i965: extend fast texture upload

Extend the fast texture upload from BGRA X-tiled to include RGBA,
Alpha/Luminance, and Y-tiled.  Speed improvements, measured with
mesa demos teximage program, on 256 x 256 texture, in MB/s, on a
Sandy Bridge (Ivy is comparable):

              before  after   increase
BGRA/X-tiled   3266    4524    1.39x
BGRA/Y-tiled   1739    3971    2.28x
RGBA/X-tiled    474    4694    9.90x
RGBA/Y-tiled    477    3368    7.06x
   L/X-tiled   1268    1516    1.20x
   L/Y-tiled   1439    1581    1.10x

v2: Cosmetic changes only: reformat and reword comments, make doxygen-friendly,
    rename variables, use existing macros, add an assert.

Signed-off-by: Frank Henigman <fjhenigman@google.com>
Reviewed-and-tested-by: Chad Versace <chad.versace@linux.intel.com>
This commit is contained in:
Frank Henigman 2013-10-07 21:17:39 -04:00 committed by Chad Versace
parent 0fda1cb498
commit 49ed5991ee
1 changed files with 402 additions and 69 deletions

View File

@ -43,6 +43,43 @@
#define FILE_DEBUG_FLAG DEBUG_TEXTURE
#define ALIGN_DOWN(a, b) ROUND_DOWN_TO(a, b)
#define ALIGN_UP(a, b) ALIGN(a, b)
/* Tile dimensions.
* Width and span are in bytes, height is in pixels (i.e. unitless).
* A "span" is the most number of bytes we can copy from linear to tiled
* without needing to calculate a new destination address.
*/
static const uint32_t xtile_width = 512;
static const uint32_t xtile_height = 8;
static const uint32_t xtile_span = 64;
static const uint32_t ytile_width = 128;
static const uint32_t ytile_height = 32;
static const uint32_t ytile_span = 16;
typedef void *(*mem_copy_fn)(void *dest, const void *src, size_t n);
/**
* Each row from y0 to y1 is copied in three parts: [x0,x1), [x1,x2), [x2,x3).
* These ranges are in bytes, i.e. pixels * bytes-per-pixel.
* The first and last ranges must be shorter than a "span" (the longest linear
* stretch within a tile) and the middle must equal a whole number of spans.
* Ranges may be empty. The region copied must land entirely within one tile.
* 'dst' is the start of the tile and 'src' is the corresponding
* address to copy from, though copying begins at (x0, y0).
* To enable swizzling 'swizzle_bit' must be 1<<6, otherwise zero.
* Swizzling flips bit 6 in the copy destination offset, when certain other
* bits are set in it.
*/
typedef void (*tile_copy_fn)(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
uint32_t src_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy);
static bool
intel_blit_texsubimage(struct gl_context * ctx,
struct gl_texture_image *texImage,
@ -132,26 +169,351 @@ err:
return false;
}
#ifdef __SSSE3__
static const uint8_t rgba8_permutation[16] =
{ 2,1,0,3, 6,5,4,7, 10,9,8,11, 14,13,12,15 };
typedef char v16 __attribute__((vector_size(16)));
/* NOTE: dst must be 16 byte aligned */
#define rgba8_copy_16(dst, src) \
*(v16*)(dst) = __builtin_ia32_pshufb128( \
(v16) __builtin_ia32_loadups((float*)(src)), \
*(v16*) rgba8_permutation \
)
#endif
/**
* Copy RGBA to BGRA - swap R and B.
*/
static inline void *
rgba8_copy(void *dst, const void *src, size_t bytes)
{
uint8_t *d = dst;
uint8_t const *s = src;
#ifdef __SSSE3__
/* Fast copying for tile spans.
*
* As long as the destination texture is 16 aligned,
* any 16 or 64 spans we get here should also be 16 aligned.
