mesa/src/compiler/spirv/vtn_variables.c

2105 lines
72 KiB
C
Raw Normal View History

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Jason Ekstrand (jason@jlekstrand.net)
*
*/
#include "vtn_private.h"
#include "spirv_info.h"
#include "nir_deref.h"
#include <vulkan/vulkan_core.h>
static struct vtn_access_chain *
vtn_access_chain_create(struct vtn_builder *b, unsigned length)
{
struct vtn_access_chain *chain;
/* Subtract 1 from the length since there's already one built in */
size_t size = sizeof(*chain) +
(MAX2(length, 1) - 1) * sizeof(chain->link[0]);
chain = rzalloc_size(b, size);
chain->length = length;
return chain;
}
static bool
vtn_pointer_uses_ssa_offset(struct vtn_builder *b,
struct vtn_pointer *ptr)
{
return ptr->mode == vtn_variable_mode_ubo ||
ptr->mode == vtn_variable_mode_ssbo ||
ptr->mode == vtn_variable_mode_push_constant ||
(ptr->mode == vtn_variable_mode_workgroup &&
b->options->lower_workgroup_access_to_offsets);
}
static bool
vtn_pointer_is_external_block(struct vtn_builder *b,
struct vtn_pointer *ptr)
{
return ptr->mode == vtn_variable_mode_ssbo ||
ptr->mode == vtn_variable_mode_ubo ||
ptr->mode == vtn_variable_mode_push_constant ||
(ptr->mode == vtn_variable_mode_workgroup &&
b->options->lower_workgroup_access_to_offsets);
}
static nir_ssa_def *
vtn_access_link_as_ssa(struct vtn_builder *b, struct vtn_access_link link,
unsigned stride, unsigned bit_size)
{
vtn_assert(stride > 0);
if (link.mode == vtn_access_mode_literal) {
return nir_imm_intN_t(&b->nb, link.id * stride, bit_size);
} else {
nir_ssa_def *ssa = vtn_ssa_value(b, link.id)->def;
if (ssa->bit_size != bit_size)
ssa = nir_i2i(&b->nb, ssa, bit_size);
if (stride != 1)
ssa = nir_imul_imm(&b->nb, ssa, stride);
return ssa;
}
}
/* Dereference the given base pointer by the access chain */
static struct vtn_pointer *
vtn_nir_deref_pointer_dereference(struct vtn_builder *b,
struct vtn_pointer *base,
struct vtn_access_chain *deref_chain)
{
struct vtn_type *type = base->type;
enum gl_access_qualifier access = base->access;
nir_deref_instr *tail;
if (base->deref) {
tail = base->deref;
} else {
assert(base->var && base->var->var);
tail = nir_build_deref_var(&b->nb, base->var->var);
}
/* OpPtrAccessChain is only allowed on things which support variable
* pointers. For everything else, the client is expected to just pass us
* the right access chain.
*/
vtn_assert(!deref_chain->ptr_as_array);
for (unsigned i = 0; i < deref_chain->length; i++) {
if (glsl_type_is_struct(type->type)) {
vtn_assert(deref_chain->link[i].mode == vtn_access_mode_literal);
unsigned idx = deref_chain->link[i].id;
tail = nir_build_deref_struct(&b->nb, tail, idx);
type = type->members[idx];
} else {
nir_ssa_def *index = vtn_access_link_as_ssa(b, deref_chain->link[i], 1,
tail->dest.ssa.bit_size);
tail = nir_build_deref_array(&b->nb, tail, index);
type = type->array_element;
}
access |= type->access;
}
struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer);
ptr->mode = base->mode;
ptr->type = type;
ptr->var = base->var;
ptr->deref = tail;
ptr->access = access;
return ptr;
}
static VkDescriptorType
vk_desc_type_for_mode(struct vtn_builder *b, enum vtn_variable_mode mode)
{
switch (mode) {
case vtn_variable_mode_ubo:
return VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
case vtn_variable_mode_ssbo:
return VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
default:
vtn_fail("Invalid mode for vulkan_resource_index");
}
}
static nir_ssa_def *
vtn_variable_resource_index(struct vtn_builder *b, struct vtn_variable *var,
nir_ssa_def *desc_array_index)
{
if (!desc_array_index) {
vtn_assert(glsl_type_is_struct(var->type->type));
desc_array_index = nir_imm_int(&b->nb, 0);
}
nir_intrinsic_instr *instr =
nir_intrinsic_instr_create(b->nb.shader,
nir_intrinsic_vulkan_resource_index);
instr->src[0] = nir_src_for_ssa(desc_array_index);
nir_intrinsic_set_desc_set(instr, var->descriptor_set);
nir_intrinsic_set_binding(instr, var->binding);
nir_intrinsic_set_desc_type(instr, vk_desc_type_for_mode(b, var->mode));
nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 32, NULL);
nir_builder_instr_insert(&b->nb, &instr->instr);
return &instr->dest.ssa;
}
static nir_ssa_def *
vtn_resource_reindex(struct vtn_builder *b, enum vtn_variable_mode mode,
nir_ssa_def *base_index, nir_ssa_def *offset_index)
{
nir_intrinsic_instr *instr =
nir_intrinsic_instr_create(b->nb.shader,
nir_intrinsic_vulkan_resource_reindex);
instr->src[0] = nir_src_for_ssa(base_index);
instr->src[1] = nir_src_for_ssa(offset_index);
nir_intrinsic_set_desc_type(instr, vk_desc_type_for_mode(b, mode));
nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 32, NULL);
nir_builder_instr_insert(&b->nb, &instr->instr);
return &instr->dest.ssa;
}
static struct vtn_pointer *
vtn_ssa_offset_pointer_dereference(struct vtn_builder *b,
struct vtn_pointer *base,
struct vtn_access_chain *deref_chain)
{
nir_ssa_def *block_index = base->block_index;
nir_ssa_def *offset = base->offset;
struct vtn_type *type = base->type;
enum gl_access_qualifier access = base->access;
unsigned idx = 0;
if (base->mode == vtn_variable_mode_ubo ||
base->mode == vtn_variable_mode_ssbo) {
if (!block_index) {
vtn_assert(base->var && base->type);
nir_ssa_def *desc_arr_idx;
if (glsl_type_is_array(type->type)) {
if (deref_chain->length >= 1) {
desc_arr_idx =
vtn_access_link_as_ssa(b, deref_chain->link[0], 1, 32);
idx++;
/* This consumes a level of type */
type = type->array_element;
access |= type->access;
} else {
/* This is annoying. We've been asked for a pointer to the
* array of UBOs/SSBOs and not a specifc buffer. Return a
* pointer with a descriptor index of 0 and we'll have to do
* a reindex later to adjust it to the right thing.
*/
desc_arr_idx = nir_imm_int(&b->nb, 0);
}
} else if (deref_chain->ptr_as_array) {
/* You can't have a zero-length OpPtrAccessChain */
vtn_assert(deref_chain->length >= 1);
desc_arr_idx = vtn_access_link_as_ssa(b, deref_chain->link[0], 1, 32);
} else {
/* We have a regular non-array SSBO. */
desc_arr_idx = NULL;
}
block_index = vtn_variable_resource_index(b, base->var, desc_arr_idx);
} else if (deref_chain->ptr_as_array &&
type->base_type == vtn_base_type_struct && type->block) {
/* We are doing an OpPtrAccessChain on a pointer to a struct that is
* decorated block. This is an interesting corner in the SPIR-V
* spec. One interpretation would be that they client is clearly
* trying to treat that block as if it's an implicit array of blocks
* repeated in the buffer. However, the SPIR-V spec for the
* OpPtrAccessChain says:
*
* "Base is treated as the address of the first element of an
* array, and the Element elements address is computed to be the
* base for the Indexes, as per OpAccessChain."
*
* Taken literally, that would mean that your struct type is supposed
* to be treated as an array of such a struct and, since it's
* decorated block, that means an array of blocks which corresponds
* to an array descriptor. Therefore, we need to do a reindex
* operation to add the index from the first link in the access chain
* to the index we recieved.
*
* The downside to this interpretation (there always is one) is that
* this might be somewhat surprising behavior to apps if they expect
* the implicit array behavior described above.
*/
vtn_assert(deref_chain->length >= 1);
nir_ssa_def *offset_index =
vtn_access_link_as_ssa(b, deref_chain->link[0], 1, 32);
idx++;
block_index = vtn_resource_reindex(b, base->mode,
block_index, offset_index);
}
}
if (!offset) {
if (base->mode == vtn_variable_mode_workgroup) {
/* SLM doesn't need nor have a block index */
vtn_assert(!block_index);
/* We need the variable for the base offset */
vtn_assert(base->var);
/* We need ptr_type for size and alignment */
vtn_assert(base->ptr_type);
/* Assign location on first use so that we don't end up bloating SLM
* address space for variables which are never statically used.
