mesa/src/gallium/drivers/llvmpipe/lp_setup_tri.c

874 lines
25 KiB
C
Raw Normal View History

/**************************************************************************
*
* Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Binning code for triangles
*/
#include "util/u_math.h"
#include "util/u_memory.h"
#include "lp_perf.h"
#include "lp_setup_context.h"
#include "lp_rast.h"
#include "lp_state_fs.h"
2009-10-09 10:23:53 +01:00
#define NUM_CHANNELS 4
struct tri_info {
float pixel_offset;
/* fixed point vertex coordinates */
int x[3];
int y[3];
/* float x,y deltas - all from the original coordinates
*/
float dy01, dy20;
float dx01, dx20;
float oneoverarea;
const float (*v0)[4];
const float (*v1)[4];
const float (*v2)[4];
boolean frontfacing;
};
static const int step_scissor_minx[16] = {
0, 1, 0, 1,
2, 3, 2, 3,
0, 1, 0, 1,
2, 3, 2, 3
};
static const int step_scissor_maxx[16] = {
0, -1, 0, -1,
-2, -3, -2, -3,
0, -1, 0, -1,
-2, -3, -2, -3
};
static const int step_scissor_miny[16] = {
0, 0, 1, 1,
0, 0, 1, 1,
2, 2, 3, 3,
2, 2, 3, 3
};
static const int step_scissor_maxy[16] = {
0, 0, -1, -1,
0, 0, -1, -1,
-2, -2, -3, -3,
-2, -2, -3, -3
};
static INLINE int
subpixel_snap(float a)
{
return util_iround(FIXED_ONE * a);
}
static INLINE float
fixed_to_float(int a)
{
return a * (1.0 / FIXED_ONE);
}
2010-01-14 01:01:45 +00:00
/**
* Compute a0 for a constant-valued coefficient (GL_FLAT shading).
*/
static void constant_coef( struct lp_rast_triangle *tri,
2009-10-09 10:23:53 +01:00
unsigned slot,
const float value,
unsigned i )
{
2009-10-09 10:23:53 +01:00
tri->inputs.a0[slot][i] = value;
2010-01-14 01:01:45 +00:00
tri->inputs.dadx[slot][i] = 0.0f;
tri->inputs.dady[slot][i] = 0.0f;
}
2010-01-14 01:01:45 +00:00
static void linear_coef( struct lp_rast_triangle *tri,
const struct tri_info *info,
2009-10-09 10:23:53 +01:00
unsigned slot,
unsigned vert_attr,
unsigned i)
{
float a0 = info->v0[vert_attr][i];
float a1 = info->v1[vert_attr][i];
float a2 = info->v2[vert_attr][i];
2009-10-09 10:23:53 +01:00
float da01 = a0 - a1;
float da20 = a2 - a0;
float dadx = (da01 * info->dy20 - info->dy01 * da20) * info->oneoverarea;
float dady = (da20 * info->dx01 - info->dx20 * da01) * info->oneoverarea;
2009-10-09 10:23:53 +01:00
tri->inputs.dadx[slot][i] = dadx;
tri->inputs.dady[slot][i] = dady;
/* calculate a0 as the value which would be sampled for the
* fragment at (0,0), taking into account that we want to sample at
* pixel centers, in other words (0.5, 0.5).
*
* this is neat but unfortunately not a good way to do things for
* triangles with very large values of dadx or dady as it will
* result in the subtraction and re-addition from a0 of a very
* large number, which means we'll end up loosing a lot of the
* fractional bits and precision from a0. the way to fix this is
* to define a0 as the sample at a pixel center somewhere near vmin
* instead - i'll switch to this later.
*/
tri->inputs.a0[slot][i] = (a0 -
(dadx * (info->v0[0][0] - info->pixel_offset) +
dady * (info->v0[0][1] - info->pixel_offset)));
}
/**
* Compute a0, dadx and dady for a perspective-corrected interpolant,
* for a triangle.
* We basically multiply the vertex value by 1/w before computing
* the plane coefficients (a0, dadx, dady).