*/
if (bytes == 16) {
assert(!(((uintptr_t)dst) & 0xf));
rgba8_copy_16(d+ 0, s+ 0);
return dst;
}
if (bytes == 64) {
assert(!(((uintptr_t)dst) & 0xf));
rgba8_copy_16(d+ 0, s+ 0);
rgba8_copy_16(d+16, s+16);
rgba8_copy_16(d+32, s+32);
rgba8_copy_16(d+48, s+48);
return dst;
}
#endif
while (bytes >= 4) {
d[0] = s[2];
d[1] = s[1];
d[2] = s[0];
d[3] = s[3];
d += 4;
s += 4;
bytes -= 4;
}
return dst;
}
/**
* Copy texture data from linear to X tile layout.
*
* \copydoc tile_copy_fn
*/
static inline void
xtile_copy(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
uint32_t src_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy)
{
/* The copy destination offset for each range copied is the sum of
* an X offset 'x0' or 'xo' and a Y offset 'yo.'
*/
uint32_t xo, yo;
src += y0 * src_pitch;
for (yo = y0 * xtile_width; yo < y1 * xtile_width; yo += xtile_width) {
/* Bits 9 and 10 of the copy destination offset control swizzling.
* Only 'yo' contributes to those bits in the total offset,
* so calculate 'swizzle' just once per row.
* Move bits 9 and 10 three and four places respectively down
* to bit 6 and xor them.
*/
uint32_t swizzle = ((yo >> 3) ^ (yo >> 4)) & swizzle_bit;
mem_copy(dst + ((x0 + yo) ^ swizzle), src + x0, x1 - x0);
for (xo = x1; xo < x2; xo += xtile_span) {
mem_copy(dst + ((xo + yo) ^ swizzle), src + xo, xtile_span);
}
mem_copy(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2);
src += src_pitch;
}
}
/**
* Copy texture data from linear to Y tile layout.
*
* \copydoc tile_copy_fn
*/
static inline void
ytile_copy(
uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
uint32_t src_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy)
{
/* Y tiles consist of columns that are 'ytile_span' wide (and the same height
* as the tile). Thus the destination offset for (x,y) is the sum of:
* (x % column_width) // position within column
* (x / column_width) * bytes_per_column // column number * bytes per column
* y * column_width
*
* The copy destination offset for each range copied is the sum of
* an X offset 'xo0' or 'xo' and a Y offset 'yo.'
*/
const uint32_t column_width = ytile_span;
const uint32_t bytes_per_column = column_width * ytile_height;
uint32_t xo0 = (x0 % ytile_span) + (x0 / ytile_span) * bytes_per_column;
uint32_t xo1 = (x1 % ytile_span) + (x1 / ytile_span) * bytes_per_column;
/* Bit 9 of the destination offset control swizzling.
* Only the X offset contributes to bit 9 of the total offset,
* so swizzle can be calculated in advance for these X positions.
* Move bit 9 three places down to bit 6.
*/
uint32_t swizzle0 = (xo0 >> 3) & swizzle_bit;
uint32_t swizzle1 = (xo1 >> 3) & swizzle_bit;
uint32_t x, yo;
src += y0 * src_pitch;
for (yo = y0 * column_width; yo < y1 * column_width; yo += column_width) {
uint32_t xo = xo1;
uint32_t swizzle = swizzle1;
mem_copy(dst + ((xo0 + yo) ^ swizzle0), src + x0, x1 - x0);
/* Step by spans/columns. As it happens, the swizzle bit flips
* at each step so we don't need to calculate it explicitly.
*/
for (x = x1; x < x2; x += ytile_span) {
mem_copy(dst + ((xo + yo) ^ swizzle), src + x, ytile_span);
xo += bytes_per_column;
swizzle ^= swizzle_bit;
}
mem_copy(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2);
src += src_pitch;
}
}
/**
* Copy texture data from linear to X tile layout, faster.
*
* Same as \ref xtile_copy but faster, because it passes constant parameters
* for common cases, allowing the compiler to inline code optimized for those
* cases.
