mesa/src/gallium/docs/source/tgsi.rst

1784 lines
39 KiB
ReStructuredText
Raw Normal View History

TGSI
====
2010-01-04 11:52:43 +00:00
TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
for describing shaders. Since Gallium is inherently shaderful, shaders are
an important part of the API. TGSI is the only intermediate representation
used by all drivers.
Basics
------
All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
floating-point four-component vectors. An opcode may have up to one
destination register, known as *dst*, and between zero and three source
registers, called *src0* through *src2*, or simply *src* if there is only
one.
Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
components as integers. Other instructions permit using registers as
two-component vectors with double precision; see :ref:`Double Opcodes`.
When an instruction has a scalar result, the result is usually copied into
each of the components of *dst*. When this happens, the result is said to be
*replicated* to *dst*. :opcode:`RCP` is one such instruction.
Instruction Set
---------------
Core ISA
^^^^^^^^^^^^^^^^^^^^^^^^^
These opcodes are guaranteed to be available regardless of the driver being
used.
2010-02-03 00:20:12 +00:00
.. opcode:: ARL - Address Register Load
2009-12-22 03:12:55 +00:00
.. math::
2009-12-22 03:30:29 +00:00
dst.x = \lfloor src.x\rfloor
2009-12-22 03:12:55 +00:00
2009-12-22 03:30:29 +00:00
dst.y = \lfloor src.y\rfloor
2009-12-22 03:12:55 +00:00
2009-12-22 03:30:29 +00:00
dst.z = \lfloor src.z\rfloor
2009-12-22 03:12:55 +00:00
2009-12-22 03:30:29 +00:00
dst.w = \lfloor src.w\rfloor
2010-02-03 00:20:12 +00:00
.. opcode:: MOV - Move
2009-12-22 03:12:55 +00:00
.. math::
dst.x = src.x
2009-12-22 03:12:55 +00:00
dst.y = src.y
2009-12-22 03:12:55 +00:00
dst.z = src.z
2009-12-22 03:12:55 +00:00
dst.w = src.w
2010-02-03 00:20:12 +00:00
.. opcode:: LIT - Light Coefficients
2009-12-22 03:12:55 +00:00
.. math::
dst.x = 1
2009-12-22 03:12:55 +00:00
dst.y = max(src.x, 0)
2009-12-22 03:12:55 +00:00
dst.z = (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0
2009-12-22 03:12:55 +00:00
dst.w = 1
2010-02-03 00:20:12 +00:00
.. opcode:: RCP - Reciprocal
2009-12-22 03:12:55 +00:00
This instruction replicates its result.
2009-12-22 03:12:55 +00:00
.. math::
2009-12-22 03:12:55 +00:00
dst = \frac{1}{src.x}
2010-02-03 00:20:12 +00:00
.. opcode:: RSQ - Reciprocal Square Root
2009-12-22 03:12:55 +00:00
This instruction replicates its result.
.. math::
2009-12-22 03:12:55 +00:00
dst = \frac{1}{\sqrt{|src.x|}}
2010-02-03 00:20:12 +00:00
.. opcode:: EXP - Approximate Exponential Base 2
2009-12-22 03:12:55 +00:00
.. math::
2009-12-22 03:41:09 +00:00
dst.x = 2^{\lfloor src.x\rfloor}
2009-12-22 03:12:55 +00:00
2009-12-22 03:30:29 +00:00
dst.y = src.x - \lfloor src.x\rfloor
2009-12-22 03:12:55 +00:00
2009-12-22 03:41:09 +00:00
dst.z = 2^{src.x}
2009-12-22 03:12:55 +00:00
dst.w = 1
2010-02-03 00:20:12 +00:00
.. opcode:: LOG - Approximate Logarithm Base 2
2009-12-22 03:12:55 +00:00
.. math::
2009-12-22 03:57:56 +00:00
dst.x = \lfloor\log_2{|src.x|}\rfloor
2009-12-22 03:12:55 +00:00
2009-12-22 03:57:56 +00:00
dst.y = \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}}
2009-12-22 03:12:55 +00:00
2009-12-22 03:57:56 +00:00
dst.z = \log_2{|src.x|}
2009-12-22 03:12:55 +00:00
2009-12-22 03:57:56 +00:00
dst.w = 1
2010-02-03 00:20:12 +00:00
.. opcode:: MUL - Multiply
2009-12-22 03:12:55 +00:00
.. math::
2009-12-22 04:07:10 +00:00
dst.x = src0.x \times src1.x
2009-12-22 03:12:55 +00:00
2009-12-22 04:07:10 +00:00
dst.y = src0.y \times src1.y
2009-12-22 03:12:55 +00:00
2009-12-22 04:07:10 +00:00
dst.z = src0.z \times src1.z
2009-12-22 03:12:55 +00:00
2009-12-22 04:07:10 +00:00
dst.w = src0.w \times src1.w
2010-02-03 00:20:12 +00:00
.. opcode:: ADD - Add
2009-12-22 03:12:55 +00:00
.. math::
dst.x = src0.x + src1.x
2009-12-22 03:12:55 +00:00
dst.y = src0.y + src1.y
2009-12-22 03:12:55 +00:00
dst.z = src0.z + src1.z
2009-12-22 03:12:55 +00:00
dst.w = src0.w + src1.w
2010-02-03 00:20:12 +00:00
.. opcode:: DP3 - 3-component Dot Product
2009-12-22 03:12:55 +00:00
This instruction replicates its result.
2009-12-22 03:12:55 +00:00
.. math::
2009-12-22 03:12:55 +00:00
dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
2010-02-03 00:20:12 +00:00
.. opcode:: DP4 - 4-component Dot Product
2009-12-22 03:12:55 +00:00
This instruction replicates its result.
