mesa/src/mesa/drivers/dri/i965/brw_nir.c

515 lines
16 KiB
C
Raw Normal View History

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_nir.h"
#include "brw_shader.h"
#include "glsl/nir/glsl_to_nir.h"
#include "program/prog_to_nir.h"
static bool
remap_vs_attrs(nir_block *block, void *closure)
{
GLbitfield64 inputs_read = *((GLbitfield64 *) closure);
nir_foreach_instr(block, instr) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
/* We set EmitNoIndirect for VS inputs, so there are no indirects. */
assert(intrin->intrinsic != nir_intrinsic_load_input_indirect);
if (intrin->intrinsic == nir_intrinsic_load_input) {
/* Attributes come in a contiguous block, ordered by their
* gl_vert_attrib value. That means we can compute the slot
* number for an attribute by masking out the enabled attributes
* before it and counting the bits.
*/
int attr = intrin->const_index[0];
int slot = _mesa_bitcount_64(inputs_read & BITFIELD64_MASK(attr));
intrin->const_index[0] = 4 * slot;
}
}
return true;
}
static void
brw_nir_lower_inputs(nir_shader *nir,
const struct brw_device_info *devinfo,
bool is_scalar)
{
switch (nir->stage) {
case MESA_SHADER_VERTEX:
/* Start with the location of the variable's base. */
foreach_list_typed(nir_variable, var, node, &nir->inputs) {
var->data.driver_location = var->data.location;
}
/* Now use nir_lower_io to walk dereference chains. Attribute arrays
* are loaded as one vec4 per element (or matrix column), so we use
* type_size_vec4 here.
*/
nir_lower_io(nir, nir_var_shader_in, type_size_vec4);
if (is_scalar) {
/* Finally, translate VERT_ATTRIB_* values into the actual registers.
*
* Note that we can use nir->info.inputs_read instead of
* key->inputs_read since the two are identical aside from Gen4-5
* edge flag differences.
*/
GLbitfield64 inputs_read = nir->info.inputs_read;
nir_foreach_overload(nir, overload) {
if (overload->impl) {
nir_foreach_block(overload->impl, remap_vs_attrs, &inputs_read);
}
}
}
break;
case MESA_SHADER_GEOMETRY: {
if (!is_scalar) {
foreach_list_typed(nir_variable, var, node, &nir->inputs) {
var->data.driver_location = var->data.location;
}
} else {
/* The GLSL linker will have already matched up GS inputs and
* the outputs of prior stages. The driver does extend VS outputs
* in some cases, but only for legacy OpenGL or Gen4-5 hardware,
* neither of which offer geometry shader support. So we can
* safely ignore that.
*
* For SSO pipelines, we use a fixed VUE map layout based on variable
* locations, so we can rely on rendezvous-by-location to make this
* work.
*
* However, we need to ignore VARYING_SLOT_PRIMITIVE_ID, as it's not
* written by previous stages and shows up via payload magic.