* Later, when we compute the value at a particular fragment position we'll
* divide the interpolated value by the interpolated W at that fragment.
*/
static void perspective_coef( struct lp_rast_triangle *tri,
const struct tri_info *info,
2009-10-09 10:23:53 +01:00
unsigned slot,
unsigned vert_attr,
2009-10-09 10:23:53 +01:00
unsigned i)
{
2009-10-09 10:23:53 +01:00
/* premultiply by 1/w (v[0][3] is always 1/w):
*/
float a0 = info->v0[vert_attr][i] * info->v0[0][3];
float a1 = info->v1[vert_attr][i] * info->v1[0][3];
float a2 = info->v2[vert_attr][i] * info->v2[0][3];
float da01 = a0 - a1;
float da20 = a2 - a0;
float dadx = (da01 * info->dy20 - info->dy01 * da20) * info->oneoverarea;
float dady = (da20 * info->dx01 - info->dx20 * da01) * info->oneoverarea;
2009-10-09 10:23:53 +01:00
tri->inputs.dadx[slot][i] = dadx;
tri->inputs.dady[slot][i] = dady;
tri->inputs.a0[slot][i] = (a0 -
(dadx * (info->v0[0][0] - info->pixel_offset) +
dady * (info->v0[0][1] - info->pixel_offset)));
}
/**
* Special coefficient setup for gl_FragCoord.
2010-01-15 02:08:19 +00:00
* X and Y are trivial
* Z and W are copied from position_coef which should have already been computed.
* We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
*/
static void
setup_fragcoord_coef(struct lp_rast_triangle *tri,
const struct tri_info *info,
2009-10-09 10:23:53 +01:00
unsigned slot,
unsigned usage_mask)
{
/*X*/
if (usage_mask & TGSI_WRITEMASK_X) {
tri->inputs.a0[slot][0] = 0.0;
tri->inputs.dadx[slot][0] = 1.0;
tri->inputs.dady[slot][0] = 0.0;
}
/*Y*/
if (usage_mask & TGSI_WRITEMASK_Y) {
tri->inputs.a0[slot][1] = 0.0;
tri->inputs.dadx[slot][1] = 0.0;
tri->inputs.dady[slot][1] = 1.0;
}
/*Z*/
if (usage_mask & TGSI_WRITEMASK_Z) {
linear_coef(tri, info, slot, 0, 2);
}
/*W*/
if (usage_mask & TGSI_WRITEMASK_W) {
linear_coef(tri, info, slot, 0, 3);
}
}
/**
* Setup the fragment input attribute with the front-facing value.
* \param frontface is the triangle front facing?
*/
static void setup_facing_coef( struct lp_rast_triangle *tri,
2009-10-09 10:23:53 +01:00
unsigned slot,
boolean frontface,
unsigned usage_mask)
2009-10-09 10:23:53 +01:00
{
/* convert TRUE to 1.0 and FALSE to -1.0 */
if (usage_mask & TGSI_WRITEMASK_X)
constant_coef( tri, slot, 2.0f * frontface - 1.0f, 0 );
if (usage_mask & TGSI_WRITEMASK_Y)
constant_coef( tri, slot, 0.0f, 1 ); /* wasted */
if (usage_mask & TGSI_WRITEMASK_Z)
constant_coef( tri, slot, 0.0f, 2 ); /* wasted */
if (usage_mask & TGSI_WRITEMASK_W)
constant_coef( tri, slot, 0.0f, 3 ); /* wasted */
2009-10-09 10:23:53 +01:00
}
/**
* Compute the tri->coef[] array dadx, dady, a0 values.