2009-12-22 03:12:55 +00:00
.. math::
2009-12-22 03:12:55 +00:00
dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
2010-02-03 00:20:12 +00:00
.. opcode:: DST - Distance Vector
2009-12-22 03:12:55 +00:00
.. math::
dst.x = 1
2009-12-22 03:12:55 +00:00
2009-12-22 04:07:10 +00:00
dst.y = src0.y \times src1.y
2009-12-22 03:12:55 +00:00
dst.z = src0.z
2009-12-22 03:12:55 +00:00
dst.w = src1.w
2010-02-03 00:20:12 +00:00
.. opcode:: MIN - Minimum
2009-12-22 03:12:55 +00:00
.. math::
dst.x = min(src0.x, src1.x)
2009-12-22 03:12:55 +00:00
dst.y = min(src0.y, src1.y)
2009-12-22 03:12:55 +00:00
dst.z = min(src0.z, src1.z)
2009-12-22 03:12:55 +00:00
dst.w = min(src0.w, src1.w)
2010-02-03 00:20:12 +00:00
.. opcode:: MAX - Maximum
2009-12-22 03:12:55 +00:00
.. math::
dst.x = max(src0.x, src1.x)
2009-12-22 03:12:55 +00:00
dst.y = max(src0.y, src1.y)
2009-12-22 03:12:55 +00:00
dst.z = max(src0.z, src1.z)
2009-12-22 03:12:55 +00:00
dst.w = max(src0.w, src1.w)
2010-02-03 00:20:12 +00:00
.. opcode:: SLT - Set On Less Than
2009-12-22 03:12:55 +00:00
.. math::
dst.x = (src0.x < src1.x) ? 1 : 0
2009-12-22 03:12:55 +00:00
dst.y = (src0.y < src1.y) ? 1 : 0
2009-12-22 03:12:55 +00:00
dst.z = (src0.z < src1.z) ? 1 : 0
2009-12-22 03:12:55 +00:00
dst.w = (src0.w < src1.w) ? 1 : 0
2010-02-03 00:20:12 +00:00
.. opcode:: SGE - Set On Greater Equal Than
2009-12-22 03:12:55 +00:00
.. math::
dst.x = (src0.x >= src1.x) ? 1 : 0
2009-12-22 03:12:55 +00:00
dst.y = (src0.y >= src1.y) ? 1 : 0
2009-12-22 03:12:55 +00:00
dst.z = (src0.z >= src1.z) ? 1 : 0
2009-12-22 03:12:55 +00:00
dst.w = (src0.w >= src1.w) ? 1 : 0
2010-02-03 00:20:12 +00:00
.. opcode:: MAD - Multiply And Add
2009-12-22 03:12:55 +00:00
.. math::
2009-12-22 04:07:10 +00:00
dst.x = src0.x \times src1.x + src2.x
2009-12-22 03:12:55 +00:00
2009-12-22 04:07:10 +00:00
dst.y = src0.y \times src1.y + src2.y
2009-12-22 03:12:55 +00:00
2009-12-22 04:07:10 +00:00
dst.z = src0.z \times src1.z + src2.z
2009-12-22 03:12:55 +00:00
2009-12-22 04:07:10 +00:00
dst.w = src0.w \times src1.w + src2.w
2010-02-03 00:20:12 +00:00
.. opcode:: SUB - Subtract
2009-12-22 03:12:55 +00:00
.. math::
dst.x = src0.x - src1.x
2009-12-22 03:12:55 +00:00
dst.y = src0.y - src1.y
2009-12-22 03:12:55 +00:00
dst.z = src0.z - src1.z
2009-12-22 03:12:55 +00:00
dst.w = src0.w - src1.w
2010-02-03 00:20:12 +00:00
.. opcode:: LRP - Linear Interpolate
2009-12-22 03:12:55 +00:00
.. math::
dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
2009-12-22 03:12:55 +00:00
dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
2009-12-22 03:12:55 +00:00
dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
2009-12-22 03:12:55 +00:00
dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
2010-02-03 00:20:12 +00:00
.. opcode:: CND - Condition
2009-12-22 03:12:55 +00:00
.. math::
dst.x = (src2.x > 0.5) ? src0.x : src1.x
2009-12-22 03:12:55 +00:00
dst.y = (src2.y > 0.5) ? src0.y : src1.y
2009-12-22 03:12:55 +00:00
dst.z = (src2.z > 0.5) ? src0.z : src1.z
2009-12-22 03:12:55 +00:00
dst.w = (src2.w > 0.5) ? src0.w : src1.w
2010-02-03 00:20:12 +00:00
.. opcode:: DP2A - 2-component Dot Product And Add
2009-12-22 03:12:55 +00:00
.. math::
2009-12-22 04:07:10 +00:00
dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
2009-12-22 03:12:55 +00:00
2009-12-22 04:07:10 +00:00
dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
2009-12-22 03:12:55 +00:00
2009-12-22 04:07:10 +00:00
dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
2009-12-22 03:12:55 +00:00
2009-12-22 04:07:10 +00:00
dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
2010-06-01 16:25:05 +01:00
.. opcode:: FRC - Fraction
2009-12-22 03:12:55 +00:00
.. math::
2009-12-22 03:30:29 +00:00
dst.x = src.x - \lfloor src.x\rfloor
2009-12-22 03:12:55 +00:00
2009-12-22 03:30:29 +00:00
dst.y = src.y - \lfloor src.y\rfloor
2009-12-22 03:12:55 +00:00
2009-12-22 03:30:29 +00:00
dst.z = src.z - \lfloor src.z\rfloor
2009-12-22 03:12:55 +00:00
2009-12-22 03:30:29 +00:00
dst.w = src.w - \lfloor src.w\rfloor
2010-02-03 00:20:12 +00:00
.. opcode:: CLAMP - Clamp
2009-12-22 03:12:55 +00:00
.. math::
dst.x = clamp(src0.x, src1.x, src2.x)
dst.y = clamp(src0.y, src1.y, src2.y)
dst.z = clamp(src0.z, src1.z, src2.z)
dst.w = clamp(src0.w, src1.w, src2.w)
2010-02-03 00:20:12 +00:00
.. opcode:: FLR - Floor
2009-12-22 03:30:29 +00:00
This is identical to :opcode:`ARL`.
2009-12-22 03:12:55 +00:00
.. math::
2009-12-22 03:30:29 +00:00
dst.x = \lfloor src.x\rfloor
dst.y = \lfloor src.y\rfloor
dst.z = \lfloor src.z\rfloor
dst.w = \lfloor src.w\rfloor
2010-02-03 00:20:12 +00:00
.. opcode:: ROUND - Round
2009-12-22 03:12:55 +00:00
.. math::
dst.x = round(src.x)
dst.y = round(src.y)
dst.z = round(src.z)
dst.w = round(src.w)
2010-02-03 00:20:12 +00:00
.. opcode:: EX2 - Exponential Base 2
This instruction replicates its result.
