mesa/src/gallium/drivers/llvmpipe/lp_bld_arit.c

710 lines
19 KiB
C
Raw Normal View History

2009-08-01 17:27:05 +01:00
/**************************************************************************
*
* Copyright 2009 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* Helper
*
* LLVM IR doesn't support all basic arithmetic operations we care about (most
* notably min/max and saturated operations), and it is often necessary to
* resort machine-specific intrinsics directly. The functions here hide all
* these implementation details from the other modules.
*
* We also do simple expressions simplification here. Reasons are:
* - it is very easy given we have all necessary information readily available
* - LLVM optimization passes fail to simplify several vector expressions
* - We often know value constraints which the optimization passes have no way
* of knowing, such as when source arguments are known to be in [0, 1] range.
*
* @author Jose Fonseca <jfonseca@vmware.com>
*/
2009-08-03 22:31:08 +01:00
#include "util/u_debug.h"
2009-08-01 17:27:05 +01:00
#include "lp_bld_type.h"
#include "lp_bld_intr.h"
2009-08-01 17:27:05 +01:00
#include "lp_bld_arit.h"
static LLVMValueRef
lp_build_min_simple(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b)
2009-08-01 17:27:05 +01:00
{
const union lp_type type = bld->type;
const char *intrinsic = NULL;
LLVMValueRef cond;
/* TODO: optimize the constant case */
#if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)
if(type.width * type.length == 128) {
if(type.floating) {
if(type.width == 32)
intrinsic = "llvm.x86.sse.min.ps";
if(type.width == 64)
intrinsic = "llvm.x86.sse2.min.pd";
}
else {
if(type.width == 8 && !type.sign)
intrinsic = "llvm.x86.sse2.pminu.b";
if(type.width == 8 && type.sign)
intrinsic = "llvm.x86.sse41.pminsb";
if(type.width == 16 && !type.sign)
intrinsic = "llvm.x86.sse41.pminuw";
if(type.width == 16 && type.sign)
intrinsic = "llvm.x86.sse2.pmins.w";
if(type.width == 32 && !type.sign)
intrinsic = "llvm.x86.sse41.pminud";
if(type.width == 32 && type.sign)
intrinsic = "llvm.x86.sse41.pminsd";
}
}
#endif
if(intrinsic)
return lp_build_intrinsic_binary(bld->builder, intrinsic, lp_build_vec_type(bld->type), a, b);
if(type.floating)
cond = LLVMBuildFCmp(bld->builder, LLVMRealULT, a, b, "");
2009-08-01 17:27:05 +01:00
else
cond = LLVMBuildICmp(bld->builder, type.sign ? LLVMIntSLT : LLVMIntULT, a, b, "");
return LLVMBuildSelect(bld->builder, cond, a, b, "");
2009-08-01 17:27:05 +01:00
}
static LLVMValueRef
lp_build_max_simple(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b)
2009-08-01 17:27:05 +01:00
{
const union lp_type type = bld->type;
const char *intrinsic = NULL;
LLVMValueRef cond;
/* TODO: optimize the constant case */
#if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)
if(type.width * type.length == 128) {
if(type.floating) {
if(type.width == 32)
intrinsic = "llvm.x86.sse.max.ps";
if(type.width == 64)
intrinsic = "llvm.x86.sse2.max.pd";
}
else {
if(type.width == 8 && !type.sign)
intrinsic = "llvm.x86.sse2.pmaxu.b";
if(type.width == 8 && type.sign)
intrinsic = "llvm.x86.sse41.pmaxsb";
if(type.width == 16 && !type.sign)
intrinsic = "llvm.x86.sse41.pmaxuw";
if(type.width == 16 && type.sign)
intrinsic = "llvm.x86.sse2.pmaxs.w";
if(type.width == 32 && !type.sign)
intrinsic = "llvm.x86.sse41.pmaxud";
if(type.width == 32 && type.sign)
intrinsic = "llvm.x86.sse41.pmaxsd";
}
}
#endif
if(intrinsic)
