview->vk.base_array_layer, gfx->layer_count, initial_depth_layout, depth_layout, hiz_clear); } } if (stencil_layout != initial_stencil_layout) { assert(render_area.offset.x == 0 && render_area.offset.y == 0 && render_area.extent.width == s_iview->vk.extent.width && render_area.extent.height == s_iview->vk.extent.height); if (is_multiview) { u_foreach_bit(view, gfx->view_mask) { transition_stencil_buffer(cmd_buffer, s_iview->image, s_iview->vk.base_mip_level, 1, s_iview->vk.base_array_layer + view, 1 /* layer_count */, initial_stencil_layout, stencil_layout, hiz_clear); } } else { transition_stencil_buffer(cmd_buffer, s_iview->image, s_iview->vk.base_mip_level, 1, s_iview->vk.base_array_layer, gfx->layer_count, initial_stencil_layout, stencil_layout, hiz_clear); } } if (is_multiview) { uint32_t clear_view_mask = pRenderingInfo->viewMask; while (clear_view_mask) { int view = u_bit_scan(&clear_view_mask); uint32_t level = ds_iview->vk.base_mip_level; uint32_t layer = ds_iview->vk.base_array_layer + view; if (hiz_clear) { anv_image_hiz_clear(cmd_buffer, ds_iview->image, clear_aspects, level, layer, 1, render_area, stencil_clear_value); } else { anv_image_clear_depth_stencil(cmd_buffer, ds_iview->image, clear_aspects, depth_aux_usage, level, layer, 1, render_area, depth_clear_value, stencil_clear_value); } } } else { uint32_t level = ds_iview->vk.base_mip_level; uint32_t base_layer = ds_iview->vk.base_array_layer; uint32_t layer_count = gfx->layer_count; if (hiz_clear) { anv_image_hiz_clear(cmd_buffer, ds_iview->image, clear_aspects, level, base_layer, layer_count, render_area, stencil_clear_value); } else { anv_image_clear_depth_stencil(cmd_buffer, ds_iview->image, clear_aspects, depth_aux_usage, level, base_layer, layer_count, render_area, depth_clear_value, stencil_clear_value); } } } else { /* If not LOAD_OP_CLEAR, we shouldn't have a layout transition. */ assert(depth_layout == initial_depth_layout); assert(stencil_layout == initial_stencil_layout); } if (d_iview != NULL) { gfx->depth_att.vk_format = d_iview->vk.format; gfx->depth_att.iview = d_iview; gfx->depth_att.layout = depth_layout; gfx->depth_att.aux_usage = depth_aux_usage; if (d_att != NULL && d_att->resolveMode != VK_RESOLVE_MODE_NONE) { assert(d_att->resolveImageView != VK_NULL_HANDLE); gfx->depth_att.resolve_mode = d_att->resolveMode; gfx->depth_att.resolve_iview = anv_image_view_from_handle(d_att->resolveImageView); gfx->depth_att.resolve_layout = d_att->resolveImageLayout; } } if (s_iview != NULL) { gfx->stencil_att.vk_format = s_iview->vk.format; gfx->stencil_att.iview = s_iview; gfx->stencil_att.layout = stencil_layout; gfx->stencil_att.aux_usage = stencil_aux_usage; if (s_att->resolveMode != VK_RESOLVE_MODE_NONE) { assert(s_att->resolveImageView != VK_NULL_HANDLE); gfx->stencil_att.resolve_mode = s_att->resolveMode; gfx->stencil_att.resolve_iview = anv_image_view_from_handle(s_att->resolveImageView); gfx->stencil_att.resolve_layout = s_att->resolveImageLayout; } } } /* Finally, now that we know the right size, set up the null surface */ assert(util_bitcount(gfx->samples) <= 1); isl_null_fill_state(&cmd_buffer->device->isl_dev, gfx->null_surface_state.map, .size = fb_size); for (uint32_t i = 0; i < gfx->color_att_count; i++) { if (pRenderingInfo->pColorAttachments[i].imageView != VK_NULL_HANDLE) continue; isl_null_fill_state(&cmd_buffer->device->isl_dev, gfx->color_att[i].surface_state.state.map, .size = fb_size); } /****** We can now start emitting code to begin the render pass ******/ gfx->dirty |= ANV_CMD_DIRTY_RENDER_TARGETS; /* Our implementation of VK_KHR_multiview uses instancing to draw the * different views. If the client asks for instancing, we need to use the * Instance Data Step Rate to ensure that we repeat the client's * per-instance data once for each view. Since this bit is in * VERTEX_BUFFER_STATE on gfx7, we need to dirty vertex buffers at the top * of each subpass. */ if (GFX_VER == 7) gfx->vb_dirty |= ~0; /* It is possible to start a render pass with an old pipeline. Because the * render pass and subpass index are both baked into the