mesa/src/gallium/drivers/llvmpipe/lp_setup_tri.c

1250 lines
41 KiB
C

/**************************************************************************
*
* Copyright 2007 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Binning code for triangles
*/
#include "util/u_math.h"
#include "util/u_memory.h"
#include "util/u_rect.h"
#include "util/u_sse.h"
#include "lp_perf.h"
#include "lp_setup_context.h"
#include "lp_rast.h"
#include "lp_state_fs.h"
#include "lp_state_setup.h"
#include "lp_context.h"
#include <inttypes.h>
#if defined(PIPE_ARCH_SSE)
#include <emmintrin.h>
#elif defined(_ARCH_PWR8) && UTIL_ARCH_LITTLE_ENDIAN
#include <altivec.h>
#include "util/u_pwr8.h"
#endif
#if !defined(PIPE_ARCH_SSE)
static inline int
subpixel_snap(float a)
{
return util_iround(FIXED_ONE * a);
}
#endif
/* Position and area in fixed point coordinates */
struct fixed_position {
int32_t x[4];
int32_t y[4];
int32_t dx01;
int32_t dy01;
int32_t dx20;
int32_t dy20;
};
/**
* Alloc space for a new triangle plus the input.a0/dadx/dady arrays
* immediately after it.
* The memory is allocated from the per-scene pool, not per-tile.
* \param tri_size returns number of bytes allocated
* \param num_inputs number of fragment shader inputs
* \return pointer to triangle space
*/
struct lp_rast_triangle *
lp_setup_alloc_triangle(struct lp_scene *scene,
unsigned nr_inputs,
unsigned nr_planes,
unsigned *tri_size)
{
// add 1 for XYZW position
unsigned input_array_sz = (nr_inputs + 1) * sizeof(float[4]);
unsigned plane_sz = nr_planes * sizeof(struct lp_rast_plane);
STATIC_ASSERT(sizeof(struct lp_rast_plane) % 8 == 0);
*tri_size = (sizeof(struct lp_rast_triangle) +
3 * input_array_sz + // 3 = da + dadx + dady
plane_sz);
struct lp_rast_triangle *tri = lp_scene_alloc_aligned(scene, *tri_size, 16);
if (!tri)
return NULL;
tri->inputs.stride = input_array_sz;
{
ASSERTED char *a = (char *)tri;
ASSERTED char *b = (char *)&GET_PLANES(tri)[nr_planes];
assert(b - a == *tri_size);
}
return tri;
}
void
lp_setup_print_vertex(struct lp_setup_context *setup,
const char *name,
const float (*v)[4])
{
const struct lp_setup_variant_key *key = &setup->setup.variant->key;
debug_printf(" wpos (%s[0]) xyzw %f %f %f %f\n",
name,
v[0][0], v[0][1], v[0][2], v[0][3]);
for (int i = 0; i < key->num_inputs; i++) {
const float *in = v[key->inputs[i].src_index];
debug_printf(" in[%d] (%s[%d]) %s%s%s%s ",
i,
name, key->inputs[i].src_index,
(key->inputs[i].usage_mask & 0x1) ? "x" : " ",
(key->inputs[i].usage_mask & 0x2) ? "y" : " ",
(key->inputs[i].usage_mask & 0x4) ? "z" : " ",
(key->inputs[i].usage_mask & 0x8) ? "w" : " ");
for (int j = 0; j < 4; j++)
if (key->inputs[i].usage_mask & (1<<j))
debug_printf("%.5f ", in[j]);
debug_printf("\n");
}
}
/**
* Print triangle vertex attribs (for debug).
*/
void
lp_setup_print_triangle(struct lp_setup_context *setup,
const float (*v0)[4],
const float (*v1)[4],
const float (*v2)[4])
{
debug_printf("triangle\n");
{
const float ex = v0[0][0] - v2[0][0];
const float ey = v0[0][1] - v2[0][1];
const float fx = v1[0][0] - v2[0][0];
const float fy = v1[0][1] - v2[0][1];
/* det = cross(e,f).z */
const float det = ex * fy - ey * fx;
if (det < 0.0f)
debug_printf(" - ccw\n");
else if (det > 0.0f)
debug_printf(" - cw\n");
else
debug_printf(" - zero area\n");
}
lp_setup_print_vertex(setup, "v0", v0);
lp_setup_print_vertex(setup, "v1", v1);
lp_setup_print_vertex(setup, "v2", v2);
}
#define MAX_PLANES 8
static unsigned
lp_rast_tri_tab[MAX_PLANES+1] = {
0, /* should be impossible */
LP_RAST_OP_TRIANGLE_1,
LP_RAST_OP_TRIANGLE_2,
LP_RAST_OP_TRIANGLE_3,
LP_RAST_OP_TRIANGLE_4,
LP_RAST_OP_TRIANGLE_5,
LP_RAST_OP_TRIANGLE_6,
LP_RAST_OP_TRIANGLE_7,
LP_RAST_OP_TRIANGLE_8
};
static unsigned
lp_rast_32_tri_tab[MAX_PLANES+1] = {
0, /* should be impossible */
LP_RAST_OP_TRIANGLE_32_1,
LP_RAST_OP_TRIANGLE_32_2,
LP_RAST_OP_TRIANGLE_32_3,
LP_RAST_OP_TRIANGLE_32_4,
LP_RAST_OP_TRIANGLE_32_5,
LP_RAST_OP_TRIANGLE_32_6,
LP_RAST_OP_TRIANGLE_32_7,
LP_RAST_OP_TRIANGLE_32_8
};
static unsigned
lp_rast_ms_tri_tab[MAX_PLANES+1] = {
0, /* should be impossible */
LP_RAST_OP_MS_TRIANGLE_1,
LP_RAST_OP_MS_TRIANGLE_2,
LP_RAST_OP_MS_TRIANGLE_3,
LP_RAST_OP_MS_TRIANGLE_4,
LP_RAST_OP_MS_TRIANGLE_5,
LP_RAST_OP_MS_TRIANGLE_6,
LP_RAST_OP_MS_TRIANGLE_7,
LP_RAST_OP_MS_TRIANGLE_8
};
/*
* Detect big primitives drawn with an alpha == 1.0.