return lp_build_intrinsic_binary(bld->builder, intrinsic, lp_build_vec_type(bld->type), a, b);
if(type.floating)
cond = LLVMBuildFCmp(bld->builder, LLVMRealULT, a, b, "");
2009-08-01 17:27:05 +01:00
else
cond = LLVMBuildICmp(bld->builder, type.sign ? LLVMIntSLT : LLVMIntULT, a, b, "");
return LLVMBuildSelect(bld->builder, cond, b, a, "");
2009-08-01 17:27:05 +01:00
}
LLVMValueRef
lp_build_comp(struct lp_build_context *bld,
LLVMValueRef a)
2009-08-01 17:27:05 +01:00
{
const union lp_type type = bld->type;
if(a == bld->one)
return bld->zero;
if(a == bld->zero)
return bld->one;
if(type.norm && !type.floating && !type.fixed && !type.sign) {
if(LLVMIsConstant(a))
return LLVMConstNot(a);
else
return LLVMBuildNot(bld->builder, a, "");
}
if(LLVMIsConstant(a))
return LLVMConstSub(bld->one, a);
2009-08-01 17:27:05 +01:00
else
return LLVMBuildSub(bld->builder, bld->one, a, "");
2009-08-01 17:27:05 +01:00
}
LLVMValueRef
lp_build_add(struct lp_build_context *bld,
2009-08-01 17:27:05 +01:00
LLVMValueRef a,
LLVMValueRef b)
{
const union lp_type type = bld->type;
LLVMValueRef res;
2009-08-01 17:27:05 +01:00
if(a == bld->zero)
return b;
if(b == bld->zero)
return a;
if(a == bld->undef || b == bld->undef)
return bld->undef;
2009-08-01 17:27:05 +01:00
if(bld->type.norm) {
const char *intrinsic = NULL;
2009-08-01 17:27:05 +01:00
if(a == bld->one || b == bld->one)
return bld->one;
2009-08-01 17:27:05 +01:00
#if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)
if(type.width * type.length == 128 &&
!type.floating && !type.fixed) {
if(type.width == 8)
intrinsic = type.sign ? "llvm.x86.sse2.padds.b" : "llvm.x86.sse2.paddus.b";
if(type.width == 16)
intrinsic = type.sign ? "llvm.x86.sse2.padds.w" : "llvm.x86.sse2.paddus.w";
}
2009-08-01 17:27:05 +01:00
#endif
if(intrinsic)
return lp_build_intrinsic_binary(bld->builder, intrinsic, lp_build_vec_type(bld->type), a, b);
}
if(LLVMIsConstant(a) && LLVMIsConstant(b))
res = LLVMConstAdd(a, b);
else
res = LLVMBuildAdd(bld->builder, a, b, "");
if(bld->type.norm && (bld->type.floating || bld->type.fixed))
res = lp_build_min_simple(bld, res, bld->one);
return res;
2009-08-01 17:27:05 +01:00
}
LLVMValueRef
lp_build_sub(struct lp_build_context *bld,
2009-08-01 17:27:05 +01:00
LLVMValueRef a,
LLVMValueRef b)
{
const union lp_type type = bld->type;
LLVMValueRef res;
2009-08-01 17:27:05 +01:00
if(b == bld->zero)
return a;
if(a == bld->undef || b == bld->undef)
return bld->undef;
if(a == b)
return bld->zero;
2009-08-01 17:27:05 +01:00
if(bld->type.norm) {
const char *intrinsic = NULL;
2009-08-01 17:27:05 +01:00
if(b == bld->one)
return bld->zero;
2009-08-01 17:27:05 +01:00
#if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)
if(type.width * type.length == 128 &&
!type.floating && !type.fixed) {
if(type.width == 8)
intrinsic = type.sign ? "llvm.x86.sse2.psubs.b" : "llvm.x86.sse2.psubus.b";
if(type.width == 16)
intrinsic = type.sign ? "llvm.x86.sse2.psubs.w" : "llvm.x86.sse2.psubus.w";
}
2009-08-01 17:27:05 +01:00
#endif
if(intrinsic)
return lp_build_intrinsic_binary(bld->builder, intrinsic, lp_build_vec_type(bld->type), a, b);
}
if(LLVMIsConstant(a) && LLVMIsConstant(b))
res = LLVMConstSub(a, b);
else
res = LLVMBuildSub(bld->builder, a, b, "");
if(bld->type.norm && (bld->type.floating || bld->type.fixed))
res = lp_build_max_simple(bld, res, bld->zero);
return res;
2009-08-01 17:27:05 +01:00
}
/**
* Build shuffle vectors that match PUNPCKLxx and PUNPCKHxx instructions.