*/
if (base->var->shared_location < 0) {
vtn_assert(base->ptr_type->length > 0 && base->ptr_type->align > 0);
b->shader->num_shared = vtn_align_u32(b->shader->num_shared,
base->ptr_type->align);
base->var->shared_location = b->shader->num_shared;
b->shader->num_shared += base->ptr_type->length;
}
offset = nir_imm_int(&b->nb, base->var->shared_location);
} else if (base->mode == vtn_variable_mode_push_constant) {
/* Push constants neither need nor have a block index */
vtn_assert(!block_index);
/* Start off with at the start of the push constant block. */
offset = nir_imm_int(&b->nb, 0);
} else {
/* The code above should have ensured a block_index when needed. */
vtn_assert(block_index);
/* Start off with at the start of the buffer. */
offset = nir_imm_int(&b->nb, 0);
}
}
if (deref_chain->ptr_as_array && idx == 0) {
/* We need ptr_type for the stride */
vtn_assert(base->ptr_type);
/* We need at least one element in the chain */
vtn_assert(deref_chain->length >= 1);
nir_ssa_def *elem_offset =
vtn_access_link_as_ssa(b, deref_chain->link[idx],
base->ptr_type->stride, offset->bit_size);
offset = nir_iadd(&b->nb, offset, elem_offset);
idx++;
}
for (; idx < deref_chain->length; idx++) {
switch (glsl_get_base_type(type->type)) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_ARRAY: {
nir_ssa_def *elem_offset =
vtn_access_link_as_ssa(b, deref_chain->link[idx],
type->stride, offset->bit_size);
offset = nir_iadd(&b->nb, offset, elem_offset);
type = type->array_element;
access |= type->access;
break;
}
case GLSL_TYPE_STRUCT: {
vtn_assert(deref_chain->link[idx].mode == vtn_access_mode_literal);
unsigned member = deref_chain->link[idx].id;
offset = nir_iadd_imm(&b->nb, offset, type->offsets[member]);
type = type->members[member];
access |= type->access;
break;
}
default:
vtn_fail("Invalid type for deref");
}
}
struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer);
ptr->mode = base->mode;
ptr->type = type;
ptr->block_index = block_index;
ptr->offset = offset;
ptr->access = access;
return ptr;
}
/* Dereference the given base pointer by the access chain */
static struct vtn_pointer *
vtn_pointer_dereference(struct vtn_builder *b,
struct vtn_pointer *base,
struct vtn_access_chain *deref_chain)
{
if (vtn_pointer_uses_ssa_offset(b, base)) {
return vtn_ssa_offset_pointer_dereference(b, base, deref_chain);
} else {
return vtn_nir_deref_pointer_dereference(b, base, deref_chain);
}
}
struct vtn_pointer *
vtn_pointer_for_variable(struct vtn_builder *b,
struct vtn_variable *var, struct vtn_type *ptr_type)
{
struct vtn_pointer *pointer = rzalloc(b, struct vtn_pointer);
pointer->mode = var->mode;
pointer->type = var->type;
vtn_assert(ptr_type->base_type == vtn_base_type_pointer);
vtn_assert(ptr_type->deref->type == var->type->type);
pointer->ptr_type = ptr_type;
pointer->var = var;
pointer->access = var->access | var->type->access;
return pointer;
}
/* Returns an atomic_uint type based on the original uint type. The returned
* type will be equivalent to the original one but will have an atomic_uint
* type as leaf instead of an uint.
*
* Manages uint scalars, arrays, and arrays of arrays of any nested depth.
*/
static const struct glsl_type *
repair_atomic_type(const struct glsl_type *type)
{
assert(glsl_get_base_type(glsl_without_array(type)) == GLSL_TYPE_UINT);
assert(glsl_type_is_scalar(glsl_without_array(type)));
if (glsl_type_is_array(type)) {
const struct glsl_type *atomic =
repair_atomic_type(glsl_get_array_element(type));
return glsl_array_type(atomic, glsl_get_length(type),
glsl_get_explicit_stride(type));
} else {
return glsl_atomic_uint_type();
}
}
nir_deref_instr *
vtn_pointer_to_deref(struct vtn_builder *b, struct vtn_pointer *ptr)
{
/* Do on-the-fly copy propagation for samplers. */
if (ptr->var && ptr->var->copy_prop_sampler)
return vtn_pointer_to_deref(b, ptr->var->copy_prop_sampler);
vtn_assert(!vtn_pointer_uses_ssa_offset(b, ptr));
if (!ptr->deref) {
struct vtn_access_chain chain = {
.length = 0,
};
ptr = vtn_nir_deref_pointer_dereference(b, ptr, &chain);
}
return ptr->deref;
}
static void
_vtn_local_load_store(struct vtn_builder *b, bool load, nir_deref_instr *deref,
struct vtn_ssa_value *inout)
{
if (glsl_type_is_vector_or_scalar(deref->type)) {
if (load) {
inout->def = nir_load_deref(&b->nb, deref);
} else {
nir_store_deref(&b->nb, deref, inout->def, ~0);
}
} else if (glsl_type_is_array(deref->type) ||
glsl_type_is_matrix(deref->type)) {
unsigned elems = glsl_get_length(deref->type);
for (unsigned i = 0; i < elems; i++) {
nir_deref_instr *child =
nir_build_deref_array(&b->nb, deref, nir_imm_int(&b->nb, i));
_vtn_local_load_store(b, load, child, inout->elems[i]);
}
} else {
vtn_assert(glsl_type_is_struct(deref->type));
unsigned elems = glsl_get_length(deref->type);
for (unsigned i = 0; i < elems; i++) {
nir_deref_instr *child = nir_build_deref_struct(&b->nb, deref, i);
_vtn_local_load_store(b, load, child, inout->elems[i]);
}
}
}
nir_deref_instr *
vtn_nir_deref(struct vtn_builder *b, uint32_t id)
{
struct vtn_pointer *ptr = vtn_value(b, id, vtn_value_type_pointer)->pointer;
return vtn_pointer_to_deref(b, ptr);
}
/*
* Gets the NIR-level deref tail, which may have as a child an array deref
* selecting which component due to OpAccessChain supporting per-component
* indexing in SPIR-V.
*/
static nir_deref_instr *
get_deref_tail(nir_deref_instr *deref)
{
if (deref->deref_type != nir_deref_type_array)
return deref;
nir_deref_instr *parent =
nir_instr_as_deref(deref->parent.ssa->parent_instr);
if (glsl_type_is_vector(parent->type))
return parent;
else
return deref;
}
struct vtn_ssa_value *
vtn_local_load(struct vtn_builder *b, nir_deref_instr *src)
{
nir_deref_instr *src_tail = get_deref_tail(src);
struct vtn_ssa_value *val = vtn_create_ssa_value(b, src_tail->type);
_vtn_local_load_store(b, true, src_tail, val);
if (src_tail != src) {
val->type = src->type;
if (nir_src_is_const(src->arr.index))
val->def = vtn_vector_extract(b, val->def,
nir_src_as_uint(src->arr.index));
else
val->def = vtn_vector_extract_dynamic(b, val->def, src->arr.index.ssa);
}
return val;
}
void
vtn_local_store(struct vtn_builder *b, struct vtn_ssa_value *src,
nir_deref_instr *dest)
{
nir_deref_instr *dest_tail = get_deref_tail(dest);
if (dest_tail != dest) {
struct vtn_ssa_value *val = vtn_create_ssa_value(b, dest_tail->type);
_vtn_local_load_store(b, true, dest_tail, val);
if (nir_src_is_const(dest->arr.index))
val->def = vtn_vector_insert(b, val->def, src->def,
nir_src_as_uint(dest->arr.index));
else
val->def = vtn_vector_insert_dynamic(b, val->def, src->def,
dest->arr.index.ssa);
_vtn_local_load_store(b, false, dest_tail, val);
} else {
_vtn_local_load_store(b, false, dest_tail, src);
}
}
nir_ssa_def *
vtn_pointer_to_offset(struct vtn_builder *b, struct vtn_pointer *ptr,
nir_ssa_def **index_out)
{
assert(vtn_pointer_uses_ssa_offset(b, ptr));
if (!ptr->offset) {
struct vtn_access_chain chain = {
.length = 0,
};
ptr = vtn_ssa_offset_pointer_dereference(b, ptr, &chain);
}
*index_out = ptr->block_index;
return ptr->offset;
}
/* Tries to compute the size of an interface block based on the strides and
* offsets that are provided to us in the SPIR-V source.
*/
static unsigned
vtn_type_block_size(struct vtn_builder *b, struct vtn_type *type)
{
enum glsl_base_type base_type = glsl_get_base_type(type->type);
switch (base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_DOUBLE: {
unsigned cols = type->row_major ? glsl_get_vector_elements(type->type) :
glsl_get_matrix_columns(type->type);
if (cols > 1) {
vtn_assert(type->stride > 0);
return type->stride * cols;
} else {
unsigned type_size = glsl_get_bit_size(type->type) / 8;
return glsl_get_vector_elements(type->type) * type_size;
}
}
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE: {
unsigned size = 0;
unsigned num_fields = glsl_get_length(type->type);
for (unsigned f = 0; f < num_fields; f++) {
unsigned field_end = type->offsets[f] +
vtn_type_block_size(b, type->members[f]);
size = MAX2(size, field_end);
}
return size;
}
case GLSL_TYPE_ARRAY:
vtn_assert(type->stride > 0);
vtn_assert(glsl_get_length(type->type) > 0);
return type->stride * glsl_get_length(type->type);
default:
vtn_fail("Invalid block type");
return 0;
}
}
static void
_vtn_load_store_tail(struct vtn_builder *b, nir_intrinsic_op op, bool load,
nir_ssa_def *index, nir_ssa_def *offset,
unsigned access_offset, unsigned access_size,
struct vtn_ssa_value **inout, const struct glsl_type *type,
enum gl_access_qualifier access)
{
nir_intrinsic_instr *instr = nir_intrinsic_instr_create(b->nb.shader, op);
instr->num_components = glsl_get_vector_elements(type);
/* Booleans usually shouldn't show up in external memory in SPIR-V.
* However, they do for certain older GLSLang versions and can for shared
* memory when we lower access chains internally.
*/
const unsigned data_bit_size = glsl_type_is_boolean(type) ? 32 :
glsl_get_bit_size(type);
int src = 0;
if (!load) {
2016-02-09 23:35:51 +00:00
nir_intrinsic_set_write_mask(instr, (1 << instr->num_components) - 1);
instr->src[src++] = nir_src_for_ssa((*inout)->def);
}
if (op == nir_intrinsic_load_push_constant) {
nir_intrinsic_set_base(instr, access_offset);
nir_intrinsic_set_range(instr, access_size);
}
if (op == nir_intrinsic_load_ssbo ||
op == nir_intrinsic_store_ssbo) {
nir_intrinsic_set_access(instr, access);
}
/* With extensions like relaxed_block_layout, we really can't guarantee
* much more than scalar alignment.