*
* This is used when simulating anti-aliasing primitives in shaders, e.g.,
* when drawing the windows client area in Aero's flip-3d effect.
*/
static boolean
check_opaque(const struct lp_setup_context *setup,
const float (*v1)[4],
const float (*v2)[4],
const float (*v3)[4])
{
const struct lp_fragment_shader_variant *variant =
setup->fs.current.variant;
if (variant->opaque)
return TRUE;
if (!variant->potentially_opaque)
return FALSE;
const struct lp_tgsi_channel_info *alpha_info = &variant->shader->info.cbuf[0][3];
if (alpha_info->file == TGSI_FILE_CONSTANT) {
const float *constants = setup->fs.current.jit_context.constants[0];
float alpha = constants[alpha_info->u.index*4 +
alpha_info->swizzle];
return alpha == 1.0f;
}
if (alpha_info->file == TGSI_FILE_INPUT) {
return (v1[1 + alpha_info->u.index][alpha_info->swizzle] == 1.0f &&
v2[1 + alpha_info->u.index][alpha_info->swizzle] == 1.0f &&
v3[1 + alpha_info->u.index][alpha_info->swizzle] == 1.0f);
}
return FALSE;
}
/**
* Do basic setup for triangle rasterization and determine which
* framebuffer tiles are touched. Put the triangle in the scene's
* bins for the tiles which we overlap.
*/
static boolean
do_triangle_ccw(struct lp_setup_context *setup,
struct fixed_position *position,
const float (*v0)[4],
const float (*v1)[4],
const float (*v2)[4],
boolean frontfacing)
{
struct lp_scene *scene = setup->scene;
if (0)
lp_setup_print_triangle(setup, v0, v1, v2);
const float (*pv)[4];
if (setup->flatshade_first) {
pv = v0;
} else {
pv = v2;
}
unsigned viewport_index = 0;
if (setup->viewport_index_slot > 0) {
unsigned *udata = (unsigned*)pv[setup->viewport_index_slot];
viewport_index = lp_clamp_viewport_idx(*udata);
}
unsigned layer = 0;
if (setup->layer_slot > 0) {
layer = *(unsigned*)pv[setup->layer_slot];
layer = MIN2(layer, scene->fb_max_layer);
}
/* Bounding rectangle (in pixels) */
struct u_rect bbox;
{
/* Yes this is necessary to accurately calculate bounding boxes
* with the two fill-conventions we support. GL (normally) ends
* up needing a bottom-left fill convention, which requires
* slightly different rounding.
*/
int adj = (setup->bottom_edge_rule != 0) ? 1 : 0;
/* Inclusive x0, exclusive x1 */
bbox.x0 = MIN3(position->x[0], position->x[1], position->x[2]) >> FIXED_ORDER;
bbox.x1 = (MAX3(position->x[0], position->x[1], position->x[2]) - 1) >> FIXED_ORDER;
/* Inclusive / exclusive depending upon adj (bottom-left or top-right) */
bbox.y0 = (MIN3(position->y[0], position->y[1], position->y[2]) + adj) >> FIXED_ORDER;
bbox.y1 = (MAX3(position->y[0], position->y[1], position->y[2]) - 1 + adj) >> FIXED_ORDER;
}
if (!u_rect_test_intersection(&setup->draw_regions[viewport_index], &bbox)) {
if (0) debug_printf("no intersection\n");
LP_COUNT(nr_culled_tris);
return TRUE;
}
int max_szorig = ((bbox.x1 - (bbox.x0 & ~3)) |
(bbox.y1 - (bbox.y0 & ~3)));
boolean use_32bits = max_szorig <= MAX_FIXED_LENGTH32;
#if defined(_ARCH_PWR8) && UTIL_ARCH_LITTLE_ENDIAN
boolean pwr8_limit_check = (bbox.x1 - bbox.x0) <= MAX_FIXED_LENGTH32 &&
(bbox.y1 - bbox.y0) <= MAX_FIXED_LENGTH32;
#endif
/* Can safely discard negative regions, but need to keep hold of
* information about when the triangle extends past screen
* boundaries. See trimmed_box in lp_setup_bin_triangle().
*/
bbox.x0 = MAX2(bbox.x0, 0);
bbox.y0 = MAX2(bbox.y0, 0);
int nr_planes = 3;
/*
* Determine how many scissor planes we need, that is drop scissor
* edges if the bounding box of the tri is fully inside that edge.
