mesa/src/vulkan/wsi/wsi_common_x11.c

2315 lines
79 KiB
C

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <X11/Xlib-xcb.h>
#include <X11/xshmfence.h>
#include <xcb/xcb.h>
#include <xcb/dri3.h>
#include <xcb/present.h>
#include <xcb/shm.h>
#include "util/macros.h"
#include <stdatomic.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <poll.h>
#include <xf86drm.h>
#include "drm-uapi/drm_fourcc.h"
#include "util/hash_table.h"
#include "util/os_file.h"
#include "util/os_time.h"
#include "util/u_debug.h"
#include "util/u_thread.h"
#include "util/xmlconfig.h"
#include "vk_instance.h"
#include "vk_physical_device.h"
#include "vk_util.h"
#include "vk_enum_to_str.h"
#include "wsi_common_entrypoints.h"
#include "wsi_common_private.h"
#include "wsi_common_queue.h"
#ifdef HAVE_SYS_SHM_H
#include <sys/ipc.h>
#include <sys/shm.h>
#endif
struct wsi_x11_connection {
bool has_dri3;
bool has_dri3_modifiers;
bool has_present;
bool is_proprietary_x11;
bool is_xwayland;
bool has_mit_shm;
bool has_xfixes;
};
struct wsi_x11 {
struct wsi_interface base;
pthread_mutex_t mutex;
/* Hash table of xcb_connection -> wsi_x11_connection mappings */
struct hash_table *connections;
};
/**
* Wrapper around xcb_dri3_open. Returns the opened fd or -1 on error.
*/
static int
wsi_dri3_open(xcb_connection_t *conn,
xcb_window_t root,
uint32_t provider)
{
xcb_dri3_open_cookie_t cookie;
xcb_dri3_open_reply_t *reply;
int fd;
cookie = xcb_dri3_open(conn,
root,
provider);
reply = xcb_dri3_open_reply(conn, cookie, NULL);
if (!reply)
return -1;
/* According to DRI3 extension nfd must equal one. */
if (reply->nfd != 1) {
free(reply);
return -1;
}
fd = xcb_dri3_open_reply_fds(conn, reply)[0];
free(reply);
fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC);
return fd;
}
/**
* Checks compatibility of the device wsi_dev with the device the X server
* provides via DRI3.
*
* This returns true when no device could be retrieved from the X server or when
* the information for the X server device indicate that it is the same device.
*/
static bool
wsi_x11_check_dri3_compatible(const struct wsi_device *wsi_dev,
xcb_connection_t *conn)
{
xcb_screen_iterator_t screen_iter =
xcb_setup_roots_iterator(xcb_get_setup(conn));
xcb_screen_t *screen = screen_iter.data;
/* Open the DRI3 device from the X server. If we do not retrieve one we
* assume our local device is compatible.
*/
int dri3_fd = wsi_dri3_open(conn, screen->root, None);
if (dri3_fd == -1)
return true;
bool match = wsi_device_matches_drm_fd(wsi_dev, dri3_fd);
close(dri3_fd);
return match;
}
static bool
wsi_x11_detect_xwayland(xcb_connection_t *conn)
{
xcb_randr_query_version_cookie_t ver_cookie =
xcb_randr_query_version_unchecked(conn, 1, 3);
xcb_randr_query_version_reply_t *ver_reply =
xcb_randr_query_version_reply(conn, ver_cookie, NULL);
bool has_randr_v1_3 = ver_reply && (ver_reply->major_version > 1 ||
ver_reply->minor_version >= 3);
free(ver_reply);
if (!has_randr_v1_3)
return false;
const xcb_setup_t *setup = xcb_get_setup(conn);
xcb_screen_iterator_t iter = xcb_setup_roots_iterator(setup);
xcb_randr_get_screen_resources_current_cookie_t gsr_cookie =
xcb_randr_get_screen_resources_current_unchecked(conn, iter.data->root);
xcb_randr_get_screen_resources_current_reply_t *gsr_reply =
xcb_randr_get_screen_resources_current_reply(conn, gsr_cookie, NULL);
if (!gsr_reply || gsr_reply->num_outputs == 0) {
free(gsr_reply);
return false;
}
xcb_randr_output_t *randr_outputs =
xcb_randr_get_screen_resources_current_outputs(gsr_reply);
xcb_randr_get_output_info_cookie_t goi_cookie =
xcb_randr_get_output_info(conn, randr_outputs[0], gsr_reply->config_timestamp);
free(gsr_reply);
xcb_randr_get_output_info_reply_t *goi_reply =
xcb_randr_get_output_info_reply(conn, goi_cookie, NULL);
if (!goi_reply) {
return false;
}
char *output_name = (char*)xcb_randr_get_output_info_name(goi_reply);
bool is_xwayland = output_name && strncmp(output_name, "XWAYLAND", 8) == 0;
free(goi_reply);
return is_xwayland;
}
static struct wsi_x11_connection *
wsi_x11_connection_create(struct wsi_device *wsi_dev,
xcb_connection_t *conn)
{
xcb_query_extension_cookie_t dri3_cookie, pres_cookie, randr_cookie,
amd_cookie, nv_cookie, shm_cookie, sync_cookie,
xfixes_cookie;
xcb_query_extension_reply_t *dri3_reply, *pres_reply, *randr_reply,
*amd_reply, *nv_reply, *shm_reply = NULL,
*xfixes_reply;
bool wants_shm = wsi_dev->sw && !(WSI_DEBUG & WSI_DEBUG_NOSHM) &&
wsi_dev->has_import_memory_host;
bool has_dri3_v1_2 = false;
bool has_present_v1_2 = false;
struct wsi_x11_connection *wsi_conn =
vk_alloc(&wsi_dev->instance_alloc, sizeof(*wsi_conn), 8,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!wsi_conn)
return NULL;
sync_cookie = xcb_query_extension(conn, 4, "SYNC");
dri3_cookie = xcb_query_extension(conn, 4, "DRI3");
pres_cookie = xcb_query_extension(conn, 7, "Present");
randr_cookie = xcb_query_extension(conn, 5, "RANDR");
xfixes_cookie = xcb_query_extension(conn, 6, "XFIXES");
if (wants_shm)
shm_cookie = xcb_query_extension(conn, 7, "MIT-SHM");
/* We try to be nice to users and emit a warning if they try to use a
* Vulkan application on a system without DRI3 enabled. However, this ends
* up spewing the warning when a user has, for example, both Intel
* integrated graphics and a discrete card with proprietary drivers and are
* running on the discrete card with the proprietary DDX. In this case, we
* really don't want to print the warning because it just confuses users.
* As a heuristic to detect this case, we check for a couple of proprietary
* X11 extensions.
*/
amd_cookie = xcb_query_extension(conn, 11, "ATIFGLRXDRI");
nv_cookie = xcb_query_extension(conn, 10, "NV-CONTROL");
xcb_discard_reply(conn, sync_cookie.sequence);
dri3_reply = xcb_query_extension_reply(conn, dri3_cookie, NULL);
pres_reply = xcb_query_extension_reply(conn, pres_cookie, NULL);
randr_reply = xcb_query_extension_reply(conn, randr_cookie, NULL);
amd_reply = xcb_query_extension_reply(conn, amd_cookie, NULL);
nv_reply = xcb_query_extension_reply(conn, nv_cookie, NULL);
xfixes_reply = xcb_query_extension_reply(conn, xfixes_cookie, NULL);
if (wants_shm)
shm_reply = xcb_query_extension_reply(conn, shm_cookie, NULL);
if (!dri3_reply || !pres_reply || !xfixes_reply) {
free(dri3_reply);
free(pres_reply);
free(xfixes_reply);
free(randr_reply);
free(amd_reply);
free(nv_reply);
if (wants_shm)
free(shm_reply);
vk_free(&wsi_dev->instance_alloc, wsi_conn);
return NULL;
}
wsi_conn->has_dri3 = dri3_reply->present != 0;
#ifdef HAVE_DRI3_MODIFIERS
if (wsi_conn->has_dri3) {
xcb_dri3_query_version_cookie_t ver_cookie;
xcb_dri3_query_version_reply_t *ver_reply;
ver_cookie = xcb_dri3_query_version(conn, 1, 2);
ver_reply = xcb_dri3_query_version_reply(conn, ver_cookie, NULL);
has_dri3_v1_2 = ver_reply != NULL &&
(ver_reply->major_version > 1 || ver_reply->minor_version >= 2);
free(ver_reply);
}
#endif
wsi_conn->has_present = pres_reply->present != 0;
#ifdef HAVE_DRI3_MODIFIERS
if (wsi_conn->has_present) {
xcb_present_query_version_cookie_t ver_cookie;
xcb_present_query_version_reply_t *ver_reply;
ver_cookie = xcb_present_query_version(conn, 1, 2);
ver_reply = xcb_present_query_version_reply(conn, ver_cookie, NULL);
has_present_v1_2 =
(ver_reply->major_version > 1 || ver_reply->minor_version >= 2);
free(ver_reply);
}
#endif
wsi_conn->has_xfixes = xfixes_reply->present != 0;
if (wsi_conn->has_xfixes) {
xcb_xfixes_query_version_cookie_t ver_cookie;
xcb_xfixes_query_version_reply_t *ver_reply;
ver_cookie = xcb_xfixes_query_version(conn, 6, 0);
ver_reply = xcb_xfixes_query_version_reply(conn, ver_cookie, NULL);
wsi_conn->has_xfixes = (ver_reply->major_version >= 2);
free(ver_reply);
}
if (randr_reply && randr_reply->present != 0)
wsi_conn->is_xwayland = wsi_x11_detect_xwayland(conn);
else
wsi_conn->is_xwayland = false;
wsi_conn->has_dri3_modifiers = has_dri3_v1_2 && has_present_v1_2;
wsi_conn->is_proprietary_x11 = false;
if (amd_reply && amd_reply->present)
wsi_conn->is_proprietary_x11 = true;
if (nv_reply && nv_reply->present)
wsi_conn->is_proprietary_x11 = true;
wsi_conn->has_mit_shm = false;
if (wsi_conn->has_dri3 && wsi_conn->has_present && wants_shm) {
bool has_mit_shm = shm_reply->present != 0;
xcb_shm_query_version_cookie_t ver_cookie;
xcb_shm_query_version_reply_t *ver_reply;
ver_cookie = xcb_shm_query_version(conn);
ver_reply = xcb_shm_query_version_reply(conn, ver_cookie, NULL);
has_mit_shm = ver_reply->shared_pixmaps;
free(ver_reply);
xcb_void_cookie_t cookie;
xcb_generic_error_t *error;
if (has_mit_shm) {
cookie = xcb_shm_detach_checked(conn, 0);
if ((error = xcb_request_check(conn, cookie))) {
if (error->error_code != BadRequest)
wsi_conn->has_mit_shm = true;
free(error);
}
}
}
free(dri3_reply);
free(pres_reply);
free(randr_reply);
free(amd_reply);
free(nv_reply);
if (wants_shm)
free(shm_reply);
return wsi_conn;
}
static void
wsi_x11_connection_destroy(struct wsi_device *wsi_dev,
struct wsi_x11_connection *conn)
{
vk_free(&wsi_dev->instance_alloc, conn);
}
static bool
wsi_x11_check_for_dri3(struct wsi_x11_connection *wsi_conn)
{
if (wsi_conn->has_dri3)
return true;
if (!wsi_conn->is_proprietary_x11) {
fprintf(stderr, "vulkan: No DRI3 support detected - required for presentation\n"
"Note: you can probably enable DRI3 in your Xorg config\n");
}
return false;
}
/**
* Get internal struct representing an xcb_connection_t.