*
* \copydoc tile_copy_fn
*/
static void
xtile_copy_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
uint32_t src_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy)
{
if (x0 == 0 && x3 == xtile_width && y0 == 0 && y1 == xtile_height) {
if (mem_copy == memcpy)
return xtile_copy(0, 0, xtile_width, xtile_width, 0, xtile_height,
dst, src, src_pitch, swizzle_bit, memcpy);
else if (mem_copy == rgba8_copy)
return xtile_copy(0, 0, xtile_width, xtile_width, 0, xtile_height,
dst, src, src_pitch, swizzle_bit, rgba8_copy);
} else {
if (mem_copy == memcpy)
return xtile_copy(x0, x1, x2, x3, y0, y1,
dst, src, src_pitch, swizzle_bit, memcpy);
else if (mem_copy == rgba8_copy)
return xtile_copy(x0, x1, x2, x3, y0, y1,
dst, src, src_pitch, swizzle_bit, rgba8_copy);
}
xtile_copy(x0, x1, x2, x3, y0, y1,
dst, src, src_pitch, swizzle_bit, mem_copy);
}
/**
* Copy texture data from linear to Y tile layout, faster.
*
* Same as \ref ytile_copy but faster, because it passes constant parameters
* for common cases, allowing the compiler to inline code optimized for those
* cases.
*
* \copydoc tile_copy_fn
*/
static void
ytile_copy_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
uint32_t src_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy)
{
if (x0 == 0 && x3 == ytile_width && y0 == 0 && y1 == ytile_height) {
if (mem_copy == memcpy)
return ytile_copy(0, 0, ytile_width, ytile_width, 0, ytile_height,
dst, src, src_pitch, swizzle_bit, memcpy);
else if (mem_copy == rgba8_copy)
return ytile_copy(0, 0, ytile_width, ytile_width, 0, ytile_height,
dst, src, src_pitch, swizzle_bit, rgba8_copy);
} else {
if (mem_copy == memcpy)
return ytile_copy(x0, x1, x2, x3, y0, y1,
dst, src, src_pitch, swizzle_bit, memcpy);
else if (mem_copy == rgba8_copy)
return ytile_copy(x0, x1, x2, x3, y0, y1,
dst, src, src_pitch, swizzle_bit, rgba8_copy);
}
ytile_copy(x0, x1, x2, x3, y0, y1,
dst, src, src_pitch, swizzle_bit, mem_copy);
}
/**
* Copy from linear to tiled texture.
*
* Divide the region given by X range [xt1, xt2) and Y range [yt1, yt2) into
* pieces that do not cross tile boundaries and copy each piece with a tile
* copy function (\ref tile_copy_fn).
* The X range is in bytes, i.e. pixels * bytes-per-pixel.
* The Y range is in pixels (i.e. unitless).
* 'dst' is the start of the texture and 'src' is the corresponding
* address to copy from, though copying begins at (xt1, yt1).
*/
static void
linear_to_tiled(uint32_t xt1, uint32_t xt2,
uint32_t yt1, uint32_t yt2,
char *dst, const char *src,
uint32_t dst_pitch, uint32_t src_pitch,
bool has_swizzling,
uint32_t tiling,
mem_copy_fn mem_copy)
{
tile_copy_fn tile_copy;
uint32_t xt0, xt3;
uint32_t yt0, yt3;
uint32_t xt, yt;
uint32_t tw, th, span;
uint32_t swizzle_bit = has_swizzling ? 1<<6 : 0;
if (tiling == I915_TILING_X) {
tw = xtile_width;
th = xtile_height;
span = xtile_span;
tile_copy = xtile_copy_faster;
} else if (tiling == I915_TILING_Y) {
tw = ytile_width;
th = ytile_height;
span = ytile_span;
tile_copy = ytile_copy_faster;
} else {
assert(!"unsupported tiling");
return;
}
/* Round out to tile boundaries. */
xt0 = ALIGN_DOWN(xt1, tw);
xt3 = ALIGN_UP (xt2, tw);
yt0 = ALIGN_DOWN(yt1, th);
yt3 = ALIGN_UP (yt2, th);
/* Loop over all tiles to which we have something to copy.
* 'xt' and 'yt' are the origin of the destination tile, whether copying
* copying a full or partial tile.
