mesa/src/gallium/auxiliary/gallivm/lp_bld_arit.c

1408 lines
38 KiB
C
Raw Normal View History

2009-08-01 17:27:05 +01:00
/**************************************************************************
*
* Copyright 2009 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* Helper
*
* LLVM IR doesn't support all basic arithmetic operations we care about (most
* notably min/max and saturated operations), and it is often necessary to
* resort machine-specific intrinsics directly. The functions here hide all
* these implementation details from the other modules.
*
* We also do simple expressions simplification here. Reasons are:
* - it is very easy given we have all necessary information readily available
* - LLVM optimization passes fail to simplify several vector expressions
* - We often know value constraints which the optimization passes have no way
* of knowing, such as when source arguments are known to be in [0, 1] range.
*
* @author Jose Fonseca <jfonseca@vmware.com>
*/
#include "util/u_memory.h"
2009-08-03 22:31:08 +01:00
#include "util/u_debug.h"
2009-10-25 11:48:17 +00:00
#include "util/u_math.h"
#include "util/u_string.h"
#include "util/u_cpu_detect.h"
2009-08-01 17:27:05 +01:00
#include "lp_bld_type.h"
#include "lp_bld_const.h"
#include "lp_bld_intr.h"
#include "lp_bld_logic.h"
#include "lp_bld_pack.h"
#include "lp_bld_debug.h"
2009-08-01 17:27:05 +01:00
#include "lp_bld_arit.h"
2009-08-19 20:13:49 +01:00
/**
* Generate min(a, b)
* No checks for special case values of a or b = 1 or 0 are done.
*/
static LLVMValueRef
lp_build_min_simple(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b)
2009-08-01 17:27:05 +01:00
{
const struct lp_type type = bld->type;
const char *intrinsic = NULL;
LLVMValueRef cond;
/* TODO: optimize the constant case */
if(type.width * type.length == 128) {
if(type.floating) {
if(type.width == 32 && util_cpu_caps.has_sse)
intrinsic = "llvm.x86.sse.min.ps";
if(type.width == 64 && util_cpu_caps.has_sse2)
intrinsic = "llvm.x86.sse2.min.pd";
}
else {
if(type.width == 8 && !type.sign && util_cpu_caps.has_sse2)
intrinsic = "llvm.x86.sse2.pminu.b";
if(type.width == 8 && type.sign && util_cpu_caps.has_sse4_1)
intrinsic = "llvm.x86.sse41.pminsb";
if(type.width == 16 && !type.sign && util_cpu_caps.has_sse4_1)
intrinsic = "llvm.x86.sse41.pminuw";
if(type.width == 16 && type.sign && util_cpu_caps.has_sse2)
intrinsic = "llvm.x86.sse2.pmins.w";
if(type.width == 32 && !type.sign && util_cpu_caps.has_sse4_1)
intrinsic = "llvm.x86.sse41.pminud";
if(type.width == 32 && type.sign && util_cpu_caps.has_sse4_1)
intrinsic = "llvm.x86.sse41.pminsd";
}
}
if(intrinsic)
return lp_build_intrinsic_binary(bld->builder, intrinsic, lp_build_vec_type(bld->type), a, b);
cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
return lp_build_select(bld, cond, a, b);
2009-08-01 17:27:05 +01:00
}
2009-08-19 20:13:49 +01:00
/**
* Generate max(a, b)
* No checks for special case values of a or b = 1 or 0 are done.
*/
static LLVMValueRef
lp_build_max_simple(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b)
2009-08-01 17:27:05 +01:00
{
const struct lp_type type = bld->type;
const char *intrinsic = NULL;
LLVMValueRef cond;
/* TODO: optimize the constant case */
if(type.width * type.length == 128) {
if(type.floating) {
if(type.width == 32 && util_cpu_caps.has_sse)
intrinsic = "llvm.x86.sse.max.ps";
if(type.width == 64 && util_cpu_caps.has_sse2)
intrinsic = "llvm.x86.sse2.max.pd";
}
else {
if(type.width == 8 && !type.sign && util_cpu_caps.has_sse2)
intrinsic = "llvm.x86.sse2.pmaxu.b";
if(type.width == 8 && type.sign && util_cpu_caps.has_sse4_1)
intrinsic = "llvm.x86.sse41.pmaxsb";
if(type.width == 16 && !type.sign && util_cpu_caps.has_sse4_1)
intrinsic = "llvm.x86.sse41.pmaxuw";
if(type.width == 16 && type.sign && util_cpu_caps.has_sse2)
intrinsic = "llvm.x86.sse2.pmaxs.w";
if(type.width == 32 && !type.sign && util_cpu_caps.has_sse4_1)
intrinsic = "llvm.x86.sse41.pmaxud";
if(type.width == 32 && type.sign && util_cpu_caps.has_sse4_1)
intrinsic = "llvm.x86.sse41.pmaxsd";
}
}
if(intrinsic)
return lp_build_intrinsic_binary(bld->builder, intrinsic, lp_build_vec_type(bld->type), a, b);
cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
return lp_build_select(bld, cond, a, b);
2009-08-01 17:27:05 +01:00
}
2009-08-19 20:13:49 +01:00
/**
* Generate 1 - a, or ~a depending on bld->type.