*/
static LLVMValueRef
lp_build_unpack_shuffle(unsigned n, unsigned lo_hi)
{
LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
unsigned i, j;
assert(n <= LP_MAX_VECTOR_LENGTH);
assert(lo_hi < 2);
for(i = 0, j = lo_hi*n/2; i < n; i += 2, ++j) {
elems[i + 0] = LLVMConstInt(LLVMInt32Type(), 0 + j, 0);
elems[i + 1] = LLVMConstInt(LLVMInt32Type(), n + j, 0);
}
return LLVMConstVector(elems, n);
}
static LLVMValueRef
lp_build_const_vec(LLVMTypeRef type, unsigned n, long long c)
{
LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
unsigned i;
assert(n <= LP_MAX_VECTOR_LENGTH);
for(i = 0; i < n; ++i)
elems[i] = LLVMConstInt(type, c, 0);
return LLVMConstVector(elems, n);
}
/**
* Normalized 8bit multiplication.
*
* - alpha plus one
*
* makes the following approximation to the division (Sree)
*
* a*b/255 ~= (a*(b + 1)) >> 256
*
* which is the fastest method that satisfies the following OpenGL criteria
*
* 0*0 = 0 and 255*255 = 255
*
* - geometric series
*
* takes the geometric series approximation to the division
*
* t/255 = (t >> 8) + (t >> 16) + (t >> 24) ..
*
* in this case just the first two terms to fit in 16bit arithmetic
*
* t/255 ~= (t + (t >> 8)) >> 8
*
* note that just by itself it doesn't satisfies the OpenGL criteria, as
* 255*255 = 254, so the special case b = 255 must be accounted or roundoff
* must be used
*
* - geometric series plus rounding
*
* when using a geometric series division instead of truncating the result
* use roundoff in the approximation (Jim Blinn)
*
* t/255 ~= (t + (t >> 8) + 0x80) >> 8
*
* achieving the exact results
*
* @sa Alvy Ray Smith, Image Compositing Fundamentals, Tech Memo 4, Aug 15, 1995,
* ftp://ftp.alvyray.com/Acrobat/4_Comp.pdf
* @sa Michael Herf, The "double blend trick", May 2000,
* http://www.stereopsis.com/doubleblend.html
*/
static LLVMValueRef
lp_build_mul_u8n(LLVMBuilderRef builder,
LLVMValueRef a, LLVMValueRef b)
{
static LLVMValueRef c01 = NULL;
static LLVMValueRef c08 = NULL;
static LLVMValueRef c80 = NULL;
LLVMValueRef ab;
if(!c01) c01 = lp_build_const_vec(LLVMInt16Type(), 8, 0x01);
if(!c08) c08 = lp_build_const_vec(LLVMInt16Type(), 8, 0x08);
if(!c80) c80 = lp_build_const_vec(LLVMInt16Type(), 8, 0x80);
#if 0
/* a*b/255 ~= (a*(b + 1)) >> 256 */
b = LLVMBuildAdd(builder, b, c01, "");
ab = LLVMBuildMul(builder, a, b, "");
#else
/* t/255 ~= (t + (t >> 8) + 0x80) >> 8 */
ab = LLVMBuildMul(builder, a, b, "");
ab = LLVMBuildAdd(builder, ab, LLVMBuildLShr(builder, ab, c08, ""), "");
ab = LLVMBuildAdd(builder, ab, c80, "");
#endif
ab = LLVMBuildLShr(builder, ab, c08, "");
return ab;
}
2009-08-01 17:27:05 +01:00
LLVMValueRef
lp_build_mul(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b)
2009-08-01 17:27:05 +01:00
{
const union lp_type type = bld->type;
if(a == bld->zero)
return bld->zero;
if(a == bld->one)
2009-08-01 17:27:05 +01:00
return b;
if(b == bld->zero)
return bld->zero;
if(b == bld->one)
2009-08-01 17:27:05 +01:00
return a;
if(a == bld->undef || b == bld->undef)
return bld->undef;
2009-08-01 17:27:05 +01:00
if(!type.floating && !type.fixed && type.norm) {
#if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)
if(type.width == 8 && type.length == 16) {
LLVMTypeRef i16x8 = LLVMVectorType(LLVMInt16Type(), 8);