*
* This can allocate the struct but the caller does not own the struct. It is
* deleted on wsi_x11_finish_wsi by the hash table it is inserted.
*
* If the allocation fails NULL is returned.
*/
static struct wsi_x11_connection *
wsi_x11_get_connection(struct wsi_device *wsi_dev,
xcb_connection_t *conn)
{
struct wsi_x11 *wsi =
(struct wsi_x11 *)wsi_dev->wsi[VK_ICD_WSI_PLATFORM_XCB];
pthread_mutex_lock(&wsi->mutex);
struct hash_entry *entry = _mesa_hash_table_search(wsi->connections, conn);
if (!entry) {
/* We're about to make a bunch of blocking calls. Let's drop the
* mutex for now so we don't block up too badly.
*/
pthread_mutex_unlock(&wsi->mutex);
struct wsi_x11_connection *wsi_conn =
wsi_x11_connection_create(wsi_dev, conn);
if (!wsi_conn)
return NULL;
pthread_mutex_lock(&wsi->mutex);
entry = _mesa_hash_table_search(wsi->connections, conn);
if (entry) {
/* Oops, someone raced us to it */
wsi_x11_connection_destroy(wsi_dev, wsi_conn);
} else {
entry = _mesa_hash_table_insert(wsi->connections, conn, wsi_conn);
}
}
pthread_mutex_unlock(&wsi->mutex);
return entry->data;
}
struct surface_format {
VkFormat format;
unsigned bits_per_rgb;
};
static const struct surface_format formats[] = {
{ VK_FORMAT_B8G8R8A8_SRGB, 8 },
{ VK_FORMAT_B8G8R8A8_UNORM, 8 },
{ VK_FORMAT_A2R10G10B10_UNORM_PACK32, 10 },
};
static const VkPresentModeKHR present_modes[] = {
VK_PRESENT_MODE_IMMEDIATE_KHR,
VK_PRESENT_MODE_MAILBOX_KHR,
VK_PRESENT_MODE_FIFO_KHR,
VK_PRESENT_MODE_FIFO_RELAXED_KHR,
};
static xcb_screen_t *
get_screen_for_root(xcb_connection_t *conn, xcb_window_t root)
{
xcb_screen_iterator_t screen_iter =
xcb_setup_roots_iterator(xcb_get_setup(conn));
for (; screen_iter.rem; xcb_screen_next (&screen_iter)) {
if (screen_iter.data->root == root)
return screen_iter.data;
}
return NULL;
}
static xcb_visualtype_t *
screen_get_visualtype(xcb_screen_t *screen, xcb_visualid_t visual_id,
unsigned *depth)
{
xcb_depth_iterator_t depth_iter =
xcb_screen_allowed_depths_iterator(screen);
for (; depth_iter.rem; xcb_depth_next (&depth_iter)) {
xcb_visualtype_iterator_t visual_iter =
xcb_depth_visuals_iterator (depth_iter.data);
for (; visual_iter.rem; xcb_visualtype_next (&visual_iter)) {
if (visual_iter.data->visual_id == visual_id) {
if (depth)
*depth = depth_iter.data->depth;
return visual_iter.data;
}
}
}
return NULL;
}
static xcb_visualtype_t *
connection_get_visualtype(xcb_connection_t *conn, xcb_visualid_t visual_id)
{
xcb_screen_iterator_t screen_iter =
xcb_setup_roots_iterator(xcb_get_setup(conn));
/* For this we have to iterate over all of the screens which is rather
* annoying. Fortunately, there is probably only 1.
*/
for (; screen_iter.rem; xcb_screen_next (&screen_iter)) {
xcb_visualtype_t *visual = screen_get_visualtype(screen_iter.data,
visual_id, NULL);
if (visual)
return visual;
}
return NULL;
}
static xcb_visualtype_t *
get_visualtype_for_window(xcb_connection_t *conn, xcb_window_t window,
unsigned *depth)
{
xcb_query_tree_cookie_t tree_cookie;
xcb_get_window_attributes_cookie_t attrib_cookie;
xcb_query_tree_reply_t *tree;
xcb_get_window_attributes_reply_t *attrib;
tree_cookie = xcb_query_tree(conn, window);
attrib_cookie = xcb_get_window_attributes(conn, window);
tree = xcb_query_tree_reply(conn, tree_cookie, NULL);
attrib = xcb_get_window_attributes_reply(conn, attrib_cookie, NULL);
if (attrib == NULL || tree == NULL) {
free(attrib);
free(tree);
return NULL;
}
xcb_window_t root = tree->root;
xcb_visualid_t visual_id = attrib->visual;
free(attrib);
free(tree);
xcb_screen_t *screen = get_screen_for_root(conn, root);
if (screen == NULL)
return NULL;
return screen_get_visualtype(screen, visual_id, depth);
}
static bool
visual_has_alpha(xcb_visualtype_t *visual, unsigned depth)
{
uint32_t rgb_mask = visual->red_mask |
visual->green_mask |
visual->blue_mask;
uint32_t all_mask = 0xffffffff >> (32 - depth);
/* Do we have bits left over after RGB? */
return (all_mask & ~rgb_mask) != 0;
}
static bool
visual_supported(xcb_visualtype_t *visual)
{
if (!visual)
return false;
return visual->bits_per_rgb_value == 8 || visual->bits_per_rgb_value == 10;
}
VKAPI_ATTR VkBool32 VKAPI_CALL
wsi_GetPhysicalDeviceXcbPresentationSupportKHR(VkPhysicalDevice physicalDevice,
uint32_t queueFamilyIndex,
xcb_connection_t *connection,
xcb_visualid_t visual_id)
{
VK_FROM_HANDLE(vk_physical_device, pdevice, physicalDevice);
struct wsi_device *wsi_device = pdevice->wsi_device;
struct wsi_x11_connection *wsi_conn =
wsi_x11_get_connection(wsi_device, connection);
if (!wsi_conn)
return false;
if (!wsi_device->sw) {
if (!wsi_x11_check_for_dri3(wsi_conn))
return false;
}
if (!visual_supported(connection_get_visualtype(connection, visual_id)))
return false;
return true;
}
VKAPI_ATTR VkBool32 VKAPI_CALL
wsi_GetPhysicalDeviceXlibPresentationSupportKHR(VkPhysicalDevice physicalDevice,
uint32_t queueFamilyIndex,
Display *dpy,
VisualID visualID)
{
return wsi_GetPhysicalDeviceXcbPresentationSupportKHR(physicalDevice,
queueFamilyIndex,
XGetXCBConnection(dpy),
visualID);
}
static xcb_connection_t*
x11_surface_get_connection(VkIcdSurfaceBase *icd_surface)
{
if (icd_surface->platform == VK_ICD_WSI_PLATFORM_XLIB)
return XGetXCBConnection(((VkIcdSurfaceXlib *)icd_surface)->dpy);
else
return ((VkIcdSurfaceXcb *)icd_surface)->connection;
}
static xcb_window_t
x11_surface_get_window(VkIcdSurfaceBase *icd_surface)
{
if (icd_surface->platform == VK_ICD_WSI_PLATFORM_XLIB)
return ((VkIcdSurfaceXlib *)icd_surface)->window;
else
return ((VkIcdSurfaceXcb *)icd_surface)->window;
}
static VkResult
x11_surface_get_support(VkIcdSurfaceBase *icd_surface,
struct wsi_device *wsi_device,
uint32_t queueFamilyIndex,
VkBool32* pSupported)
{
xcb_connection_t *conn = x11_surface_get_connection(icd_surface);
xcb_window_t window = x11_surface_get_window(icd_surface);
struct wsi_x11_connection *wsi_conn =
wsi_x11_get_connection(wsi_device, conn);
if (!wsi_conn)
return VK_ERROR_OUT_OF_HOST_MEMORY;
if (!wsi_device->sw) {
if (!wsi_x11_check_for_dri3(wsi_conn)) {
*pSupported = false;
return VK_SUCCESS;
}
}
if (!visual_supported(get_visualtype_for_window(conn, window, NULL))) {
*pSupported = false;
return VK_SUCCESS;
}
*pSupported = true;
return VK_SUCCESS;
}
static uint32_t
x11_get_min_image_count(const struct wsi_device *wsi_device)
{
if (wsi_device->x11.override_minImageCount)
return wsi_device->x11.override_minImageCount;
/* For IMMEDIATE and FIFO, most games work in a pipelined manner where the
* can produce frames at a rate of 1/MAX(CPU duration, GPU duration), but
* the render latency is CPU duration + GPU duration.