*/
if (op != nir_intrinsic_load_push_constant)
nir_intrinsic_set_align(instr, data_bit_size / 8, 0);
if (index)
instr->src[src++] = nir_src_for_ssa(index);
if (op == nir_intrinsic_load_push_constant) {
/* We need to subtract the offset from where the intrinsic will load the
* data. */
instr->src[src++] =
nir_src_for_ssa(nir_isub(&b->nb, offset,
nir_imm_int(&b->nb, access_offset)));
} else {
instr->src[src++] = nir_src_for_ssa(offset);
}
if (load) {
nir_ssa_dest_init(&instr->instr, &instr->dest,
instr->num_components, data_bit_size, NULL);
(*inout)->def = &instr->dest.ssa;
}
nir_builder_instr_insert(&b->nb, &instr->instr);
if (load && glsl_get_base_type(type) == GLSL_TYPE_BOOL)
(*inout)->def = nir_ine(&b->nb, (*inout)->def, nir_imm_int(&b->nb, 0));
}
static void
_vtn_block_load_store(struct vtn_builder *b, nir_intrinsic_op op, bool load,
nir_ssa_def *index, nir_ssa_def *offset,
unsigned access_offset, unsigned access_size,
struct vtn_type *type, enum gl_access_qualifier access,
struct vtn_ssa_value **inout)
{
if (load && *inout == NULL)
*inout = vtn_create_ssa_value(b, type->type);
enum glsl_base_type base_type = glsl_get_base_type(type->type);
switch (base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_BOOL:
/* This is where things get interesting. At this point, we've hit
* a vector, a scalar, or a matrix.
*/
if (glsl_type_is_matrix(type->type)) {
/* Loading the whole matrix */
struct vtn_ssa_value *transpose;
unsigned num_ops, vec_width, col_stride;
if (type->row_major) {
num_ops = glsl_get_vector_elements(type->type);
vec_width = glsl_get_matrix_columns(type->type);
col_stride = type->array_element->stride;
if (load) {
const struct glsl_type *transpose_type =
glsl_matrix_type(base_type, vec_width, num_ops);
*inout = vtn_create_ssa_value(b, transpose_type);
} else {
transpose = vtn_ssa_transpose(b, *inout);
inout = &transpose;
}
} else {
num_ops = glsl_get_matrix_columns(type->type);
vec_width = glsl_get_vector_elements(type->type);
col_stride = type->stride;
}
for (unsigned i = 0; i < num_ops; i++) {
nir_ssa_def *elem_offset =
nir_iadd_imm(&b->nb, offset, i * col_stride);
_vtn_load_store_tail(b, op, load, index, elem_offset,
access_offset, access_size,
&(*inout)->elems[i],
glsl_vector_type(base_type, vec_width),
type->access | access);
}
if (load && type->row_major)
*inout = vtn_ssa_transpose(b, *inout);
} else {
unsigned elems = glsl_get_vector_elements(type->type);
unsigned type_size = glsl_get_bit_size(type->type) / 8;
if (elems == 1 || type->stride == type_size) {
/* This is a tightly-packed normal scalar or vector load */
vtn_assert(glsl_type_is_vector_or_scalar(type->type));
_vtn_load_store_tail(b, op, load, index, offset,
access_offset, access_size,
inout, type->type,
type->access | access);
} else {
/* This is a strided load. We have to load N things separately.
* This is the single column of a row-major matrix case.
*/
vtn_assert(type->stride > type_size);
vtn_assert(type->stride % type_size == 0);
nir_ssa_def *per_comp[4];
for (unsigned i = 0; i < elems; i++) {
nir_ssa_def *elem_offset =
nir_iadd_imm(&b->nb, offset, i * type->stride);
struct vtn_ssa_value *comp, temp_val;
if (!load) {
temp_val.def = nir_channel(&b->nb, (*inout)->def, i);
temp_val.type = glsl_scalar_type(base_type);
}
comp = &temp_val;
_vtn_load_store_tail(b, op, load, index, elem_offset,
access_offset, access_size,
&comp, glsl_scalar_type(base_type),
type->access | access);
per_comp[i] = comp->def;
}
if (load) {
if (*inout == NULL)
*inout = vtn_create_ssa_value(b, type->type);
(*inout)->def = nir_vec(&b->nb, per_comp, elems);
}
}
}
return;
case GLSL_TYPE_ARRAY: {
unsigned elems = glsl_get_length(type->type);
for (unsigned i = 0; i < elems; i++) {
nir_ssa_def *elem_off =
nir_iadd_imm(&b->nb, offset, i * type->stride);
_vtn_block_load_store(b, op, load, index, elem_off,
access_offset, access_size,
type->array_element,
type->array_element->access | access,
&(*inout)->elems[i]);
}
return;
}
case GLSL_TYPE_STRUCT: {
unsigned elems = glsl_get_length(type->type);
for (unsigned i = 0; i < elems; i++) {
nir_ssa_def *elem_off =
nir_iadd_imm(&b->nb, offset, type->offsets[i]);
_vtn_block_load_store(b, op, load, index, elem_off,
access_offset, access_size,
type->members[i],
type->members[i]->access | access,
&(*inout)->elems[i]);
}
return;
}
default:
vtn_fail("Invalid block member type");
}
}
static struct vtn_ssa_value *
vtn_block_load(struct vtn_builder *b, struct vtn_pointer *src)
{
nir_intrinsic_op op;
unsigned access_offset = 0, access_size = 0;
switch (src->mode) {
case vtn_variable_mode_ubo:
op = nir_intrinsic_load_ubo;
break;
case vtn_variable_mode_ssbo:
op = nir_intrinsic_load_ssbo;
break;
case vtn_variable_mode_push_constant:
op = nir_intrinsic_load_push_constant;
access_size = b->shader->num_uniforms;
break;
case vtn_variable_mode_workgroup:
op = nir_intrinsic_load_shared;
break;
default:
vtn_fail("Invalid block variable mode");
}
nir_ssa_def *offset, *index = NULL;
offset = vtn_pointer_to_offset(b, src, &index);
struct vtn_ssa_value *value = NULL;
_vtn_block_load_store(b, op, true, index, offset,
access_offset, access_size,
src->type, src->access, &value);
return value;
}
static void
vtn_block_store(struct vtn_builder *b, struct vtn_ssa_value *src,
struct vtn_pointer *dst)
{
nir_intrinsic_op op;
switch (dst->mode) {
case vtn_variable_mode_ssbo:
op = nir_intrinsic_store_ssbo;
break;
case vtn_variable_mode_workgroup:
op = nir_intrinsic_store_shared;
break;
default:
vtn_fail("Invalid block variable mode");
}
nir_ssa_def *offset, *index = NULL;
offset = vtn_pointer_to_offset(b, dst, &index);
_vtn_block_load_store(b, op, false, index, offset,
0, 0, dst->type, dst->access, &src);
}
static void
_vtn_variable_load_store(struct vtn_builder *b, bool load,
struct vtn_pointer *ptr,
struct vtn_ssa_value **inout)
{
enum glsl_base_type base_type = glsl_get_base_type(ptr->type->type);
switch (base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_DOUBLE:
/* At this point, we have a scalar, vector, or matrix so we know that
* there cannot be any structure splitting still in the way. By
* stopping at the matrix level rather than the vector level, we
* ensure that matrices get loaded in the optimal way even if they
* are storred row-major in a UBO.
*/
if (load) {
*inout = vtn_local_load(b, vtn_pointer_to_deref(b, ptr));
} else {
vtn_local_store(b, *inout, vtn_pointer_to_deref(b, ptr));
}
return;
case GLSL_TYPE_ARRAY:
case GLSL_TYPE_STRUCT: {
unsigned elems = glsl_get_length(ptr->type->type);
if (load) {
vtn_assert(*inout == NULL);
*inout = rzalloc(b, struct vtn_ssa_value);
(*inout)->type = ptr->type->type;
(*inout)->elems = rzalloc_array(b, struct vtn_ssa_value *, elems);
}
struct vtn_access_chain chain = {
.length = 1,
.link = {
{ .mode = vtn_access_mode_literal, },
}
};
for (unsigned i = 0; i < elems; i++) {
chain.link[0].id = i;
struct vtn_pointer *elem = vtn_pointer_dereference(b, ptr, &chain);
_vtn_variable_load_store(b, load, elem, &(*inout)->elems[i]);
}
return;
}
default:
vtn_fail("Invalid access chain type");
}
}
struct vtn_ssa_value *
vtn_variable_load(struct vtn_builder *b, struct vtn_pointer *src)
{
if (vtn_pointer_is_external_block(b, src)) {
return vtn_block_load(b, src);
} else {
struct vtn_ssa_value *val = NULL;
_vtn_variable_load_store(b, true, src, &val);
return val;
}
}
void
vtn_variable_store(struct vtn_builder *b, struct vtn_ssa_value *src,
struct vtn_pointer *dest)
{
if (vtn_pointer_is_external_block(b, dest)) {
vtn_assert(dest->mode == vtn_variable_mode_ssbo ||
dest->mode == vtn_variable_mode_workgroup);
vtn_block_store(b, src, dest);
} else {
_vtn_variable_load_store(b, false, dest, &src);
}
}
static void
_vtn_variable_copy(struct vtn_builder *b, struct vtn_pointer *dest,
struct vtn_pointer *src)
{
vtn_assert(src->type->type == dest->type->type);
enum glsl_base_type base_type = glsl_get_base_type(src->type->type);
switch (base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_BOOL:
/* At this point, we have a scalar, vector, or matrix so we know that
* there cannot be any structure splitting still in the way. By
* stopping at the matrix level rather than the vector level, we
* ensure that matrices get loaded in the optimal way even if they
* are storred row-major in a UBO.