*/
struct brw_vue_map input_vue_map;
GLbitfield64 inputs_read =
nir->info.inputs_read & ~VARYING_BIT_PRIMITIVE_ID;
brw_compute_vue_map(devinfo, &input_vue_map, inputs_read,
nir->info.separate_shader);
/* Start with the slot for the variable's base. */
foreach_list_typed(nir_variable, var, node, &nir->inputs) {
assert(input_vue_map.varying_to_slot[var->data.location] != -1);
var->data.driver_location =
input_vue_map.varying_to_slot[var->data.location];
}
/* Inputs are stored in vec4 slots, so use type_size_vec4(). */
nir_lower_io(nir, nir_var_shader_in, type_size_vec4);
}
break;
}
case MESA_SHADER_FRAGMENT:
assert(is_scalar);
nir_assign_var_locations(&nir->inputs, &nir->num_inputs,
type_size_scalar);
break;
case MESA_SHADER_COMPUTE:
/* Compute shaders have no inputs. */
assert(exec_list_is_empty(&nir->inputs));
break;
default:
unreachable("unsupported shader stage");
}
}
static void
brw_nir_lower_outputs(nir_shader *nir, bool is_scalar)
{
switch (nir->stage) {
case MESA_SHADER_VERTEX:
case MESA_SHADER_GEOMETRY:
if (is_scalar) {
nir_assign_var_locations(&nir->outputs, &nir->num_outputs,
i965: Fix scalar VS float[] and vec2[] output arrays. The scalar VS backend has never handled float[] and vec2[] outputs correctly (my original code was broken). Outputs need to be padded out to vec4 slots. In fs_visitor::nir_setup_outputs(), we tried to process each vec4 slot by looping from 0 to ALIGN(type_size_scalar(type), 4) / 4. However, this is wrong: type_size_scalar() for a float[2] would return 2, or for vec2[2] it would return 4. This looked like a single slot, even though in reality each array element would be stored in separate vec4 slots. Because of this bug, outputs[] and output_components[] would not get initialized for the second element's VARYING_SLOT, which meant emit_urb_writes() would skip writing them. Nothing used those values, and dead code elimination threw a party. To fix this, we introduce a new type_size_vec4_times_4() function which pads array elements correctly, but still counts in scalar components, generating correct indices in store_output intrinsics. Normally, varying packing avoids this problem by turning varyings into vec4s. So this doesn't actually fix any Piglit or dEQP tests today. However, if varying packing is disabled, things would be broken. Tessellation shaders can't use varying packing, so this fixes various tcs-input Piglit tests on a branch of mine. v2: Shorten the implementation of type_size_4x to a single line (caught by Connor Abbott), and rename it to type_size_vec4_times_4() (renaming suggested by Jason Ekstrand). Use type_size_vec4 rather than using type_size_vec4_times_4 and then dividing by 4. Signed-off-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Jason Ekstrand <jason.ekstrand@intel.com>
2015-10-13 23:30:03 +01:00
type_size_vec4_times_4);
nir_lower_io(nir, nir_var_shader_out, type_size_vec4_times_4);
} else {
nir_foreach_variable(var, &nir->outputs)
var->data.driver_location = var->data.location;
}
break;
case MESA_SHADER_FRAGMENT:
nir_assign_var_locations(&nir->outputs, &nir->num_outputs,
type_size_scalar);
break;
case MESA_SHADER_COMPUTE:
/* Compute shaders have no outputs. */
assert(exec_list_is_empty(&nir->outputs));
break;
default:
unreachable("unsupported shader stage");
}
}
static int
type_size_scalar_bytes(const struct glsl_type *type)
{
return type_size_scalar(type) * 4;
}
static int
type_size_vec4_bytes(const struct glsl_type *type)
{
return type_size_vec4(type) * 16;
}
static void
brw_nir_lower_uniforms(nir_shader *nir, bool is_scalar)
{
if (is_scalar) {
nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms,
type_size_scalar_bytes);
nir_lower_io(nir, nir_var_uniform, type_size_scalar_bytes);
} else {
nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms,
type_size_vec4_bytes);
nir_lower_io(nir, nir_var_uniform, type_size_vec4_bytes);
}
}
#include "util/debug.h"
static bool
should_clone_nir()
{
static int should_clone = -1;
if (should_clone < 1)
should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
return should_clone;
}
#define _OPT(do_pass) (({ \
bool this_progress = true; \
do_pass \
nir_validate_shader(nir); \
if (should_clone_nir()) { \
nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
ralloc_free(nir); \
nir = clone; \
} \
this_progress; \
}))
#define OPT(pass, ...) _OPT( \
nir_metadata_set_validation_flag(nir); \
this_progress = pass(nir ,##__VA_ARGS__); \
if (this_progress) { \
progress = true; \
nir_metadata_check_validation_flag(nir); \
} \
)
#define OPT_V(pass, ...) _OPT( \
pass(nir, ##__VA_ARGS__); \
)
static nir_shader *
nir_optimize(nir_shader *nir, bool is_scalar)
{
bool progress;
do {
progress = false;
OPT_V(nir_lower_vars_to_ssa);
if (is_scalar) {
OPT_V(nir_lower_alu_to_scalar);
}
OPT(nir_copy_prop);
if (is_scalar) {
OPT_V(nir_lower_phis_to_scalar);
}
OPT(nir_copy_prop);
OPT(nir_opt_dce);
OPT(nir_opt_cse);
OPT(nir_opt_peephole_select);
OPT(nir_opt_algebraic);
OPT(nir_opt_constant_folding);
OPT(nir_opt_dead_cf);
OPT(nir_opt_remove_phis);
OPT(nir_opt_undef);
} while (progress);
return nir;
}
/* Does some simple lowering and runs the standard suite of optimizations
*
* This is intended to be called more-or-less directly after you get the
* shader out of GLSL or some other source. While it is geared towards i965,
* it is not at all generator-specific except for the is_scalar flag. Even
* there, it is safe to call with is_scalar = false for a shader that is
* intended for the FS backend as long as nir_optimize is called again with
* is_scalar = true to scalarize everything prior to code gen.