2009-12-22 03:41:09 +00:00
.. math::
2009-12-22 03:41:09 +00:00
dst = 2^{src.x}
2010-02-03 00:20:12 +00:00
.. opcode:: LG2 - Logarithm Base 2
This instruction replicates its result.
2009-12-22 03:57:56 +00:00
.. math::
2009-12-22 03:57:56 +00:00
dst = \log_2{src.x}
2010-02-03 00:20:12 +00:00
.. opcode:: POW - Power
This instruction replicates its result.
2009-12-22 03:41:09 +00:00
.. math::
2009-12-22 03:41:09 +00:00
dst = src0.x^{src1.x}
2010-02-03 00:20:12 +00:00
.. opcode:: XPD - Cross Product
2009-12-22 03:12:55 +00:00
.. math::
2009-12-22 04:07:10 +00:00
dst.x = src0.y \times src1.z - src1.y \times src0.z
2009-12-22 04:07:10 +00:00
dst.y = src0.z \times src1.x - src1.z \times src0.x
2009-12-22 04:07:10 +00:00
dst.z = src0.x \times src1.y - src1.x \times src0.y
dst.w = 1
2010-02-03 00:20:12 +00:00
.. opcode:: ABS - Absolute
2009-12-22 03:12:55 +00:00
.. math::
2009-12-22 03:57:56 +00:00
dst.x = |src.x|
dst.y = |src.y|
dst.z = |src.z|
dst.w = |src.w|
2010-02-03 00:20:12 +00:00
.. opcode:: RCC - Reciprocal Clamped
This instruction replicates its result.
XXX cleanup on aisle three
2009-12-22 03:12:55 +00:00
.. math::
dst = (1 / src.x) > 0 ? clamp(1 / src.x, 5.42101e-020, 1.884467e+019) : clamp(1 / src.x, -1.884467e+019, -5.42101e-020)
2010-02-03 00:20:12 +00:00
.. opcode:: DPH - Homogeneous Dot Product
This instruction replicates its result.
.. math::
dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
2010-02-03 00:20:12 +00:00
.. opcode:: COS - Cosine
This instruction replicates its result.
2009-12-22 03:30:29 +00:00
.. math::
2009-12-22 03:30:29 +00:00
dst = \cos{src.x}
2010-02-03 00:20:12 +00:00
.. opcode:: DDX - Derivative Relative To X
2009-12-22 03:12:55 +00:00
.. math::
dst.x = partialx(src.x)
dst.y = partialx(src.y)
dst.z = partialx(src.z)
dst.w = partialx(src.w)
2010-02-03 00:20:12 +00:00
.. opcode:: DDY - Derivative Relative To Y
2009-12-22 03:12:55 +00:00
.. math::
dst.x = partialy(src.x)
dst.y = partialy(src.y)
dst.z = partialy(src.z)
dst.w = partialy(src.w)
2010-02-03 00:20:12 +00:00
.. opcode:: KILP - Predicated Discard
2009-12-22 03:12:55 +00:00
discard
2010-02-03 00:20:12 +00:00
.. opcode:: PK2H - Pack Two 16-bit Floats
TBD
2010-02-03 00:20:12 +00:00
.. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
TBD
2010-02-03 00:20:12 +00:00
.. opcode:: PK4B - Pack Four Signed 8-bit Scalars
TBD
2010-02-03 00:20:12 +00:00
.. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
TBD
2010-02-03 00:20:12 +00:00
.. opcode:: RFL - Reflection Vector
2009-12-22 03:12:55 +00:00
.. math::
dst.x = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.x - src1.x
dst.y = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.y - src1.y
dst.z = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.z - src1.z
dst.w = 1
.. note::
Considered for removal.
2010-02-03 00:20:12 +00:00
.. opcode:: SEQ - Set On Equal
2009-12-22 03:12:55 +00:00
.. math::
dst.x = (src0.x == src1.x) ? 1 : 0
dst.y = (src0.y == src1.y) ? 1 : 0
dst.z = (src0.z == src1.z) ? 1 : 0
dst.w = (src0.w == src1.w) ? 1 : 0
2010-02-03 00:20:12 +00:00
.. opcode:: SFL - Set On False
This instruction replicates its result.
2009-12-22 03:12:55 +00:00
.. math::
dst = 0
.. note::
Considered for removal.
2010-02-03 00:20:12 +00:00
.. opcode:: SGT - Set On Greater Than
2009-12-22 03:12:55 +00:00
.. math::
dst.x = (src0.x > src1.x) ? 1 : 0
dst.y = (src0.y > src1.y) ? 1 : 0
dst.z = (src0.z > src1.z) ? 1 : 0
dst.w = (src0.w > src1.w) ? 1 : 0
2010-02-03 00:20:12 +00:00
.. opcode:: SIN - Sine
This instruction replicates its result.
2009-12-22 03:30:29 +00:00
.. math::
2009-12-22 03:30:29 +00:00
dst = \sin{src.x}
2010-02-03 00:20:12 +00:00
.. opcode:: SLE - Set On Less Equal Than
2009-12-22 03:12:55 +00:00
.. math::
dst.x = (src0.x <= src1.x) ? 1 : 0
dst.y = (src0.y <= src1.y) ? 1 : 0
dst.z = (src0.z <= src1.z) ? 1 : 0
dst.w = (src0.w <= src1.w) ? 1 : 0
2010-02-03 00:20:12 +00:00
.. opcode:: SNE - Set On Not Equal
2009-12-22 03:12:55 +00:00
.. math::
dst.x = (src0.x != src1.x) ? 1 : 0
dst.y = (src0.y != src1.y) ? 1 : 0
dst.z = (src0.z != src1.z) ? 1 : 0
dst.w = (src0.w != src1.w) ? 1 : 0
2010-02-03 00:20:12 +00:00
.. opcode:: STR - Set On True
This instruction replicates its result.
