i965: Add means for limiting color resolves

Until now there has been only one type of color buffer that needs
to resolved - namely single sampled fast clear. As even the
sampler engine in GPU doesn't understand the associated meta data,
the color values need to be always resolved prior to reading them.

From SKL onwards there is new scheme supported called the lossless
compression of single sampled color buffers. This is something that
is understood by the sampling engine and therefore resolving of
these types of buffers is not necessary before sampling.
This patch adds means to make the distinction when considering if
resolve is needed.

Signed-off-by: Topi Pohjolainen <topi.pohjolainen@intel.com>
Reviewed-by: Ben Widawsky <benjamin.widawsky@intel.com>
This commit is contained in:
Topi Pohjolainen 2015-12-09 12:56:06 +02:00
parent 7513c5c782
commit f709a08457
10 changed files with 21 additions and 17 deletions

View File

@ -71,7 +71,7 @@ brw_blorp_blit_miptrees(struct brw_context *brw,
* to destination color buffers, and the standard render path is
* fast-color-aware.
*/
intel_miptree_resolve_color(brw, src_mt);
intel_miptree_resolve_color(brw, src_mt, 0);
intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_layer);
intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_layer);

View File

@ -208,7 +208,7 @@ intel_update_state(struct gl_context * ctx, GLuint new_state)
if (!tex_obj || !tex_obj->mt)
continue;
intel_miptree_all_slices_resolve_depth(brw, tex_obj->mt);
intel_miptree_resolve_color(brw, tex_obj->mt);
intel_miptree_resolve_color(brw, tex_obj->mt, 0);
brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
}
@ -223,7 +223,7 @@ intel_update_state(struct gl_context * ctx, GLuint new_state)
tex_obj = intel_texture_object(u->TexObj);
if (tex_obj && tex_obj->mt) {
intel_miptree_resolve_color(brw, tex_obj->mt);
intel_miptree_resolve_color(brw, tex_obj->mt, 0);
brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
}
}
@ -252,7 +252,7 @@ intel_update_state(struct gl_context * ctx, GLuint new_state)
_mesa_get_srgb_format_linear(mt->format) == mt->format)
continue;
intel_miptree_resolve_color(brw, mt);
intel_miptree_resolve_color(brw, mt, 0);
brw_render_cache_set_check_flush(brw, mt->bo);
}
}
@ -1227,7 +1227,7 @@ intel_resolve_for_dri2_flush(struct brw_context *brw,
if (rb == NULL || rb->mt == NULL)
continue;
if (rb->mt->num_samples <= 1)
intel_miptree_resolve_color(brw, rb->mt);
intel_miptree_resolve_color(brw, rb->mt, 0);
else
intel_renderbuffer_downsample(brw, rb);
}

View File

@ -317,8 +317,8 @@ intel_miptree_blit(struct brw_context *brw,
*/
intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_slice);
intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_slice);
intel_miptree_resolve_color(brw, src_mt);
intel_miptree_resolve_color(brw, dst_mt);
intel_miptree_resolve_color(brw, src_mt, 0);
intel_miptree_resolve_color(brw, dst_mt, 0);
if (src_flip)
src_y = minify(src_mt->physical_height0, src_level - src_mt->first_level) - src_y - height;

View File

@ -270,11 +270,11 @@ intel_copy_image_sub_data(struct gl_context *ctx,
*/
intel_miptree_all_slices_resolve_hiz(brw, src_mt);
intel_miptree_all_slices_resolve_depth(brw, src_mt);
intel_miptree_resolve_color(brw, src_mt);
intel_miptree_resolve_color(brw, src_mt, 0);
intel_miptree_all_slices_resolve_hiz(brw, dst_mt);
intel_miptree_all_slices_resolve_depth(brw, dst_mt);
intel_miptree_resolve_color(brw, dst_mt);
intel_miptree_resolve_color(brw, dst_mt, 0);
_mesa_get_format_block_size(src_mt->format, &bw, &bh);

View File

@ -2012,8 +2012,11 @@ intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
void
intel_miptree_resolve_color(struct brw_context *brw,
struct intel_mipmap_tree *mt)
struct intel_mipmap_tree *mt,
int flags)
{
(void)flags;
switch (mt->fast_clear_state) {
case INTEL_FAST_CLEAR_STATE_NO_MCS:
case INTEL_FAST_CLEAR_STATE_RESOLVED:
@ -2050,7 +2053,7 @@ intel_miptree_make_shareable(struct brw_context *brw,
assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE);
if (mt->mcs_mt) {
intel_miptree_resolve_color(brw, mt);
intel_miptree_resolve_color(brw, mt, 0);
intel_miptree_release(&mt->mcs_mt);
mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
}
@ -2158,7 +2161,7 @@ intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
/* CPU accesses to color buffers don't understand fast color clears, so
* resolve any pending fast color clears before we map.
*/
intel_miptree_resolve_color(brw, mt);
intel_miptree_resolve_color(brw, mt, 0);
drm_intel_bo *bo = mt->bo;

View File

@ -886,7 +886,8 @@ intel_miptree_used_for_rendering(struct intel_mipmap_tree *mt)
void
intel_miptree_resolve_color(struct brw_context *brw,
struct intel_mipmap_tree *mt);
struct intel_mipmap_tree *mt,
int flags);
void
intel_miptree_make_shareable(struct brw_context *brw,

View File

@ -257,7 +257,7 @@ do_blit_bitmap( struct gl_context *ctx,
/* The blitter has no idea about fast color clears, so we need to resolve
* the miptree before we do anything.
*/
intel_miptree_resolve_color(brw, irb->mt);
intel_miptree_resolve_color(brw, irb->mt, 0);
/* Chop it all into chunks that can be digested by hardware: */
for (py = 0; py < height; py += DY) {

View File

@ -155,7 +155,7 @@ intel_readpixels_tiled_memcpy(struct gl_context * ctx,
/* Since we are going to read raw data to the miptree, we need to resolve
* any pending fast color clears before we start.
*/
intel_miptree_resolve_color(brw, irb->mt);
intel_miptree_resolve_color(brw, irb->mt, 0);
bo = irb->mt->bo;

View File

@ -423,7 +423,7 @@ intel_gettexsubimage_tiled_memcpy(struct gl_context *ctx,
/* Since we are going to write raw data to the miptree, we need to resolve
* any pending fast color clears before we start.
*/
intel_miptree_resolve_color(brw, image->mt);
intel_miptree_resolve_color(brw, image->mt, 0);
bo = image->mt->bo;

View File

@ -140,7 +140,7 @@ intel_texsubimage_tiled_memcpy(struct gl_context * ctx,
/* Since we are going to write raw data to the miptree, we need to resolve
* any pending fast color clears before we start.
*/
intel_miptree_resolve_color(brw, image->mt);
intel_miptree_resolve_color(brw, image->mt, 0);
bo = image->mt->bo;