*/
vtn_variable_store(b, vtn_variable_load(b, src), dest);
return;
case GLSL_TYPE_ARRAY:
case GLSL_TYPE_STRUCT: {
struct vtn_access_chain chain = {
.length = 1,
.link = {
{ .mode = vtn_access_mode_literal, },
}
};
unsigned elems = glsl_get_length(src->type->type);
for (unsigned i = 0; i < elems; i++) {
chain.link[0].id = i;
struct vtn_pointer *src_elem =
vtn_pointer_dereference(b, src, &chain);
struct vtn_pointer *dest_elem =
vtn_pointer_dereference(b, dest, &chain);
_vtn_variable_copy(b, dest_elem, src_elem);
}
return;
}
default:
vtn_fail("Invalid access chain type");
}
}
static void
vtn_variable_copy(struct vtn_builder *b, struct vtn_pointer *dest,
struct vtn_pointer *src)
{
/* TODO: At some point, we should add a special-case for when we can
* just emit a copy_var intrinsic.
*/
_vtn_variable_copy(b, dest, src);
}
static void
set_mode_system_value(struct vtn_builder *b, nir_variable_mode *mode)
{
vtn_assert(*mode == nir_var_system_value || *mode == nir_var_shader_in);
*mode = nir_var_system_value;
}
static void
vtn_get_builtin_location(struct vtn_builder *b,
SpvBuiltIn builtin, int *location,
nir_variable_mode *mode)
{
switch (builtin) {
case SpvBuiltInPosition:
*location = VARYING_SLOT_POS;
break;
case SpvBuiltInPointSize:
*location = VARYING_SLOT_PSIZ;
break;
case SpvBuiltInClipDistance:
*location = VARYING_SLOT_CLIP_DIST0; /* XXX CLIP_DIST1? */
break;
case SpvBuiltInCullDistance:
*location = VARYING_SLOT_CULL_DIST0;
2016-01-22 00:03:06 +00:00
break;
case SpvBuiltInVertexId:
case SpvBuiltInVertexIndex:
/* The Vulkan spec defines VertexIndex to be non-zero-based and doesn't
* allow VertexId. The ARB_gl_spirv spec defines VertexId to be the
* same as gl_VertexID, which is non-zero-based, and removes
* VertexIndex. Since they're both defined to be non-zero-based, we use
* SYSTEM_VALUE_VERTEX_ID for both.
*/
*location = SYSTEM_VALUE_VERTEX_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInInstanceIndex:
*location = SYSTEM_VALUE_INSTANCE_INDEX;
set_mode_system_value(b, mode);
break;
case SpvBuiltInInstanceId:
*location = SYSTEM_VALUE_INSTANCE_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInPrimitiveId:
if (b->shader->info.stage == MESA_SHADER_FRAGMENT) {
vtn_assert(*mode == nir_var_shader_in);
*location = VARYING_SLOT_PRIMITIVE_ID;
} else if (*mode == nir_var_shader_out) {
*location = VARYING_SLOT_PRIMITIVE_ID;
} else {
*location = SYSTEM_VALUE_PRIMITIVE_ID;
set_mode_system_value(b, mode);
}
break;
case SpvBuiltInInvocationId:
*location = SYSTEM_VALUE_INVOCATION_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInLayer:
*location = VARYING_SLOT_LAYER;
if (b->shader->info.stage == MESA_SHADER_FRAGMENT)
*mode = nir_var_shader_in;
else if (b->shader->info.stage == MESA_SHADER_GEOMETRY)
*mode = nir_var_shader_out;
else if (b->options && b->options->caps.shader_viewport_index_layer &&
(b->shader->info.stage == MESA_SHADER_VERTEX ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL))
*mode = nir_var_shader_out;
else
vtn_fail("invalid stage for SpvBuiltInLayer");
break;
case SpvBuiltInViewportIndex:
*location = VARYING_SLOT_VIEWPORT;
if (b->shader->info.stage == MESA_SHADER_GEOMETRY)
*mode = nir_var_shader_out;
else if (b->options && b->options->caps.shader_viewport_index_layer &&
(b->shader->info.stage == MESA_SHADER_VERTEX ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL))
*mode = nir_var_shader_out;
else if (b->shader->info.stage == MESA_SHADER_FRAGMENT)
*mode = nir_var_shader_in;
else
vtn_fail("invalid stage for SpvBuiltInViewportIndex");
break;
case SpvBuiltInTessLevelOuter:
*location = VARYING_SLOT_TESS_LEVEL_OUTER;
break;
case SpvBuiltInTessLevelInner:
*location = VARYING_SLOT_TESS_LEVEL_INNER;
break;
case SpvBuiltInTessCoord:
*location = SYSTEM_VALUE_TESS_COORD;
set_mode_system_value(b, mode);
break;
case SpvBuiltInPatchVertices:
*location = SYSTEM_VALUE_VERTICES_IN;
set_mode_system_value(b, mode);
break;
case SpvBuiltInFragCoord:
*location = VARYING_SLOT_POS;
vtn_assert(*mode == nir_var_shader_in);
break;
case SpvBuiltInPointCoord:
*location = VARYING_SLOT_PNTC;
vtn_assert(*mode == nir_var_shader_in);
break;
case SpvBuiltInFrontFacing:
*location = SYSTEM_VALUE_FRONT_FACE;
set_mode_system_value(b, mode);
break;
case SpvBuiltInSampleId:
*location = SYSTEM_VALUE_SAMPLE_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInSamplePosition:
*location = SYSTEM_VALUE_SAMPLE_POS;
set_mode_system_value(b, mode);
break;
case SpvBuiltInSampleMask:
if (*mode == nir_var_shader_out) {
*location = FRAG_RESULT_SAMPLE_MASK;
} else {
*location = SYSTEM_VALUE_SAMPLE_MASK_IN;
set_mode_system_value(b, mode);
}
break;
case SpvBuiltInFragDepth:
*location = FRAG_RESULT_DEPTH;
vtn_assert(*mode == nir_var_shader_out);
break;
case SpvBuiltInHelperInvocation:
*location = SYSTEM_VALUE_HELPER_INVOCATION;
set_mode_system_value(b, mode);
break;
case SpvBuiltInNumWorkgroups:
*location = SYSTEM_VALUE_NUM_WORK_GROUPS;
set_mode_system_value(b, mode);
break;
case SpvBuiltInWorkgroupSize:
*location = SYSTEM_VALUE_LOCAL_GROUP_SIZE;
set_mode_system_value(b, mode);
break;
case SpvBuiltInWorkgroupId:
*location = SYSTEM_VALUE_WORK_GROUP_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInLocalInvocationId:
*location = SYSTEM_VALUE_LOCAL_INVOCATION_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInLocalInvocationIndex:
*location = SYSTEM_VALUE_LOCAL_INVOCATION_INDEX;
set_mode_system_value(b, mode);
break;
case SpvBuiltInGlobalInvocationId:
*location = SYSTEM_VALUE_GLOBAL_INVOCATION_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInBaseVertex:
/* OpenGL gl_BaseVertex (SYSTEM_VALUE_BASE_VERTEX) is not the same
* semantic as SPIR-V BaseVertex (SYSTEM_VALUE_FIRST_VERTEX).