*/
nir_shader *
brw_preprocess_nir(nir_shader *nir, bool is_scalar)
{
bool progress; /* Written by OPT and OPT_V */
(void)progress;
if (nir->stage == MESA_SHADER_GEOMETRY)
OPT(nir_lower_gs_intrinsics);
static const nir_lower_tex_options tex_options = {
.lower_txp = ~0,
};
OPT(nir_lower_tex, &tex_options);
OPT(nir_normalize_cubemap_coords);
OPT(nir_lower_global_vars_to_local);
OPT(nir_split_var_copies);
nir = nir_optimize(nir, is_scalar);
/* Lower a bunch of stuff */
OPT_V(nir_lower_var_copies);
/* Get rid of split copies */
nir = nir_optimize(nir, is_scalar);
OPT(nir_remove_dead_variables);
return nir;
}
/* Lowers inputs, outputs, uniforms, and samplers for i965
*
* This function does all of the standard lowering prior to post-processing.
* The lowering done is highly gen, stage, and backend-specific. The
* shader_prog parameter is optional and is used only for lowering sampler
* derefs and atomics for GLSL shaders.
*/
nir_shader *
brw_lower_nir(nir_shader *nir,
const struct brw_device_info *devinfo,
const struct gl_shader_program *shader_prog,
bool is_scalar)
{
bool progress; /* Written by OPT and OPT_V */
(void)progress;
OPT_V(brw_nir_lower_inputs, devinfo, is_scalar);
OPT_V(brw_nir_lower_outputs, is_scalar);
OPT_V(brw_nir_lower_uniforms, is_scalar);
OPT_V(nir_lower_io, nir_var_all, is_scalar ? type_size_scalar : type_size_vec4);
if (shader_prog) {
OPT_V(nir_lower_samplers, shader_prog);
}
OPT(nir_lower_system_values);
if (shader_prog) {
OPT_V(nir_lower_atomics, shader_prog);
}
return nir_optimize(nir, is_scalar);
}
/* Prepare the given shader for codegen
*
* This function is intended to be called right before going into the actual
* backend and is highly backend-specific. Also, once this function has been
* called on a shader, it will no longer be in SSA form so most optimizations
* will not work.
*/
nir_shader *
brw_postprocess_nir(nir_shader *nir,
const struct brw_device_info *devinfo,
bool is_scalar)
{
bool debug_enabled =
(INTEL_DEBUG & intel_debug_flag_for_shader_stage(nir->stage));
bool progress; /* Written by OPT and OPT_V */
(void)progress;
if (devinfo->gen >= 6) {
/* Try and fuse multiply-adds */
OPT(brw_nir_opt_peephole_ffma);
}
OPT(nir_opt_algebraic_late);
OPT(nir_lower_locals_to_regs);
OPT_V(nir_lower_to_source_mods);
OPT(nir_copy_prop);
OPT(nir_opt_dce);
if (unlikely(debug_enabled)) {
/* Re-index SSA defs so we print more sensible numbers. */
nir_foreach_overload(nir, overload) {
if (overload->impl)
nir_index_ssa_defs(overload->impl);
}
fprintf(stderr, "NIR (SSA form) for %s shader:\n",
_mesa_shader_stage_to_string(nir->stage));
nir_print_shader(nir, stderr);
}
OPT_V(nir_convert_from_ssa, true);
if (!is_scalar) {
OPT_V(nir_move_vec_src_uses_to_dest);
OPT(nir_lower_vec_to_movs);
}
/* This is the last pass we run before we start emitting stuff. It
* determines when we need to insert boolean resolves on Gen <= 5. We
* run it last because it stashes data in instr->pass_flags and we don't
* want that to be squashed by other NIR passes.