*/
2009-08-01 17:27:05 +01:00
LLVMValueRef
lp_build_comp(struct lp_build_context *bld,
LLVMValueRef a)
2009-08-01 17:27:05 +01:00
{
const struct lp_type type = bld->type;
if(a == bld->one)
return bld->zero;
if(a == bld->zero)
return bld->one;
if(type.norm && !type.floating && !type.fixed && !type.sign) {
if(LLVMIsConstant(a))
return LLVMConstNot(a);
else
return LLVMBuildNot(bld->builder, a, "");
}
if(LLVMIsConstant(a))
return LLVMConstSub(bld->one, a);
2009-08-01 17:27:05 +01:00
else
return LLVMBuildSub(bld->builder, bld->one, a, "");
2009-08-01 17:27:05 +01:00
}
2009-08-19 20:13:49 +01:00
/**
* Generate a + b
*/
2009-08-01 17:27:05 +01:00
LLVMValueRef
lp_build_add(struct lp_build_context *bld,
2009-08-01 17:27:05 +01:00
LLVMValueRef a,
LLVMValueRef b)
{
const struct lp_type type = bld->type;
LLVMValueRef res;
2009-08-01 17:27:05 +01:00
if(a == bld->zero)
return b;
if(b == bld->zero)
return a;
if(a == bld->undef || b == bld->undef)
return bld->undef;
2009-08-01 17:27:05 +01:00
if(bld->type.norm) {
const char *intrinsic = NULL;
2009-08-01 17:27:05 +01:00
if(a == bld->one || b == bld->one)
return bld->one;
2009-08-01 17:27:05 +01:00
if(util_cpu_caps.has_sse2 &&
type.width * type.length == 128 &&
!type.floating && !type.fixed) {
if(type.width == 8)
intrinsic = type.sign ? "llvm.x86.sse2.padds.b" : "llvm.x86.sse2.paddus.b";
if(type.width == 16)
intrinsic = type.sign ? "llvm.x86.sse2.padds.w" : "llvm.x86.sse2.paddus.w";
}
if(intrinsic)
return lp_build_intrinsic_binary(bld->builder, intrinsic, lp_build_vec_type(bld->type), a, b);
}
if(LLVMIsConstant(a) && LLVMIsConstant(b))
res = LLVMConstAdd(a, b);
else
res = LLVMBuildAdd(bld->builder, a, b, "");
2009-08-19 20:13:49 +01:00
/* clamp to ceiling of 1.0 */
if(bld->type.norm && (bld->type.floating || bld->type.fixed))
res = lp_build_min_simple(bld, res, bld->one);
2009-08-19 20:13:49 +01:00
/* XXX clamp to floor of -1 or 0??? */
return res;
2009-08-01 17:27:05 +01:00
}
2009-08-19 20:13:49 +01:00
/**
* Generate a - b
*/
2009-08-01 17:27:05 +01:00
LLVMValueRef
lp_build_sub(struct lp_build_context *bld,
2009-08-01 17:27:05 +01:00
LLVMValueRef a,
LLVMValueRef b)
{
const struct lp_type type = bld->type;
LLVMValueRef res;
2009-08-01 17:27:05 +01:00
if(b == bld->zero)
return a;
if(a == bld->undef || b == bld->undef)
return bld->undef;
if(a == b)
return bld->zero;
2009-08-01 17:27:05 +01:00
if(bld->type.norm) {
const char *intrinsic = NULL;
2009-08-01 17:27:05 +01:00
if(b == bld->one)
return bld->zero;
2009-08-01 17:27:05 +01:00
if(util_cpu_caps.has_sse2 &&
type.width * type.length == 128 &&
!type.floating && !type.fixed) {
if(type.width == 8)
intrinsic = type.sign ? "llvm.x86.sse2.psubs.b" : "llvm.x86.sse2.psubus.b";
if(type.width == 16)
intrinsic = type.sign ? "llvm.x86.sse2.psubs.w" : "llvm.x86.sse2.psubus.w";
}
if(intrinsic)
return lp_build_intrinsic_binary(bld->builder, intrinsic, lp_build_vec_type(bld->type), a, b);
}
if(LLVMIsConstant(a) && LLVMIsConstant(b))
res = LLVMConstSub(a, b);
else
res = LLVMBuildSub(bld->builder, a, b, "");
if(bld->type.norm && (bld->type.floating || bld->type.fixed))
res = lp_build_max_simple(bld, res, bld->zero);
return res;
2009-08-01 17:27:05 +01:00
}
/**
* Normalized 8bit multiplication.
*
* - alpha plus one
*
* makes the following approximation to the division (Sree)
*
* a*b/255 ~= (a*(b + 1)) >> 256
*
* which is the fastest method that satisfies the following OpenGL criteria
*
* 0*0 = 0 and 255*255 = 255
*
* - geometric series
*
* takes the geometric series approximation to the division
*
* t/255 = (t >> 8) + (t >> 16) + (t >> 24) ..