*/
*location = SYSTEM_VALUE_FIRST_VERTEX;
set_mode_system_value(b, mode);
break;
case SpvBuiltInBaseInstance:
*location = SYSTEM_VALUE_BASE_INSTANCE;
set_mode_system_value(b, mode);
break;
case SpvBuiltInDrawIndex:
*location = SYSTEM_VALUE_DRAW_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInSubgroupSize:
*location = SYSTEM_VALUE_SUBGROUP_SIZE;
set_mode_system_value(b, mode);
break;
case SpvBuiltInSubgroupId:
*location = SYSTEM_VALUE_SUBGROUP_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInSubgroupLocalInvocationId:
*location = SYSTEM_VALUE_SUBGROUP_INVOCATION;
set_mode_system_value(b, mode);
break;
case SpvBuiltInNumSubgroups:
*location = SYSTEM_VALUE_NUM_SUBGROUPS;
set_mode_system_value(b, mode);
break;
case SpvBuiltInDeviceIndex:
*location = SYSTEM_VALUE_DEVICE_INDEX;
set_mode_system_value(b, mode);
break;
case SpvBuiltInViewIndex:
*location = SYSTEM_VALUE_VIEW_INDEX;
set_mode_system_value(b, mode);
break;
case SpvBuiltInSubgroupEqMask:
*location = SYSTEM_VALUE_SUBGROUP_EQ_MASK,
set_mode_system_value(b, mode);
break;
case SpvBuiltInSubgroupGeMask:
*location = SYSTEM_VALUE_SUBGROUP_GE_MASK,
set_mode_system_value(b, mode);
break;
case SpvBuiltInSubgroupGtMask:
*location = SYSTEM_VALUE_SUBGROUP_GT_MASK,
set_mode_system_value(b, mode);
break;
case SpvBuiltInSubgroupLeMask:
*location = SYSTEM_VALUE_SUBGROUP_LE_MASK,
set_mode_system_value(b, mode);
break;
case SpvBuiltInSubgroupLtMask:
*location = SYSTEM_VALUE_SUBGROUP_LT_MASK,
set_mode_system_value(b, mode);
break;
case SpvBuiltInFragStencilRefEXT:
*location = FRAG_RESULT_STENCIL;
vtn_assert(*mode == nir_var_shader_out);
break;
case SpvBuiltInWorkDim:
*location = SYSTEM_VALUE_WORK_DIM;
set_mode_system_value(b, mode);
break;
case SpvBuiltInGlobalSize:
*location = SYSTEM_VALUE_GLOBAL_GROUP_SIZE;
set_mode_system_value(b, mode);
break;
default:
vtn_fail("unsupported builtin: %u", builtin);
}
}
static void
apply_var_decoration(struct vtn_builder *b,
struct nir_variable_data *var_data,
const struct vtn_decoration *dec)
{
switch (dec->decoration) {
case SpvDecorationRelaxedPrecision:
break; /* FIXME: Do nothing with this for now. */
case SpvDecorationNoPerspective:
var_data->interpolation = INTERP_MODE_NOPERSPECTIVE;
break;
case SpvDecorationFlat:
var_data->interpolation = INTERP_MODE_FLAT;
break;
case SpvDecorationCentroid:
var_data->centroid = true;
break;
case SpvDecorationSample:
var_data->sample = true;
break;
case SpvDecorationInvariant:
var_data->invariant = true;
break;
case SpvDecorationConstant:
var_data->read_only = true;
break;
case SpvDecorationNonReadable:
var_data->image.access |= ACCESS_NON_READABLE;
break;
case SpvDecorationNonWritable:
var_data->read_only = true;
var_data->image.access |= ACCESS_NON_WRITEABLE;
break;
case SpvDecorationRestrict:
var_data->image.access |= ACCESS_RESTRICT;
break;
case SpvDecorationVolatile:
var_data->image.access |= ACCESS_VOLATILE;
break;
case SpvDecorationCoherent:
var_data->image.access |= ACCESS_COHERENT;
break;
case SpvDecorationComponent:
var_data->location_frac = dec->literals[0];
break;
case SpvDecorationIndex:
var_data->index = dec->literals[0];
break;
case SpvDecorationBuiltIn: {
SpvBuiltIn builtin = dec->literals[0];
nir_variable_mode mode = var_data->mode;
vtn_get_builtin_location(b, builtin, &var_data->location, &mode);
var_data->mode = mode;
switch (builtin) {
case SpvBuiltInTessLevelOuter:
case SpvBuiltInTessLevelInner:
var_data->compact = true;
break;
case SpvBuiltInFragCoord:
var_data->pixel_center_integer = b->pixel_center_integer;
spirv: Apply OriginUpperLeft to FragCoord This behaviour was changed in 1e5b09f42f694687ac. The commit message for that says it is just a “tidy up” so my assumption is that the behaviour change was a mistake. It’s a little hard to decipher looking at the diff, but the previous code before that patch was: if (builtin == SpvBuiltInFragCoord || builtin == SpvBuiltInSamplePosition) nir_var->data.origin_upper_left = b->origin_upper_left; if (builtin == SpvBuiltInFragCoord) nir_var->data.pixel_center_integer = b->pixel_center_integer; After the patch the code was: case SpvBuiltInSamplePosition: nir_var->data.origin_upper_left = b->origin_upper_left; /* fallthrough */ case SpvBuiltInFragCoord: nir_var->data.pixel_center_integer = b->pixel_center_integer; break; Before the patch origin_upper_left affected both builtins and pixel_center_integer only affected FragCoord. After the patch origin_upper_left only affects SamplePosition and pixel_center_integer affects both variables. This patch tries to restore the previous behaviour by changing the code to: case SpvBuiltInFragCoord: nir_var->data.pixel_center_integer = b->pixel_center_integer; /* fallthrough */ case SpvBuiltInSamplePosition: nir_var->data.origin_upper_left = b->origin_upper_left; break; This change will be important for ARB_gl_spirv which is meant to support OriginLowerLeft. Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Anuj Phogat <anuj.phogat@gmail.com> Fixes: 1e5b09f42f694687ac "spirv: Tidy some repeated if checks..."
2018-05-02 17:10:00 +01:00
/* fallthrough */
case SpvBuiltInSamplePosition:
var_data->origin_upper_left = b->origin_upper_left;
break;
default:
break;
}
}
case SpvDecorationSpecId:
case SpvDecorationRowMajor:
case SpvDecorationColMajor:
case SpvDecorationMatrixStride:
case SpvDecorationAliased:
case SpvDecorationUniform:
case SpvDecorationLinkageAttributes:
break; /* Do nothing with these here */
case SpvDecorationPatch:
var_data->patch = true;
break;
case SpvDecorationLocation:
vtn_fail("Handled above");
case SpvDecorationBlock:
case SpvDecorationBufferBlock:
case SpvDecorationArrayStride:
case SpvDecorationGLSLShared:
case SpvDecorationGLSLPacked:
break; /* These can apply to a type but we don't care about them */
case SpvDecorationBinding:
case SpvDecorationDescriptorSet:
case SpvDecorationNoContraction:
case SpvDecorationInputAttachmentIndex:
vtn_warn("Decoration not allowed for variable or structure member: %s",
spirv_decoration_to_string(dec->decoration));
break;
case SpvDecorationXfbBuffer:
var_data->explicit_xfb_buffer = true;
var_data->xfb_buffer = dec->literals[0];
var_data->always_active_io = true;
break;
case SpvDecorationXfbStride:
var_data->explicit_xfb_stride = true;
var_data->xfb_stride = dec->literals[0];
break;
case SpvDecorationOffset:
var_data->explicit_offset = true;
var_data->offset = dec->literals[0];
break;
case SpvDecorationStream:
var_data->stream = dec->literals[0];
break;
case SpvDecorationCPacked:
case SpvDecorationSaturatedConversion:
case SpvDecorationFuncParamAttr:
case SpvDecorationFPRoundingMode:
case SpvDecorationFPFastMathMode:
case SpvDecorationAlignment:
vtn_warn("Decoration only allowed for CL-style kernels: %s",
spirv_decoration_to_string(dec->decoration));
break;
case SpvDecorationHlslSemanticGOOGLE:
/* HLSL semantic decorations can safely be ignored by the driver. */
break;
default:
vtn_fail("Unhandled decoration");
}
}
static void
var_is_patch_cb(struct vtn_builder *b, struct vtn_value *val, int member,
const struct vtn_decoration *dec, void *out_is_patch)
{
if (dec->decoration == SpvDecorationPatch) {
*((bool *) out_is_patch) = true;
}
}
static void
var_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member,
const struct vtn_decoration *dec, void *void_var)
{
struct vtn_variable *vtn_var = void_var;
/* Handle decorations that apply to a vtn_variable as a whole */
switch (dec->decoration) {
case SpvDecorationBinding:
vtn_var->binding = dec->literals[0];
vtn_var->explicit_binding = true;
return;
case SpvDecorationDescriptorSet:
vtn_var->descriptor_set = dec->literals[0];
return;
case SpvDecorationInputAttachmentIndex:
vtn_var->input_attachment_index = dec->literals[0];
return;
case SpvDecorationPatch:
vtn_var->patch = true;
break;
case SpvDecorationOffset:
vtn_var->offset = dec->literals[0];
break;
case SpvDecorationNonWritable:
vtn_var->access |= ACCESS_NON_WRITEABLE;
break;
case SpvDecorationNonReadable:
vtn_var->access |= ACCESS_NON_READABLE;
break;
case SpvDecorationVolatile:
vtn_var->access |= ACCESS_VOLATILE;
break;
case SpvDecorationCoherent:
vtn_var->access |= ACCESS_COHERENT;
break;
case SpvDecorationHlslCounterBufferGOOGLE:
/* HLSL semantic decorations can safely be ignored by the driver. */
break;
default:
break;
}
if (val->value_type == vtn_value_type_pointer) {
assert(val->pointer->var == void_var);
assert(member == -1);
} else {
assert(val->value_type == vtn_value_type_type);
}
/* Location is odd. If applied to a split structure, we have to walk the
* whole thing and accumulate the location. It's easier to handle as a
* special case.
*/
if (dec->decoration == SpvDecorationLocation) {
unsigned location = dec->literals[0];
bool is_vertex_input = false;
if (b->shader->info.stage == MESA_SHADER_FRAGMENT &&
vtn_var->mode == vtn_variable_mode_output) {
location += FRAG_RESULT_DATA0;
} else if (b->shader->info.stage == MESA_SHADER_VERTEX &&
vtn_var->mode == vtn_variable_mode_input) {
is_vertex_input = true;
location += VERT_ATTRIB_GENERIC0;
} else if (vtn_var->mode == vtn_variable_mode_input ||
vtn_var->mode == vtn_variable_mode_output) {
location += vtn_var->patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0;
spirv: Get rid of vtn_variable_mode_image/sampler vtn_variable_mode_image and _sampler are instead replaced with vtn_variable_mode_uniform which encompasses both of them. In the few places where it was neccessary to distinguish between the two, the GLSL type of the pointer is used instead. The main reason to do this is that on OpenGL it is permitted to put images and samplers into structs and declare a uniform with them. That means that variables can now have a mix of uniform, sampler and image modes so picking a single one of those modes for a variable no longer makes sense. This fixes OpLoad on a sampler within a struct which was previously using the variable mode to determine whether it was a sampler or not. The type of the variable is a struct so it was not being considered to be uniform mode even though the member being loaded should be sampler mode. The previous code appeared to be using var->interface_type as a place to store the type of the variable without the enclosing array for images and samplers. I guess this worked because opaque types can not appear in interfaces so the interface_type is sort of unused. This patch removes the overloading of var->interface_type and any places that needed the type without the array can now just deduce it from var->type. v2: squash in this patch the changes to anv/nir (Timothy) Signed-off-by: Eduardo Lima <elima@igalia.com> Signed-off-by: Neil Roberts <nroberts@igalia.com Signed-off-by: Alejandro Piñeiro <apinheiro@igalia.com> Reviewed-by: Timothy Arceri <tarceri@itsqueeze.com>
2018-03-01 16:51:58 +00:00
} else if (vtn_var->mode != vtn_variable_mode_uniform) {
vtn_warn("Location must be on input, output, uniform, sampler or "
"image variable");
return;
}
if (vtn_var->var->num_members == 0) {
/* This handles the member and lone variable cases */
vtn_var->var->data.location = location;
} else {
/* This handles the structure member case */
assert(vtn_var->var->members);
for (unsigned i = 0; i < vtn_var->var->num_members; i++) {
vtn_var->var->members[i].location = location;
const struct glsl_type *member_type =
glsl_get_struct_field(vtn_var->var->interface_type, i);
location += glsl_count_attribute_slots(member_type,
is_vertex_input);
}
}
return;
} else {
if (vtn_var->var) {
if (vtn_var->var->num_members == 0) {
assert(member == -1);
apply_var_decoration(b, &vtn_var->var->data, dec);
} else if (member >= 0) {
/* Member decorations must come from a type */
assert(val->value_type == vtn_value_type_type);
apply_var_decoration(b, &vtn_var->var->members[member], dec);
} else {
unsigned length =
glsl_get_length(glsl_without_array(vtn_var->type->type));
for (unsigned i = 0; i < length; i++)
apply_var_decoration(b, &vtn_var->var->members[i], dec);
}
} else {
/* A few variables, those with external storage, have no actual
* nir_variables associated with them. Fortunately, all decorations
* we care about for those variables are on the type only.