* tile_copy() copies one tile or partial tile.
* Looping x inside y is the faster memory access pattern.
*/
for (yt = yt0; yt < yt3; yt += th) {
for (xt = xt0; xt < xt3; xt += tw) {
/* The area to update is [x0,x3) x [y0,y1).
* May not want the whole tile, hence the min and max.
*/
uint32_t x0 = MAX2(xt1, xt);
uint32_t y0 = MAX2(yt1, yt);
uint32_t x3 = MIN2(xt2, xt + tw);
uint32_t y1 = MIN2(yt2, yt + th);
/* [x0,x3) is split into [x0,x1), [x1,x2), [x2,x3) such that
* the middle interval is the longest span-aligned part.
* The sub-ranges could be empty.
*/
uint32_t x1, x2;
x1 = ALIGN_UP(x0, span);
if (x1 > x3)
x1 = x2 = x3;
else
x2 = ALIGN_DOWN(x3, span);
assert(x0 <= x1 && x1 <= x2 && x2 <= x3);
assert(x1 - x0 < span && x3 - x2 < span);
assert(x3 - x0 <= tw);
assert((x2 - x1) % span == 0);
/* Translate by (xt,yt) for single-tile copier. */
tile_copy(x0-xt, x1-xt, x2-xt, x3-xt,
y0-yt, y1-yt,
dst + xt * th + yt * dst_pitch,
src + xt + yt * src_pitch,
src_pitch,
swizzle_bit,
mem_copy);
}
}
}
/**
* \brief A fast path for glTexImage and glTexSubImage.
*
* \param for_glTexImage Was this called from glTexImage or glTexSubImage?
*
* This fast path is taken when the hardware natively supports the texture
* format (such as GL_BGRA) and when the texture memory is X-tiled. It uploads
* This fast path is taken when the texture format is BGRA, RGBA,
* A or L and when the texture memory is X- or Y-tiled. It uploads
* the texture data by mapping the texture memory without a GTT fence, thus
* acquiring a tiled view of the memory, and then memcpy'ing sucessive
* subspans within each tile.
* acquiring a tiled view of the memory, and then copying sucessive
* spans within each tile.
*
* This is a performance win over the conventional texture upload path because
* it avoids the performance penalty of writing through the write-combine
* buffer. In the conventional texture upload path,
* texstore.c:store_texsubimage(), the texture memory is mapped through a GTT
* fence, thus acquiring a linear view of the memory, then each row in the
* image is memcpy'd. In this fast path, we replace each row's memcpy with
* a sequence of memcpy's over each bit6 swizzle span in the row.
* image is memcpy'd. In this fast path, we replace each row's copy with
* a sequence of copies over each linear span in tile.
*
* This fast path's use case is Google Chrome's paint rectangles. Chrome (as
* One use case is Google Chrome's paint rectangles. Chrome (as
* of version 21) renders each page as a tiling of 256x256 GL_BGRA textures.
* Each page's content is initially uploaded with glTexImage2D and damaged
* regions are updated with glTexSubImage2D. On some workloads, the
@ -176,14 +538,15 @@ intel_texsubimage_tiled_memcpy(struct gl_context * ctx,
int error = 0;
/* This fastpath is restricted to a specific texture type: level 0 of
* a 2D BGRA texture. It could be generalized to support more types by
* varying the arithmetic loop below.
uint32_t cpp;
mem_copy_fn mem_copy = NULL;
/* This fastpath is restricted to specific texture types: level 0 of
* a 2D BGRA, RGBA, L8 or A8 texture. It could be generalized to support
* more types.