LLVMTypeRef i8x16 = LLVMVectorType(LLVMInt8Type(), 16);
static LLVMValueRef ml = NULL;
static LLVMValueRef mh = NULL;
LLVMValueRef al, ah, bl, bh;
LLVMValueRef abl, abh;
LLVMValueRef ab;
if(!ml) ml = lp_build_unpack_shuffle(16, 0);
if(!mh) mh = lp_build_unpack_shuffle(16, 1);
/* PUNPCKLBW, PUNPCKHBW */
al = LLVMBuildShuffleVector(bld->builder, a, bld->zero, ml, "");
bl = LLVMBuildShuffleVector(bld->builder, b, bld->zero, ml, "");
ah = LLVMBuildShuffleVector(bld->builder, a, bld->zero, mh, "");
bh = LLVMBuildShuffleVector(bld->builder, b, bld->zero, mh, "");
/* NOP */
al = LLVMBuildBitCast(bld->builder, al, i16x8, "");
bl = LLVMBuildBitCast(bld->builder, bl, i16x8, "");
ah = LLVMBuildBitCast(bld->builder, ah, i16x8, "");
bh = LLVMBuildBitCast(bld->builder, bh, i16x8, "");
/* PMULLW, PSRLW, PADDW */
abl = lp_build_mul_u8n(bld->builder, al, bl);
abh = lp_build_mul_u8n(bld->builder, ah, bh);
/* PACKUSWB */
ab = lp_build_intrinsic_binary(bld->builder, "llvm.x86.sse2.packuswb.128" , i16x8, abl, abh);
/* NOP */
ab = LLVMBuildBitCast(bld->builder, ab, i8x16, "");
return ab;
}
#endif
/* FIXME */
assert(0);
}
if(LLVMIsConstant(a) && LLVMIsConstant(b))
return LLVMConstMul(a, b);
return LLVMBuildMul(bld->builder, a, b, "");
2009-08-01 17:27:05 +01:00
}
LLVMValueRef
lp_build_div(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b)
{
const union lp_type type = bld->type;
if(a == bld->zero)
return bld->zero;
if(a == bld->one)
return lp_build_rcp(bld, b);
if(b == bld->zero)
return bld->undef;
if(b == bld->one)
return a;
if(a == bld->undef || b == bld->undef)
return bld->undef;
if(LLVMIsConstant(a) && LLVMIsConstant(b))
return LLVMConstFDiv(a, b);
#if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)
if(type.width == 32 && type.length == 4)
return lp_build_mul(bld, a, lp_build_rcp(bld, b));
#endif
return LLVMBuildFDiv(bld->builder, a, b, "");
}
2009-08-01 17:27:05 +01:00
LLVMValueRef
lp_build_min(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b)
2009-08-01 17:27:05 +01:00
{
if(a == bld->undef || b == bld->undef)
return bld->undef;
if(a == b)
return a;
if(bld->type.norm) {
if(a == bld->zero || b == bld->zero)
return bld->zero;
if(a == bld->one)
return b;
if(b == bld->one)
return a;
}
return lp_build_min_simple(bld, a, b);
2009-08-01 17:27:05 +01:00
}
LLVMValueRef
lp_build_max(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b)
2009-08-01 17:27:05 +01:00
{
if(a == bld->undef || b == bld->undef)
return bld->undef;
if(a == b)
return a;
if(bld->type.norm) {
if(a == bld->one || b == bld->one)
return bld->one;
if(a == bld->zero)
return b;
if(b == bld->zero)
return a;
}
return lp_build_max_simple(bld, a, b);
2009-08-01 17:27:05 +01:00
}
LLVMValueRef
lp_build_abs(struct lp_build_context *bld,
LLVMValueRef a)
{
const union lp_type type = bld->type;
if(!type.sign)
return a;
/* XXX: is this really necessary? */
#if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)
if(!type.floating && type.width*type.length == 128) {
LLVMTypeRef vec_type = lp_build_vec_type(type);
if(type.width == 8)
return lp_build_intrinsic_unary(bld->builder, "llvm.x86.ssse3.pabs.b.128", vec_type, a);
if(type.width == 16)