*
* This means that with scanout from pageflipping we need 3 frames to run
* full speed:
* 1) CPU rendering work
* 2) GPU rendering work
* 3) scanout
*
* Once we have a nonblocking acquire that returns a semaphore we can merge
* 1 and 3. Hence the ideal implementation needs only 2 images, but games
* cannot tellwe currently do not have an ideal implementation and that
* hence they need to allocate 3 images. So let us do it for them.
*
* This is a tradeoff as it uses more memory than needed for non-fullscreen
* and non-performance intensive applications.
*/
return 3;
}
static VkResult
x11_surface_get_capabilities(VkIcdSurfaceBase *icd_surface,
struct wsi_device *wsi_device,
VkSurfaceCapabilitiesKHR *caps)
{
xcb_connection_t *conn = x11_surface_get_connection(icd_surface);
xcb_window_t window = x11_surface_get_window(icd_surface);
xcb_get_geometry_cookie_t geom_cookie;
xcb_generic_error_t *err;
xcb_get_geometry_reply_t *geom;
unsigned visual_depth;
geom_cookie = xcb_get_geometry(conn, window);
/* This does a round-trip. This is why we do get_geometry first and
* wait to read the reply until after we have a visual.
*/
xcb_visualtype_t *visual =
get_visualtype_for_window(conn, window, &visual_depth);
if (!visual)
return VK_ERROR_SURFACE_LOST_KHR;
geom = xcb_get_geometry_reply(conn, geom_cookie, &err);
if (geom) {
VkExtent2D extent = { geom->width, geom->height };
caps->currentExtent = extent;
caps->minImageExtent = extent;
caps->maxImageExtent = extent;
}
free(err);
free(geom);
if (!geom)
return VK_ERROR_SURFACE_LOST_KHR;
if (visual_has_alpha(visual, visual_depth)) {
caps->supportedCompositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR |
VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR;
} else {
caps->supportedCompositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR |
VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
}
caps->minImageCount = x11_get_min_image_count(wsi_device);
/* There is no real maximum */
caps->maxImageCount = 0;
caps->supportedTransforms = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
caps->currentTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
caps->maxImageArrayLayers = 1;
caps->supportedUsageFlags =
VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT |
VK_IMAGE_USAGE_STORAGE_BIT |
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
return VK_SUCCESS;
}
static VkResult
x11_surface_get_capabilities2(VkIcdSurfaceBase *icd_surface,
struct wsi_device *wsi_device,
const void *info_next,
VkSurfaceCapabilities2KHR *caps)
{
assert(caps->sType == VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR);
VkResult result =
x11_surface_get_capabilities(icd_surface, wsi_device,
&caps->surfaceCapabilities);
if (result != VK_SUCCESS)
return result;
vk_foreach_struct(ext, caps->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_SURFACE_PROTECTED_CAPABILITIES_KHR: {
VkSurfaceProtectedCapabilitiesKHR *protected = (void *)ext;
protected->supportsProtected = VK_FALSE;
break;
}
default:
/* Ignored */
break;
}
}
return result;
}
static bool
get_sorted_vk_formats(VkIcdSurfaceBase *surface, struct wsi_device *wsi_device,
VkFormat *sorted_formats, unsigned *count)
{
xcb_connection_t *conn = x11_surface_get_connection(surface);
xcb_window_t window = x11_surface_get_window(surface);
xcb_visualtype_t *visual = get_visualtype_for_window(conn, window, NULL);
if (!visual)
return false;
*count = 0;
for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
if (formats[i].bits_per_rgb == visual->bits_per_rgb_value)
sorted_formats[(*count)++] = formats[i].format;
}
if (wsi_device->force_bgra8_unorm_first) {
for (unsigned i = 0; i < *count; i++) {
if (sorted_formats[i] == VK_FORMAT_B8G8R8A8_UNORM) {
sorted_formats[i] = sorted_formats[0];
sorted_formats[0] = VK_FORMAT_B8G8R8A8_UNORM;
break;
}
}
}
return true;
}
static VkResult
x11_surface_get_formats(VkIcdSurfaceBase *surface,
struct wsi_device *wsi_device,
uint32_t *pSurfaceFormatCount,
VkSurfaceFormatKHR *pSurfaceFormats)
{
VK_OUTARRAY_MAKE_TYPED(VkSurfaceFormatKHR, out,
pSurfaceFormats, pSurfaceFormatCount);
unsigned count;
VkFormat sorted_formats[ARRAY_SIZE(formats)];
if (!get_sorted_vk_formats(surface, wsi_device, sorted_formats, &count))
return VK_ERROR_SURFACE_LOST_KHR;
for (unsigned i = 0; i < count; i++) {
vk_outarray_append_typed(VkSurfaceFormatKHR, &out, f) {
f->format = sorted_formats[i];
f->colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
}
}
return vk_outarray_status(&out);
}
static VkResult
x11_surface_get_formats2(VkIcdSurfaceBase *surface,
struct wsi_device *wsi_device,
const void *info_next,
uint32_t *pSurfaceFormatCount,
VkSurfaceFormat2KHR *pSurfaceFormats)
{
VK_OUTARRAY_MAKE_TYPED(VkSurfaceFormat2KHR, out,
pSurfaceFormats, pSurfaceFormatCount);
unsigned count;
VkFormat sorted_formats[ARRAY_SIZE(formats)];
if (!get_sorted_vk_formats(surface, wsi_device, sorted_formats, &count))
return VK_ERROR_SURFACE_LOST_KHR;
for (unsigned i = 0; i < count; i++) {
vk_outarray_append_typed(VkSurfaceFormat2KHR, &out, f) {
assert(f->sType == VK_STRUCTURE_TYPE_SURFACE_FORMAT_2_KHR);
f->surfaceFormat.format = sorted_formats[i];
f->surfaceFormat.colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
}
}
return vk_outarray_status(&out);
}
static VkResult
x11_surface_get_present_modes(VkIcdSurfaceBase *surface,
uint32_t *pPresentModeCount,
VkPresentModeKHR *pPresentModes)
{
if (pPresentModes == NULL) {
*pPresentModeCount = ARRAY_SIZE(present_modes);
return VK_SUCCESS;
}
*pPresentModeCount = MIN2(*pPresentModeCount, ARRAY_SIZE(present_modes));
typed_memcpy(pPresentModes, present_modes, *pPresentModeCount);
return *pPresentModeCount < ARRAY_SIZE(present_modes) ?