*
* in this case just the first two terms to fit in 16bit arithmetic
*
* t/255 ~= (t + (t >> 8)) >> 8
*
* note that just by itself it doesn't satisfies the OpenGL criteria, as
* 255*255 = 254, so the special case b = 255 must be accounted or roundoff
* must be used
*
* - geometric series plus rounding
*
* when using a geometric series division instead of truncating the result
* use roundoff in the approximation (Jim Blinn)
*
* t/255 ~= (t + (t >> 8) + 0x80) >> 8
*
* achieving the exact results
*
* @sa Alvy Ray Smith, Image Compositing Fundamentals, Tech Memo 4, Aug 15, 1995,
* ftp://ftp.alvyray.com/Acrobat/4_Comp.pdf
* @sa Michael Herf, The "double blend trick", May 2000,
* http://www.stereopsis.com/doubleblend.html
*/
static LLVMValueRef
lp_build_mul_u8n(LLVMBuilderRef builder,
struct lp_type i16_type,
LLVMValueRef a, LLVMValueRef b)
{
LLVMValueRef c8;
LLVMValueRef ab;
c8 = lp_build_int_const_scalar(i16_type, 8);
#if 0
/* a*b/255 ~= (a*(b + 1)) >> 256 */
b = LLVMBuildAdd(builder, b, lp_build_int_const_scalar(i16_type, 1), "");
ab = LLVMBuildMul(builder, a, b, "");
#else
/* ab/255 ~= (ab + (ab >> 8) + 0x80) >> 8 */
ab = LLVMBuildMul(builder, a, b, "");
ab = LLVMBuildAdd(builder, ab, LLVMBuildLShr(builder, ab, c8, ""), "");
ab = LLVMBuildAdd(builder, ab, lp_build_int_const_scalar(i16_type, 0x80), "");
#endif
ab = LLVMBuildLShr(builder, ab, c8, "");
return ab;
}
2009-08-19 20:13:49 +01:00
/**
* Generate a * b
*/
2009-08-01 17:27:05 +01:00
LLVMValueRef
lp_build_mul(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b)
2009-08-01 17:27:05 +01:00
{
const struct lp_type type = bld->type;
LLVMValueRef shift;
LLVMValueRef res;
if(a == bld->zero)
return bld->zero;
if(a == bld->one)
2009-08-01 17:27:05 +01:00
return b;
if(b == bld->zero)
return bld->zero;
if(b == bld->one)
2009-08-01 17:27:05 +01:00
return a;
if(a == bld->undef || b == bld->undef)
return bld->undef;
2009-08-01 17:27:05 +01:00
if(!type.floating && !type.fixed && type.norm) {
if(type.width == 8) {
struct lp_type i16_type = lp_wider_type(type);
LLVMValueRef al, ah, bl, bh, abl, abh, ab;
lp_build_unpack2(bld->builder, type, i16_type, a, &al, &ah);
lp_build_unpack2(bld->builder, type, i16_type, b, &bl, &bh);
/* PMULLW, PSRLW, PADDW */
abl = lp_build_mul_u8n(bld->builder, i16_type, al, bl);
abh = lp_build_mul_u8n(bld->builder, i16_type, ah, bh);
ab = lp_build_pack2(bld->builder, i16_type, type, abl, abh);
return ab;
}
/* FIXME */
assert(0);
}
if(type.fixed)
shift = lp_build_int_const_scalar(type, type.width/2);
else
shift = NULL;
if(LLVMIsConstant(a) && LLVMIsConstant(b)) {
res = LLVMConstMul(a, b);
if(shift) {
if(type.sign)
res = LLVMConstAShr(res, shift);
else
res = LLVMConstLShr(res, shift);
}
}
else {
res = LLVMBuildMul(bld->builder, a, b, "");
if(shift) {
if(type.sign)
res = LLVMBuildAShr(bld->builder, res, shift, "");
else
res = LLVMBuildLShr(bld->builder, res, shift, "");
}
}
return res;
2009-08-01 17:27:05 +01:00
}
2009-10-25 11:48:17 +00:00
/**
* Small vector x scale multiplication optimization.
*/
LLVMValueRef
lp_build_mul_imm(struct lp_build_context *bld,
LLVMValueRef a,
int b)
{
LLVMValueRef factor;
if(b == 0)
return bld->zero;
2009-10-25 11:48:17 +00:00
if(b == 1)
return a;
if(b == -1)
return LLVMBuildNeg(bld->builder, a, "");
if(b == 2 && bld->type.floating)
return lp_build_add(bld, a, a);
if(util_is_pot(b)) {
unsigned shift = ffs(b) - 1;
if(bld->type.floating) {
#if 0
/*
* Power of two multiplication by directly manipulating the mantissa.
*
* XXX: This might not be always faster, it will introduce a small error
* for multiplication by zero, and it will produce wrong results
* for Inf and NaN.
*/
unsigned mantissa = lp_mantissa(bld->type);
factor = lp_build_int_const_scalar(bld->type, (unsigned long long)shift << mantissa);
a = LLVMBuildBitCast(bld->builder, a, lp_build_int_vec_type(bld->type), "");
a = LLVMBuildAdd(bld->builder, a, factor, "");
a = LLVMBuildBitCast(bld->builder, a, lp_build_vec_type(bld->type), "");
return a;
#endif
}
else {
factor = lp_build_const_scalar(bld->type, shift);
return LLVMBuildShl(bld->builder, a, factor, "");
}
}
factor = lp_build_const_scalar(bld->type, (double)b);
return lp_build_mul(bld, a, factor);
2009-08-01 17:27:05 +01:00
}
2009-08-19 20:13:49 +01:00
/**
* Generate a / b
*/
LLVMValueRef
lp_build_div(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b)
{
const struct lp_type type = bld->type;
if(a == bld->zero)
return bld->zero;
if(a == bld->one)
return lp_build_rcp(bld, b);
if(b == bld->zero)
return bld->undef;
if(b == bld->one)
return a;
if(a == bld->undef || b == bld->undef)
return bld->undef;
if(LLVMIsConstant(a) && LLVMIsConstant(b))
return LLVMConstFDiv(a, b);
if(util_cpu_caps.has_sse && type.width == 32 && type.length == 4)
return lp_build_mul(bld, a, lp_build_rcp(bld, b));
return LLVMBuildFDiv(bld->builder, a, b, "");
}
/**
* Linear interpolation.
*
* This also works for integer values with a few caveats.