.. math::
dst = 1
2010-02-03 00:20:12 +00:00
.. opcode:: TEX - Texture Lookup
2010-12-14 19:45:36 +00:00
.. math::
coord = src0
bias = 0.0
dst = texture_sample(unit, coord, bias)
for array textures src0.y contains the slice for 1D,
and src0.z contain the slice for 2D.
for shadow textures with no arrays, src0.z contains
the reference value.
for shadow textures with arrays, src0.z contains
the reference value for 1D arrays, and src0.w contains
the reference value for 2D arrays.
There is no way to pass a bias in the .w value for
shadow arrays, and GLSL doesn't allow this.
GLSL does allow cube shadows maps to take a bias value,
and we have to determine how this will look in TGSI.
2010-02-03 00:20:12 +00:00
.. opcode:: TXD - Texture Lookup with Derivatives
2010-12-14 19:45:36 +00:00
.. math::
coord = src0
ddx = src1
ddy = src2
bias = 0.0
dst = texture_sample_deriv(unit, coord, bias, ddx, ddy)
2010-02-03 00:20:12 +00:00
.. opcode:: TXP - Projective Texture Lookup
2010-12-14 19:45:36 +00:00
.. math::
coord.x = src0.x / src.w
coord.y = src0.y / src.w
coord.z = src0.z / src.w
coord.w = src0.w
bias = 0.0
dst = texture_sample(unit, coord, bias)
2010-02-03 00:20:12 +00:00
.. opcode:: UP2H - Unpack Two 16-Bit Floats
TBD
.. note::
Considered for removal.
2010-02-03 00:20:12 +00:00
.. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
TBD
.. note::
Considered for removal.
2010-02-03 00:20:12 +00:00
.. opcode:: UP4B - Unpack Four Signed 8-Bit Values
TBD
.. note::
Considered for removal.
2010-02-03 00:20:12 +00:00
.. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
TBD
.. note::
Considered for removal.
2010-02-03 00:20:12 +00:00
.. opcode:: X2D - 2D Coordinate Transformation
2009-12-22 03:12:55 +00:00
.. math::
2009-12-22 04:07:10 +00:00
dst.x = src0.x + src1.x \times src2.x + src1.y \times src2.y
2009-12-22 04:07:10 +00:00
dst.y = src0.y + src1.x \times src2.z + src1.y \times src2.w
2009-12-22 04:07:10 +00:00
dst.z = src0.x + src1.x \times src2.x + src1.y \times src2.y
2009-12-22 04:07:10 +00:00
dst.w = src0.y + src1.x \times src2.z + src1.y \times src2.w
.. note::
Considered for removal.
2010-02-03 00:20:12 +00:00
.. opcode:: ARA - Address Register Add
TBD
.. note::
Considered for removal.
2010-02-03 00:20:12 +00:00
.. opcode:: ARR - Address Register Load With Round
2009-12-22 03:12:55 +00:00
.. math::
dst.x = round(src.x)
dst.y = round(src.y)
dst.z = round(src.z)
dst.w = round(src.w)
2010-02-03 00:20:12 +00:00
.. opcode:: BRA - Branch
pc = target
.. note::
Considered for removal.
2010-02-03 00:20:12 +00:00
.. opcode:: CAL - Subroutine Call
push(pc)
pc = target
2010-02-03 00:20:12 +00:00
.. opcode:: RET - Subroutine Call Return
pc = pop()
2010-02-03 00:20:12 +00:00
.. opcode:: SSG - Set Sign
2009-12-22 03:12:55 +00:00
.. math::
dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
2010-02-03 00:20:12 +00:00
.. opcode:: CMP - Compare
2009-12-22 03:12:55 +00:00
.. math::
dst.x = (src0.x < 0) ? src1.x : src2.x
dst.y = (src0.y < 0) ? src1.y : src2.y
dst.z = (src0.z < 0) ? src1.z : src2.z
dst.w = (src0.w < 0) ? src1.w : src2.w
2010-02-03 00:20:12 +00:00
.. opcode:: KIL - Conditional Discard
2009-12-22 03:12:55 +00:00
.. math::
if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
discard
endif
2010-02-03 00:20:12 +00:00
.. opcode:: SCS - Sine Cosine
2009-12-22 03:12:55 +00:00
.. math::
2009-12-22 03:30:29 +00:00
dst.x = \cos{src.x}
dst.y = \sin{src.x}
dst.z = 0
2009-12-22 03:30:29 +00:00
dst.w = 1
2010-02-03 00:20:12 +00:00
.. opcode:: TXB - Texture Lookup With Bias
2010-12-14 19:45:36 +00:00
.. math::
coord.x = src.x
coord.y = src.y
coord.z = src.z
coord.w = 1.0
bias = src.z
dst = texture_sample(unit, coord, bias)
2010-02-03 00:20:12 +00:00
.. opcode:: NRM - 3-component Vector Normalise
2009-12-22 03:12:55 +00:00
.. math::
2009-12-22 04:07:10 +00:00
dst.x = src.x / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
2009-12-22 04:07:10 +00:00
dst.y = src.y / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
2009-12-22 04:07:10 +00:00
dst.z = src.z / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
dst.w = 1
2010-02-03 00:20:12 +00:00
.. opcode:: DIV - Divide
2009-12-22 03:12:55 +00:00
.. math::
dst.x = \frac{src0.x}{src1.x}
dst.y = \frac{src0.y}{src1.y}
dst.z = \frac{src0.z}{src1.z}
dst.w = \frac{src0.w}{src1.w}
2010-02-03 00:20:12 +00:00
.. opcode:: DP2 - 2-component Dot Product
This instruction replicates its result.
.. math::
dst = src0.x \times src1.x + src0.y \times src1.y
2010-12-14 19:45:36 +00:00
.. opcode:: TXL - Texture Lookup With explicit LOD
2010-12-14 19:45:36 +00:00
.. math::
coord.x = src0.x
coord.y = src0.y
coord.z = src0.z
coord.w = 1.0
lod = src0.w
dst = texture_sample(unit, coord, lod)
2010-02-03 00:20:12 +00:00
.. opcode:: BRK - Break
TBD
2010-02-03 00:20:12 +00:00
.. opcode:: IF - If
TBD
2010-02-03 00:20:12 +00:00
.. opcode:: ELSE - Else
TBD
2010-02-03 00:20:12 +00:00
.. opcode:: ENDIF - End If
TBD
2010-02-03 00:20:12 +00:00
.. opcode:: PUSHA - Push Address Register On Stack
push(src.x)
push(src.y)
push(src.z)
push(src.w)
.. note::
Considered for cleanup.