VK_INCOMPLETE : VK_SUCCESS;
}
static VkResult
x11_surface_get_present_rectangles(VkIcdSurfaceBase *icd_surface,
struct wsi_device *wsi_device,
uint32_t* pRectCount,
VkRect2D* pRects)
{
xcb_connection_t *conn = x11_surface_get_connection(icd_surface);
xcb_window_t window = x11_surface_get_window(icd_surface);
VK_OUTARRAY_MAKE_TYPED(VkRect2D, out, pRects, pRectCount);
vk_outarray_append_typed(VkRect2D, &out, rect) {
xcb_generic_error_t *err = NULL;
xcb_get_geometry_cookie_t geom_cookie = xcb_get_geometry(conn, window);
xcb_get_geometry_reply_t *geom =
xcb_get_geometry_reply(conn, geom_cookie, &err);
free(err);
if (geom) {
*rect = (VkRect2D) {
.offset = { 0, 0 },
.extent = { geom->width, geom->height },
};
}
free(geom);
if (!geom)
return VK_ERROR_SURFACE_LOST_KHR;
}
return vk_outarray_status(&out);
}
VKAPI_ATTR VkResult VKAPI_CALL
wsi_CreateXcbSurfaceKHR(VkInstance _instance,
const VkXcbSurfaceCreateInfoKHR *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkSurfaceKHR *pSurface)
{
VK_FROM_HANDLE(vk_instance, instance, _instance);
VkIcdSurfaceXcb *surface;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR);
surface = vk_alloc2(&instance->alloc, pAllocator, sizeof *surface, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (surface == NULL)
return VK_ERROR_OUT_OF_HOST_MEMORY;
surface->base.platform = VK_ICD_WSI_PLATFORM_XCB;
surface->connection = pCreateInfo->connection;
surface->window = pCreateInfo->window;
*pSurface = VkIcdSurfaceBase_to_handle(&surface->base);
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL
wsi_CreateXlibSurfaceKHR(VkInstance _instance,
const VkXlibSurfaceCreateInfoKHR *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkSurfaceKHR *pSurface)
{
VK_FROM_HANDLE(vk_instance, instance, _instance);
VkIcdSurfaceXlib *surface;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR);
surface = vk_alloc2(&instance->alloc, pAllocator, sizeof *surface, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (surface == NULL)
return VK_ERROR_OUT_OF_HOST_MEMORY;
surface->base.platform = VK_ICD_WSI_PLATFORM_XLIB;
surface->dpy = pCreateInfo->dpy;
surface->window = pCreateInfo->window;
*pSurface = VkIcdSurfaceBase_to_handle(&surface->base);
return VK_SUCCESS;
}
struct x11_image {
struct wsi_image base;
xcb_pixmap_t pixmap;
xcb_xfixes_region_t update_region; /* long lived XID */
xcb_xfixes_region_t update_area; /* the above or None */
bool busy;
bool present_queued;
struct xshmfence * shm_fence;
uint32_t sync_fence;
uint32_t serial;
xcb_shm_seg_t shmseg;
int shmid;
uint8_t * shmaddr;
};
struct x11_swapchain {
struct wsi_swapchain base;
bool has_dri3_modifiers;
bool has_mit_shm;
xcb_connection_t * conn;
xcb_window_t window;
xcb_gc_t gc;
uint32_t depth;
VkExtent2D extent;
xcb_present_event_t event_id;
xcb_special_event_t * special_event;
uint64_t send_sbc;
uint64_t last_present_msc;
uint32_t stamp;
atomic_int sent_image_count;
bool has_present_queue;
bool has_acquire_queue;
VkResult status;
bool copy_is_suboptimal;
struct wsi_queue present_queue;
struct wsi_queue acquire_queue;
pthread_t queue_manager;
struct x11_image images[0];
};
VK_DEFINE_NONDISP_HANDLE_CASTS(x11_swapchain, base.base, VkSwapchainKHR,
VK_OBJECT_TYPE_SWAPCHAIN_KHR)
/**
* Update the swapchain status with the result of an operation, and return
* the combined status. The chain status will eventually be returned from
* AcquireNextImage and QueuePresent.
*
* We make sure to 'stick' more pessimistic statuses: an out-of-date error
* is permanent once seen, and every subsequent call will return this. If
* this has not been seen, success will be returned.
*/
static VkResult
_x11_swapchain_result(struct x11_swapchain *chain, VkResult result,
const char *file, int line)
{
/* Prioritise returning existing errors for consistency. */
if (chain->status < 0)
return chain->status;
/* If we have a new error, mark it as permanent on the chain and return. */
if (result < 0) {
#ifndef NDEBUG
fprintf(stderr, "%s:%d: Swapchain status changed to %s\n",
file, line, vk_Result_to_str(result));
#endif
chain->status = result;
return result;
}
/* Return temporary errors, but don't persist them. */
if (result == VK_TIMEOUT || result == VK_NOT_READY)
return result;
/* Suboptimal isn't an error, but is a status which sticks to the swapchain
* and is always returned rather than success.
*/
if (result == VK_SUBOPTIMAL_KHR) {
#ifndef NDEBUG
if (chain->status != VK_SUBOPTIMAL_KHR) {
fprintf(stderr, "%s:%d: Swapchain status changed to %s\n",
file, line, vk_Result_to_str(result));
}
#endif
chain->status = result;
return result;
}
/* No changes, so return the last status. */
return chain->status;
}
#define x11_swapchain_result(chain, result) \
_x11_swapchain_result(chain, result, __FILE__, __LINE__)
static struct wsi_image *
x11_get_wsi_image(struct wsi_swapchain *wsi_chain, uint32_t image_index)
{
struct x11_swapchain *chain = (struct x11_swapchain *)wsi_chain;
return &chain->images[image_index].base;
}
/**
* Process an X11 Present event. Does not update chain->status.
*/
static VkResult
x11_handle_dri3_present_event(struct x11_swapchain *chain,
xcb_present_generic_event_t *event)
{
switch (event->evtype) {
case XCB_PRESENT_CONFIGURE_NOTIFY: {
xcb_present_configure_notify_event_t *config = (void *) event;
if (config->width != chain->extent.width ||
config->height != chain->extent.height)
return VK_SUBOPTIMAL_KHR;
break;
}
case XCB_PRESENT_EVENT_IDLE_NOTIFY: {
xcb_present_idle_notify_event_t *idle = (void *) event;
for (unsigned i = 0; i < chain->base.image_count; i++) {
if (chain->images[i].pixmap == idle->pixmap) {
chain->images[i].busy = false;
chain->sent_image_count--;
assert(chain->sent_image_count >= 0);
if (chain->has_acquire_queue)
wsi_queue_push(&chain->acquire_queue, i);
break;
}
}
break;
}
case XCB_PRESENT_EVENT_COMPLETE_NOTIFY: {
xcb_present_complete_notify_event_t *complete = (void *) event;
if (complete->kind == XCB_PRESENT_COMPLETE_KIND_PIXMAP) {
unsigned i;
for (i = 0; i < chain->base.image_count; i++) {
struct x11_image *image = &chain->images[i];
if (image->present_queued && image->serial == complete->serial)
image->present_queued = false;
}
chain->last_present_msc = complete->msc;
}
VkResult result = VK_SUCCESS;
switch (complete->mode) {
case XCB_PRESENT_COMPLETE_MODE_COPY:
if (chain->copy_is_suboptimal)
result = VK_SUBOPTIMAL_KHR;
break;
case XCB_PRESENT_COMPLETE_MODE_FLIP:
/* If we ever go from flipping to copying, the odds are very likely
* that we could reallocate in a more optimal way if we didn't have
* to care about scanout, so we always do this.
*/
chain->copy_is_suboptimal = true;
break;
#ifdef HAVE_DRI3_MODIFIERS
case XCB_PRESENT_COMPLETE_MODE_SUBOPTIMAL_COPY:
/* The winsys is now trying to flip directly and cannot due to our
* configuration. Request the user reallocate.
*/
result = VK_SUBOPTIMAL_KHR;
break;
#endif
default:
break;
}
return result;
}
default:
break;
}
return VK_SUCCESS;
}
static uint64_t wsi_get_absolute_timeout(uint64_t timeout)
{
uint64_t current_time = os_time_get_nano();
timeout = MIN2(UINT64_MAX - current_time, timeout);
return current_time + timeout;
}
/**
* Acquire a ready-to-use image directly from our swapchain. If all images are
* busy wait until one is not anymore or till timeout.
*/
static VkResult
x11_acquire_next_image_poll_x11(struct x11_swapchain *chain,
uint32_t *image_index, uint64_t timeout)
{
xcb_generic_event_t *event;
struct pollfd pfds;
uint64_t atimeout;
while (1) {
for (uint32_t i = 0; i < chain->base.image_count; i++) {
if (!chain->images[i].busy) {
/* We found a non-busy image */
xshmfence_await(chain->images[i].shm_fence);
*image_index = i;
chain->images[i].busy = true;
return x11_swapchain_result(chain, VK_SUCCESS);
}
}
xcb_flush(chain->conn);
if (timeout == UINT64_MAX) {
event = xcb_wait_for_special_event(chain->conn, chain->special_event);
if (!event)
return x11_swapchain_result(chain, VK_ERROR_SURFACE_LOST_KHR);
} else {
event = xcb_poll_for_special_event(chain->conn, chain->special_event);
if (!event) {
int ret;
if (timeout == 0)
return x11_swapchain_result(chain, VK_NOT_READY);
atimeout = wsi_get_absolute_timeout(timeout);
pfds.fd = xcb_get_file_descriptor(chain->conn);
pfds.events = POLLIN;
ret = poll(&pfds, 1, timeout / 1000 / 1000);
if (ret == 0)
return x11_swapchain_result(chain, VK_TIMEOUT);
if (ret == -1)
return x11_swapchain_result(chain, VK_ERROR_OUT_OF_DATE_KHR);
/* If a non-special event happens, the fd will still
* poll. So recalculate the timeout now just in case.
*/
uint64_t current_time = os_time_get_nano();
if (atimeout > current_time)
timeout = atimeout - current_time;
else
timeout = 0;
continue;
}
}
/* Update the swapchain status here. We may catch non-fatal errors here,
* in which case we need to update the status and continue.
*/
VkResult result = x11_handle_dri3_present_event(chain, (void *)event);
/* Ensure that VK_SUBOPTIMAL_KHR is reported to the application */
result = x11_swapchain_result(chain, result);
free(event);
if (result < 0)
return result;
}
}
/**
* Acquire a ready-to-use image from the acquire-queue. Only relevant in fifo
* presentation mode.
*/
static VkResult
x11_acquire_next_image_from_queue(struct x11_swapchain *chain,
uint32_t *image_index_out, uint64_t timeout)
{
assert(chain->has_acquire_queue);
uint32_t image_index;
VkResult result = wsi_queue_pull(&chain->acquire_queue,
&image_index, timeout);
if (result < 0 || result == VK_TIMEOUT) {
/* On error, the thread has shut down, so safe to update chain->status.
* Calling x11_swapchain_result with VK_TIMEOUT won't modify
* chain->status so that is also safe.
*/
return x11_swapchain_result(chain, result);
} else if (chain->status < 0) {
return chain->status;
}
assert(image_index < chain->base.image_count);
xshmfence_await(chain->images[image_index].shm_fence);
*image_index_out = image_index;
return chain->status;
}
/**
* Send image to X server via Present extension.