*
* @sa http://www.stereopsis.com/doubleblend.html
*/
LLVMValueRef
lp_build_lerp(struct lp_build_context *bld,
LLVMValueRef x,
LLVMValueRef v0,
LLVMValueRef v1)
{
LLVMValueRef delta;
LLVMValueRef res;
delta = lp_build_sub(bld, v1, v0);
res = lp_build_mul(bld, x, delta);
res = lp_build_add(bld, v0, res);
if(bld->type.fixed)
/* XXX: This step is necessary for lerping 8bit colors stored on 16bits,
* but it will be wrong for other uses. Basically we need a more
* powerful lp_type, capable of further distinguishing the values
* interpretation from the value storage. */
res = LLVMBuildAnd(bld->builder, res, lp_build_int_const_scalar(bld->type, (1 << bld->type.width/2) - 1), "");
return res;
}
LLVMValueRef
lp_build_lerp_2d(struct lp_build_context *bld,
LLVMValueRef x,
LLVMValueRef y,
LLVMValueRef v00,
LLVMValueRef v01,
LLVMValueRef v10,
LLVMValueRef v11)
{
LLVMValueRef v0 = lp_build_lerp(bld, x, v00, v01);
LLVMValueRef v1 = lp_build_lerp(bld, x, v10, v11);
return lp_build_lerp(bld, y, v0, v1);
}
2009-08-19 20:13:49 +01:00
/**
* Generate min(a, b)
* Do checks for special cases.
*/
2009-08-01 17:27:05 +01:00
LLVMValueRef
lp_build_min(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b)
2009-08-01 17:27:05 +01:00
{
if(a == bld->undef || b == bld->undef)
return bld->undef;
if(a == b)
return a;
if(bld->type.norm) {
if(a == bld->zero || b == bld->zero)
return bld->zero;
if(a == bld->one)
return b;
if(b == bld->one)
return a;
}
return lp_build_min_simple(bld, a, b);
2009-08-01 17:27:05 +01:00
}
2009-08-19 20:13:49 +01:00
/**
* Generate max(a, b)
* Do checks for special cases.
*/
2009-08-01 17:27:05 +01:00
LLVMValueRef
lp_build_max(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b)
2009-08-01 17:27:05 +01:00
{
if(a == bld->undef || b == bld->undef)
return bld->undef;
if(a == b)
return a;
if(bld->type.norm) {
if(a == bld->one || b == bld->one)
return bld->one;
if(a == bld->zero)
return b;
if(b == bld->zero)
return a;
}
return lp_build_max_simple(bld, a, b);
2009-08-01 17:27:05 +01:00
}
/**
* Generate clamp(a, min, max)
* Do checks for special cases.
*/
LLVMValueRef
lp_build_clamp(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef min,
LLVMValueRef max)
{
a = lp_build_min(bld, a, max);
a = lp_build_max(bld, a, min);
return a;
}
2009-08-19 20:13:49 +01:00
/**
* Generate abs(a)
*/
LLVMValueRef
lp_build_abs(struct lp_build_context *bld,
LLVMValueRef a)
{
const struct lp_type type = bld->type;
LLVMTypeRef vec_type = lp_build_vec_type(type);
if(!type.sign)
return a;
if(type.floating) {
/* Mask out the sign bit */
LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
unsigned long long absMask = ~(1ULL << (type.width - 1));
2009-12-14 22:24:31 +00:00
LLVMValueRef mask = lp_build_int_const_scalar(type, ((unsigned long long) absMask));
a = LLVMBuildBitCast(bld->builder, a, int_vec_type, "");
a = LLVMBuildAnd(bld->builder, a, mask, "");
a = LLVMBuildBitCast(bld->builder, a, vec_type, "");
return a;
}
if(type.width*type.length == 128 && util_cpu_caps.has_ssse3) {
switch(type.width) {
case 8:
return lp_build_intrinsic_unary(bld->builder, "llvm.x86.ssse3.pabs.b.128", vec_type, a);
case 16:
return lp_build_intrinsic_unary(bld->builder, "llvm.x86.ssse3.pabs.w.128", vec_type, a);
case 32:
return lp_build_intrinsic_unary(bld->builder, "llvm.x86.ssse3.pabs.d.128", vec_type, a);
}
}
return lp_build_max(bld, a, LLVMBuildNeg(bld->builder, a, ""));
}
2010-03-04 15:36:26 +00:00
LLVMValueRef
lp_build_negate(struct lp_build_context *bld,
LLVMValueRef a)
{
return LLVMBuildNeg(bld->builder, a, "");
}
LLVMValueRef
lp_build_sgn(struct lp_build_context *bld,
LLVMValueRef a)
{
const struct lp_type type = bld->type;
LLVMTypeRef vec_type = lp_build_vec_type(type);
LLVMValueRef cond;
LLVMValueRef res;
/* Handle non-zero case */
if(!type.sign) {
/* if not zero then sign must be positive */
res = bld->one;
}
else if(type.floating) {
/* Take the sign bit and add it to 1 constant */
LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
LLVMValueRef mask = lp_build_int_const_scalar(type, (unsigned long long)1 << (type.width - 1));
LLVMValueRef sign;
LLVMValueRef one;
sign = LLVMBuildBitCast(bld->builder, a, int_vec_type, "");
sign = LLVMBuildAnd(bld->builder, sign, mask, "");
one = LLVMConstBitCast(bld->one, int_vec_type);
res = LLVMBuildOr(bld->builder, sign, one, "");
res = LLVMBuildBitCast(bld->builder, res, vec_type, "");
}
else
{
LLVMValueRef minus_one = lp_build_const_scalar(type, -1.0);
cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, bld->zero);
res = lp_build_select(bld, cond, bld->one, minus_one);
}
/* Handle zero */
cond = lp_build_cmp(bld, PIPE_FUNC_EQUAL, a, bld->zero);
res = lp_build_select(bld, cond, bld->zero, bld->one);
return res;
}
2010-03-04 16:45:34 +00:00
/**
* Set the sign of float vector 'a' according to 'sign'.