.. note::
Considered for removal.
2010-02-03 00:20:12 +00:00
.. opcode:: POPA - Pop Address Register From Stack
dst.w = pop()
dst.z = pop()
dst.y = pop()
dst.x = pop()
.. note::
Considered for cleanup.
.. note::
Considered for removal.
Compute ISA
^^^^^^^^^^^^^^^^^^^^^^^^
These opcodes are primarily provided for special-use computational shaders.
Support for these opcodes indicated by a special pipe capability bit (TBD).
XXX so let's discuss it, yeah?
2010-02-03 00:20:12 +00:00
.. opcode:: CEIL - Ceiling
2009-12-22 03:12:55 +00:00
.. math::
2009-12-22 03:57:56 +00:00
dst.x = \lceil src.x\rceil
dst.y = \lceil src.y\rceil
dst.z = \lceil src.z\rceil
dst.w = \lceil src.w\rceil
2010-02-03 00:20:12 +00:00
.. opcode:: I2F - Integer To Float
2009-12-22 03:12:55 +00:00
.. math::
dst.x = (float) src.x
dst.y = (float) src.y
dst.z = (float) src.z
dst.w = (float) src.w
2010-02-03 00:20:12 +00:00
.. opcode:: NOT - Bitwise Not
2009-12-22 03:12:55 +00:00
.. math::
dst.x = ~src.x
dst.y = ~src.y
dst.z = ~src.z
dst.w = ~src.w
2010-02-03 00:20:12 +00:00
.. opcode:: TRUNC - Truncate
2009-12-22 03:12:55 +00:00
.. math::
dst.x = trunc(src.x)
dst.y = trunc(src.y)
dst.z = trunc(src.z)
dst.w = trunc(src.w)
2010-02-03 00:20:12 +00:00
.. opcode:: SHL - Shift Left
2009-12-22 03:12:55 +00:00
.. math::
dst.x = src0.x << src1.x
dst.y = src0.y << src1.x
dst.z = src0.z << src1.x
dst.w = src0.w << src1.x
2010-02-03 00:20:12 +00:00
.. opcode:: SHR - Shift Right
2009-12-22 03:12:55 +00:00
.. math::
dst.x = src0.x >> src1.x
dst.y = src0.y >> src1.x
dst.z = src0.z >> src1.x
dst.w = src0.w >> src1.x
2010-02-03 00:20:12 +00:00
.. opcode:: AND - Bitwise And
2009-12-22 03:12:55 +00:00
.. math::
dst.x = src0.x & src1.x
dst.y = src0.y & src1.y
dst.z = src0.z & src1.z
dst.w = src0.w & src1.w
2010-02-03 00:20:12 +00:00
.. opcode:: OR - Bitwise Or
2009-12-22 03:12:55 +00:00
.. math::
dst.x = src0.x | src1.x
dst.y = src0.y | src1.y
dst.z = src0.z | src1.z
dst.w = src0.w | src1.w
2010-02-03 00:20:12 +00:00
.. opcode:: MOD - Modulus
2009-12-22 03:12:55 +00:00
.. math::
dst.x = src0.x \bmod src1.x
dst.y = src0.y \bmod src1.y
dst.z = src0.z \bmod src1.z
dst.w = src0.w \bmod src1.w
2010-02-03 00:20:12 +00:00
.. opcode:: XOR - Bitwise Xor
2009-12-22 03:12:55 +00:00
.. math::
2010-01-19 01:37:25 +00:00
dst.x = src0.x \oplus src1.x
2010-01-19 01:37:25 +00:00
dst.y = src0.y \oplus src1.y
2010-01-19 01:37:25 +00:00
dst.z = src0.z \oplus src1.z
2010-01-19 01:37:25 +00:00
dst.w = src0.w \oplus src1.w
.. opcode:: UCMP - Integer Conditional Move
.. math::
dst.x = src0.x ? src1.x : src2.x
dst.y = src0.y ? src1.y : src2.y
dst.z = src0.z ? src1.z : src2.z
dst.w = src0.w ? src1.w : src2.w
.. opcode:: UARL - Integer Address Register Load
Moves the contents of the source register, assumed to be an integer, into the
destination register, which is assumed to be an address (ADDR) register.
2010-02-03 00:20:12 +00:00
.. opcode:: SAD - Sum Of Absolute Differences
2009-12-22 03:12:55 +00:00
.. math::
2009-12-22 03:57:56 +00:00
dst.x = |src0.x - src1.x| + src2.x
dst.y = |src0.y - src1.y| + src2.y
dst.z = |src0.z - src1.z| + src2.z
dst.w = |src0.w - src1.w| + src2.w
.. opcode:: TXF - Texel Fetch (as per NV_gpu_shader4), extract a single texel
from a specified texture image. The source sampler may
not be a CUBE or SHADOW.
src 0 is a four-component signed integer vector used to
identify the single texel accessed. 3 components + level.
src 1 is a 3 component constant signed integer vector,
with each component only have a range of
-8..+8 (hw only seems to deal with this range, interface
allows for up to unsigned int).
TXF(uint_vec coord, int_vec offset).
.. opcode:: TXQ - Texture Size Query (as per NV_gpu_program4)
retrieve the dimensions of the texture
depending on the target. For 1D (width), 2D/RECT/CUBE
(width, height), 3D (width, height, depth),
1D array (width, layers), 2D array (width, height, layers)
.. math::
lod = src0
dst.x = texture_width(unit, lod)
dst.y = texture_height(unit, lod)
dst.z = texture_depth(unit, lod)
2010-02-03 00:20:12 +00:00
.. opcode:: CONT - Continue
TBD
.. note::
Support for CONT is determined by a special capability bit,
``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
Geometry ISA
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
These opcodes are only supported in geometry shaders; they have no meaning
in any other type of shader.
2010-02-03 00:20:12 +00:00
.. opcode:: EMIT - Emit
TBD
2010-02-03 00:20:12 +00:00
.. opcode:: ENDPRIM - End Primitive
TBD
GLSL ISA
^^^^^^^^^^
These opcodes are part of :term:`GLSL`'s opcode set. Support for these
opcodes is determined by a special capability bit, ``GLSL``.