*/
const struct u_rect *scissor = &setup->draw_regions[viewport_index];
boolean s_planes[4];
scissor_planes_needed(s_planes, &bbox, scissor);
nr_planes += s_planes[0] + s_planes[1] + s_planes[2] + s_planes[3];
unsigned tri_bytes;
const struct lp_setup_variant_key *key = &setup->setup.variant->key;
struct lp_rast_triangle *tri =
lp_setup_alloc_triangle(scene, key->num_inputs, nr_planes, &tri_bytes);
if (!tri)
return FALSE;
#ifdef DEBUG
tri->v[0][0] = v0[0][0];
tri->v[1][0] = v1[0][0];
tri->v[2][0] = v2[0][0];
tri->v[0][1] = v0[0][1];
tri->v[1][1] = v1[0][1];
tri->v[2][1] = v2[0][1];
#endif
LP_COUNT(nr_tris);
/*
* Rotate the tri such that v0 is closest to the fb origin.
* This can give more accurate a0 value (which is at fb origin)
* when calculating the interpolants.
* It can't work when there's flat shading for instance in one
* of the attributes, hence restrict this to just a single attribute
* which is what causes some test failures.
* (This does not address the problem that interpolation may be
* inaccurate if gradients are relatively steep in small tris far
* away from the origin. It does however fix the (silly) wgf11rasterizer
* Interpolator test.)
* XXX This causes problems with mipgen -EmuTexture for not yet really
* understood reasons (if the vertices would be submitted in a different
* order, we'd also generate the same "wrong" results here without
* rotation). In any case, that we generate different values if a prim
* has the vertices rotated but is otherwise the same (which is due to
* numerical issues) is not a nice property. An additional problem by
* swapping the vertices here (which is possibly worse) is that
* the same primitive coming in twice might generate different values
* (in particular for z) due to the swapping potentially not happening
* both times, if the attributes to be interpolated are different. For now,
* just restrict this to not get used with dx9 (by checking pixel offset),
* could also restrict it further to only trigger with wgf11Interpolator
* Rasterizer test (the only place which needs it, with always the same
* vertices even).
*/
if ((LP_DEBUG & DEBUG_ACCURATE_A0) &&
setup->pixel_offset == 0.5f &&
key->num_inputs == 1 &&
(key->inputs[0].interp == LP_INTERP_LINEAR ||
key->inputs[0].interp == LP_INTERP_PERSPECTIVE)) {
float dist0 = v0[0][0] * v0[0][0] + v0[0][1] * v0[0][1];
float dist1 = v1[0][0] * v1[0][0] + v1[0][1] * v1[0][1];
float dist2 = v2[0][0] * v2[0][0] + v2[0][1] * v2[0][1];
if (dist0 > dist1 && dist1 < dist2) {
const float (*vt)[4];
int x, y;
vt = v0;
v0 = v1;
v1 = v2;
v2 = vt;
x = position->x[0];
y = position->y[0];
position->x[0] = position->x[1];
position->y[0] = position->y[1];
position->x[1] = position->x[2];
position->y[1] = position->y[2];
position->x[2] = x;
position->y[2] = y;
position->dx20 = position->dx01;
position->dy20 = position->dy01;
position->dx01 = position->x[0] - position->x[1];
position->dy01 = position->y[0] - position->y[1];
} else if (dist0 > dist2) {
const float (*vt)[4];
int x, y;
vt = v0;
v0 = v2;
v2 = v1;
v1 = vt;
x = position->x[0];
y = position->y[0];
position->x[0] = position->x[2];
position->y[0] = position->y[2];
position->x[2] = position->x[1];
position->y[2] = position->y[1];
position->x[1] = x;
position->y[1] = y;
position->dx01 = position->dx20;
position->dy01 = position->dy20;
position->dx20 = position->x[2] - position->x[0];
position->dy20 = position->y[2] - position->y[0];
}
}
/* Setup parameter interpolants:
*/
setup->setup.variant->jit_function(v0, v1, v2,
frontfacing,
GET_A0(&tri->inputs),
GET_DADX(&tri->inputs),
GET_DADY(&tri->inputs),
&setup->setup.variant->key);
tri->inputs.frontfacing = frontfacing;
tri->inputs.disable = FALSE;
tri->inputs.is_blit = FALSE;
tri->inputs.layer = layer;
tri->inputs.viewport_index = viewport_index;
tri->inputs.view_index = setup->view_index;
if (0)
lp_dump_setup_coef(&setup->setup.variant->key,
GET_A0(&tri->inputs),
GET_DADX(&tri->inputs),
GET_DADY(&tri->inputs));
struct lp_rast_plane *plane = GET_PLANES(tri);
#if defined(PIPE_ARCH_SSE)
if (1) {
__m128i vertx, verty;
__m128i shufx, shufy;
__m128i dcdx, dcdy;
__m128i cdx02, cdx13, cdy02, cdy13, c02, c13;
__m128i c01, c23, unused;
__m128i dcdx_neg_mask;
__m128i dcdy_neg_mask;
__m128i dcdx_zero_mask;
__m128i top_left_flag, c_dec;
__m128i eo, p0, p1, p2;
__m128i zero = _mm_setzero_si128();
vertx = _mm_load_si128((__m128i *)position->x); /* vertex x coords */
verty = _mm_load_si128((__m128i *)position->y); /* vertex y coords */
shufx = _mm_shuffle_epi32(vertx, _MM_SHUFFLE(3,0,2,1));
shufy = _mm_shuffle_epi32(verty, _MM_SHUFFLE(3,0,2,1));
dcdx = _mm_sub_epi32(verty, shufy);
dcdy = _mm_sub_epi32(vertx, shufx);
dcdx_neg_mask = _mm_srai_epi32(dcdx, 31);
dcdx_zero_mask = _mm_cmpeq_epi32(dcdx, zero);
dcdy_neg_mask = _mm_srai_epi32(dcdy, 31);
top_left_flag = _mm_set1_epi32((setup->bottom_edge_rule == 0) ? ~0 : 0);
c_dec = _mm_or_si128(dcdx_neg_mask,
_mm_and_si128(dcdx_zero_mask,
_mm_xor_si128(dcdy_neg_mask,
top_left_flag)));
/*
* 64 bit arithmetic.