* If sign==0, return abs(a).
* If sign==1, return -abs(a);
* Other values for sign produce undefined results.
*/
LLVMValueRef
lp_build_set_sign(struct lp_build_context *bld,
LLVMValueRef a, LLVMValueRef sign)
{
const struct lp_type type = bld->type;
LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
LLVMTypeRef vec_type = lp_build_vec_type(type);
LLVMValueRef shift = lp_build_int_const_scalar(type, type.width - 1);
LLVMValueRef mask = lp_build_int_const_scalar(type,
~((unsigned long long) 1 << (type.width - 1)));
LLVMValueRef val, res;
assert(type.floating);
/* val = reinterpret_cast<int>(a) */
val = LLVMBuildBitCast(bld->builder, a, int_vec_type, "");
/* val = val & mask */
val = LLVMBuildAnd(bld->builder, val, mask, "");
/* sign = sign << shift */
sign = LLVMBuildShl(bld->builder, sign, shift, "");
/* res = val | sign */
res = LLVMBuildOr(bld->builder, val, sign, "");
/* res = reinterpret_cast<float>(res) */
res = LLVMBuildBitCast(bld->builder, res, vec_type, "");
return res;
}
/**
* Convert vector of int to vector of float.
*/
LLVMValueRef
lp_build_int_to_float(struct lp_build_context *bld,
LLVMValueRef a)
{
const struct lp_type type = bld->type;
assert(type.floating);
/*assert(lp_check_value(type, a));*/
{
LLVMTypeRef vec_type = lp_build_vec_type(type);
/*LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);*/
LLVMValueRef res;
res = LLVMBuildSIToFP(bld->builder, a, vec_type, "");
return res;
}
}
enum lp_build_round_sse41_mode
{
LP_BUILD_ROUND_SSE41_NEAREST = 0,
LP_BUILD_ROUND_SSE41_FLOOR = 1,
LP_BUILD_ROUND_SSE41_CEIL = 2,
LP_BUILD_ROUND_SSE41_TRUNCATE = 3
};
static INLINE LLVMValueRef
lp_build_round_sse41(struct lp_build_context *bld,
LLVMValueRef a,
enum lp_build_round_sse41_mode mode)
{
const struct lp_type type = bld->type;
LLVMTypeRef vec_type = lp_build_vec_type(type);
const char *intrinsic;
assert(type.floating);
assert(type.width*type.length == 128);
assert(lp_check_value(type, a));
assert(util_cpu_caps.has_sse4_1);
switch(type.width) {
case 32:
intrinsic = "llvm.x86.sse41.round.ps";
break;
case 64:
intrinsic = "llvm.x86.sse41.round.pd";
break;
default:
assert(0);
return bld->undef;
}
return lp_build_intrinsic_binary(bld->builder, intrinsic, vec_type, a,
LLVMConstInt(LLVMInt32Type(), mode, 0));
}
LLVMValueRef
lp_build_trunc(struct lp_build_context *bld,
LLVMValueRef a)
{
const struct lp_type type = bld->type;
assert(type.floating);
assert(lp_check_value(type, a));
if(util_cpu_caps.has_sse4_1)
return lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_TRUNCATE);
else {
LLVMTypeRef vec_type = lp_build_vec_type(type);
LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
LLVMValueRef res;
res = LLVMBuildFPToSI(bld->builder, a, int_vec_type, "");
res = LLVMBuildSIToFP(bld->builder, res, vec_type, "");
return res;
}
}
LLVMValueRef
lp_build_round(struct lp_build_context *bld,
LLVMValueRef a)
{
const struct lp_type type = bld->type;
assert(type.floating);
assert(lp_check_value(type, a));
if(util_cpu_caps.has_sse4_1)
return lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_NEAREST);
else {
LLVMTypeRef vec_type = lp_build_vec_type(type);
LLVMValueRef res;
res = lp_build_iround(bld, a);
res = LLVMBuildSIToFP(bld->builder, res, vec_type, "");
return res;
}
}
LLVMValueRef
lp_build_floor(struct lp_build_context *bld,
LLVMValueRef a)
{
const struct lp_type type = bld->type;
assert(type.floating);
if(util_cpu_caps.has_sse4_1)
return lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_FLOOR);
else {
LLVMTypeRef vec_type = lp_build_vec_type(type);
LLVMValueRef res;
res = lp_build_ifloor(bld, a);
res = LLVMBuildSIToFP(bld->builder, res, vec_type, "");
return res;
}
}
LLVMValueRef
lp_build_ceil(struct lp_build_context *bld,
LLVMValueRef a)
{
const struct lp_type type = bld->type;
assert(type.floating);
assert(lp_check_value(type, a));
if(util_cpu_caps.has_sse4_1)
return lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_CEIL);
else {
LLVMTypeRef vec_type = lp_build_vec_type(type);
LLVMValueRef res;
res = lp_build_iceil(bld, a);
res = LLVMBuildSIToFP(bld->builder, res, vec_type, "");
return res;
}
}
/**
* Convert to integer, through whichever rounding method that's fastest,
* typically truncating toward zero.