*/
static void setup_tri_coefficients( struct lp_setup_context *setup,
struct lp_rast_triangle *tri,
const struct tri_info *info)
{
unsigned fragcoord_usage_mask = TGSI_WRITEMASK_XYZ;
2009-10-09 10:23:53 +01:00
unsigned slot;
2009-12-04 16:19:09 +00:00
/* setup interpolation for all the remaining attributes:
*/
2009-10-09 10:23:53 +01:00
for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
unsigned vert_attr = setup->fs.input[slot].src_index;
unsigned usage_mask = setup->fs.input[slot].usage_mask;
unsigned i;
2009-10-09 10:23:53 +01:00
switch (setup->fs.input[slot].interp) {
case LP_INTERP_CONSTANT:
if (setup->flatshade_first) {
for (i = 0; i < NUM_CHANNELS; i++)
if (usage_mask & (1 << i))
constant_coef(tri, slot+1, info->v0[vert_attr][i], i);
}
else {
for (i = 0; i < NUM_CHANNELS; i++)
if (usage_mask & (1 << i))
constant_coef(tri, slot+1, info->v2[vert_attr][i], i);
}
break;
case LP_INTERP_LINEAR:
2009-10-09 10:23:53 +01:00
for (i = 0; i < NUM_CHANNELS; i++)
if (usage_mask & (1 << i))
linear_coef(tri, info, slot+1, vert_attr, i);
break;
case LP_INTERP_PERSPECTIVE:
2009-10-09 10:23:53 +01:00
for (i = 0; i < NUM_CHANNELS; i++)
if (usage_mask & (1 << i))
perspective_coef(tri, info, slot+1, vert_attr, i);
fragcoord_usage_mask |= TGSI_WRITEMASK_W;
break;
2009-10-09 10:23:53 +01:00
case LP_INTERP_POSITION:
/*
* The generated pixel interpolators will pick up the coeffs from
* slot 0, so all need to ensure that the usage mask is covers all
* usages.
2009-10-09 10:23:53 +01:00
*/
fragcoord_usage_mask |= usage_mask;
break;
case LP_INTERP_FACING:
setup_facing_coef(tri, slot+1, info->frontfacing, usage_mask);
2009-10-08 15:44:29 +01:00
break;
default:
assert(0);
}
}
/* The internal position input is in slot zero:
*/
setup_fragcoord_coef(tri, info, 0, fragcoord_usage_mask);
}
/**
* Alloc space for a new triangle plus the input.a0/dadx/dady arrays
* immediately after it.
* The memory is allocated from the per-scene pool, not per-tile.
* \param tri_size returns number of bytes allocated
* \param nr_inputs number of fragment shader inputs
* \return pointer to triangle space
*/
static INLINE struct lp_rast_triangle *
alloc_triangle(struct lp_scene *scene,
unsigned nr_inputs,
unsigned nr_planes,
unsigned *tri_size)
{
unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
struct lp_rast_triangle *tri;
unsigned tri_bytes, bytes;
char *inputs;
assert(sizeof(*tri) % 16 == 0);
tri_bytes = align(Offset(struct lp_rast_triangle, plane[nr_planes]), 16);
bytes = tri_bytes + (3 * input_array_sz);
tri = lp_scene_alloc_aligned( scene, bytes, 16 );
if (tri) {
inputs = ((char *)tri) + tri_bytes;
tri->inputs.a0 = (float (*)[4]) inputs;
tri->inputs.dadx = (float (*)[4]) (inputs + input_array_sz);
tri->inputs.dady = (float (*)[4]) (inputs + 2 * input_array_sz);
*tri_size = bytes;
}
return tri;
}
/**
* Print triangle vertex attribs (for debug).