* Note we need _signed_ mul (_mm_mul_epi32) which we emulate.
*/
cdx02 = mm_mullohi_epi32(dcdx, vertx, &cdx13);
cdy02 = mm_mullohi_epi32(dcdy, verty, &cdy13);
c02 = _mm_sub_epi64(cdx02, cdy02);
c13 = _mm_sub_epi64(cdx13, cdy13);
c02 = _mm_sub_epi64(c02, _mm_shuffle_epi32(c_dec,
_MM_SHUFFLE(2,2,0,0)));
c13 = _mm_sub_epi64(c13, _mm_shuffle_epi32(c_dec,
_MM_SHUFFLE(3,3,1,1)));
/*
* Useful for very small fbs/tris (or fewer subpixel bits) only:
* c = _mm_sub_epi32(mm_mullo_epi32(dcdx, vertx),
* mm_mullo_epi32(dcdy, verty));
*
* c = _mm_sub_epi32(c, c_dec);
*/
/* Scale up to match c:
*/
dcdx = _mm_slli_epi32(dcdx, FIXED_ORDER);
dcdy = _mm_slli_epi32(dcdy, FIXED_ORDER);
/*
* Calculate trivial reject values:
* Note eo cannot overflow even if dcdx/dcdy would already have
* 31 bits (which they shouldn't have). This is because eo
* is never negative (albeit if we rely on that need to be careful...)
*/
eo = _mm_sub_epi32(_mm_andnot_si128(dcdy_neg_mask, dcdy),
_mm_and_si128(dcdx_neg_mask, dcdx));
/* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
/*
* Pointless transpose which gets undone immediately in
* rasterization.
* It is actually difficult to do away with it - would essentially
* need GET_PLANES_DX, GET_PLANES_DY etc., but the calculations
* for this then would need to depend on the number of planes.
* The transpose is quite special here due to c being 64bit...
* The store has to be unaligned (unless we'd make the plane size
* a multiple of 128), and of course storing eo separately...
*/
c01 = _mm_unpacklo_epi64(c02, c13);
c23 = _mm_unpackhi_epi64(c02, c13);
transpose2_64_2_32(&c01, &c23, &dcdx, &dcdy,
&p0, &p1, &p2, &unused);
_mm_storeu_si128((__m128i *)&plane[0], p0);
plane[0].eo = (uint32_t)_mm_cvtsi128_si32(eo);
_mm_storeu_si128((__m128i *)&plane[1], p1);
eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(3,2,0,1));
plane[1].eo = (uint32_t)_mm_cvtsi128_si32(eo);
_mm_storeu_si128((__m128i *)&plane[2], p2);
eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(0,0,0,2));
plane[2].eo = (uint32_t)_mm_cvtsi128_si32(eo);
} else
#elif defined(_ARCH_PWR8) && UTIL_ARCH_LITTLE_ENDIAN
/*
* XXX this code is effectively disabled for all practical purposes,
* as the allowed fb size is tiny if FIXED_ORDER is 8.
*/
if (setup->fb.width <= MAX_FIXED_LENGTH32 &&
setup->fb.height <= MAX_FIXED_LENGTH32 &&
pwr8_limit_check) {
unsigned int bottom_edge;
__m128i vertx, verty;
__m128i shufx, shufy;
__m128i dcdx, dcdy, c;
__m128i unused;
__m128i dcdx_neg_mask;
__m128i dcdy_neg_mask;
__m128i dcdx_zero_mask;
__m128i top_left_flag;
__m128i c_inc_mask, c_inc;
__m128i eo, p0, p1, p2;
__m128i_union vshuf_mask;
__m128i zero = vec_splats((unsigned char) 0);
alignas(16) int32_t temp_vec[4];
#if UTIL_ARCH_LITTLE_ENDIAN
vshuf_mask.i[0] = 0x07060504;
vshuf_mask.i[1] = 0x0B0A0908;
vshuf_mask.i[2] = 0x03020100;
vshuf_mask.i[3] = 0x0F0E0D0C;
#else
vshuf_mask.i[0] = 0x00010203;
vshuf_mask.i[1] = 0x0C0D0E0F;
vshuf_mask.i[2] = 0x04050607;
vshuf_mask.i[3] = 0x08090A0B;
#endif
/* vertex x coords */
vertx = vec_load_si128((const uint32_t *) position->x);
/* vertex y coords */
verty = vec_load_si128((const uint32_t *) position->y);
shufx = vec_perm (vertx, vertx, vshuf_mask.m128i);
shufy = vec_perm (verty, verty, vshuf_mask.m128i);
dcdx = vec_sub_epi32(verty, shufy);
dcdy = vec_sub_epi32(vertx, shufx);
dcdx_neg_mask = vec_srai_epi32(dcdx, 31);
dcdx_zero_mask = vec_cmpeq_epi32(dcdx, zero);
dcdy_neg_mask = vec_srai_epi32(dcdy, 31);
bottom_edge = (setup->bottom_edge_rule == 0) ? ~0 : 0;
top_left_flag = (__m128i) vec_splats(bottom_edge);
c_inc_mask = vec_or(dcdx_neg_mask,
vec_and(dcdx_zero_mask,
vec_xor(dcdy_neg_mask,
top_left_flag)));
c_inc = vec_srli_epi32(c_inc_mask, 31);
c = vec_sub_epi32(vec_mullo_epi32(dcdx, vertx),
vec_mullo_epi32(dcdy, verty));
c = vec_add_epi32(c, c_inc);
/* Scale up to match c:
*/
dcdx = vec_slli_epi32(dcdx, FIXED_ORDER);
dcdy = vec_slli_epi32(dcdy, FIXED_ORDER);
/* Calculate trivial reject values:
*/