*/
LLVMValueRef
lp_build_itrunc(struct lp_build_context *bld,
LLVMValueRef a)
{
const struct lp_type type = bld->type;
LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
assert(type.floating);
assert(lp_check_value(type, a));
return LLVMBuildFPToSI(bld->builder, a, int_vec_type, "");
}
LLVMValueRef
lp_build_iround(struct lp_build_context *bld,
LLVMValueRef a)
{
const struct lp_type type = bld->type;
LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
LLVMValueRef res;
assert(type.floating);
assert(lp_check_value(type, a));
if(util_cpu_caps.has_sse4_1) {
res = lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_NEAREST);
}
else {
LLVMTypeRef vec_type = lp_build_vec_type(type);
LLVMValueRef mask = lp_build_int_const_scalar(type, (unsigned long long)1 << (type.width - 1));
LLVMValueRef sign;
LLVMValueRef half;
/* get sign bit */
sign = LLVMBuildBitCast(bld->builder, a, int_vec_type, "");
sign = LLVMBuildAnd(bld->builder, sign, mask, "");
/* sign * 0.5 */
half = lp_build_const_scalar(type, 0.5);
half = LLVMBuildBitCast(bld->builder, half, int_vec_type, "");
half = LLVMBuildOr(bld->builder, sign, half, "");
half = LLVMBuildBitCast(bld->builder, half, vec_type, "");
res = LLVMBuildAdd(bld->builder, a, half, "");
}
res = LLVMBuildFPToSI(bld->builder, res, int_vec_type, "");
return res;
}
/**
* Convert float[] to int[] with floor().
*/
LLVMValueRef
lp_build_ifloor(struct lp_build_context *bld,
LLVMValueRef a)
{
const struct lp_type type = bld->type;
LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
LLVMValueRef res;
assert(type.floating);
assert(lp_check_value(type, a));
if(util_cpu_caps.has_sse4_1) {
res = lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_FLOOR);
}
else {
/* Take the sign bit and add it to 1 constant */
LLVMTypeRef vec_type = lp_build_vec_type(type);
unsigned mantissa = lp_mantissa(type);
LLVMValueRef mask = lp_build_int_const_scalar(type, (unsigned long long)1 << (type.width - 1));
LLVMValueRef sign;
LLVMValueRef offset;
/* sign = a < 0 ? ~0 : 0 */
sign = LLVMBuildBitCast(bld->builder, a, int_vec_type, "");
sign = LLVMBuildAnd(bld->builder, sign, mask, "");
sign = LLVMBuildAShr(bld->builder, sign, lp_build_int_const_scalar(type, type.width - 1), "");
lp_build_name(sign, "floor.sign");
/* offset = -0.99999(9)f */
offset = lp_build_const_scalar(type, -(double)(((unsigned long long)1 << mantissa) - 1)/((unsigned long long)1 << mantissa));
offset = LLVMConstBitCast(offset, int_vec_type);
/* offset = a < 0 ? -0.99999(9)f : 0.0f */
offset = LLVMBuildAnd(bld->builder, offset, sign, "");
offset = LLVMBuildBitCast(bld->builder, offset, vec_type, "");
lp_build_name(offset, "floor.offset");
res = LLVMBuildAdd(bld->builder, a, offset, "");
lp_build_name(res, "floor.res");
}
res = LLVMBuildFPToSI(bld->builder, res, int_vec_type, "");
lp_build_name(res, "floor");
return res;
}
LLVMValueRef
lp_build_iceil(struct lp_build_context *bld,
LLVMValueRef a)
{
const struct lp_type type = bld->type;
LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
LLVMValueRef res;
assert(type.floating);
assert(lp_check_value(type, a));
if(util_cpu_caps.has_sse4_1) {
res = lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_CEIL);
}
else {
assert(0);
res = bld->undef;
}
res = LLVMBuildFPToSI(bld->builder, res, int_vec_type, "");
return res;
}
LLVMValueRef
lp_build_sqrt(struct lp_build_context *bld,
LLVMValueRef a)
{
const struct lp_type type = bld->type;
LLVMTypeRef vec_type = lp_build_vec_type(type);
char intrinsic[32];
/* TODO: optimize the constant case */
/* TODO: optimize the constant case */
assert(type.floating);
util_snprintf(intrinsic, sizeof intrinsic, "llvm.sqrt.v%uf%u", type.length, type.width);
return lp_build_intrinsic_unary(bld->builder, intrinsic, vec_type, a);
}
LLVMValueRef
lp_build_rcp(struct lp_build_context *bld,
LLVMValueRef a)
{
const struct lp_type type = bld->type;
if(a == bld->zero)
return bld->undef;
if(a == bld->one)
return bld->one;
if(a == bld->undef)
return bld->undef;
assert(type.floating);
if(LLVMIsConstant(a))
return LLVMConstFDiv(bld->one, a);
if(util_cpu_caps.has_sse && type.width == 32 && type.length == 4)
/* FIXME: improve precision */
return lp_build_intrinsic_unary(bld->builder, "llvm.x86.sse.rcp.ps", lp_build_vec_type(type), a);