*/
static void
print_triangle(struct lp_setup_context *setup,
const float (*v1)[4],
const float (*v2)[4],
const float (*v3)[4])
{
uint i;
debug_printf("llvmpipe triangle\n");
for (i = 0; i < 1 + setup->fs.nr_inputs; i++) {
debug_printf(" v1[%d]: %f %f %f %f\n", i,
v1[i][0], v1[i][1], v1[i][2], v1[i][3]);
}
for (i = 0; i < 1 + setup->fs.nr_inputs; i++) {
debug_printf(" v2[%d]: %f %f %f %f\n", i,
v2[i][0], v2[i][1], v2[i][2], v2[i][3]);
}
for (i = 0; i < 1 + setup->fs.nr_inputs; i++) {
debug_printf(" v3[%d]: %f %f %f %f\n", i,
v3[i][0], v3[i][1], v3[i][2], v3[i][3]);
}
}
lp_rast_cmd lp_rast_tri_tab[8] = {
NULL, /* should be impossible */
lp_rast_triangle_1,
lp_rast_triangle_2,
lp_rast_triangle_3,
lp_rast_triangle_4,
lp_rast_triangle_5,
lp_rast_triangle_6,
lp_rast_triangle_7
};
2009-11-30 21:02:01 +00:00
/**
* Do basic setup for triangle rasterization and determine which
* framebuffer tiles are touched. Put the triangle in the scene's
* bins for the tiles which we overlap.
2009-11-30 21:02:01 +00:00
*/
static void
do_triangle_ccw(struct lp_setup_context *setup,
const float (*v1)[4],
const float (*v2)[4],
const float (*v3)[4],
boolean frontfacing )
{
struct lp_scene *scene = lp_setup_get_current_scene(setup);
struct lp_fragment_shader_variant *variant = setup->fs.current.variant;
struct lp_rast_triangle *tri;
struct tri_info info;
int area;
int minx, maxx, miny, maxy;
int ix0, ix1, iy0, iy1;
unsigned tri_bytes;
int i;
int nr_planes = 3;
if (0)
print_triangle(setup, v1, v2, v3);
if (setup->scissor_test) {
nr_planes = 7;
}
else {
nr_planes = 3;
}
tri = alloc_triangle(scene,
setup->fs.nr_inputs,
nr_planes,
&tri_bytes);
if (!tri)
return;
#ifdef DEBUG
tri->v[0][0] = v1[0][0];
tri->v[1][0] = v2[0][0];
tri->v[2][0] = v3[0][0];
tri->v[0][1] = v1[0][1];
tri->v[1][1] = v2[0][1];
tri->v[2][1] = v3[0][1];
#endif
/* x/y positions in fixed point */
info.x[0] = subpixel_snap(v1[0][0] - setup->pixel_offset);
info.x[1] = subpixel_snap(v2[0][0] - setup->pixel_offset);
info.x[2] = subpixel_snap(v3[0][0] - setup->pixel_offset);
info.y[0] = subpixel_snap(v1[0][1] - setup->pixel_offset);
info.y[1] = subpixel_snap(v2[0][1] - setup->pixel_offset);
info.y[2] = subpixel_snap(v3[0][1] - setup->pixel_offset);
tri->plane[0].dcdy = info.x[0] - info.x[1];
tri->plane[1].dcdy = info.x[1] - info.x[2];
tri->plane[2].dcdy = info.x[2] - info.x[0];
tri->plane[0].dcdx = info.y[0] - info.y[1];
tri->plane[1].dcdx = info.y[1] - info.y[2];
tri->plane[2].dcdx = info.y[2] - info.y[0];
area = (tri->plane[0].dcdy * tri->plane[2].dcdx -
tri->plane[2].dcdy * tri->plane[0].dcdx);
LP_COUNT(nr_tris);
2009-10-19 12:24:18 +01:00
/* Cull non-ccw and zero-sized triangles.
*
* XXX: subject to overflow??
*/
if (area <= 0) {
lp_scene_putback_data( scene, tri_bytes );
LP_COUNT(nr_culled_tris);
return;
2009-10-19 12:24:18 +01:00
}
2009-11-30 21:02:01 +00:00
/* Bounding rectangle (in pixels) */
{
/* Yes this is necessary to accurately calculate bounding boxes
* with the two fill-conventions we support. GL (normally) ends
* up needing a bottom-left fill convention, which requires
* slightly different rounding.