eo = vec_sub_epi32(vec_andnot_si128(dcdy_neg_mask, dcdy),
vec_and(dcdx_neg_mask, dcdx));
/* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
/* Pointless transpose which gets undone immediately in
* rasterization:
*/
transpose4_epi32(&c, &dcdx, &dcdy, &eo,
&p0, &p1, &p2, &unused);
#define STORE_PLANE(plane, vec) do { \
vec_store_si128((uint32_t *)&temp_vec, vec); \
plane.c = (int64_t)temp_vec[0]; \
plane.dcdx = temp_vec[1]; \
plane.dcdy = temp_vec[2]; \
plane.eo = temp_vec[3]; \
} while(0)
STORE_PLANE(plane[0], p0);
STORE_PLANE(plane[1], p1);
STORE_PLANE(plane[2], p2);
#undef STORE_PLANE
} else
#endif
{
plane[0].dcdy = position->dx01;
plane[1].dcdy = position->x[1] - position->x[2];
plane[2].dcdy = position->dx20;
plane[0].dcdx = position->dy01;
plane[1].dcdx = position->y[1] - position->y[2];
plane[2].dcdx = position->dy20;
for (int i = 0; i < 3; i++) {
/* half-edge constants, will be iterated over the whole render
* target.
*/
plane[i].c = IMUL64(plane[i].dcdx, position->x[i]) -
IMUL64(plane[i].dcdy, position->y[i]);
/* correct for top-left vs. bottom-left fill convention.
*/
if (plane[i].dcdx < 0) {
/* both fill conventions want this - adjust for left edges */
plane[i].c++;
}
else if (plane[i].dcdx == 0) {
if (setup->bottom_edge_rule == 0) {
/* correct for top-left fill convention:
*/
if (plane[i].dcdy > 0)
plane[i].c++;
} else {
/* correct for bottom-left fill convention:
*/
if (plane[i].dcdy < 0)
plane[i].c++;
}
}
/* Scale up to match c:
*/
assert((plane[i].dcdx << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdx);
assert((plane[i].dcdy << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdy);
plane[i].dcdx <<= FIXED_ORDER;
plane[i].dcdy <<= FIXED_ORDER;
/* find trivial reject offsets for each edge for a single-pixel
* sized block. These will be scaled up at each recursive level to
* match the active blocksize. Scaling in this way works best if
* the blocks are square.
*/
plane[i].eo = 0;
if (plane[i].dcdx < 0) plane[i].eo -= plane[i].dcdx;
if (plane[i].dcdy > 0) plane[i].eo += plane[i].dcdy;
}
}
if (0) {
debug_printf("p0: %"PRIx64"/%08x/%08x/%08x\n",
plane[0].c,
plane[0].dcdx,
plane[0].dcdy,
plane[0].eo);
debug_printf("p1: %"PRIx64"/%08x/%08x/%08x\n",
plane[1].c,
plane[1].dcdx,
plane[1].dcdy,
plane[1].eo);
debug_printf("p2: %"PRIx64"/%08x/%08x/%08x\n",
plane[2].c,
plane[2].dcdx,
plane[2].dcdy,
plane[2].eo);
}
if (nr_planes > 3) {
lp_setup_add_scissor_planes(scissor, &plane[3], s_planes, setup->multisample);
}
return lp_setup_bin_triangle(setup, tri, use_32bits,
check_opaque(setup, v0, v1, v2),
&bbox, nr_planes, viewport_index);
}
/*
* Round to nearest less or equal power of two of the input.
*
* Undefined if no bit set exists, so code should check against 0 first.
*/
static inline uint32_t
floor_pot(uint32_t n)
{
#if defined(PIPE_CC_GCC) && (defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64))
if (n == 0)
return 0;
__asm__("bsr %1,%0"
: "=r" (n)
: "rm" (n)
: "cc");
return 1 << n;
#else
n |= (n >> 1);
n |= (n >> 2);
n |= (n >> 4);
n |= (n >> 8);
n |= (n >> 16);
return n - (n >> 1);
#endif
}
boolean
lp_setup_bin_triangle(struct lp_setup_context *setup,
struct lp_rast_triangle *tri,
boolean use_32bits,
boolean opaque,
const struct u_rect *bbox,
int nr_planes,
unsigned viewport_index)
{
struct lp_scene *scene = setup->scene;
unsigned cmd;
/* What is the largest power-of-two boundary this triangle crosses:
*/
const int dx = floor_pot((bbox->x0 ^ bbox->x1) |
(bbox->y0 ^ bbox->y1));
/* The largest dimension of the rasterized area of the triangle
* (aligned to a 4x4 grid), rounded down to the nearest power of two:
*/
const int max_sz = ((bbox->x1 - (bbox->x0 & ~3)) |
(bbox->y1 - (bbox->y0 & ~3)));
const int sz = floor_pot(max_sz);
/*
* NOTE: It is important to use the original bounding box
* which might contain negative values here, because if the
* plane math may overflow or not with the 32bit rasterization
* functions depends on the original extent of the triangle.