return LLVMBuildFDiv(bld->builder, bld->one, a, "");
}
2009-08-19 20:13:49 +01:00
/**
* Generate 1/sqrt(a)
*/
LLVMValueRef
lp_build_rsqrt(struct lp_build_context *bld,
LLVMValueRef a)
{
const struct lp_type type = bld->type;
assert(type.floating);
if(util_cpu_caps.has_sse && type.width == 32 && type.length == 4)
return lp_build_intrinsic_unary(bld->builder, "llvm.x86.sse.rsqrt.ps", lp_build_vec_type(type), a);
return lp_build_rcp(bld, lp_build_sqrt(bld, a));
}
2009-08-19 20:13:49 +01:00
/**
* Generate cos(a)
*/
LLVMValueRef
lp_build_cos(struct lp_build_context *bld,
LLVMValueRef a)
{
const struct lp_type type = bld->type;
LLVMTypeRef vec_type = lp_build_vec_type(type);
char intrinsic[32];
/* TODO: optimize the constant case */
assert(type.floating);
util_snprintf(intrinsic, sizeof intrinsic, "llvm.cos.v%uf%u", type.length, type.width);
return lp_build_intrinsic_unary(bld->builder, intrinsic, vec_type, a);
}
2009-08-19 20:13:49 +01:00
/**
* Generate sin(a)
*/
LLVMValueRef
lp_build_sin(struct lp_build_context *bld,
LLVMValueRef a)
{
const struct lp_type type = bld->type;
LLVMTypeRef vec_type = lp_build_vec_type(type);
char intrinsic[32];
/* TODO: optimize the constant case */
assert(type.floating);
util_snprintf(intrinsic, sizeof intrinsic, "llvm.sin.v%uf%u", type.length, type.width);
return lp_build_intrinsic_unary(bld->builder, intrinsic, vec_type, a);
}
2009-08-19 20:13:49 +01:00
/**
* Generate pow(x, y)
*/
LLVMValueRef
lp_build_pow(struct lp_build_context *bld,
LLVMValueRef x,
LLVMValueRef y)
{
/* TODO: optimize the constant case */
if(LLVMIsConstant(x) && LLVMIsConstant(y))
debug_printf("%s: inefficient/imprecise constant arithmetic\n",
__FUNCTION__);
return lp_build_exp2(bld, lp_build_mul(bld, lp_build_log2(bld, x), y));
}
2009-08-19 20:13:49 +01:00
/**
* Generate exp(x)
*/
LLVMValueRef
lp_build_exp(struct lp_build_context *bld,
LLVMValueRef x)
{
/* log2(e) = 1/log(2) */
LLVMValueRef log2e = lp_build_const_scalar(bld->type, 1.4426950408889634);
return lp_build_mul(bld, log2e, lp_build_exp2(bld, x));
}
2009-08-19 20:13:49 +01:00
/**
* Generate log(x)
*/
LLVMValueRef
lp_build_log(struct lp_build_context *bld,
LLVMValueRef x)
{
/* log(2) */
LLVMValueRef log2 = lp_build_const_scalar(bld->type, 0.69314718055994529);
return lp_build_mul(bld, log2, lp_build_exp2(bld, x));
}
#define EXP_POLY_DEGREE 3
#define LOG_POLY_DEGREE 5
2009-08-19 20:13:49 +01:00
/**
* Generate polynomial.
* Ex: coeffs[0] + x * coeffs[1] + x^2 * coeffs[2].
2009-08-19 20:13:49 +01:00
*/
static LLVMValueRef
lp_build_polynomial(struct lp_build_context *bld,
LLVMValueRef x,
const double *coeffs,
unsigned num_coeffs)
{
const struct lp_type type = bld->type;
LLVMValueRef res = NULL;
unsigned i;
/* TODO: optimize the constant case */
if(LLVMIsConstant(x))
debug_printf("%s: inefficient/imprecise constant arithmetic\n",
__FUNCTION__);
for (i = num_coeffs; i--; ) {
LLVMValueRef coeff = lp_build_const_scalar(type, coeffs[i]);
if(res)
res = lp_build_add(bld, coeff, lp_build_mul(bld, x, res));
else
res = coeff;
}
if(res)
return res;
else
return bld->undef;
}
/**
* Minimax polynomial fit of 2**x, in range [-0.5, 0.5[
*/
const double lp_build_exp2_polynomial[] = {
#if EXP_POLY_DEGREE == 5
9.9999994e-1, 6.9315308e-1, 2.4015361e-1, 5.5826318e-2, 8.9893397e-3, 1.8775767e-3
#elif EXP_POLY_DEGREE == 4
1.0000026, 6.9300383e-1, 2.4144275e-1, 5.2011464e-2, 1.3534167e-2
#elif EXP_POLY_DEGREE == 3
9.9992520e-1, 6.9583356e-1, 2.2606716e-1, 7.8024521e-2
#elif EXP_POLY_DEGREE == 2
1.0017247, 6.5763628e-1, 3.3718944e-1
#else
#error
#endif
};
void
lp_build_exp2_approx(struct lp_build_context *bld,
LLVMValueRef x,
LLVMValueRef *p_exp2_int_part,
LLVMValueRef *p_frac_part,
LLVMValueRef *p_exp2)
{
const struct lp_type type = bld->type;
LLVMTypeRef vec_type = lp_build_vec_type(type);
LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
2009-08-16 21:07:15 +01:00
LLVMValueRef ipart = NULL;
LLVMValueRef fpart = NULL;
LLVMValueRef expipart = NULL;
LLVMValueRef expfpart = NULL;
LLVMValueRef res = NULL;
if(p_exp2_int_part || p_frac_part || p_exp2) {
/* TODO: optimize the constant case */
if(LLVMIsConstant(x))
debug_printf("%s: inefficient/imprecise constant arithmetic\n",
__FUNCTION__);
assert(type.floating && type.width == 32);