*/
static VkResult
x11_present_to_x11_dri3(struct x11_swapchain *chain, uint32_t image_index,
uint64_t target_msc)
{
struct x11_image *image = &chain->images[image_index];
assert(image_index < chain->base.image_count);
uint32_t options = XCB_PRESENT_OPTION_NONE;
int64_t divisor = 0;
int64_t remainder = 0;
struct wsi_x11_connection *wsi_conn =
wsi_x11_get_connection((struct wsi_device*)chain->base.wsi, chain->conn);
if (!wsi_conn)
return VK_ERROR_OUT_OF_HOST_MEMORY;
if (chain->base.present_mode == VK_PRESENT_MODE_IMMEDIATE_KHR ||
(chain->base.present_mode == VK_PRESENT_MODE_MAILBOX_KHR &&
wsi_conn->is_xwayland) ||
chain->base.present_mode == VK_PRESENT_MODE_FIFO_RELAXED_KHR)
options |= XCB_PRESENT_OPTION_ASYNC;
#ifdef HAVE_DRI3_MODIFIERS
if (chain->has_dri3_modifiers)
options |= XCB_PRESENT_OPTION_SUBOPTIMAL;
#endif
/* Poll for any available event and update the swapchain status. This could
* update the status of the swapchain to SUBOPTIMAL or OUT_OF_DATE if the
* associated X11 surface has been resized.
*/
xcb_generic_event_t *event;
while ((event = xcb_poll_for_special_event(chain->conn, chain->special_event))) {
VkResult result = x11_handle_dri3_present_event(chain, (void *)event);
/* Ensure that VK_SUBOPTIMAL_KHR is reported to the application */
result = x11_swapchain_result(chain, result);
free(event);
if (result < 0)
return result;
}
xshmfence_reset(image->shm_fence);
++chain->sent_image_count;
assert(chain->sent_image_count <= chain->base.image_count);
++chain->send_sbc;
image->present_queued = true;
image->serial = (uint32_t) chain->send_sbc;
xcb_void_cookie_t cookie =
xcb_present_pixmap_checked(chain->conn,
chain->window,
image->pixmap,
image->serial,
0, /* valid */
image->update_area, /* update */
0, /* x_off */
0, /* y_off */
XCB_NONE, /* target_crtc */
XCB_NONE,
image->sync_fence,
options,
target_msc,
divisor,
remainder, 0, NULL);
xcb_generic_error_t *error = xcb_request_check(chain->conn, cookie);
if (error) {
free(error);
return x11_swapchain_result(chain, VK_ERROR_SURFACE_LOST_KHR);
}
return x11_swapchain_result(chain, VK_SUCCESS);
}
/**
* Send image to X server unaccelerated (software drivers).
*/
static VkResult
x11_present_to_x11_sw(struct x11_swapchain *chain, uint32_t image_index,
uint64_t target_msc)
{
struct x11_image *image = &chain->images[image_index];
xcb_void_cookie_t cookie;
void *myptr = image->base.cpu_map;
size_t hdr_len = sizeof(xcb_put_image_request_t);
int stride_b = image->base.row_pitches[0];
size_t size = (hdr_len + stride_b * chain->extent.height) >> 2;
uint64_t max_req_len = xcb_get_maximum_request_length(chain->conn);
chain->images[image_index].busy = false;
if (size < max_req_len) {
cookie = xcb_put_image(chain->conn, XCB_IMAGE_FORMAT_Z_PIXMAP,
chain->window,
chain->gc,
image->base.row_pitches[0] / 4,
chain->extent.height,
0,0,0,24,
image->base.row_pitches[0] * chain->extent.height,
image->base.cpu_map);
xcb_discard_reply(chain->conn, cookie.sequence);
} else {
int num_lines = ((max_req_len << 2) - hdr_len) / stride_b;
int y_start = 0;
int y_todo = chain->extent.height;
while (y_todo) {
int this_lines = MIN2(num_lines, y_todo);
cookie = xcb_put_image(chain->conn, XCB_IMAGE_FORMAT_Z_PIXMAP,
chain->window,
chain->gc,
image->base.row_pitches[0] / 4,
this_lines,
0,y_start,0,24,
this_lines * stride_b,
(const uint8_t *)myptr + (y_start * stride_b));
xcb_discard_reply(chain->conn, cookie.sequence);
y_start += this_lines;
y_todo -= this_lines;
}
}
xcb_flush(chain->conn);
return x11_swapchain_result(chain, VK_SUCCESS);
}
/**
* Send image to the X server for presentation at target_msc.
*/
static VkResult
x11_present_to_x11(struct x11_swapchain *chain, uint32_t image_index,
uint64_t target_msc)
{
if (chain->base.wsi->sw && !chain->has_mit_shm)
return x11_present_to_x11_sw(chain, image_index, target_msc);
return x11_present_to_x11_dri3(chain, image_index, target_msc);
}
/**
* Acquire a ready-to-use image from the swapchain.
*
* This means usually that the image is not waiting on presentation and that the
* image has been released by the X server to be used again by the consumer.
*/
static VkResult
x11_acquire_next_image(struct wsi_swapchain *anv_chain,
const VkAcquireNextImageInfoKHR *info,
uint32_t *image_index)
{
struct x11_swapchain *chain = (struct x11_swapchain *)anv_chain;
uint64_t timeout = info->timeout;
/* If the swapchain is in an error state, don't go any further. */
if (chain->status < 0)
return chain->status;
if (chain->base.wsi->sw && !chain->has_mit_shm) {
for (unsigned i = 0; i < chain->base.image_count; i++) {
if (!chain->images[i].busy) {
*image_index = i;
chain->images[i].busy = true;
xcb_generic_error_t *err;
xcb_get_geometry_cookie_t geom_cookie = xcb_get_geometry(chain->conn, chain->window);
xcb_get_geometry_reply_t *geom = xcb_get_geometry_reply(chain->conn, geom_cookie, &err);
VkResult result = VK_SUCCESS;
if (geom) {
if (chain->extent.width != geom->width ||
chain->extent.height != geom->height)
result = VK_SUBOPTIMAL_KHR;
} else {
result = VK_ERROR_SURFACE_LOST_KHR;
}
free(err);
free(geom);
return result;
}
}
return VK_NOT_READY;
}
if (chain->has_acquire_queue) {
return x11_acquire_next_image_from_queue(chain, image_index, timeout);
} else {
return x11_acquire_next_image_poll_x11(chain, image_index, timeout);
}
}
#define MAX_DAMAGE_RECTS 64
/**
* Queue a new presentation of an image that was previously acquired by the
* consumer.
*
* Note that in immediate presentation mode this does not really queue the
* presentation but directly asks the X server to show it.
*/
static VkResult
x11_queue_present(struct wsi_swapchain *anv_chain,
uint32_t image_index,
const VkPresentRegionKHR *damage)
{
struct x11_swapchain *chain = (struct x11_swapchain *)anv_chain;
xcb_xfixes_region_t update_area = 0;
/* If the swapchain is in an error state, don't go any further. */
if (chain->status < 0)
return chain->status;
if (damage && damage->pRectangles && damage->rectangleCount > 0 &&
damage->rectangleCount <= MAX_DAMAGE_RECTS) {
xcb_rectangle_t rects[MAX_DAMAGE_RECTS];
update_area = chain->images[image_index].update_region;
for (unsigned i = 0; i < damage->rectangleCount; i++) {
const VkRectLayerKHR *rect = &damage->pRectangles[i];
assert(rect->layer == 0);
rects[i].x = rect->offset.x;
rects[i].y = rect->offset.y;
rects[i].width = rect->extent.width;
rects[i].height = rect->extent.height;
}
xcb_xfixes_set_region(chain->conn, update_area, damage->rectangleCount, rects);
}
chain->images[image_index].update_area = update_area;
chain->images[image_index].busy = true;
if (chain->has_present_queue) {
wsi_queue_push(&chain->present_queue, image_index);
return chain->status;
} else {
/* No present queue means immedate mode, so we present immediately. */
return x11_present_to_x11(chain, image_index, 0);
}
}
/**
* Decides if an early wait on buffer fences before buffer submission is required. That is for:
* - Mailbox mode, as otherwise the latest image in the queue might not be fully rendered at
* present time, what could lead to missing a frame.
* - Immediate mode under Xwayland, as it works practically the same as mailbox mode using the
* mailbox mechanism of Wayland. Sending a buffer with fences not yet signalled can make the
* compositor miss a frame when compositing the final image with this buffer.
*
* Note though that early waits can be disabled in general on Xwayland by setting the
* 'vk_xwayland_wait_ready' DRIConf option to false.
*/
static bool
x11_needs_wait_for_fences(const struct wsi_device *wsi_device,
struct wsi_x11_connection *wsi_conn,
VkPresentModeKHR present_mode)
{
if (wsi_conn->is_xwayland && !wsi_device->x11.xwaylandWaitReady) {
return false;
}
switch (present_mode) {
case VK_PRESENT_MODE_MAILBOX_KHR:
return true;
case VK_PRESENT_MODE_IMMEDIATE_KHR:
return wsi_conn->is_xwayland;
default:
return false;
}
}
/**
* The number of images that are not owned by X11:
* (1) in the ownership of the app, or
* (2) app to take ownership through an acquire, or
* (3) in the present queue waiting for the FIFO thread to present to X11.