*/
vtn_assert(vtn_var->mode == vtn_variable_mode_ubo ||
vtn_var->mode == vtn_variable_mode_ssbo ||
vtn_var->mode == vtn_variable_mode_push_constant ||
(vtn_var->mode == vtn_variable_mode_workgroup &&
b->options->lower_workgroup_access_to_offsets));
}
}
}
static enum vtn_variable_mode
vtn_storage_class_to_mode(struct vtn_builder *b,
SpvStorageClass class,
struct vtn_type *interface_type,
nir_variable_mode *nir_mode_out)
{
enum vtn_variable_mode mode;
nir_variable_mode nir_mode;
switch (class) {
case SpvStorageClassUniform:
if (interface_type->block) {
mode = vtn_variable_mode_ubo;
nir_mode = nir_var_ubo;
} else if (interface_type->buffer_block) {
mode = vtn_variable_mode_ssbo;
nir_mode = nir_var_ssbo;
} else {
/* Default-block uniforms, coming from gl_spirv */
mode = vtn_variable_mode_uniform;
nir_mode = nir_var_uniform;
}
break;
case SpvStorageClassStorageBuffer:
mode = vtn_variable_mode_ssbo;
nir_mode = nir_var_ssbo;
break;
case SpvStorageClassUniformConstant:
spirv: Get rid of vtn_variable_mode_image/sampler vtn_variable_mode_image and _sampler are instead replaced with vtn_variable_mode_uniform which encompasses both of them. In the few places where it was neccessary to distinguish between the two, the GLSL type of the pointer is used instead. The main reason to do this is that on OpenGL it is permitted to put images and samplers into structs and declare a uniform with them. That means that variables can now have a mix of uniform, sampler and image modes so picking a single one of those modes for a variable no longer makes sense. This fixes OpLoad on a sampler within a struct which was previously using the variable mode to determine whether it was a sampler or not. The type of the variable is a struct so it was not being considered to be uniform mode even though the member being loaded should be sampler mode. The previous code appeared to be using var->interface_type as a place to store the type of the variable without the enclosing array for images and samplers. I guess this worked because opaque types can not appear in interfaces so the interface_type is sort of unused. This patch removes the overloading of var->interface_type and any places that needed the type without the array can now just deduce it from var->type. v2: squash in this patch the changes to anv/nir (Timothy) Signed-off-by: Eduardo Lima <elima@igalia.com> Signed-off-by: Neil Roberts <nroberts@igalia.com Signed-off-by: Alejandro Piñeiro <apinheiro@igalia.com> Reviewed-by: Timothy Arceri <tarceri@itsqueeze.com>
2018-03-01 16:51:58 +00:00
mode = vtn_variable_mode_uniform;
nir_mode = nir_var_uniform;
break;
case SpvStorageClassPushConstant:
mode = vtn_variable_mode_push_constant;
nir_mode = nir_var_uniform;
break;
case SpvStorageClassInput:
mode = vtn_variable_mode_input;
nir_mode = nir_var_shader_in;
break;
case SpvStorageClassOutput:
mode = vtn_variable_mode_output;
nir_mode = nir_var_shader_out;
break;
case SpvStorageClassPrivate:
mode = vtn_variable_mode_global;
nir_mode = nir_var_global;
break;
case SpvStorageClassFunction:
mode = vtn_variable_mode_local;
nir_mode = nir_var_local;
break;
case SpvStorageClassWorkgroup:
mode = vtn_variable_mode_workgroup;
nir_mode = nir_var_shared;
break;
case SpvStorageClassAtomicCounter:
mode = vtn_variable_mode_uniform;
nir_mode = nir_var_uniform;
break;
case SpvStorageClassCrossWorkgroup:
case SpvStorageClassGeneric:
default:
vtn_fail("Unhandled variable storage class");
}
if (nir_mode_out)
*nir_mode_out = nir_mode;
return mode;
}
nir_ssa_def *
vtn_pointer_to_ssa(struct vtn_builder *b, struct vtn_pointer *ptr)
{
if (vtn_pointer_uses_ssa_offset(b, ptr)) {
/* This pointer needs to have a pointer type with actual storage */
vtn_assert(ptr->ptr_type);
vtn_assert(ptr->ptr_type->type);
if (!ptr->offset) {
/* If we don't have an offset then we must be a pointer to the variable
* itself.
*/
vtn_assert(!ptr->offset && !ptr->block_index);
struct vtn_access_chain chain = {
.length = 0,
};
ptr = vtn_ssa_offset_pointer_dereference(b, ptr, &chain);
}
vtn_assert(ptr->offset);
if (ptr->block_index) {
vtn_assert(ptr->mode == vtn_variable_mode_ubo ||
ptr->mode == vtn_variable_mode_ssbo);
return nir_vec2(&b->nb, ptr->block_index, ptr->offset);
} else {
vtn_assert(ptr->mode == vtn_variable_mode_workgroup);
return ptr->offset;
}
} else {
return &vtn_pointer_to_deref(b, ptr)->dest.ssa;
}
}
struct vtn_pointer *
vtn_pointer_from_ssa(struct vtn_builder *b, nir_ssa_def *ssa,
struct vtn_type *ptr_type)
{
vtn_assert(ssa->num_components <= 2 && ssa->bit_size == 32);
vtn_assert(ptr_type->base_type == vtn_base_type_pointer);
struct vtn_type *interface_type = ptr_type->deref;
while (interface_type->base_type == vtn_base_type_array)
interface_type = interface_type->array_element;
struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer);
nir_variable_mode nir_mode;
ptr->mode = vtn_storage_class_to_mode(b, ptr_type->storage_class,
interface_type, &nir_mode);
ptr->type = ptr_type->deref;
ptr->ptr_type = ptr_type;
if (ptr->mode == vtn_variable_mode_ubo ||
ptr->mode == vtn_variable_mode_ssbo) {
/* This pointer type needs to have actual storage */
vtn_assert(ptr_type->type);
vtn_assert(ssa->num_components == 2);
ptr->block_index = nir_channel(&b->nb, ssa, 0);
ptr->offset = nir_channel(&b->nb, ssa, 1);
} else if ((ptr->mode == vtn_variable_mode_workgroup &&
b->options->lower_workgroup_access_to_offsets) ||
ptr->mode == vtn_variable_mode_push_constant) {
/* This pointer type needs to have actual storage */
vtn_assert(ptr_type->type);
vtn_assert(ssa->num_components == 1);
ptr->block_index = NULL;
ptr->offset = ssa;
} else {
assert(!vtn_pointer_is_external_block(b, ptr));
const struct glsl_type *deref_type = ptr_type->deref->type;
ptr->deref = nir_build_deref_cast(&b->nb, ssa, nir_mode,
glsl_get_bare_type(deref_type), 0);
}
return ptr;
}
static bool
is_per_vertex_inout(const struct vtn_variable *var, gl_shader_stage stage)
{
if (var->patch || !glsl_type_is_array(var->type->type))
return false;
if (var->mode == vtn_variable_mode_input) {
return stage == MESA_SHADER_TESS_CTRL ||
stage == MESA_SHADER_TESS_EVAL ||
stage == MESA_SHADER_GEOMETRY;
}
if (var->mode == vtn_variable_mode_output)
return stage == MESA_SHADER_TESS_CTRL;
return false;
}
static void
vtn_create_variable(struct vtn_builder *b, struct vtn_value *val,
struct vtn_type *ptr_type, SpvStorageClass storage_class,
nir_constant *initializer)
{
vtn_assert(ptr_type->base_type == vtn_base_type_pointer);
struct vtn_type *type = ptr_type->deref;
struct vtn_type *without_array = type;
while(glsl_type_is_array(without_array->type))
without_array = without_array->array_element;
enum vtn_variable_mode mode;
nir_variable_mode nir_mode;
mode = vtn_storage_class_to_mode(b, storage_class, without_array, &nir_mode);
switch (mode) {
case vtn_variable_mode_ubo:
b->shader->info.num_ubos++;
break;
case vtn_variable_mode_ssbo:
b->shader->info.num_ssbos++;
break;
spirv: Get rid of vtn_variable_mode_image/sampler vtn_variable_mode_image and _sampler are instead replaced with vtn_variable_mode_uniform which encompasses both of them. In the few places where it was neccessary to distinguish between the two, the GLSL type of the pointer is used instead. The main reason to do this is that on OpenGL it is permitted to put images and samplers into structs and declare a uniform with them. That means that variables can now have a mix of uniform, sampler and image modes so picking a single one of those modes for a variable no longer makes sense. This fixes OpLoad on a sampler within a struct which was previously using the variable mode to determine whether it was a sampler or not. The type of the variable is a struct so it was not being considered to be uniform mode even though the member being loaded should be sampler mode. The previous code appeared to be using var->interface_type as a place to store the type of the variable without the enclosing array for images and samplers. I guess this worked because opaque types can not appear in interfaces so the interface_type is sort of unused. This patch removes the overloading of var->interface_type and any places that needed the type without the array can now just deduce it from var->type. v2: squash in this patch the changes to anv/nir (Timothy) Signed-off-by: Eduardo Lima <elima@igalia.com> Signed-off-by: Neil Roberts <nroberts@igalia.com Signed-off-by: Alejandro Piñeiro <apinheiro@igalia.com> Reviewed-by: Timothy Arceri <tarceri@itsqueeze.com>
2018-03-01 16:51:58 +00:00
case vtn_variable_mode_uniform:
if (glsl_type_is_image(without_array->type))
b->shader->info.num_images++;
else if (glsl_type_is_sampler(without_array->type))
b->shader->info.num_textures++;
break;
case vtn_variable_mode_push_constant:
b->shader->num_uniforms = vtn_type_block_size(b, type);
break;
default:
/* No tallying is needed */
break;
}
struct vtn_variable *var = rzalloc(b, struct vtn_variable);
var->type = type;
var->mode = mode;
vtn_assert(val->value_type == vtn_value_type_pointer);
val->pointer = vtn_pointer_for_variable(b, var, ptr_type);
switch (var->mode) {
case vtn_variable_mode_local:
case vtn_variable_mode_global:
case vtn_variable_mode_uniform:
/* For these, we create the variable normally */
var->var = rzalloc(b->shader, nir_variable);
var->var->name = ralloc_strdup(var->var, val->name);
if (storage_class == SpvStorageClassAtomicCounter) {
/* Need to tweak the nir type here as at vtn_handle_type we don't
* have the access to storage_class, that is the one that points us
* that is an atomic uint.