2010-02-03 00:20:12 +00:00
.. opcode:: BGNLOOP - Begin a Loop
TBD
2010-02-03 00:20:12 +00:00
.. opcode:: BGNSUB - Begin Subroutine
TBD
2010-02-03 00:20:12 +00:00
.. opcode:: ENDLOOP - End a Loop
TBD
2010-02-03 00:20:12 +00:00
.. opcode:: ENDSUB - End Subroutine
TBD
2010-02-03 00:20:12 +00:00
.. opcode:: NOP - No Operation
2010-01-04 12:23:41 +00:00
Do nothing.
2010-02-03 00:20:12 +00:00
.. opcode:: NRM4 - 4-component Vector Normalise
This instruction replicates its result.
.. math::
2009-12-22 03:12:55 +00:00
dst = \frac{src.x}{src.x \times src.x + src.y \times src.y + src.z \times src.z + src.w \times src.w}
ps_2_x
^^^^^^^^^^^^
XXX wait what
2010-02-03 00:20:12 +00:00
.. opcode:: CALLNZ - Subroutine Call If Not Zero
TBD
2010-02-03 00:20:12 +00:00
.. opcode:: IFC - If
TBD
2010-02-03 00:20:12 +00:00
.. opcode:: BREAKC - Break Conditional
TBD
.. _doubleopcodes:
Double ISA
^^^^^^^^^^^^^^^
The double-precision opcodes reinterpret four-component vectors into
two-component vectors with doubled precision in each component.
Support for these opcodes is XXX undecided. :T
.. opcode:: DADD - Add
.. math::
dst.xy = src0.xy + src1.xy
dst.zw = src0.zw + src1.zw
.. opcode:: DDIV - Divide
.. math::
dst.xy = src0.xy / src1.xy
dst.zw = src0.zw / src1.zw
.. opcode:: DSEQ - Set on Equal
.. math::
dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
.. opcode:: DSLT - Set on Less than
.. math::
dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
.. opcode:: DFRAC - Fraction
.. math::
dst.xy = src.xy - \lfloor src.xy\rfloor
dst.zw = src.zw - \lfloor src.zw\rfloor
.. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
2010-06-17 02:45:50 +01:00
Like the ``frexp()`` routine in many math libraries, this opcode stores the
exponent of its source to ``dst0``, and the significand to ``dst1``, such that
:math:`dst1 \times 2^{dst0} = src` .
.. math::
2010-06-17 02:45:50 +01:00
dst0.xy = exp(src.xy)
dst1.xy = frac(src.xy)
dst0.zw = exp(src.zw)
dst1.zw = frac(src.zw)
2010-06-17 02:45:50 +01:00
.. opcode:: DLDEXP - Multiply Number by Integral Power of 2
2010-06-17 02:45:50 +01:00
This opcode is the inverse of :opcode:`DFRACEXP`.
.. math::
2010-06-17 02:45:50 +01:00
dst.xy = src0.xy \times 2^{src1.xy}
2010-06-17 02:45:50 +01:00
dst.zw = src0.zw \times 2^{src1.zw}
.. opcode:: DMIN - Minimum
.. math::
dst.xy = min(src0.xy, src1.xy)
dst.zw = min(src0.zw, src1.zw)
.. opcode:: DMAX - Maximum
.. math::
dst.xy = max(src0.xy, src1.xy)
dst.zw = max(src0.zw, src1.zw)
.. opcode:: DMUL - Multiply
.. math::
dst.xy = src0.xy \times src1.xy
dst.zw = src0.zw \times src1.zw
.. opcode:: DMAD - Multiply And Add
.. math::
dst.xy = src0.xy \times src1.xy + src2.xy
dst.zw = src0.zw \times src1.zw + src2.zw
.. opcode:: DRCP - Reciprocal
.. math::
dst.xy = \frac{1}{src.xy}
dst.zw = \frac{1}{src.zw}
.. opcode:: DSQRT - Square Root
.. math::
dst.xy = \sqrt{src.xy}
dst.zw = \sqrt{src.zw}
.. _resourceopcodes:
Resource Access Opcodes
^^^^^^^^^^^^^^^^^^^^^^^^
Those opcodes follow very closely semantics of the respective Direct3D
instructions. If in doubt double check Direct3D documentation.
.. opcode:: LOAD - Simplified alternative to the "SAMPLE" instruction.
Using the provided integer address, LOAD fetches data
from the specified buffer/texture without any filtering.
The source data may come from any resource type other
than CUBE.
LOAD dst, address, resource
e.g.
LOAD TEMP[0], TEMP[1], RES[0]
The 'address' is specified as unsigned integers. If the
'address' is out of range [0...(# texels - 1)] the
result of the fetch is always 0 in all components.
As such the instruction doesn't honor address wrap
modes, in cases where that behavior is desirable
'sample' instruction should be used.
address.w always provides an unsigned integer mipmap
level. If the value is out of the range then the
instruction always returns 0 in all components.
address.yz are ignored for buffers and 1d textures.
address.z is ignored for 1d texture arrays and 2d
textures.
For 1D texture arrays address.y provides the array
index (also as unsigned integer). If the value is
out of the range of available array indices
[0... (array size - 1)] then the opcode always returns
0 in all components.
For 2D texture arrays address.z provides the array
index, otherwise it exhibits the same behavior as in
the case for 1D texture arrays.
The exeact semantics of the source address are presented
in the table below:
resource type X Y Z W
------------- ------------------------
PIPE_BUFFER x ignored
PIPE_TEXTURE_1D x mpl
PIPE_TEXTURE_2D x y mpl
PIPE_TEXTURE_3D x y z mpl
PIPE_TEXTURE_RECT x y mpl
PIPE_TEXTURE_CUBE not allowed as source
PIPE_TEXTURE_1D_ARRAY x idx mpl
PIPE_TEXTURE_2D_ARRAY x y idx mpl
Where 'mpl' is a mipmap level and 'idx' is the
array index.
.. opcode:: LOAD_MS - Just like LOAD but allows fetch data from
multi-sampled surfaces.
.. opcode:: SAMPLE - Using provided address, sample data from the
specified texture using the filtering mode identified
by the gven sampler. The source data may come from
any resource type other than buffers.
SAMPLE dst, address, resource, sampler
e.g.