*/
static unsigned x11_driver_owned_images(const struct x11_swapchain *chain)
{
return chain->base.image_count - chain->sent_image_count;
}
/**
* Our queue manager. Albeit called x11_manage_fifo_queues only directly
* manages the present-queue and does this in general in fifo and mailbox presentation
* modes (there is no present-queue in immediate mode with the exception of Xwayland).
*
* Runs in a separate thread, blocks and reacts to queued images on the
* present-queue
*
* In mailbox mode the queue management is simplified since we only need to
* pull new images from the present queue and can directly present them.
*
* In fifo mode images can only be presented one after the other. For that after
* sending the image to the X server we wait until the image either has been
* presented or released and only then pull a new image from the present-queue.
*/
static void *
x11_manage_fifo_queues(void *state)
{
struct x11_swapchain *chain = state;
struct wsi_x11_connection *wsi_conn =
wsi_x11_get_connection((struct wsi_device*)chain->base.wsi, chain->conn);
VkResult result = VK_SUCCESS;
assert(chain->has_present_queue);
u_thread_setname("WSI swapchain queue");
while (chain->status >= 0) {
/* We can block here unconditionally because after an image was sent to
* the server (later on in this loop) we ensure at least one image is
* acquirable by the consumer or wait there on such an event.
*/
uint32_t image_index = 0;
result = wsi_queue_pull(&chain->present_queue, &image_index, INT64_MAX);
assert(result != VK_TIMEOUT);
if (result < 0) {
goto fail;
} else if (chain->status < 0) {
/* The status can change underneath us if the swapchain is destroyed
* from another thread.
*/
return NULL;
}
/* Waiting for the GPU work to finish at this point in time is required in certain usage
* scenarios. Otherwise we wait as usual in wsi_common_queue_present.
*/
if (x11_needs_wait_for_fences(chain->base.wsi, wsi_conn,
chain->base.present_mode)) {
result = chain->base.wsi->WaitForFences(chain->base.device, 1,
&chain->base.fences[image_index],
true, UINT64_MAX);
if (result != VK_SUCCESS) {
result = VK_ERROR_OUT_OF_DATE_KHR;
goto fail;
}
}
uint64_t target_msc = 0;
if (chain->has_acquire_queue)
target_msc = chain->last_present_msc + 1;
result = x11_present_to_x11(chain, image_index, target_msc);
if (result < 0)
goto fail;
if (chain->has_acquire_queue) {
/* Assume this isn't a swapchain where we force 5 images, because those
* don't end up with an acquire queue at the moment.
*/
unsigned min_image_count = x11_get_min_image_count(chain->base.wsi);
/* With drirc overrides some games have swapchain with less than
* minimum number of images. */
min_image_count = MIN2(min_image_count, chain->base.image_count);
/* We always need to ensure that the app can have this number of images
* acquired concurrently in between presents:
* "VUID-vkAcquireNextImageKHR-swapchain-01802
* If the number of currently acquired images is greater than the difference
* between the number of images in swapchain and the value of
* VkSurfaceCapabilitiesKHR::minImageCount as returned by a call to
* vkGetPhysicalDeviceSurfaceCapabilities2KHR with the surface used to
* create swapchain, timeout must not be UINT64_MAX"
*/
unsigned forward_progress_guaranteed_acquired_images =
chain->base.image_count - min_image_count + 1;
/* Wait for our presentation to occur and ensure we have at least one
* image that can be acquired by the client afterwards. This ensures we
* can pull on the present-queue on the next loop.
*/
while (chain->images[image_index].present_queued ||
/* If we have images in the present queue the outer loop won't block and a break
* here would end up at this loop again, otherwise a break here satisfies
* VUID-vkAcquireNextImageKHR-swapchain-01802 */
x11_driver_owned_images(chain) < forward_progress_guaranteed_acquired_images) {
xcb_generic_event_t *event =
xcb_wait_for_special_event(chain->conn, chain->special_event);
if (!event) {
result = VK_ERROR_SURFACE_LOST_KHR;
goto fail;
}
result = x11_handle_dri3_present_event(chain, (void *)event);
/* Ensure that VK_SUBOPTIMAL_KHR is reported to the application */
result = x11_swapchain_result(chain, result);
free(event);
if (result < 0)
goto fail;
}
}
}
fail:
x11_swapchain_result(chain, result);
if (chain->has_acquire_queue)
wsi_queue_push(&chain->acquire_queue, UINT32_MAX);
return NULL;
}
static uint8_t *
alloc_shm(struct wsi_image *imagew, unsigned size)
{
#ifdef HAVE_SYS_SHM_H
struct x11_image *image = (struct x11_image *)imagew;
image->shmid = shmget(IPC_PRIVATE, size, IPC_CREAT | 0600);
if (image->shmid < 0)
return NULL;
uint8_t *addr = (uint8_t *)shmat(image->shmid, 0, 0);
/* mark the segment immediately for deletion to avoid leaks */
shmctl(image->shmid, IPC_RMID, 0);
if (addr == (uint8_t *) -1)
return NULL;
image->shmaddr = addr;
return addr;
#else
return NULL;
#endif
}
static VkResult
x11_image_init(VkDevice device_h, struct x11_swapchain *chain,
const VkSwapchainCreateInfoKHR *pCreateInfo,
const VkAllocationCallbacks* pAllocator,
struct x11_image *image)
{
xcb_void_cookie_t cookie;
VkResult result;
uint32_t bpp = 32;
int fence_fd;
result = wsi_create_image(&chain->base, &chain->base.image_info,
&image->base);
if (result != VK_SUCCESS)
return result;
image->update_region = xcb_generate_id(chain->conn);
xcb_xfixes_create_region(chain->conn, image->update_region, 0, NULL);
if (chain->base.wsi->sw) {
if (!chain->has_mit_shm) {
image->busy = false;
return VK_SUCCESS;
}
image->shmseg = xcb_generate_id(chain->conn);
xcb_shm_attach(chain->conn,
image->shmseg,
image->shmid,
0);
image->pixmap = xcb_generate_id(chain->conn);
cookie = xcb_shm_create_pixmap_checked(chain->conn,
image->pixmap,
chain->window,
image->base.row_pitches[0] / 4,
pCreateInfo->imageExtent.height,
chain->depth,
image->shmseg, 0);
xcb_discard_reply(chain->conn, cookie.sequence);
goto out_fence;
}
image->pixmap = xcb_generate_id(chain->conn);
#ifdef HAVE_DRI3_MODIFIERS
if (image->base.drm_modifier != DRM_FORMAT_MOD_INVALID) {
/* If the image has a modifier, we must have DRI3 v1.2. */
assert(chain->has_dri3_modifiers);
/* XCB requires an array of file descriptors but we only have one */
int fds[4] = { -1, -1, -1, -1 };
for (int i = 0; i < image->base.num_planes; i++) {
fds[i] = os_dupfd_cloexec(image->base.dma_buf_fd);
if (fds[i] == -1) {
for (int j = 0; j < i; j++)
close(fds[j]);
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
cookie =
xcb_dri3_pixmap_from_buffers_checked(chain->conn,
image->pixmap,
chain->window,
image->base.num_planes,
pCreateInfo->imageExtent.width,
pCreateInfo->imageExtent.height,
image->base.row_pitches[0],
image->base.offsets[0],
image->base.row_pitches[1],
image->base.offsets[1],
image->base.row_pitches[2],
image->base.offsets[2],
image->base.row_pitches[3],
image->base.offsets[3],
chain->depth, bpp,
image->base.drm_modifier,
fds);
} else
#endif
{
/* Without passing modifiers, we can't have multi-plane RGB images. */
assert(image->base.num_planes == 1);
/* XCB will take ownership of the FD we pass it. */
int fd = os_dupfd_cloexec(image->base.dma_buf_fd);
if (fd == -1)
return VK_ERROR_OUT_OF_HOST_MEMORY;
cookie =
xcb_dri3_pixmap_from_buffer_checked(chain->conn,
image->pixmap,
chain->window,
image->base.sizes[0],
pCreateInfo->imageExtent.width,
pCreateInfo->imageExtent.height,
image->base.row_pitches[0],
chain->depth, bpp, fd);
}
xcb_discard_reply(chain->conn, cookie.sequence);
out_fence:
fence_fd = xshmfence_alloc_shm();
if (fence_fd < 0)
goto fail_pixmap;
image->shm_fence = xshmfence_map_shm(fence_fd);
if (image->shm_fence == NULL)
goto fail_shmfence_alloc;
image->sync_fence = xcb_generate_id(chain->conn);
xcb_dri3_fence_from_fd(chain->conn,
image->pixmap,
image->sync_fence,
false,
fence_fd);
image->busy = false;
xshmfence_trigger(image->shm_fence);
return VK_SUCCESS;
fail_shmfence_alloc:
close(fence_fd);
fail_pixmap:
cookie = xcb_free_pixmap(chain->conn, image->pixmap);
xcb_discard_reply(chain->conn, cookie.sequence);
wsi_destroy_image(&chain->base, &image->base);
return VK_ERROR_INITIALIZATION_FAILED;
}
static void
x11_image_finish(struct x11_swapchain *chain,