return lp_build_intrinsic_unary(bld->builder, "llvm.x86.ssse3.pabs.w.128", vec_type, a);
if(type.width == 32)
return lp_build_intrinsic_unary(bld->builder, "llvm.x86.ssse3.pabs.d.128", vec_type, a);
}
#endif
return lp_build_max(bld, a, LLVMBuildNeg(bld->builder, a, ""));
}
LLVMValueRef
lp_build_sqrt(struct lp_build_context *bld,
LLVMValueRef a)
{
const union lp_type type = bld->type;
LLVMTypeRef vec_type = lp_build_vec_type(type);
const char *intrinsic;
/* TODO: optimize the constant case */
assert(type.floating);
switch(type.width) {
case 32:
intrinsic = "llvm.sqrt.f32";
break;
case 64:
intrinsic = "llvm.sqrt.f64";
break;
default:
assert(0);
return LLVMGetUndef(vec_type);
}
return lp_build_intrinsic_unary(bld->builder, intrinsic, vec_type, a);
}
LLVMValueRef
lp_build_rcp(struct lp_build_context *bld,
LLVMValueRef a)
{
const union lp_type type = bld->type;
if(a == bld->zero)
return bld->undef;
if(a == bld->one)
return bld->one;
if(a == bld->undef)
return bld->undef;
assert(type.floating);
if(LLVMIsConstant(a))
return LLVMConstFDiv(bld->one, a);
/* XXX: is this really necessary? */
#if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)
if(type.width == 32 && type.length == 4)
return lp_build_intrinsic_unary(bld->builder, "llvm.x86.sse.rcp.ps", lp_build_vec_type(type), a);
#endif
return LLVMBuildFDiv(bld->builder, bld->one, a, "");
}
LLVMValueRef
lp_build_rsqrt(struct lp_build_context *bld,
LLVMValueRef a)
{
const union lp_type type = bld->type;
assert(type.floating);
/* XXX: is this really necessary? */
#if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)
if(type.width == 32 && type.length == 4)
return lp_build_intrinsic_unary(bld->builder, "llvm.x86.sse.rsqrt.ps", lp_build_vec_type(type), a);
#endif
return lp_build_rcp(bld, lp_build_sqrt(bld, a));
}
LLVMValueRef
lp_build_cos(struct lp_build_context *bld,
LLVMValueRef a)
{
const union lp_type type = bld->type;
LLVMTypeRef vec_type = lp_build_vec_type(type);
const char *intrinsic;
/* TODO: optimize the constant case */
assert(type.floating);
switch(type.width) {
case 32:
intrinsic = "llvm.cos.f32";
break;
case 64:
intrinsic = "llvm.cos.f64";
break;
default:
assert(0);
return LLVMGetUndef(vec_type);
}
return lp_build_intrinsic_unary(bld->builder, intrinsic, vec_type, a);
}
LLVMValueRef
lp_build_sin(struct lp_build_context *bld,
LLVMValueRef a)
{
const union lp_type type = bld->type;
LLVMTypeRef vec_type = lp_build_vec_type(type);
const char *intrinsic;
/* TODO: optimize the constant case */
assert(type.floating);
switch(type.width) {
case 32:
intrinsic = "llvm.sin.f32";
break;
case 64:
intrinsic = "llvm.sin.f64";
break;
default:
assert(0);
return LLVMGetUndef(vec_type);
}
return lp_build_intrinsic_unary(bld->builder, intrinsic, vec_type, a);
}
LLVMValueRef
lp_build_pow(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b)
{
const union lp_type type = bld->type;
LLVMTypeRef vec_type = lp_build_vec_type(type);
const char *intrinsic;
/* TODO: optimize the constant case */
assert(type.floating);
switch(type.width) {
case 32:
intrinsic = "llvm.pow.f32";
break;
case 64:
intrinsic = "llvm.pow.f64";
break;
default:
assert(0);
return LLVMGetUndef(vec_type);
}
return lp_build_intrinsic_binary(bld->builder, intrinsic, vec_type, a, b);
}