*/
/* Now apply scissor, etc to the bounding box. Could do this
* earlier, but it confuses the logic for tri-16 and would force
* the rasterizer to also respect scissor, etc, just for the rare
* cases where a small triangle extends beyond the scissor.
*/
struct u_rect trimmed_box = *bbox;
u_rect_find_intersection(&setup->draw_regions[viewport_index],
&trimmed_box);
/* Determine which tile(s) intersect the triangle's bounding box
*/
if (dx < TILE_SIZE) {
const int ix0 = bbox->x0 / TILE_SIZE;
const int iy0 = bbox->y0 / TILE_SIZE;
unsigned px = bbox->x0 & 63 & ~3;
unsigned py = bbox->y0 & 63 & ~3;
assert(iy0 == bbox->y1 / TILE_SIZE &&
ix0 == bbox->x1 / TILE_SIZE);
if (nr_planes == 3) {
if (sz < 4) {
/* Triangle is contained in a single 4x4 stamp:
*/
assert(px + 4 <= TILE_SIZE);
assert(py + 4 <= TILE_SIZE);
if (setup->multisample)
cmd = LP_RAST_OP_MS_TRIANGLE_3_4;
else
cmd = use_32bits ? LP_RAST_OP_TRIANGLE_32_3_4 : LP_RAST_OP_TRIANGLE_3_4;
return lp_scene_bin_cmd_with_state(scene, ix0, iy0,
setup->fs.stored, cmd,
lp_rast_arg_triangle_contained(tri, px, py));
}
if (sz < 16) {
/* Triangle is contained in a single 16x16 block:
*/
/*
* The 16x16 block is only 4x4 aligned, and can exceed the tile
* dimensions if the triangle is 16 pixels in one dimension but 4
* in the other. So budge the 16x16 back inside the tile.
*/
px = MIN2(px, TILE_SIZE - 16);
py = MIN2(py, TILE_SIZE - 16);
assert(px + 16 <= TILE_SIZE);
assert(py + 16 <= TILE_SIZE);
if (setup->multisample)
cmd = LP_RAST_OP_MS_TRIANGLE_3_16;
else
cmd = use_32bits ? LP_RAST_OP_TRIANGLE_32_3_16 : LP_RAST_OP_TRIANGLE_3_16;
return lp_scene_bin_cmd_with_state(scene, ix0, iy0,
setup->fs.stored, cmd,
lp_rast_arg_triangle_contained(tri, px, py));
}
} else if (nr_planes == 4 && sz < 16) {
px = MIN2(px, TILE_SIZE - 16);
py = MIN2(py, TILE_SIZE - 16);
assert(px + 16 <= TILE_SIZE);
assert(py + 16 <= TILE_SIZE);
if (setup->multisample)
cmd = LP_RAST_OP_MS_TRIANGLE_4_16;
else
cmd = use_32bits ? LP_RAST_OP_TRIANGLE_32_4_16 : LP_RAST_OP_TRIANGLE_4_16;
return lp_scene_bin_cmd_with_state(scene, ix0, iy0,
setup->fs.stored, cmd,
lp_rast_arg_triangle_contained(tri, px, py));
}
/* Triangle is contained in a single tile:
*/
if (setup->multisample)
cmd = lp_rast_ms_tri_tab[nr_planes];
else
cmd = use_32bits ? lp_rast_32_tri_tab[nr_planes] : lp_rast_tri_tab[nr_planes];
return lp_scene_bin_cmd_with_state(scene, ix0, iy0, setup->fs.stored, cmd,
lp_rast_arg_triangle(tri, (1<<nr_planes)-1));
} else {
struct lp_rast_plane *plane = GET_PLANES(tri);
int64_t c[MAX_PLANES];
int64_t ei[MAX_PLANES];
int64_t eo[MAX_PLANES];
int64_t xstep[MAX_PLANES];
int64_t ystep[MAX_PLANES];
int x, y;
const int ix0 = trimmed_box.x0 / TILE_SIZE;
const int iy0 = trimmed_box.y0 / TILE_SIZE;
const int ix1 = trimmed_box.x1 / TILE_SIZE;
const int iy1 = trimmed_box.y1 / TILE_SIZE;
for (int i = 0; i < nr_planes; i++) {
c[i] = (plane[i].c +
IMUL64(plane[i].dcdy, iy0) * TILE_SIZE -
IMUL64(plane[i].dcdx, ix0) * TILE_SIZE);
ei[i] = (plane[i].dcdy -
plane[i].dcdx -
(int64_t)plane[i].eo) << TILE_ORDER;
eo[i] = (int64_t)plane[i].eo << TILE_ORDER;
xstep[i] = -(((int64_t)plane[i].dcdx) << TILE_ORDER);
ystep[i] = ((int64_t)plane[i].dcdy) << TILE_ORDER;
}
tri->inputs.is_blit = lp_setup_is_blit(setup, &tri->inputs);
/* Test tile-sized blocks against the triangle.
* Discard blocks fully outside the tri. If the block is fully
* contained inside the tri, bin an lp_rast_shade_tile command.