pipeline, this is * highly unlikely. In order to do so, it requires that you have a render * pass with a single subpass and that you use that render pass twice * back-to-back and use the same pipeline at the start of the second render * pass as at the end of the first. In order to avoid unpredictable issues * with this edge case, we just dirty the pipeline at the start of every * subpass. */ gfx->dirty |= ANV_CMD_DIRTY_PIPELINE; #if GFX_VER >= 11 /* The PIPE_CONTROL command description says: * * "Whenever a Binding Table Index (BTI) used by a Render Target Message * points to a different RENDER_SURFACE_STATE, SW must issue a Render * Target Cache Flush by enabling this bit. When render target flush * is set due to new association of BTI, PS Scoreboard Stall bit must * be set in this packet." */ anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT, "change RT"); #endif cmd_buffer_emit_depth_stencil(cmd_buffer); cmd_buffer_emit_cps_control_buffer(cmd_buffer, fsr_iview); } static void cmd_buffer_mark_attachment_written(struct anv_cmd_buffer *cmd_buffer, struct anv_attachment *att, VkImageAspectFlagBits aspect) { struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx; const struct anv_image_view *iview = att->iview; if (gfx->view_mask == 0) { genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image, aspect, att->aux_usage, iview->planes[0].isl.base_level, iview->planes[0].isl.base_array_layer, gfx->layer_count); } else { uint32_t res_view_mask = gfx->view_mask; while (res_view_mask) { int i = u_bit_scan(&res_view_mask); const uint32_t level = iview->planes[0].isl.base_level; const uint32_t layer = iview->planes[0].isl.base_array_layer + i; genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image, aspect, att->aux_usage, level, layer, 1); } } } static enum blorp_filter vk_to_blorp_resolve_mode(VkResolveModeFlagBits vk_mode) { switch (vk_mode) { case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT: return BLORP_FILTER_SAMPLE_0; case VK_RESOLVE_MODE_AVERAGE_BIT: return BLORP_FILTER_AVERAGE; case VK_RESOLVE_MODE_MIN_BIT: return BLORP_FILTER_MIN_SAMPLE; case VK_RESOLVE_MODE_MAX_BIT: return BLORP_FILTER_MAX_SAMPLE; default: return BLORP_FILTER_NONE; } } static void cmd_buffer_resolve_msaa_attachment(struct anv_cmd_buffer *cmd_buffer, const struct anv_attachment *att, VkImageLayout layout, VkImageAspectFlagBits aspect) { struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx; const struct anv_image_view *src_iview = att->iview; const struct anv_image_view *dst_iview = att->resolve_iview; enum isl_aux_usage src_aux_usage = anv_layout_to_aux_usage(&cmd_buffer->device->info, src_iview->image, aspect, VK_IMAGE_USAGE_TRANSFER_SRC_BIT, layout); enum isl_aux_usage dst_aux_usage = anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_iview->image, aspect, VK_IMAGE_USAGE_TRANSFER_DST_BIT, att->resolve_layout); enum blorp_filter filter = vk_to_blorp_resolve_mode(att->resolve_mode); const VkRect2D render_area = gfx->render_area; if (gfx->view_mask == 0) { anv_image_msaa_resolve(cmd_buffer, src_iview->image, src_aux_usage, src_iview->planes[0].isl.base_level, src_iview->planes[0].isl.base_array_layer, dst_iview->image, dst_aux_usage, dst_iview->planes[0].isl.base_level, dst_iview->planes[0].isl.base_array_layer, aspect, render_area.offset.x, render_area.offset.y, render_area.offset.x, render_area.offset.y, render_area.extent.width, render_area.extent.height, gfx->layer_count, filter); } else { uint32_t res_view_mask = gfx->view_mask; while (res_view_mask) { int i = u_bit_scan(&res_view_mask); anv_image_msaa_resolve(cmd_buffer, src_iview->image, src_aux_usage, src_iview->planes[0].isl.base_level, src_iview->planes[0].isl.base_array_layer + i, dst_iview->image, dst_aux_usage, dst_iview->planes[0].isl.base_level, dst_iview->planes[0].isl.base_array_layer + i, aspect, render_area.offset.x, render_area.offset.y, render_area.offset.x, render_area.offset.y, render_area.extent.width, render_area.extent.height, 1, filter); } } } void genX(CmdEndRendering)( VkCommandBuffer commandBuffer) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx; if (anv_batch_has_error(&cmd_buffer->batch)) return; const bool is_multiview = gfx->view_mask != 0; const uint32_t layers = is_multiview ? util_last_bit(gfx->view_mask) : gfx->layer_count; bool has_color_resolve = false; for (uint32_t i = 0; i < gfx->color_att_count; i++) { if (gfx->color_att[i].iview == NULL) continue; cmd_buffer_mark_attachment_written(cmd_buffer, &gfx->color_att[i], VK_IMAGE_ASPECT_COLOR_BIT); /* Stash this off for later */ if (gfx->color_att[i].resolve_mode != VK_RESOLVE_MODE_NONE && !