*/
if (devinfo->gen <= 5)
brw_nir_analyze_boolean_resolves(nir);
nir_sweep(nir);
if (unlikely(debug_enabled)) {
fprintf(stderr, "NIR (final form) for %s shader:\n",
_mesa_shader_stage_to_string(nir->stage));
nir_print_shader(nir, stderr);
}
return nir;
}
nir_shader *
brw_create_nir(struct brw_context *brw,
const struct gl_shader_program *shader_prog,
const struct gl_program *prog,
gl_shader_stage stage,
bool is_scalar)
{
struct gl_context *ctx = &brw->ctx;
const struct brw_device_info *devinfo = brw->intelScreen->devinfo;
const nir_shader_compiler_options *options =
ctx->Const.ShaderCompilerOptions[stage].NirOptions;
bool progress;
nir_shader *nir;
/* First, lower the GLSL IR or Mesa IR to NIR */
if (shader_prog) {
nir = glsl_to_nir(shader_prog, stage, options);
} else {
nir = prog_to_nir(prog, options);
OPT_V(nir_convert_to_ssa); /* turn registers into SSA */
}
nir_validate_shader(nir);
(void)progress;
nir = brw_preprocess_nir(nir, is_scalar);
nir = brw_lower_nir(nir, devinfo, shader_prog, is_scalar);
return nir;
}
nir_shader *
brw_nir_apply_sampler_key(nir_shader *nir,
const struct brw_device_info *devinfo,
const struct brw_sampler_prog_key_data *key_tex,
bool is_scalar)
{
nir_lower_tex_options tex_options = { 0 };
/* Iron Lake and prior require lowering of all rectangle textures */
if (devinfo->gen < 6)
tex_options.lower_rect = true;
/* Prior to Broadwell, our hardware can't actually do GL_CLAMP */
if (devinfo->gen < 8) {
tex_options.saturate_s = key_tex->gl_clamp_mask[0];
tex_options.saturate_t = key_tex->gl_clamp_mask[1];
tex_options.saturate_r = key_tex->gl_clamp_mask[2];
}
/* Prior to Haswell, we have to fake texture swizzle */
for (unsigned s = 0; s < MAX_SAMPLERS; s++) {
if (key_tex->swizzles[s] == SWIZZLE_NOOP)
continue;
tex_options.swizzle_result |= (1 << s);
for (unsigned c = 0; c < 4; c++)
tex_options.swizzles[s][c] = GET_SWZ(key_tex->swizzles[s], c);
}
if (nir_lower_tex(nir, &tex_options)) {
nir_validate_shader(nir);
nir = nir_optimize(nir, is_scalar);
}
return nir;
}
enum brw_reg_type
brw_type_for_nir_type(nir_alu_type type)
{
switch (type) {
case nir_type_uint:
return BRW_REGISTER_TYPE_UD;
case nir_type_bool:
case nir_type_int:
return BRW_REGISTER_TYPE_D;
case nir_type_float:
return BRW_REGISTER_TYPE_F;
default:
unreachable("unknown type");
}
return BRW_REGISTER_TYPE_F;
}
/* Returns the glsl_base_type corresponding to a nir_alu_type.
* This is used by both brw_vec4_nir and brw_fs_nir.
*/
enum glsl_base_type
brw_glsl_base_type_for_nir_type(nir_alu_type type)
{
switch (type) {
case nir_type_float:
return GLSL_TYPE_FLOAT;
case nir_type_int:
return GLSL_TYPE_INT;
case nir_type_uint:
return GLSL_TYPE_UINT;
default:
unreachable("bad type");
}
}