*/
int adj = (setup->pixel_offset != 0) ? 1 : 0;
minx = (MIN3(info.x[0], info.x[1], info.x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
maxx = (MAX3(info.x[0], info.x[1], info.x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
miny = (MIN3(info.y[0], info.y[1], info.y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
maxy = (MAX3(info.y[0], info.y[1], info.y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
}
if (setup->scissor_test) {
minx = MAX2(minx, setup->scissor.current.minx);
maxx = MIN2(maxx, setup->scissor.current.maxx);
miny = MAX2(miny, setup->scissor.current.miny);
maxy = MIN2(maxy, setup->scissor.current.maxy);
}
else {
minx = MAX2(minx, 0);
miny = MAX2(miny, 0);
maxx = MIN2(maxx, scene->fb.width);
maxy = MIN2(maxy, scene->fb.height);
}
if (miny >= maxy || minx >= maxx) {
lp_scene_putback_data( scene, tri_bytes );
LP_COUNT(nr_culled_tris);
return;
2009-10-19 12:24:18 +01:00
}
2009-10-19 12:24:18 +01:00
/*
*/
info.pixel_offset = setup->pixel_offset;
info.v0 = v1;
info.v1 = v2;
info.v2 = v3;
info.dx01 = info.v0[0][0] - info.v1[0][0];
info.dx20 = info.v2[0][0] - info.v0[0][0];
info.dy01 = info.v0[0][1] - info.v1[0][1];
info.dy20 = info.v2[0][1] - info.v0[0][1];
info.oneoverarea = 1.0 / (info.dx01 * info.dy20 - info.dx20 * info.dy01);
info.frontfacing = frontfacing;
/* Setup parameter interpolants:
*/
setup_tri_coefficients( setup, tri, &info );
tri->inputs.facing = frontfacing ? 1.0F : -1.0F;
for (i = 0; i < 3; i++) {
struct lp_rast_plane *plane = &tri->plane[i];
/* half-edge constants, will be interated over the whole render
* target.
*/
plane->c = plane->dcdx * info.x[i] - plane->dcdy * info.y[i];
/* correct for top-left vs. bottom-left fill convention.
*
* note that we're overloading gl_rasterization_rules to mean
* both (0.5,0.5) pixel centers *and* bottom-left filling
* convention.
*
* GL actually has a top-left filling convention, but GL's
* notion of "top" differs from gallium's...
*
* Also, sometimes (in FBO cases) GL will render upside down
* to its usual method, in which case it will probably want
* to use the opposite, top-left convention.
*/
if (plane->dcdx < 0) {
/* both fill conventions want this - adjust for left edges */
plane->c++;
}
else if (plane->dcdx == 0) {
if (setup->pixel_offset == 0) {
/* correct for top-left fill convention:
*/
if (plane->dcdy > 0) plane->c++;
}
else {
/* correct for bottom-left fill convention:
*/
if (plane->dcdy < 0) plane->c++;
}
}
plane->dcdx *= FIXED_ONE;
plane->dcdy *= FIXED_ONE;
/* find trivial reject offsets for each edge for a single-pixel
* sized block. These will be scaled up at each recursive level to
* match the active blocksize. Scaling in this way works best if
* the blocks are square.
*/
plane->eo = 0;
if (plane->dcdx < 0) plane->eo -= plane->dcdx;
if (plane->dcdy > 0) plane->eo += plane->dcdy;
/* Calculate trivial accept offsets from the above.
*/
plane->ei = plane->dcdy - plane->dcdx - plane->eo;
plane->step = tri->step[i];
/* Fill in the inputs.step[][] arrays.
* We've manually unrolled some loops here.
*/
#define SETUP_STEP(j, x, y) \
tri->step[i][j] = y * plane->dcdy - x * plane->dcdx
SETUP_STEP(0, 0, 0);
SETUP_STEP(1, 1, 0);
SETUP_STEP(2, 0, 1);
SETUP_STEP(3, 1, 1);
SETUP_STEP(4, 2, 0);
SETUP_STEP(5, 3, 0);
SETUP_STEP(6, 2, 1);
SETUP_STEP(7, 3, 1);
SETUP_STEP(8, 0, 2);
SETUP_STEP(9, 1, 2);
SETUP_STEP(10, 0, 3);
SETUP_STEP(11, 1, 3);
SETUP_STEP(12, 2, 2);
SETUP_STEP(13, 3, 2);
SETUP_STEP(14, 2, 3);
SETUP_STEP(15, 3, 3);
#undef STEP
2009-10-20 02:46:00 +01:00
}
/*
* When rasterizing scissored tris, use the intersection of the
* triangle bounding box and the scissor rect to generate the
* scissor planes.