(gfx->rendering_flags & VK_RENDERING_SUSPENDING_BIT)) has_color_resolve = true; } if (gfx->depth_att.iview != NULL) { cmd_buffer_mark_attachment_written(cmd_buffer, &gfx->depth_att, VK_IMAGE_ASPECT_DEPTH_BIT); } if (gfx->stencil_att.iview != NULL) { cmd_buffer_mark_attachment_written(cmd_buffer, &gfx->stencil_att, VK_IMAGE_ASPECT_STENCIL_BIT); } if (has_color_resolve) { /* We are about to do some MSAA resolves. We need to flush so that the * result of writes to the MSAA color attachments show up in the sampler * when we blit to the single-sampled resolve target. */ anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT, "MSAA resolve"); } if (gfx->depth_att.resolve_mode != VK_RESOLVE_MODE_NONE || gfx->stencil_att.resolve_mode != VK_RESOLVE_MODE_NONE) { /* We are about to do some MSAA resolves. We need to flush so that the * result of writes to the MSAA depth attachments show up in the sampler * when we blit to the single-sampled resolve target. */ anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | ANV_PIPE_DEPTH_CACHE_FLUSH_BIT, "MSAA resolve"); } for (uint32_t i = 0; i < gfx->color_att_count; i++) { const struct anv_attachment *att = &gfx->color_att[i]; if (att->resolve_mode == VK_RESOLVE_MODE_NONE || (gfx->rendering_flags & VK_RENDERING_SUSPENDING_BIT)) continue; cmd_buffer_resolve_msaa_attachment(cmd_buffer, att, att->layout, VK_IMAGE_ASPECT_COLOR_BIT); } if (gfx->depth_att.resolve_mode != VK_RESOLVE_MODE_NONE && !(gfx->rendering_flags & VK_RENDERING_SUSPENDING_BIT)) { const struct anv_image_view *src_iview = gfx->depth_att.iview; /* MSAA resolves sample from the source attachment. Transition the * depth attachment first to get rid of any HiZ that we may not be * able to handle. */ transition_depth_buffer(cmd_buffer, src_iview->image, src_iview->planes[0].isl.base_array_layer, layers, gfx->depth_att.layout, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, false /* will_full_fast_clear */); cmd_buffer_resolve_msaa_attachment(cmd_buffer, &gfx->depth_att, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_ASPECT_DEPTH_BIT); /* Transition the source back to the original layout. This seems a bit * inefficient but, since HiZ resolves aren't destructive, going from * less HiZ to more is generally a no-op. */ transition_depth_buffer(cmd_buffer, src_iview->image, src_iview->planes[0].isl.base_array_layer, layers, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, gfx->depth_att.layout, false /* will_full_fast_clear */); } if (gfx->stencil_att.resolve_mode != VK_RESOLVE_MODE_NONE && !(gfx->rendering_flags & VK_RENDERING_SUSPENDING_BIT)) { cmd_buffer_resolve_msaa_attachment(cmd_buffer, &gfx->stencil_att, gfx->stencil_att.layout, VK_IMAGE_ASPECT_STENCIL_BIT); } #if GFX_VER == 7 /* On gfx7, we have to store a texturable version of the stencil buffer in * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and * forth at strategic points. Stencil writes are only allowed in following * layouts: * * - VK_IMAGE_LAYOUT_GENERAL * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL * - VK_IMAGE_LAYOUT_SUBPASS_SELF_DEPENDENCY_MESA * * For general, we have no nice opportunity to transition so we do the copy * to the shadow unconditionally at the end of the subpass. For transfer * destinations, we can update it as part of the transfer op. For the other * layouts, we delay the copy until a transition into some other layout. */ if (gfx->stencil_att.iview != NULL) { const struct anv_image_view *iview = gfx->stencil_att.iview; const struct anv_image *image = iview->image; const uint32_t plane = anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_STENCIL_BIT); if (anv_surface_is_valid(&image->planes[plane].shadow_surface) && (gfx->stencil_att.layout == VK_IMAGE_LAYOUT_GENERAL || gfx->stencil_att.layout == VK_IMAGE_LAYOUT_SUBPASS_SELF_DEPENDENCY_MESA)) { anv_image_copy_to_shadow(cmd_buffer, image, VK_IMAGE_ASPECT_STENCIL_BIT, iview->planes[plane].isl.base_level, 1, iview->planes[plane].isl.base_array_layer, layers); } } #endif anv_cmd_buffer_reset_rendering(cmd_buffer); } void genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer) { #if GFX_VERx10 >= 75 struct mi_builder b; mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch); mi_store(&b, mi_reg64(MI_PREDICATE_SRC0), mi_reg32(ANV_PREDICATE_RESULT_REG)); mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0)); anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOADINV; mip.CombineOperation = COMBINE_SET; mip.CompareOperation = COMPARE_SRCS_EQUAL; } #endif } #if GFX_VERx10 >= 75 void genX(CmdBeginConditionalRenderingEXT)( VkCommandBuffer commandBuffer, const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer); struct anv_cmd_state *cmd_state = &cmd_buffer->state; struct anv_address value_address = anv_address_add(buffer->address, pConditionalRenderingBegin->offset); const bool isInverted = pConditionalRenderingBegin->flags & VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT; cmd_state->conditional_render_enabled = true; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); struct mi_builder b; mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch); /* Section 19.4 of the Vulkan 1.1.85 spec says: * * If the value of the predicate in buffer memory changes * while conditional rendering is active, the rendering commands * may be discarded in an implementation-dependent way. * Some implementations may latch the value of the predicate * upon beginning conditional rendering while others * may read it before every rendering command. * * So it's perfectly fine to read a value from the buffer once. */ struct mi_value value = mi_mem32(value_address); /* Precompute predicate result, it is necessary to support secondary * command buffers since it is unknown if conditional rendering is * inverted when populating them. */ mi_store(&b, mi_reg64(ANV_PREDICATE_RESULT_REG), isInverted ? mi_uge(&b, mi_imm(0), value) : mi_ult(&b, mi_imm(0), value)); } void genX(CmdEndConditionalRenderingEXT)( VkCommandBuffer commandBuffer) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_cmd_state *cmd_state = &cmd_buffer->state; cmd_state->conditional_render_enabled = false; } #endif /* Set of stage bits for which are pipelined, i.e. they get queued * by the command streamer for later execution. */ #define ANV_PIPELINE_STAGE_PIPELINED_BITS \ ~(VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT | \ VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT | \ VK_PIPELINE_STAGE_2_HOST_BIT | \ VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT) void genX(CmdSetEvent2)( VkCommandBuffer commandBuffer, VkEvent _event, const VkDependencyInfo* pDependencyInfo) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_event, event, _event); VkPipelineStageFlags2 src_stages = 0; for (uint32_t i = 0; i < pDependencyInfo->memoryBarrierCount; i++) src_stages |= pDependencyInfo->pMemoryBarriers[i].srcStageMask; for (uint32_t i = 0; i < pDependencyInfo->bufferMemoryBarrierCount; i++) src_stages |= pDependencyInfo->pBufferMemoryBarriers[i].srcStageMask; for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; i++) src_stages |= pDependencyInfo->pImageMemoryBarriers[i].srcStageMask; cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { if (src_stages & ANV_PIPELINE_STAGE_PIPELINED_BITS) { pc.StallAtPixelScoreboard = true; pc.CommandStreamerStallEnable = true; } pc.DestinationAddressType = DAT_PPGTT, pc.PostSyncOperation = WriteImmediateData, pc.Address = (struct anv_address) { cmd_buffer->device->dynamic_state_pool.block_pool.bo, event->state.offset }; pc.ImmediateData = VK_EVENT_SET; anv_debug_dump_pc(pc); } } void genX(CmdResetEvent2)( VkCommandBuffer commandBuffer, VkEvent _event, VkPipelineStageFlags2 