x = lp_build_min(bld, x, lp_build_const_scalar(type, 129.0));
x = lp_build_max(bld, x, lp_build_const_scalar(type, -126.99999));
/* ipart = int(x - 0.5) */
ipart = LLVMBuildSub(bld->builder, x, lp_build_const_scalar(type, 0.5f), "");
ipart = LLVMBuildFPToSI(bld->builder, ipart, int_vec_type, "");
/* fpart = x - ipart */
fpart = LLVMBuildSIToFP(bld->builder, ipart, vec_type, "");
fpart = LLVMBuildSub(bld->builder, x, fpart, "");
}
if(p_exp2_int_part || p_exp2) {
/* expipart = (float) (1 << ipart) */
expipart = LLVMBuildAdd(bld->builder, ipart, lp_build_int_const_scalar(type, 127), "");
expipart = LLVMBuildShl(bld->builder, expipart, lp_build_int_const_scalar(type, 23), "");
expipart = LLVMBuildBitCast(bld->builder, expipart, vec_type, "");
}
if(p_exp2) {
expfpart = lp_build_polynomial(bld, fpart, lp_build_exp2_polynomial,
Elements(lp_build_exp2_polynomial));
res = LLVMBuildMul(bld->builder, expipart, expfpart, "");
}
if(p_exp2_int_part)
*p_exp2_int_part = expipart;
if(p_frac_part)
*p_frac_part = fpart;
if(p_exp2)
*p_exp2 = res;
}
LLVMValueRef
lp_build_exp2(struct lp_build_context *bld,
LLVMValueRef x)
{
LLVMValueRef res;
lp_build_exp2_approx(bld, x, NULL, NULL, &res);
return res;
}
/**
* Minimax polynomial fit of log2(x)/(x - 1), for x in range [1, 2[
* These coefficients can be generate with
* http://www.boost.org/doc/libs/1_36_0/libs/math/doc/sf_and_dist/html/math_toolkit/toolkit/internals2/minimax.html
*/
const double lp_build_log2_polynomial[] = {
#if LOG_POLY_DEGREE == 6
3.11578814719469302614, -3.32419399085241980044, 2.59883907202499966007, -1.23152682416275988241, 0.318212422185251071475, -0.0344359067839062357313
#elif LOG_POLY_DEGREE == 5
2.8882704548164776201, -2.52074962577807006663, 1.48116647521213171641, -0.465725644288844778798, 0.0596515482674574969533
#elif LOG_POLY_DEGREE == 4
2.61761038894603480148, -1.75647175389045657003, 0.688243882994381274313, -0.107254423828329604454
#elif LOG_POLY_DEGREE == 3
2.28330284476918490682, -1.04913055217340124191, 0.204446009836232697516
#else
#error
#endif
};
/**
* See http://www.devmaster.net/forums/showthread.php?p=43580
*/
void
lp_build_log2_approx(struct lp_build_context *bld,
LLVMValueRef x,
LLVMValueRef *p_exp,
LLVMValueRef *p_floor_log2,
LLVMValueRef *p_log2)
{
const struct lp_type type = bld->type;
LLVMTypeRef vec_type = lp_build_vec_type(type);
LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
LLVMValueRef expmask = lp_build_int_const_scalar(type, 0x7f800000);
LLVMValueRef mantmask = lp_build_int_const_scalar(type, 0x007fffff);
LLVMValueRef one = LLVMConstBitCast(bld->one, int_vec_type);
2009-08-16 21:07:15 +01:00
LLVMValueRef i = NULL;
LLVMValueRef exp = NULL;
LLVMValueRef mant = NULL;
LLVMValueRef logexp = NULL;
LLVMValueRef logmant = NULL;
LLVMValueRef res = NULL;
if(p_exp || p_floor_log2 || p_log2) {
/* TODO: optimize the constant case */
if(LLVMIsConstant(x))
debug_printf("%s: inefficient/imprecise constant arithmetic\n",
__FUNCTION__);
assert(type.floating && type.width == 32);
i = LLVMBuildBitCast(bld->builder, x, int_vec_type, "");
/* exp = (float) exponent(x) */
exp = LLVMBuildAnd(bld->builder, i, expmask, "");
}
if(p_floor_log2 || p_log2) {
logexp = LLVMBuildLShr(bld->builder, exp, lp_build_int_const_scalar(type, 23), "");
logexp = LLVMBuildSub(bld->builder, logexp, lp_build_int_const_scalar(type, 127), "");
logexp = LLVMBuildSIToFP(bld->builder, logexp, vec_type, "");
}
if(p_log2) {
/* mant = (float) mantissa(x) */
mant = LLVMBuildAnd(bld->builder, i, mantmask, "");
mant = LLVMBuildOr(bld->builder, mant, one, "");
mant = LLVMBuildBitCast(bld->builder, mant, vec_type, "");
logmant = lp_build_polynomial(bld, mant, lp_build_log2_polynomial,
Elements(lp_build_log2_polynomial));
/* This effectively increases the polynomial degree by one, but ensures that log2(1) == 0*/
logmant = LLVMBuildMul(bld->builder, logmant, LLVMBuildSub(bld->builder, mant, bld->one, ""), "");
res = LLVMBuildAdd(bld->builder, logmant, logexp, "");
}
if(p_exp)
*p_exp = exp;
if(p_floor_log2)
*p_floor_log2 = logexp;
if(p_log2)
*p_log2 = res;
}
LLVMValueRef
lp_build_log2(struct lp_build_context *bld,
LLVMValueRef x)
{
LLVMValueRef res;
lp_build_log2_approx(bld, x, NULL, NULL, &res);
return res;
}