const VkAllocationCallbacks* pAllocator,
struct x11_image *image)
{
xcb_void_cookie_t cookie;
if (!chain->base.wsi->sw || chain->has_mit_shm) {
cookie = xcb_sync_destroy_fence(chain->conn, image->sync_fence);
xcb_discard_reply(chain->conn, cookie.sequence);
xshmfence_unmap_shm(image->shm_fence);
cookie = xcb_free_pixmap(chain->conn, image->pixmap);
xcb_discard_reply(chain->conn, cookie.sequence);
cookie = xcb_xfixes_destroy_region(chain->conn, image->update_region);
xcb_discard_reply(chain->conn, cookie.sequence);
}
wsi_destroy_image(&chain->base, &image->base);
#ifdef HAVE_SYS_SHM_H
if (image->shmaddr)
shmdt(image->shmaddr);
#endif
}
static void
wsi_x11_get_dri3_modifiers(struct wsi_x11_connection *wsi_conn,
xcb_connection_t *conn, xcb_window_t window,
uint8_t depth, uint8_t bpp,
VkCompositeAlphaFlagsKHR vk_alpha,
uint64_t **modifiers_in, uint32_t *num_modifiers_in,
uint32_t *num_tranches_in,
const VkAllocationCallbacks *pAllocator)
{
if (!wsi_conn->has_dri3_modifiers)
goto out;
#ifdef HAVE_DRI3_MODIFIERS
xcb_generic_error_t *error = NULL;
xcb_dri3_get_supported_modifiers_cookie_t mod_cookie =
xcb_dri3_get_supported_modifiers(conn, window, depth, bpp);
xcb_dri3_get_supported_modifiers_reply_t *mod_reply =
xcb_dri3_get_supported_modifiers_reply(conn, mod_cookie, &error);
free(error);
if (!mod_reply || (mod_reply->num_window_modifiers == 0 &&
mod_reply->num_screen_modifiers == 0)) {
free(mod_reply);
goto out;
}
uint32_t n = 0;
uint32_t counts[2];
uint64_t *modifiers[2];
if (mod_reply->num_window_modifiers) {
counts[n] = mod_reply->num_window_modifiers;
modifiers[n] = vk_alloc(pAllocator,
counts[n] * sizeof(uint64_t),
8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!modifiers[n]) {
free(mod_reply);
goto out;
}
memcpy(modifiers[n],
xcb_dri3_get_supported_modifiers_window_modifiers(mod_reply),
counts[n] * sizeof(uint64_t));
n++;
}
if (mod_reply->num_screen_modifiers) {
counts[n] = mod_reply->num_screen_modifiers;
modifiers[n] = vk_alloc(pAllocator,
counts[n] * sizeof(uint64_t),
8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!modifiers[n]) {
if (n > 0)
vk_free(pAllocator, modifiers[0]);
free(mod_reply);
goto out;
}
memcpy(modifiers[n],
xcb_dri3_get_supported_modifiers_screen_modifiers(mod_reply),
counts[n] * sizeof(uint64_t));
n++;
}
for (int i = 0; i < n; i++) {
modifiers_in[i] = modifiers[i];
num_modifiers_in[i] = counts[i];
}
*num_tranches_in = n;
free(mod_reply);
return;
#endif
out:
*num_tranches_in = 0;
}
static VkResult
x11_swapchain_destroy(struct wsi_swapchain *anv_chain,
const VkAllocationCallbacks *pAllocator)
{
struct x11_swapchain *chain = (struct x11_swapchain *)anv_chain;
xcb_void_cookie_t cookie;
if (chain->has_present_queue) {
chain->status = VK_ERROR_OUT_OF_DATE_KHR;
/* Push a UINT32_MAX to wake up the manager */
wsi_queue_push(&chain->present_queue, UINT32_MAX);
pthread_join(chain->queue_manager, NULL);
if (chain->has_acquire_queue)
wsi_queue_destroy(&chain->acquire_queue);
wsi_queue_destroy(&chain->present_queue);
}
for (uint32_t i = 0; i < chain->base.image_count; i++)
x11_image_finish(chain, pAllocator, &chain->images[i]);
wsi_destroy_image_info(&chain->base, &chain->base.image_info);
xcb_unregister_for_special_event(chain->conn, chain->special_event);
cookie = xcb_present_select_input_checked(chain->conn, chain->event_id,
chain->window,
XCB_PRESENT_EVENT_MASK_NO_EVENT);
xcb_discard_reply(chain->conn, cookie.sequence);
wsi_swapchain_finish(&chain->base);
vk_free(pAllocator, chain);
return VK_SUCCESS;
}
static void
wsi_x11_set_adaptive_sync_property(xcb_connection_t *conn,
xcb_drawable_t drawable,
uint32_t state)
{
static char const name[] = "_VARIABLE_REFRESH";
xcb_intern_atom_cookie_t cookie;
xcb_intern_atom_reply_t* reply;
xcb_void_cookie_t check;
cookie = xcb_intern_atom(conn, 0, strlen(name), name);
reply = xcb_intern_atom_reply(conn, cookie, NULL);
if (reply == NULL)
return;
if (state)
check = xcb_change_property_checked(conn, XCB_PROP_MODE_REPLACE,
drawable, reply->atom,
XCB_ATOM_CARDINAL, 32, 1, &state);
else
check = xcb_delete_property_checked(conn, drawable, reply->atom);
xcb_discard_reply(conn, check.sequence);
free(reply);
}
/**
* Create the swapchain.
*
* Supports immediate, fifo and mailbox presentation mode.
*
*/
static VkResult
x11_surface_create_swapchain(VkIcdSurfaceBase *icd_surface,
VkDevice device,
struct wsi_device *wsi_device,
const VkSwapchainCreateInfoKHR *pCreateInfo,
const VkAllocationCallbacks* pAllocator,
struct wsi_swapchain **swapchain_out)
{
struct x11_swapchain *chain;
xcb_void_cookie_t cookie;
VkResult result;
VkPresentModeKHR present_mode = wsi_swapchain_get_present_mode(wsi_device, pCreateInfo);
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR);
/* Get xcb connection from the icd_surface and from that our internal struct
* representing it.
*/
xcb_connection_t *conn = x11_surface_get_connection(icd_surface);
struct wsi_x11_connection *wsi_conn =
wsi_x11_get_connection(wsi_device, conn);
if (!wsi_conn)
return VK_ERROR_OUT_OF_HOST_MEMORY;
/* Get number of images in our swapchain. This count depends on:
* - requested minimal image count
* - device characteristics
* - presentation mode.
*/
unsigned num_images = pCreateInfo->minImageCount;
if (wsi_device->x11.strict_imageCount)
num_images = pCreateInfo->minImageCount;
else if (x11_needs_wait_for_fences(wsi_device, wsi_conn, present_mode))
num_images = MAX2(num_images, 5);
else if (wsi_device->x11.ensure_minImageCount)
num_images = MAX2(num_images, x11_get_min_image_count(wsi_device));
/* Check that we have a window up-front. It is an error to not have one. */
xcb_window_t window = x11_surface_get_window(icd_surface);
/* Get the geometry of that window. The bit depth of the swapchain will be fitted and the
* chain's images extents should fit it for performance-optimizing flips.
*/
xcb_get_geometry_reply_t *geometry =
xcb_get_geometry_reply(conn, xcb_get_geometry(conn, window), NULL);
if (geometry == NULL)
return VK_ERROR_SURFACE_LOST_KHR;
const uint32_t bit_depth = geometry->depth;
const uint16_t cur_width = geometry->width;
const uint16_t cur_height = geometry->height;
free(geometry);
/* Allocate the actual swapchain. The size depends on image count. */
size_t size = sizeof(*chain) + num_images * sizeof(chain->images[0]);
chain = vk_zalloc(pAllocator, size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (chain == NULL)
return VK_ERROR_OUT_OF_HOST_MEMORY;
/* When our local device is not compatible with the DRI3 device provided by
* the X server we assume this is a PRIME system.
*/
bool use_buffer_blit = false;
if (!wsi_device->sw)
if (!wsi_x11_check_dri3_compatible(wsi_device, conn))
use_buffer_blit = true;
result = wsi_swapchain_init(wsi_device, &chain->base, device,
pCreateInfo, pAllocator, use_buffer_blit);
if (result != VK_SUCCESS)
goto fail_alloc;
chain->base.destroy = x11_swapchain_destroy;
chain->base.get_wsi_image = x11_get_wsi_image;
chain->base.acquire_next_image = x11_acquire_next_image;
chain->base.queue_present = x11_queue_present;
chain->base.present_mode = present_mode;
chain->base.image_count = num_images;
chain->conn = conn;
chain->window = window;
chain->depth = bit_depth;
chain->extent = pCreateInfo->imageExtent;
chain->send_sbc = 0;
chain->sent_image_count = 0;
chain->last_present_msc = 0;
chain->has_acquire_queue = false;
chain->has_present_queue = false;
chain->status = VK_SUCCESS;
chain->has_dri3_modifiers = wsi_conn->has_dri3_modifiers;
chain->has_mit_shm = wsi_conn->has_mit_shm;
/* When images in the swapchain don't fit the window, X can still present them, but it won't
* happen by flip, only by copy. So this is a suboptimal copy, because if the client would change
* the chain extents X may be able to flip
*/
if (chain->extent.width != cur_width || chain->extent.height != cur_height)
chain->status = VK_SUBOPTIMAL_KHR;
/* On a new swapchain this helper variable is set to false. Once we present it will have an
* impact once we ever do at least one flip and go back to copying afterwards. It is presumed
* that in this case here is a high likelihood X could do flips again if the client reallocates a
* new swapchain.