* Else, bin a lp_rast_triangle command.
*/
for (y = iy0; y <= iy1; y++) {
boolean in = FALSE; /* are we inside the triangle? */
int64_t cx[MAX_PLANES];
for (int i = 0; i < nr_planes; i++)
cx[i] = c[i];
for (x = ix0; x <= ix1; x++) {
int out = 0;
int partial = 0;
for (int i = 0; i < nr_planes; i++) {
int64_t planeout = cx[i] + eo[i];
int64_t planepartial = cx[i] + ei[i] - 1;
out |= (int) (planeout >> 63);
partial |= ((int) (planepartial >> 63)) & (1<<i);
}
if (out) {
/* do nothing */
if (in)
break; /* exiting triangle, all done with this row */
LP_COUNT(nr_empty_64);
} else if (partial) {
/* Not trivially accepted by at least one plane -
* rasterize/shade partial tile
*/
int count = util_bitcount(partial);
in = TRUE;
if (setup->multisample)
cmd = lp_rast_ms_tri_tab[count];
else
cmd = use_32bits ? lp_rast_32_tri_tab[count] : lp_rast_tri_tab[count];
if (!lp_scene_bin_cmd_with_state(scene, x, y,
setup->fs.stored, cmd,
lp_rast_arg_triangle(tri, partial)))
goto fail;
LP_COUNT(nr_partially_covered_64);
} else {
/* triangle covers the whole tile- shade whole tile */
LP_COUNT(nr_fully_covered_64);
in = TRUE;
if (!lp_setup_whole_tile(setup, &tri->inputs, x, y, opaque))
goto fail;
}
/* Iterate cx values across the region: */
for (int i = 0; i < nr_planes; i++)
cx[i] += xstep[i];
}
/* Iterate c values down the region: */
for (int i = 0; i < nr_planes; i++)
c[i] += ystep[i];
}
}
return TRUE;
fail:
/* Need to disable any partially binned triangle. This is easier
* than trying to locate all the triangle, shade-tile, etc,
* commands which may have been binned.
*/
tri->inputs.disable = TRUE;
return FALSE;
}
/**
* Try to draw the triangle, restart the scene on failure.
*/
static inline void
retry_triangle_ccw(struct lp_setup_context *setup,
struct fixed_position *position,
const float (*v0)[4],
const float (*v1)[4],
const float (*v2)[4],
boolean front)
{
if (!do_triangle_ccw(setup, position, v0, v1, v2, front)) {
if (!lp_setup_flush_and_restart(setup))
return;
if (!do_triangle_ccw(setup, position, v0, v1, v2, front))
return;
}
}
/**
* Calculate fixed position data for a triangle
* It is unfortunate we need to do that here (as we need area
* calculated in fixed point), as there's quite some code duplication
* to what is done in the jit setup prog.
*/
static inline int8_t
calc_fixed_position(struct lp_setup_context *setup,
struct fixed_position* position,
const float (*v0)[4],
const float (*v1)[4],
const float (*v2)[4])
{
float pixel_offset = setup->multisample ? 0.0 : setup->pixel_offset;
/*
* The rounding may not be quite the same with PIPE_ARCH_SSE
* (util_iround right now only does nearest/even on x87,
* otherwise nearest/away-from-zero).
* Both should be acceptable, I think.
*/
#if defined(PIPE_ARCH_SSE)
__m128 v0r, v1r;
__m128 vxy0xy2, vxy1xy0;
__m128i vxy0xy2i, vxy1xy0i;
__m128i dxdy0120, x0x2y0y2, x1x0y1y0, x0120, y0120;
__m128 pix_offset = _mm_set1_ps(pixel_offset);
__m128 fixed_one = _mm_set1_ps((float)FIXED_ONE);
v0r = _mm_castpd_ps(_mm_load_sd((double *)v0[0]));
vxy0xy2 = _mm_loadh_pi(v0r, (__m64 *)v2[0]);
v1r = _mm_castpd_ps(_mm_load_sd((double *)v1[0]));
vxy1xy0 = _mm_movelh_ps(v1r, vxy0xy2);
vxy0xy2 = _mm_sub_ps(vxy0xy2, pix_offset);
vxy1xy0 = _mm_sub_ps(vxy1xy0, pix_offset);
vxy0xy2 = _mm_mul_ps(vxy0xy2, fixed_one);
vxy1xy0 = _mm_mul_ps(vxy1xy0, fixed_one);
vxy0xy2i = _mm_cvtps_epi32(vxy0xy2);
vxy1xy0i = _mm_cvtps_epi32(vxy1xy0);
dxdy0120 = _mm_sub_epi32(vxy0xy2i, vxy1xy0i);
_mm_store_si128((__m128i *)&position->dx01, dxdy0120);
/*
* For the mul, would need some more shuffles, plus emulation
* for the signed mul (without sse41), so don't bother.