stageMask) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_event, event, _event); cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) { pc.StallAtPixelScoreboard = true; pc.CommandStreamerStallEnable = true; } pc.DestinationAddressType = DAT_PPGTT; pc.PostSyncOperation = WriteImmediateData; pc.Address = (struct anv_address) { cmd_buffer->device->dynamic_state_pool.block_pool.bo, event->state.offset }; pc.ImmediateData = VK_EVENT_RESET; anv_debug_dump_pc(pc); } } void genX(CmdWaitEvents2)( VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent* pEvents, const VkDependencyInfo* pDependencyInfos) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); #if GFX_VER >= 8 for (uint32_t i = 0; i < eventCount; i++) { ANV_FROM_HANDLE(anv_event, event, pEvents[i]); anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) { sem.WaitMode = PollingMode, sem.CompareOperation = COMPARE_SAD_EQUAL_SDD, sem.SemaphoreDataDword = VK_EVENT_SET, sem.SemaphoreAddress = (struct anv_address) { cmd_buffer->device->dynamic_state_pool.block_pool.bo, event->state.offset }; } } #else anv_finishme("Implement events on gfx7"); #endif cmd_buffer_barrier(cmd_buffer, pDependencyInfos, "wait event"); } static uint32_t vk_to_intel_index_type(VkIndexType type) { switch (type) { case VK_INDEX_TYPE_UINT8_EXT: return INDEX_BYTE; case VK_INDEX_TYPE_UINT16: return INDEX_WORD; case VK_INDEX_TYPE_UINT32: return INDEX_DWORD; default: unreachable("invalid index type"); } } static uint32_t restart_index_for_type(VkIndexType type) { switch (type) { case VK_INDEX_TYPE_UINT8_EXT: return UINT8_MAX; case VK_INDEX_TYPE_UINT16: return UINT16_MAX; case VK_INDEX_TYPE_UINT32: return UINT32_MAX; default: unreachable("invalid index type"); } } void genX(CmdBindIndexBuffer)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, VkIndexType indexType) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); cmd_buffer->state.gfx.restart_index = restart_index_for_type(indexType); cmd_buffer->state.gfx.index_buffer = buffer; cmd_buffer->state.gfx.index_type = vk_to_intel_index_type(indexType); cmd_buffer->state.gfx.index_offset = offset; cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_INDEX_BUFFER; } VkResult genX(CmdSetPerformanceOverrideINTEL)( VkCommandBuffer commandBuffer, const VkPerformanceOverrideInfoINTEL* pOverrideInfo) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); switch (pOverrideInfo->type) { case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL: { #if GFX_VER >= 9 anv_batch_write_reg(&cmd_buffer->batch, GENX(CS_DEBUG_MODE2), csdm2) { csdm2._3DRenderingInstructionDisable = pOverrideInfo->enable; csdm2.MediaInstructionDisable = pOverrideInfo->enable; csdm2._3DRenderingInstructionDisableMask = true; csdm2.MediaInstructionDisableMask = true; } #else anv_batch_write_reg(&cmd_buffer->batch, GENX(INSTPM), instpm) { instpm._3DRenderingInstructionDisable = pOverrideInfo->enable; instpm.MediaInstructionDisable = pOverrideInfo->enable; instpm._3DRenderingInstructionDisableMask = true; instpm.MediaInstructionDisableMask = true; } #endif break; } case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL: if (pOverrideInfo->enable) { /* FLUSH ALL THE THINGS! As requested by the MDAPI team. */ anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS, "perf counter isolation"); genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); } break; default: unreachable("Invalid override"); } return VK_SUCCESS; } VkResult genX(CmdSetPerformanceStreamMarkerINTEL)( VkCommandBuffer commandBuffer, const VkPerformanceStreamMarkerInfoINTEL* pMarkerInfo) { /* TODO: Waiting on the register to write, might depend on generation. */ return VK_SUCCESS; } #define TIMESTAMP 0x2358 void genX(cmd_emit_timestamp)(struct anv_batch *batch, struct anv_device *device, struct anv_address addr, bool end_of_pipe) { if (end_of_pipe) { anv_batch_emit(batch, GENX(PIPE_CONTROL), pc) { pc.PostSyncOperation = WriteTimestamp; pc.Address = addr; anv_debug_dump_pc(pc); } } else { struct mi_builder b; mi_builder_init(&b, &device->info, batch); mi_store(&b, mi_mem64(addr), mi_reg64(TIMESTAMP)); } }