*/
if (!brw->has_llc ||
format != GL_BGRA ||
type != GL_UNSIGNED_BYTE ||
texImage->TexFormat != MESA_FORMAT_ARGB8888 ||
texImage->TexObject->Target != GL_TEXTURE_2D ||
texImage->Level != 0 ||
pixels == NULL ||
@ -197,12 +560,28 @@ intel_texsubimage_tiled_memcpy(struct gl_context * ctx,
packing->Invert)
return false;
if ((texImage->TexFormat == MESA_FORMAT_L8 && format == GL_LUMINANCE) ||
(texImage->TexFormat == MESA_FORMAT_A8 && format == GL_ALPHA)) {
cpp = 1;
mem_copy = memcpy;
} else if (texImage->TexFormat == MESA_FORMAT_ARGB8888) {
cpp = 4;
if (format == GL_BGRA) {
mem_copy = memcpy;
} else if (format == GL_RGBA) {
mem_copy = rgba8_copy;
}
}
if (!mem_copy)
return false;
if (for_glTexImage)
ctx->Driver.AllocTextureImageBuffer(ctx, texImage);
if (!image->mt ||
image->mt->region->tiling != I915_TILING_X) {
/* The algorithm below is written only for X-tiled memory. */
(image->mt->region->tiling != I915_TILING_X &&
image->mt->region->tiling != I915_TILING_Y)) {
/* The algorithm is written only for X- or Y-tiled memory. */
return false;
}
@ -236,61 +615,15 @@ intel_texsubimage_tiled_memcpy(struct gl_context * ctx,
DBG("%s: level=%d offset=(%d,%d) (w,h)=(%d,%d)\n",
__FUNCTION__, texImage->Level, xoffset, yoffset, width, height);
/* In the tiling algorithm below, some variables are in units of pixels,
* others are in units of bytes, and others (such as height) are unitless.
* Each variable name is suffixed with its units.
*/
const uint32_t x_max_pixels = xoffset + width;
const uint32_t y_max_pixels = yoffset + height;
const uint32_t tile_size_bytes = 4096;
const uint32_t tile_width_bytes = 512;
const uint32_t tile_width_pixels = 128;
const uint32_t tile_height = 8;
const uint32_t cpp = 4; /* chars per pixel of GL_BGRA */
const uint32_t swizzle_width_pixels = 16;
const uint32_t stride_bytes = image->mt->region->pitch;
const uint32_t width_tiles = stride_bytes / tile_width_bytes;
for (uint32_t y_pixels = yoffset; y_pixels < y_max_pixels; ++y_pixels) {
const uint32_t y_offset_bytes = (y_pixels / tile_height) * width_tiles * tile_size_bytes
+ (y_pixels % tile_height) * tile_width_bytes;
for (uint32_t x_pixels = xoffset; x_pixels < x_max_pixels; x_pixels += swizzle_width_pixels) {
const uint32_t x_offset_bytes = (x_pixels / tile_width_pixels) * tile_size_bytes
+ (x_pixels % tile_width_pixels) * cpp;
intptr_t offset_bytes = y_offset_bytes + x_offset_bytes;
if (brw->has_swizzling) {
#if 0
/* Clear, unoptimized version. */
bool bit6 = (offset_bytes >> 6) & 1;
bool bit9 = (offset_bytes >> 9) & 1;
bool bit10 = (offset_bytes >> 10) & 1;
if (bit9 ^ bit10)
offset_bytes ^= (1 << 6);
#else
/* Optimized, obfuscated version. */
offset_bytes ^= ((offset_bytes >> 3) ^ (offset_bytes >> 4))
& (1 << 6);
#endif
}
const uint32_t swizzle_bound_pixels = ALIGN(x_pixels + 1, swizzle_width_pixels);
const uint32_t memcpy_bound_pixels = MIN2(x_max_pixels, swizzle_bound_pixels);
const uint32_t copy_size = cpp * (memcpy_bound_pixels - x_pixels);
memcpy(bo->virtual + offset_bytes, pixels, copy_size);
pixels += copy_size;
x_pixels -= (x_pixels % swizzle_width_pixels);
}
}
linear_to_tiled(
xoffset * cpp, (xoffset + width) * cpp,
yoffset, yoffset + height,
bo->virtual, pixels - (xoffset + yoffset * width) * cpp,
image->mt->region->pitch, width * cpp,
brw->has_swizzling,
image->mt->region->tiling,
mem_copy
);
drm_intel_bo_unmap(bo);
return true;