SAMPLE TEMP[0], TEMP[1], RES[0], SAMP[0]
.. opcode:: SAMPLE_B - Just like the SAMPLE instruction with the
exception that an additiona bias is applied to the
level of detail computed as part of the instruction
execution.
SAMPLE_B dst, address, resource, sampler, lod_bias
e.g.
SAMPLE_B TEMP[0], TEMP[1], RES[0], SAMP[0], TEMP[2].x
.. opcode:: SAMPLE_C - Similar to the SAMPLE instruction but it
performs a comparison filter. The operands to SAMPLE_C
are identical to SAMPLE, except that tere is an additional
float32 operand, reference value, which must be a register
with single-component, or a scalar literal.
SAMPLE_C makes the hardware use the current samplers
compare_func (in pipe_sampler_state) to compare
reference value against the red component value for the
surce resource at each texel that the currently configured
texture filter covers based on the provided coordinates.
SAMPLE_C dst, address, resource.r, sampler, ref_value
e.g.
SAMPLE_C TEMP[0], TEMP[1], RES[0].r, SAMP[0], TEMP[2].x
.. opcode:: SAMPLE_C_LZ - Same as SAMPLE_C, but LOD is 0 and derivatives
are ignored. The LZ stands for level-zero.
SAMPLE_C_LZ dst, address, resource.r, sampler, ref_value
e.g.
SAMPLE_C_LZ TEMP[0], TEMP[1], RES[0].r, SAMP[0], TEMP[2].x
.. opcode:: SAMPLE_D - SAMPLE_D is identical to the SAMPLE opcode except
that the derivatives for the source address in the x
direction and the y direction are provided by extra
parameters.
SAMPLE_D dst, address, resource, sampler, der_x, der_y
e.g.
SAMPLE_D TEMP[0], TEMP[1], RES[0], SAMP[0], TEMP[2], TEMP[3]
.. opcode:: SAMPLE_L - SAMPLE_L is identical to the SAMPLE opcode except
that the LOD is provided directly as a scalar value,
representing no anisotropy. Source addresses A channel
is used as the LOD.
SAMPLE_L dst, address, resource, sampler
e.g.
SAMPLE_L TEMP[0], TEMP[1], RES[0], SAMP[0]
.. opcode:: GATHER4 - Gathers the four texels to be used in a bi-linear
filtering operation and packs them into a single register.
Only woth with 2D, 2D array, cubemaps, and cubemaps arrays.
For 2D textures, only the addressing modes of the sampler and
the top level of any mip pyramid are used. Set W to zero.
It behaves like the SAMPLE instruction, but a filtered
sample is not generated. The four samples that contribute
to filtering are places into xyzw in cunter-clockwise order,
starting with the (u,v) texture coordinate delta at the
following locations (-, +), (+, +), (+, -), (-, -), where
the magnitude of the deltas are half a texel.
.. opcode:: RESINFO - query the dimensions of a given input buffer.
dst receives width, height, depth or array size and
number of mipmap levels. The dst can have a writemask
which will specify what info is the caller interested
in.
RESINFO dst, src_mip_level, resource
e.g.
RESINFO TEMP[0], TEMP[1].x, RES[0]
src_mip_level is an unsigned integer scalar. If it's
out of range then returns 0 for width, height and
depth/array size but the total number of mipmap is
still returned correctly for the given resource.
The returned width, height and depth values are for
the mipmap level selected by the src_mip_level and
are in the number of texels.
For 1d texture array width is in dst.x, array size
is in dst.y and dst.zw are always 0.
.. opcode:: SAMPLE_POS - query the position of a given sample.
dst receives float4 (x, y, 0, 0) indicated where the
sample is located. If the resource is not a multi-sample
resource and not a render target, the result is 0.
.. opcode:: SAMPLE_INFO - dst receives number of samples in x.
If the resource is not a multi-sample resource and
not a render target, the result is 0.
Explanation of symbols used
------------------------------
Functions
^^^^^^^^^^^^^^
2009-12-22 03:57:56 +00:00
:math:`|x|` Absolute value of `x`.
2009-12-22 03:57:56 +00:00
:math:`\lceil x \rceil` Ceiling of `x`.
clamp(x,y,z) Clamp x between y and z.
(x < y) ? y : (x > z) ? z : x
2009-12-22 03:41:09 +00:00
:math:`\lfloor x\rfloor` Floor of `x`.
2009-12-22 03:57:56 +00:00
:math:`\log_2{x}` Logarithm of `x`, base 2.
max(x,y) Maximum of x and y.
(x > y) ? x : y
min(x,y) Minimum of x and y.
(x < y) ? x : y
partialx(x) Derivative of x relative to fragment's X.
partialy(x) Derivative of x relative to fragment's Y.
pop() Pop from stack.
2009-12-22 03:41:09 +00:00
:math:`x^y` `x` to the power `y`.
push(x) Push x on stack.
round(x) Round x.
2010-01-04 12:21:32 +00:00
trunc(x) Truncate x, i.e. drop the fraction bits.
Keywords
^^^^^^^^^^^^^
discard Discard fragment.
pc Program counter.
target Label of target instruction.
Other tokens
---------------
2010-02-03 14:45:32 +00:00
Declaration
^^^^^^^^^^^
Declares a register that is will be referenced as an operand in Instruction
tokens.
File field contains register file that is being declared and is one
of TGSI_FILE.
UsageMask field specifies which of the register components can be accessed
and is one of TGSI_WRITEMASK.
Interpolate field is only valid for fragment shader INPUT register files.
It specifes the way input is being interpolated by the rasteriser and is one
of TGSI_INTERPOLATE.
If Dimension flag is set to 1, a Declaration Dimension token follows.
If Semantic flag is set to 1, a Declaration Semantic token follows.
CylindricalWrap bitfield is only valid for fragment shader INPUT register
files. It specifies which register components should be subject to cylindrical
wrapping when interpolating by the rasteriser. If TGSI_CYLINDRICAL_WRAP_X
is set to 1, the X component should be interpolated according to cylindrical
wrapping rules.
If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2010-02-03 14:45:32 +00:00
Declaration Semantic
^^^^^^^^^^^^^^^^^^^^^^^^
Vertex and fragment shader input and output registers may be labeled
with semantic information consisting of a name and index.