*
* This permits us to cut off the triangle "tails" that are present
* in the intermediate recursive levels caused when two of the
* triangles edges don't diverge quickly enough to trivially reject
* exterior blocks from the triangle.
*
* It's not really clear if it's worth worrying about these tails,
* but since we generate the planes for each scissored tri, it's
* free to trim them in this case.
*
* Note that otherwise, the scissor planes only vary in 'C' value,
* and even then only on state-changes. Could alternatively store
* these planes elsewhere.
*/
if (nr_planes == 7) {
tri->plane[3].step = step_scissor_minx;
tri->plane[3].dcdx = -1;
tri->plane[3].dcdy = 0;
tri->plane[3].c = 1-minx;
tri->plane[3].ei = 0;
tri->plane[3].eo = 1;
tri->plane[4].step = step_scissor_maxx;
tri->plane[4].dcdx = 1;
tri->plane[4].dcdy = 0;
tri->plane[4].c = maxx;
tri->plane[4].ei = -1;
tri->plane[4].eo = 0;
tri->plane[5].step = step_scissor_miny;
tri->plane[5].dcdx = 0;
tri->plane[5].dcdy = 1;
tri->plane[5].c = 1-miny;
tri->plane[5].ei = 0;
tri->plane[5].eo = 1;
tri->plane[6].step = step_scissor_maxy;
tri->plane[6].dcdx = 0;
tri->plane[6].dcdy = -1;
tri->plane[6].c = maxy;
tri->plane[6].ei = -1;
tri->plane[6].eo = 0;
}
/*
* All fields of 'tri' are now set. The remaining code here is
* concerned with binning.
*/
/* Convert to tile coordinates, and inclusive ranges:
2009-11-30 21:02:01 +00:00
*/
ix0 = minx / TILE_SIZE;
iy0 = miny / TILE_SIZE;
ix1 = (maxx-1) / TILE_SIZE;
iy1 = (maxy-1) / TILE_SIZE;
2009-10-20 10:11:52 +01:00
/*
* Clamp to framebuffer size
*/
assert(ix0 == MAX2(ix0, 0));
assert(iy0 == MAX2(iy0, 0));
assert(ix1 == MIN2(ix1, scene->tiles_x - 1));
assert(iy1 == MIN2(iy1, scene->tiles_y - 1));
2009-11-30 21:02:01 +00:00
/* Determine which tile(s) intersect the triangle's bounding box
*/
if (iy0 == iy1 && ix0 == ix1)
{
/* Triangle is contained in a single tile:
*/
lp_scene_bin_command( scene, ix0, iy0,
lp_rast_tri_tab[nr_planes],
lp_rast_arg_triangle(tri, (1<<nr_planes)-1) );
}
else
{
int c[7];
int ei[7];
int eo[7];
int xstep[7];
int ystep[7];
int x, y;
for (i = 0; i < nr_planes; i++) {
c[i] = (tri->plane[i].c +
tri->plane[i].dcdy * iy0 * TILE_SIZE -
tri->plane[i].dcdx * ix0 * TILE_SIZE);
ei[i] = tri->plane[i].ei << TILE_ORDER;
eo[i] = tri->plane[i].eo << TILE_ORDER;
xstep[i] = -(tri->plane[i].dcdx << TILE_ORDER);
ystep[i] = tri->plane[i].dcdy << TILE_ORDER;
}
2010-01-19 16:30:13 +00:00
/* Test tile-sized blocks against the triangle.
* Discard blocks fully outside the tri. If the block is fully
* contained inside the tri, bin an lp_rast_shade_tile command.