*
* Note that we used to inheritted this property from 'pCreateInfo->oldSwapchain'. But when it
* was true, and when the next present was completed with copying, we would return
* VK_SUBOPTIMAL_KHR and hint the app to reallocate again for no good reason. If all following
* presents on the surface were completed with copying because of some surface state change, we
* would always return VK_SUBOPTIMAL_KHR no matter how many times the app had reallocated.
*
* Note also that is is questionable in general if that mechanism is really useful. It ist not
* clear why on a change from flipping to copying we can assume a reallocation has a high chance
* of making flips work again per se. In other words it is not clear why there is need for
* another way to inform clients about suboptimal copies besides forwarding the
* 'PresentOptionSuboptimal' complete mode.
*/
chain->copy_is_suboptimal = false;
/* For our swapchain we need to listen to following Present extension events:
* - Configure: Window dimensions changed. Images in the swapchain might need
* to be reallocated.
* - Complete: An image from our swapchain was presented on the output.
* - Idle: An image from our swapchain is not anymore accessed by the X
* server and can be reused.
*/
chain->event_id = xcb_generate_id(chain->conn);
xcb_present_select_input(chain->conn, chain->event_id, chain->window,
XCB_PRESENT_EVENT_MASK_CONFIGURE_NOTIFY |
XCB_PRESENT_EVENT_MASK_COMPLETE_NOTIFY |
XCB_PRESENT_EVENT_MASK_IDLE_NOTIFY);
/* Create an XCB event queue to hold present events outside of the usual
* application event queue
*/
chain->special_event =
xcb_register_for_special_xge(chain->conn, &xcb_present_id,
chain->event_id, NULL);
/* Create the graphics context. */
chain->gc = xcb_generate_id(chain->conn);
if (!chain->gc) {
/* FINISHME: Choose a better error. */
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail_register;
}
cookie = xcb_create_gc(chain->conn,
chain->gc,
chain->window,
XCB_GC_GRAPHICS_EXPOSURES,
(uint32_t []) { 0 });
xcb_discard_reply(chain->conn, cookie.sequence);
uint64_t *modifiers[2] = {NULL, NULL};
uint32_t num_modifiers[2] = {0, 0};
uint32_t num_tranches = 0;
if (wsi_device->supports_modifiers)
wsi_x11_get_dri3_modifiers(wsi_conn, conn, window, chain->depth, 32,
pCreateInfo->compositeAlpha,
modifiers, num_modifiers, &num_tranches,
pAllocator);
if (wsi_device->sw) {
result = wsi_configure_cpu_image(&chain->base, pCreateInfo,
chain->has_mit_shm ? &alloc_shm : NULL,
&chain->base.image_info);
} else if (chain->base.use_buffer_blit) {
bool use_modifier = num_tranches > 0;
result = wsi_configure_prime_image(&chain->base, pCreateInfo,
use_modifier,
&chain->base.image_info);
} else {
result = wsi_configure_native_image(&chain->base, pCreateInfo,
num_tranches, num_modifiers,
(const uint64_t *const *)modifiers,
&chain->base.image_info);
}
if (result != VK_SUCCESS)
goto fail_modifiers;
uint32_t image = 0;
for (; image < chain->base.image_count; image++) {
result = x11_image_init(device, chain, pCreateInfo, pAllocator,
&chain->images[image]);
if (result != VK_SUCCESS)
goto fail_init_images;
}
/* Initialize queues for images in our swapchain. Possible queues are:
* - Present queue: for images sent to the X server but not yet presented.
* - Acquire queue: for images already presented but not yet released by the
* X server.
*
* In general queues are not used on software drivers, otherwise which queues
* are used depends on our presentation mode:
* - Fifo: present and acquire
* - Mailbox: present only
* - Immediate: present when we wait on fences before buffer submission (Xwayland)
*/
if ((chain->base.present_mode == VK_PRESENT_MODE_FIFO_KHR ||
chain->base.present_mode == VK_PRESENT_MODE_FIFO_RELAXED_KHR ||
x11_needs_wait_for_fences(wsi_device, wsi_conn,
chain->base.present_mode)) &&
!chain->base.wsi->sw) {
chain->has_present_queue = true;
/* The queues have a length of base.image_count + 1 because we will
* occasionally use UINT32_MAX to signal the other thread that an error
* has occurred and we don't want an overflow.
*/
int ret;
ret = wsi_queue_init(&chain->present_queue, chain->base.image_count + 1);
if (ret) {
goto fail_init_images;
}
if (chain->base.present_mode == VK_PRESENT_MODE_FIFO_KHR ||
chain->base.present_mode == VK_PRESENT_MODE_FIFO_RELAXED_KHR) {
chain->has_acquire_queue = true;
ret = wsi_queue_init(&chain->acquire_queue, chain->base.image_count + 1);
if (ret) {
wsi_queue_destroy(&chain->present_queue);
goto fail_init_images;
}
for (unsigned i = 0; i < chain->base.image_count; i++)
wsi_queue_push(&chain->acquire_queue, i);
}
ret = pthread_create(&chain->queue_manager, NULL,
x11_manage_fifo_queues, chain);
if (ret) {
wsi_queue_destroy(&chain->present_queue);
if (chain->has_acquire_queue)
wsi_queue_destroy(&chain->acquire_queue);
goto fail_init_images;
}
}
assert(chain->has_present_queue || !chain->has_acquire_queue);
for (int i = 0; i < ARRAY_SIZE(modifiers); i++)
vk_free(pAllocator, modifiers[i]);
/* It is safe to set it here as only one swapchain can be associated with
* the window, and swapchain creation does the association. At this point
* we know the creation is going to succeed. */
wsi_x11_set_adaptive_sync_property(conn, window,
wsi_device->enable_adaptive_sync);
*swapchain_out = &chain->base;
return VK_SUCCESS;
fail_init_images:
for (uint32_t j = 0; j < image; j++)
x11_image_finish(chain, pAllocator, &chain->images[j]);
wsi_destroy_image_info(&chain->base, &chain->base.image_info);
fail_modifiers:
for (int i = 0; i < ARRAY_SIZE(modifiers); i++)
vk_free(pAllocator, modifiers[i]);
fail_register:
xcb_unregister_for_special_event(chain->conn, chain->special_event);
wsi_swapchain_finish(&chain->base);
fail_alloc:
vk_free(pAllocator, chain);
return result;
}
VkResult
wsi_x11_init_wsi(struct wsi_device *wsi_device,
const VkAllocationCallbacks *alloc,
const struct driOptionCache *dri_options)
{
struct wsi_x11 *wsi;
VkResult result;
wsi = vk_alloc(alloc, sizeof(*wsi), 8,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!wsi) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail;
}
int ret = pthread_mutex_init(&wsi->mutex, NULL);
if (ret != 0) {
if (ret == ENOMEM) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
} else {
/* FINISHME: Choose a better error. */
result = VK_ERROR_OUT_OF_HOST_MEMORY;
}
goto fail_alloc;
}
wsi->connections = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
_mesa_key_pointer_equal);
if (!wsi->connections) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail_mutex;
}
if (dri_options) {
if (driCheckOption(dri_options, "vk_x11_override_min_image_count", DRI_INT)) {
wsi_device->x11.override_minImageCount =
driQueryOptioni(dri_options, "vk_x11_override_min_image_count");
}
if (driCheckOption(dri_options, "vk_x11_strict_image_count", DRI_BOOL)) {
wsi_device->x11.strict_imageCount =
driQueryOptionb(dri_options, "vk_x11_strict_image_count");
}
if (driCheckOption(dri_options, "vk_x11_ensure_min_image_count", DRI_BOOL)) {
wsi_device->x11.ensure_minImageCount =
driQueryOptionb(dri_options, "vk_x11_ensure_min_image_count");
}
wsi_device->x11.xwaylandWaitReady = true;
if (driCheckOption(dri_options, "vk_xwayland_wait_ready", DRI_BOOL)) {
wsi_device->x11.xwaylandWaitReady =
driQueryOptionb(dri_options, "vk_xwayland_wait_ready");
}
}
wsi->base.get_support = x11_surface_get_support;
wsi->base.get_capabilities2 = x11_surface_get_capabilities2;
wsi->base.get_formats = x11_surface_get_formats;
wsi->base.get_formats2 = x11_surface_get_formats2;
wsi->base.get_present_modes = x11_surface_get_present_modes;
wsi->base.get_present_rectangles = x11_surface_get_present_rectangles;
wsi->base.create_swapchain = x11_surface_create_swapchain;
wsi_device->wsi[VK_ICD_WSI_PLATFORM_XCB] = &wsi->base;
wsi_device->wsi[VK_ICD_WSI_PLATFORM_XLIB] = &wsi->base;
return VK_SUCCESS;
fail_mutex:
pthread_mutex_destroy(&wsi->mutex);
fail_alloc:
vk_free(alloc, wsi);
fail:
wsi_device->wsi[VK_ICD_WSI_PLATFORM_XCB] = NULL;
wsi_device->wsi[VK_ICD_WSI_PLATFORM_XLIB] = NULL;
return result;
}
void
wsi_x11_finish_wsi(struct wsi_device *wsi_device,
const VkAllocationCallbacks *alloc)
{
struct wsi_x11 *wsi =
(struct wsi_x11 *)wsi_device->wsi[VK_ICD_WSI_PLATFORM_XCB];
if (wsi) {
hash_table_foreach(wsi->connections, entry)
wsi_x11_connection_destroy(wsi_device, entry->data);
_mesa_hash_table_destroy(wsi->connections, NULL);
pthread_mutex_destroy(&wsi->mutex);
vk_free(alloc, wsi);
}
}