*/
var->var->type = repair_atomic_type(var->type->type);
} else {
/* Private variables don't have any explicit layout but some layouts
* may have leaked through due to type deduplication in the SPIR-V.
*/
var->var->type = glsl_get_bare_type(var->type->type);
}
var->var->data.mode = nir_mode;
var->var->data.location = -1;
spirv: Get rid of vtn_variable_mode_image/sampler vtn_variable_mode_image and _sampler are instead replaced with vtn_variable_mode_uniform which encompasses both of them. In the few places where it was neccessary to distinguish between the two, the GLSL type of the pointer is used instead. The main reason to do this is that on OpenGL it is permitted to put images and samplers into structs and declare a uniform with them. That means that variables can now have a mix of uniform, sampler and image modes so picking a single one of those modes for a variable no longer makes sense. This fixes OpLoad on a sampler within a struct which was previously using the variable mode to determine whether it was a sampler or not. The type of the variable is a struct so it was not being considered to be uniform mode even though the member being loaded should be sampler mode. The previous code appeared to be using var->interface_type as a place to store the type of the variable without the enclosing array for images and samplers. I guess this worked because opaque types can not appear in interfaces so the interface_type is sort of unused. This patch removes the overloading of var->interface_type and any places that needed the type without the array can now just deduce it from var->type. v2: squash in this patch the changes to anv/nir (Timothy) Signed-off-by: Eduardo Lima <elima@igalia.com> Signed-off-by: Neil Roberts <nroberts@igalia.com Signed-off-by: Alejandro Piñeiro <apinheiro@igalia.com> Reviewed-by: Timothy Arceri <tarceri@itsqueeze.com>
2018-03-01 16:51:58 +00:00
var->var->interface_type = NULL;
break;
case vtn_variable_mode_workgroup:
if (b->options->lower_workgroup_access_to_offsets) {
var->shared_location = -1;
} else {
/* Create the variable normally */
var->var = rzalloc(b->shader, nir_variable);
var->var->name = ralloc_strdup(var->var, val->name);
/* Workgroup variables don't have any explicit layout but some
* layouts may have leaked through due to type deduplication in the
* SPIR-V.
*/
var->var->type = glsl_get_bare_type(var->type->type);
var->var->data.mode = nir_var_shared;
}
break;
case vtn_variable_mode_input:
case vtn_variable_mode_output: {
/* In order to know whether or not we're a per-vertex inout, we need
* the patch qualifier. This means walking the variable decorations
* early before we actually create any variables. Not a big deal.
*
* GLSLang really likes to place decorations in the most interior
* thing it possibly can. In particular, if you have a struct, it
* will place the patch decorations on the struct members. This
* should be handled by the variable splitting below just fine.
*
* If you have an array-of-struct, things get even more weird as it
* will place the patch decorations on the struct even though it's
* inside an array and some of the members being patch and others not
* makes no sense whatsoever. Since the only sensible thing is for
* it to be all or nothing, we'll call it patch if any of the members
* are declared patch.
*/
var->patch = false;
vtn_foreach_decoration(b, val, var_is_patch_cb, &var->patch);
if (glsl_type_is_array(var->type->type) &&
glsl_type_is_struct(without_array->type)) {
vtn_foreach_decoration(b, vtn_value(b, without_array->id,
vtn_value_type_type),
var_is_patch_cb, &var->patch);
}
/* For inputs and outputs, we immediately split structures. This
* is for a couple of reasons. For one, builtins may all come in
* a struct and we really want those split out into separate
* variables. For another, interpolation qualifiers can be
* applied to members of the top-level struct ane we need to be
* able to preserve that information.
*/
struct vtn_type *interface_type = var->type;
if (is_per_vertex_inout(var, b->shader->info.stage)) {
/* In Geometry shaders (and some tessellation), inputs come
* in per-vertex arrays. However, some builtins come in
* non-per-vertex, hence the need for the is_array check. In
* any case, there are no non-builtin arrays allowed so this
* check should be sufficient.
*/
interface_type = var->type->array_element;
}
var->var = rzalloc(b->shader, nir_variable);
var->var->name = ralloc_strdup(var->var, val->name);
/* In Vulkan, shader I/O variables don't have any explicit layout but
* some layouts may have leaked through due to type deduplication in
* the SPIR-V.
*/
var->var->type = glsl_get_bare_type(var->type->type);
var->var->interface_type = interface_type->type;
var->var->data.mode = nir_mode;
var->var->data.patch = var->patch;
if (glsl_type_is_struct(interface_type->type)) {
/* It's a struct. Set it up as per-member. */
var->var->num_members = glsl_get_length(interface_type->type);
var->var->members = rzalloc_array(var->var, struct nir_variable_data,
var->var->num_members);
for (unsigned i = 0; i < var->var->num_members; i++) {
var->var->members[i].mode = nir_mode;
var->var->members[i].patch = var->patch;
}
}
/* For inputs and outputs, we need to grab locations and builtin
* information from the interface type.
*/
vtn_foreach_decoration(b, vtn_value(b, interface_type->id,
vtn_value_type_type),
var_decoration_cb, var);
break;
}
case vtn_variable_mode_ubo:
case vtn_variable_mode_ssbo:
case vtn_variable_mode_push_constant:
/* These don't need actual variables. */
break;
}
if (initializer) {
var->var->constant_initializer =
nir_constant_clone(initializer, var->var);
}
vtn_foreach_decoration(b, val, var_decoration_cb, var);
spirv: Get rid of vtn_variable_mode_image/sampler vtn_variable_mode_image and _sampler are instead replaced with vtn_variable_mode_uniform which encompasses both of them. In the few places where it was neccessary to distinguish between the two, the GLSL type of the pointer is used instead. The main reason to do this is that on OpenGL it is permitted to put images and samplers into structs and declare a uniform with them. That means that variables can now have a mix of uniform, sampler and image modes so picking a single one of those modes for a variable no longer makes sense. This fixes OpLoad on a sampler within a struct which was previously using the variable mode to determine whether it was a sampler or not. The type of the variable is a struct so it was not being considered to be uniform mode even though the member being loaded should be sampler mode. The previous code appeared to be using var->interface_type as a place to store the type of the variable without the enclosing array for images and samplers. I guess this worked because opaque types can not appear in interfaces so the interface_type is sort of unused. This patch removes the overloading of var->interface_type and any places that needed the type without the array can now just deduce it from var->type. v2: squash in this patch the changes to anv/nir (Timothy) Signed-off-by: Eduardo Lima <elima@igalia.com> Signed-off-by: Neil Roberts <nroberts@igalia.com Signed-off-by: Alejandro Piñeiro <apinheiro@igalia.com> Reviewed-by: Timothy Arceri <tarceri@itsqueeze.com>
2018-03-01 16:51:58 +00:00
if (var->mode == vtn_variable_mode_uniform) {
/* XXX: We still need the binding information in the nir_variable
* for these. We should fix that.
*/
var->var->data.binding = var->binding;
var->var->data.explicit_binding = var->explicit_binding;
var->var->data.descriptor_set = var->descriptor_set;
var->var->data.index = var->input_attachment_index;
var->var->data.offset = var->offset;
spirv: Get rid of vtn_variable_mode_image/sampler vtn_variable_mode_image and _sampler are instead replaced with vtn_variable_mode_uniform which encompasses both of them. In the few places where it was neccessary to distinguish between the two, the GLSL type of the pointer is used instead. The main reason to do this is that on OpenGL it is permitted to put images and samplers into structs and declare a uniform with them. That means that variables can now have a mix of uniform, sampler and image modes so picking a single one of those modes for a variable no longer makes sense. This fixes OpLoad on a sampler within a struct which was previously using the variable mode to determine whether it was a sampler or not. The type of the variable is a struct so it was not being considered to be uniform mode even though the member being loaded should be sampler mode. The previous code appeared to be using var->interface_type as a place to store the type of the variable without the enclosing array for images and samplers. I guess this worked because opaque types can not appear in interfaces so the interface_type is sort of unused. This patch removes the overloading of var->interface_type and any places that needed the type without the array can now just deduce it from var->type. v2: squash in this patch the changes to anv/nir (Timothy) Signed-off-by: Eduardo Lima <elima@igalia.com> Signed-off-by: Neil Roberts <nroberts@igalia.com Signed-off-by: Alejandro Piñeiro <apinheiro@igalia.com> Reviewed-by: Timothy Arceri <tarceri@itsqueeze.com>
2018-03-01 16:51:58 +00:00
if (glsl_type_is_image(without_array->type))
var->var->data.image.format = without_array->image_format;
}
if (var->mode == vtn_variable_mode_local) {
vtn_assert(var->var != NULL && var->var->members == NULL);
nir_function_impl_add_variable(b->nb.impl, var->var);
} else if (var->var) {
nir_shader_add_variable(b->shader, var->var);
} else {
vtn_assert(vtn_pointer_is_external_block(b, val->pointer));
}
}
static void
vtn_assert_types_equal(struct vtn_builder *b, SpvOp opcode,
struct vtn_type *dst_type,
struct vtn_type *src_type)
{
if (dst_type->id == src_type->id)
return;
if (vtn_types_compatible(b, dst_type, src_type)) {
/* Early versions of GLSLang would re-emit types unnecessarily and you
* would end up with OpLoad, OpStore, or OpCopyMemory opcodes which have
* mismatched source and destination types.