*/
x0x2y0y2 = _mm_shuffle_epi32(vxy0xy2i, _MM_SHUFFLE(3,1,2,0));
x1x0y1y0 = _mm_shuffle_epi32(vxy1xy0i, _MM_SHUFFLE(3,1,2,0));
x0120 = _mm_unpacklo_epi32(x0x2y0y2, x1x0y1y0);
y0120 = _mm_unpackhi_epi32(x0x2y0y2, x1x0y1y0);
_mm_store_si128((__m128i *)&position->x[0], x0120);
_mm_store_si128((__m128i *)&position->y[0], y0120);
#else
position->x[0] = subpixel_snap(v0[0][0] - pixel_offset);
position->x[1] = subpixel_snap(v1[0][0] - pixel_offset);
position->x[2] = subpixel_snap(v2[0][0] - pixel_offset);
position->x[3] = 0; // should be unused
position->y[0] = subpixel_snap(v0[0][1] - pixel_offset);
position->y[1] = subpixel_snap(v1[0][1] - pixel_offset);
position->y[2] = subpixel_snap(v2[0][1] - pixel_offset);
position->y[3] = 0; // should be unused
position->dx01 = position->x[0] - position->x[1];
position->dy01 = position->y[0] - position->y[1];
position->dx20 = position->x[2] - position->x[0];
position->dy20 = position->y[2] - position->y[0];
#endif
uint64_t area = IMUL64(position->dx01, position->dy20) -
IMUL64(position->dx20, position->dy01);
return area == 0 ? 0 : (area & (1ULL << 63)) ? -1 : 1;
}
/**
* Rotate a triangle, flipping its clockwise direction,
* Swaps values for xy[0] and xy[1]
*/
static inline void
rotate_fixed_position_01(struct fixed_position* position)
{
int x = position->x[1];
int y = position->y[1];
position->x[1] = position->x[0];
position->y[1] = position->y[0];
position->x[0] = x;
position->y[0] = y;
position->dx01 = -position->dx01;
position->dy01 = -position->dy01;
position->dx20 = position->x[2] - position->x[0];
position->dy20 = position->y[2] - position->y[0];
}
/**
* Rotate a triangle, flipping its clockwise direction,
* Swaps values for xy[1] and xy[2]
*/
static inline void
rotate_fixed_position_12(struct fixed_position* position)
{
int x = position->x[2];
int y = position->y[2];
position->x[2] = position->x[1];
position->y[2] = position->y[1];
position->x[1] = x;
position->y[1] = y;
x = position->dx01;
y = position->dy01;
position->dx01 = -position->dx20;
position->dy01 = -position->dy20;
position->dx20 = -x;
position->dy20 = -y;
}
/**
* Draw triangle if it's CW, cull otherwise.
*/
static void
triangle_cw(struct lp_setup_context *setup,
const float (*v0)[4],
const float (*v1)[4],
const float (*v2)[4])
{
alignas(16) struct fixed_position position;
struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
if (lp_context->active_statistics_queries) {
lp_context->pipeline_statistics.c_primitives++;
}
int8_t area_sign = calc_fixed_position(setup, &position, v0, v1, v2);
if (area_sign < 0) {
if (setup->flatshade_first) {
rotate_fixed_position_12(&position);
retry_triangle_ccw(setup, &position, v0, v2, v1, !setup->ccw_is_frontface);
} else {
rotate_fixed_position_01(&position);
retry_triangle_ccw(setup, &position, v1, v0, v2, !setup->ccw_is_frontface);
}
}
}
static void
triangle_ccw(struct lp_setup_context *setup,
const float (*v0)[4],
const float (*v1)[4],
const float (*v2)[4])
{
alignas(16) struct fixed_position position;
struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
if (lp_context->active_statistics_queries) {
lp_context->pipeline_statistics.c_primitives++;
}
int8_t area_sign = calc_fixed_position(setup, &position, v0, v1, v2);
if (area_sign > 0)
retry_triangle_ccw(setup, &position, v0, v1, v2, setup->ccw_is_frontface);
}
/**
* Draw triangle whether it's CW or CCW.
*/
static void
triangle_both(struct lp_setup_context *setup,
const float (*v0)[4],
const float (*v1)[4],
const float (*v2)[4])
{
alignas(16) struct fixed_position position;
struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
if (lp_context->active_statistics_queries) {
lp_context->pipeline_statistics.c_primitives++;
}
int8_t area_sign = calc_fixed_position(setup, &position, v0, v1, v2);
if (0) {
assert(!util_is_inf_or_nan(v0[0][0]));
assert(!util_is_inf_or_nan(v0[0][1]));
assert(!util_is_inf_or_nan(v1[0][0]));
assert(!util_is_inf_or_nan(v1[0][1]));
assert(!util_is_inf_or_nan(v2[0][0]));
assert(!util_is_inf_or_nan(v2[0][1]));
}
if (area_sign > 0) {
retry_triangle_ccw(setup, &position, v0, v1, v2, setup->ccw_is_frontface);
} else if (area_sign < 0) {
if (setup->flatshade_first) {
rotate_fixed_position_12(&position);
retry_triangle_ccw(setup, &position, v0, v2, v1, !setup->ccw_is_frontface);
} else {
rotate_fixed_position_01(&position);
retry_triangle_ccw(setup, &position, v1, v0, v2, !setup->ccw_is_frontface);
}
}
}
static void
triangle_noop(struct lp_setup_context *setup,
const float (*v0)[4],
const float (*v1)[4],
const float (*v2)[4])
{
}
void
lp_setup_choose_triangle(struct lp_setup_context *setup)
{
if (setup->rasterizer_discard) {
setup->triangle = triangle_noop;
return;
}
switch (setup->cullmode) {
case PIPE_FACE_NONE:
setup->triangle = triangle_both;
break;
case PIPE_FACE_BACK:
setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
break;
case PIPE_FACE_FRONT:
setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
break;
default:
setup->triangle = triangle_noop;
break;
}
}