* Else, bin a lp_rast_triangle command.
*/
for (y = iy0; y <= iy1; y++)
{
boolean in = FALSE; /* are we inside the triangle? */
int cx[7];
for (i = 0; i < nr_planes; i++)
cx[i] = c[i];
for (x = ix0; x <= ix1; x++)
{
int out = 0;
int partial = 0;
for (i = 0; i < nr_planes; i++) {
int planeout = cx[i] + eo[i];
int planepartial = cx[i] + ei[i] - 1;
out |= (planeout >> 31);
partial |= (planepartial >> 31) & (1<<i);
}
if (out) {
/* do nothing */
if (in)
break; /* exiting triangle, all done with this row */
LP_COUNT(nr_empty_64);
}
else if (partial) {
/* Not trivially accepted by at least one plane -
* rasterize/shade partial tile
*/
int count = util_bitcount(partial);
in = TRUE;
lp_scene_bin_command( scene, x, y,
lp_rast_tri_tab[count],
lp_rast_arg_triangle(tri, partial) );
LP_COUNT(nr_partially_covered_64);
}
else {
2009-11-30 21:02:01 +00:00
/* triangle covers the whole tile- shade whole tile */
LP_COUNT(nr_fully_covered_64);
in = TRUE;
if (variant->opaque &&
!setup->fb.zsbuf) {
lp_scene_bin_reset( scene, x, y );
lp_scene_bin_command( scene, x, y,
lp_rast_set_state,
lp_rast_arg_state(setup->fs.stored) );
}
lp_scene_bin_command( scene, x, y,
lp_rast_shade_tile,
lp_rast_arg_inputs(&tri->inputs) );
}
/* Iterate cx values across the region:
*/
for (i = 0; i < nr_planes; i++)
cx[i] += xstep[i];
}
/* Iterate c values down the region:
*/
for (i = 0; i < nr_planes; i++)
c[i] += ystep[i];
}
}
}
2010-01-14 01:01:45 +00:00
2010-04-17 19:48:26 +01:00
/**
* Draw triangle if it's CW, cull otherwise.
*/
static void triangle_cw( struct lp_setup_context *setup,
const float (*v0)[4],
const float (*v1)[4],
const float (*v2)[4] )
{
do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface );
}
2010-01-14 01:01:45 +00:00
2010-04-17 19:48:26 +01:00
/**
* Draw triangle if it's CCW, cull otherwise.
*/
static void triangle_ccw( struct lp_setup_context *setup,
const float (*v0)[4],
const float (*v1)[4],
const float (*v2)[4] )
{
do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface );
}
2010-01-14 01:01:45 +00:00
2010-04-17 19:48:26 +01:00
/**
* Draw triangle whether it's CW or CCW.
*/
static void triangle_both( struct lp_setup_context *setup,
const float (*v0)[4],
const float (*v1)[4],
const float (*v2)[4] )
{
/* edge vectors e = v0 - v2, f = v1 - v2 */
const float ex = v0[0][0] - v2[0][0];
const float ey = v0[0][1] - v2[0][1];
const float fx = v1[0][0] - v2[0][0];
const float fy = v1[0][1] - v2[0][1];
/* det = cross(e,f).z */
2010-01-14 01:01:45 +00:00
if (ex * fy - ey * fx < 0.0f)
triangle_ccw( setup, v0, v1, v2 );
else
triangle_cw( setup, v0, v1, v2 );
}
2010-01-14 01:01:45 +00:00
static void triangle_nop( struct lp_setup_context *setup,
const float (*v0)[4],
const float (*v1)[4],
const float (*v2)[4] )
{
}
void
lp_setup_choose_triangle( struct lp_setup_context *setup )
{
switch (setup->cullmode) {
case PIPE_FACE_NONE:
setup->triangle = triangle_both;
break;
case PIPE_FACE_BACK:
setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
break;
case PIPE_FACE_FRONT:
setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
break;
default:
setup->triangle = triangle_nop;
break;
}
}