*
* https://github.com/KhronosGroup/glslang/issues/304
* https://github.com/KhronosGroup/glslang/issues/307
* https://bugs.freedesktop.org/show_bug.cgi?id=104338
* https://bugs.freedesktop.org/show_bug.cgi?id=104424
*/
vtn_warn("Source and destination types of %s do not have the same "
"ID (but are compatible): %u vs %u",
spirv_op_to_string(opcode), dst_type->id, src_type->id);
return;
}
vtn_fail("Source and destination types of %s do not match: %s vs. %s",
spirv_op_to_string(opcode),
glsl_get_type_name(dst_type->type),
glsl_get_type_name(src_type->type));
}
void
vtn_handle_variables(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
switch (opcode) {
case SpvOpUndef: {
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
break;
}
case SpvOpVariable: {
struct vtn_type *ptr_type = vtn_value(b, w[1], vtn_value_type_type)->type;
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer);
SpvStorageClass storage_class = w[3];
nir_constant *initializer = NULL;
if (count > 4)
initializer = vtn_value(b, w[4], vtn_value_type_constant)->constant;
vtn_create_variable(b, val, ptr_type, storage_class, initializer);
break;
}
case SpvOpAccessChain:
case SpvOpPtrAccessChain:
case SpvOpInBoundsAccessChain: {
struct vtn_access_chain *chain = vtn_access_chain_create(b, count - 4);
chain->ptr_as_array = (opcode == SpvOpPtrAccessChain);
unsigned idx = 0;
for (int i = 4; i < count; i++) {
struct vtn_value *link_val = vtn_untyped_value(b, w[i]);
if (link_val->value_type == vtn_value_type_constant) {
chain->link[idx].mode = vtn_access_mode_literal;
switch (glsl_get_bit_size(link_val->type->type)) {
case 8:
chain->link[idx].id = link_val->constant->values[0].i8[0];
break;
case 16:
chain->link[idx].id = link_val->constant->values[0].i16[0];
break;
case 32:
chain->link[idx].id = link_val->constant->values[0].i32[0];
break;
case 64:
chain->link[idx].id = link_val->constant->values[0].i64[0];
break;
default:
vtn_fail("Invalid bit size");
}
} else {
chain->link[idx].mode = vtn_access_mode_id;
chain->link[idx].id = w[i];
}
idx++;
}
struct vtn_type *ptr_type = vtn_value(b, w[1], vtn_value_type_type)->type;
struct vtn_value *base_val = vtn_untyped_value(b, w[3]);
if (base_val->value_type == vtn_value_type_sampled_image) {
/* This is rather insane. SPIR-V allows you to use OpSampledImage
* to combine an array of images with a single sampler to get an
* array of sampled images that all share the same sampler.
* Fortunately, this means that we can more-or-less ignore the
* sampler when crawling the access chain, but it does leave us
* with this rather awkward little special-case.
*/
struct vtn_value *val =
vtn_push_value(b, w[2], vtn_value_type_sampled_image);
val->sampled_image = ralloc(b, struct vtn_sampled_image);
val->sampled_image->type = base_val->sampled_image->type;
val->sampled_image->image =
vtn_pointer_dereference(b, base_val->sampled_image->image, chain);
val->sampled_image->sampler = base_val->sampled_image->sampler;
} else {
vtn_assert(base_val->value_type == vtn_value_type_pointer);
struct vtn_value *val =
vtn_push_value(b, w[2], vtn_value_type_pointer);
val->pointer = vtn_pointer_dereference(b, base_val->pointer, chain);
val->pointer->ptr_type = ptr_type;
}
break;
}
case SpvOpCopyMemory: {
struct vtn_value *dest = vtn_value(b, w[1], vtn_value_type_pointer);
struct vtn_value *src = vtn_value(b, w[2], vtn_value_type_pointer);
vtn_assert_types_equal(b, opcode, dest->type->deref, src->type->deref);
vtn_variable_copy(b, dest->pointer, src->pointer);
break;
}
case SpvOpLoad: {
struct vtn_type *res_type =
vtn_value(b, w[1], vtn_value_type_type)->type;
struct vtn_value *src_val = vtn_value(b, w[3], vtn_value_type_pointer);
struct vtn_pointer *src = src_val->pointer;
vtn_assert_types_equal(b, opcode, res_type, src_val->type->deref);
spirv: Get rid of vtn_variable_mode_image/sampler vtn_variable_mode_image and _sampler are instead replaced with vtn_variable_mode_uniform which encompasses both of them. In the few places where it was neccessary to distinguish between the two, the GLSL type of the pointer is used instead. The main reason to do this is that on OpenGL it is permitted to put images and samplers into structs and declare a uniform with them. That means that variables can now have a mix of uniform, sampler and image modes so picking a single one of those modes for a variable no longer makes sense. This fixes OpLoad on a sampler within a struct which was previously using the variable mode to determine whether it was a sampler or not. The type of the variable is a struct so it was not being considered to be uniform mode even though the member being loaded should be sampler mode. The previous code appeared to be using var->interface_type as a place to store the type of the variable without the enclosing array for images and samplers. I guess this worked because opaque types can not appear in interfaces so the interface_type is sort of unused. This patch removes the overloading of var->interface_type and any places that needed the type without the array can now just deduce it from var->type. v2: squash in this patch the changes to anv/nir (Timothy) Signed-off-by: Eduardo Lima <elima@igalia.com> Signed-off-by: Neil Roberts <nroberts@igalia.com Signed-off-by: Alejandro Piñeiro <apinheiro@igalia.com> Reviewed-by: Timothy Arceri <tarceri@itsqueeze.com>
2018-03-01 16:51:58 +00:00
if (glsl_type_is_image(res_type->type) ||
glsl_type_is_sampler(res_type->type)) {
vtn_push_value(b, w[2], vtn_value_type_pointer)->pointer = src;
return;
}
vtn_push_ssa(b, w[2], res_type, vtn_variable_load(b, src));
break;
}
case SpvOpStore: {
struct vtn_value *dest_val = vtn_value(b, w[1], vtn_value_type_pointer);
struct vtn_pointer *dest = dest_val->pointer;
struct vtn_value *src_val = vtn_untyped_value(b, w[2]);
/* OpStore requires us to actually have a storage type */
vtn_fail_if(dest->type->type == NULL,
"Invalid destination type for OpStore");
if (glsl_get_base_type(dest->type->type) == GLSL_TYPE_BOOL &&
glsl_get_base_type(src_val->type->type) == GLSL_TYPE_UINT) {
/* Early versions of GLSLang would use uint types for UBOs/SSBOs but
* would then store them to a local variable as bool. Work around
* the issue by doing an implicit conversion.
*
* https://github.com/KhronosGroup/glslang/issues/170
* https://bugs.freedesktop.org/show_bug.cgi?id=104424
*/
vtn_warn("OpStore of value of type OpTypeInt to a pointer to type "
"OpTypeBool. Doing an implicit conversion to work around "
"the problem.");
struct vtn_ssa_value *bool_ssa =
vtn_create_ssa_value(b, dest->type->type);
bool_ssa->def = nir_i2b(&b->nb, vtn_ssa_value(b, w[2])->def);
vtn_variable_store(b, bool_ssa, dest);
break;
}
vtn_assert_types_equal(b, opcode, dest_val->type->deref, src_val->type);
if (glsl_type_is_sampler(dest->type->type)) {
vtn_warn("OpStore of a sampler detected. Doing on-the-fly copy "
"propagation to workaround the problem.");
vtn_assert(dest->var->copy_prop_sampler == NULL);
dest->var->copy_prop_sampler =
vtn_value(b, w[2], vtn_value_type_pointer)->pointer;
break;
}
struct vtn_ssa_value *src = vtn_ssa_value(b, w[2]);
vtn_variable_store(b, src, dest);
break;
}
case SpvOpArrayLength: {
struct vtn_pointer *ptr =
vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
const uint32_t offset = ptr->var->type->offsets[w[4]];
const uint32_t stride = ptr->var->type->members[w[4]]->stride;
if (!ptr->block_index) {
struct vtn_access_chain chain = {
.length = 0,
};
ptr = vtn_ssa_offset_pointer_dereference(b, ptr, &chain);
vtn_assert(ptr->block_index);
}
nir_intrinsic_instr *instr =
nir_intrinsic_instr_create(b->nb.shader,
nir_intrinsic_get_buffer_size);
instr->src[0] = nir_src_for_ssa(ptr->block_index);
nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 32, NULL);
nir_builder_instr_insert(&b->nb, &instr->instr);
nir_ssa_def *buf_size = &instr->dest.ssa;
/* array_length = max(buffer_size - offset, 0) / stride */
nir_ssa_def *array_length =
nir_idiv(&b->nb,
nir_imax(&b->nb,
nir_isub(&b->nb,
buf_size,
nir_imm_int(&b->nb, offset)),
nir_imm_int(&b->nb, 0u)),
nir_imm_int(&b->nb, stride));
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
val->ssa = vtn_create_ssa_value(b, glsl_uint_type());
val->ssa->def = array_length;
break;
}
case SpvOpCopyMemorySized:
default:
vtn_fail("Unhandled opcode");
}
}