Follows Declaration token if Semantic bit is set.
Since its purpose is to link a shader with other stages of the pipeline,
it is valid to follow only those Declaration tokens that declare a register
either in INPUT or OUTPUT file.
SemanticName field contains the semantic name of the register being declared.
There is no default value.
SemanticIndex is an optional subscript that can be used to distinguish
different register declarations with the same semantic name. The default value
is 0.
The meanings of the individual semantic names are explained in the following
sections.
TGSI_SEMANTIC_POSITION
""""""""""""""""""""""
For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
output register which contains the homogeneous vertex position in the clip
space coordinate system. After clipping, the X, Y and Z components of the
vertex will be divided by the W value to get normalized device coordinates.
For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
fragment shader input contains the fragment's window position. The X
component starts at zero and always increases from left to right.
The Y component starts at zero and always increases but Y=0 may either
indicate the top of the window or the bottom depending on the fragment
coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
The Z coordinate ranges from 0 to 1 to represent depth from the front
to the back of the Z buffer. The W component contains the reciprocol
of the interpolated vertex position W component.
Fragment shaders may also declare an output register with
TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
the fragment shader to change the fragment's Z position.
TGSI_SEMANTIC_COLOR
"""""""""""""""""""
For vertex shader outputs or fragment shader inputs/outputs, this
label indicates that the resister contains an R,G,B,A color.
Several shader inputs/outputs may contain colors so the semantic index
is used to distinguish them. For example, color[0] may be the diffuse
color while color[1] may be the specular color.
This label is needed so that the flat/smooth shading can be applied
to the right interpolants during rasterization.
TGSI_SEMANTIC_BCOLOR
""""""""""""""""""""
Back-facing colors are only used for back-facing polygons, and are only valid
in vertex shader outputs. After rasterization, all polygons are front-facing
and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
so all BCOLORs effectively become regular COLORs in the fragment shader.
TGSI_SEMANTIC_FOG
"""""""""""""""""
Vertex shader inputs and outputs and fragment shader inputs may be
labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
a fog coordinate in the form (F, 0, 0, 1). Typically, the fragment
shader will use the fog coordinate to compute a fog blend factor which
is used to blend the normal fragment color with a constant fog color.
Only the first component matters when writing from the vertex shader;
the driver will ensure that the coordinate is in this format when used
as a fragment shader input.
TGSI_SEMANTIC_PSIZE
"""""""""""""""""""
Vertex shader input and output registers may be labeled with
TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
in the form (S, 0, 0, 1). The point size controls the width or diameter
of points for rasterization. This label cannot be used in fragment
shaders.
When using this semantic, be sure to set the appropriate state in the
:ref:`rasterizer` first.
TGSI_SEMANTIC_GENERIC
"""""""""""""""""""""
All vertex/fragment shader inputs/outputs not labeled with any other
semantic label can be considered to be generic attributes. Typical
uses of generic inputs/outputs are texcoords and user-defined values.
TGSI_SEMANTIC_NORMAL
""""""""""""""""""""
Indicates that a vertex shader input is a normal vector. This is
typically only used for legacy graphics APIs.
TGSI_SEMANTIC_FACE
""""""""""""""""""
This label applies to fragment shader inputs only and indicates that
the register contains front/back-face information of the form (F, 0,
0, 1). The first component will be positive when the fragment belongs
to a front-facing polygon, and negative when the fragment belongs to a
back-facing polygon.
TGSI_SEMANTIC_EDGEFLAG
""""""""""""""""""""""
For vertex shaders, this sematic label indicates that an input or
output is a boolean edge flag. The register layout is [F, x, x, x]
where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
simply copies the edge flag input to the edgeflag output.
Edge flags are used to control which lines or points are actually
drawn when the polygon mode converts triangles/quads/polygons into
points or lines.
TGSI_SEMANTIC_STENCIL
""""""""""""""""""""""
For fragment shaders, this semantic label indicates than an output
is a writable stencil reference value. Only the Y component is writable.
This allows the fragment shader to change the fragments stencilref value.
Declaration Resource
^^^^^^^^^^^^^^^^^^^^^^^^
Follows Declaration token if file is TGSI_FILE_RESOURCE.
DCL RES[#], resource, type(s)
Declares a shader input resource and assigns it to a RES[#]
register.
resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2DArray.
type must be 1 or 4 entries (if specifying on a per-component
level) out of UNORM, SNORM, SINT, UINT and FLOAT.
Properties
^^^^^^^^^^^^^^^^^^^^^^^^
Properties are general directives that apply to the whole TGSI program.
FS_COORD_ORIGIN
"""""""""""""""
Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
The default value is UPPER_LEFT.
If UPPER_LEFT, the position will be (0,0) at the upper left corner and
increase downward and rightward.
If LOWER_LEFT, the position will be (0,0) at the lower left corner and
increase upward and rightward.
OpenGL defaults to LOWER_LEFT, and is configurable with the
GL_ARB_fragment_coord_conventions extension.
DirectX 9/10 use UPPER_LEFT.
FS_COORD_PIXEL_CENTER
"""""""""""""""""""""
Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
The default value is HALF_INTEGER.
If HALF_INTEGER, the fractionary part of the position will be 0.5
If INTEGER, the fractionary part of the position will be 0.0
Note that this does not affect the set of fragments generated by
rasterization, which is instead controlled by gl_rasterization_rules in the
rasterizer.
OpenGL defaults to HALF_INTEGER, and is configurable with the
GL_ARB_fragment_coord_conventions extension.
DirectX 9 uses INTEGER.
DirectX 10 uses HALF_INTEGER.
FS_COLOR0_WRITES_ALL_CBUFS
""""""""""""""""""""""""""
Specifies that writes to the fragment shader color 0 are replicated to all
bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
fragData is directed to a single color buffer, but fragColor is broadcast.
Texture Sampling and Texture Formats
------------------------------------
This table shows how texture image components are returned as (x,y,z,w) tuples
by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
:opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
well.
+--------------------+--------------+--------------------+--------------+
| Texture Components | Gallium | OpenGL | Direct3D 9 |
+====================+==============+====================+==============+
| R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
+--------------------+--------------+--------------------+--------------+
| RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
+--------------------+--------------+--------------------+--------------+
| RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
+--------------------+--------------+--------------------+--------------+
| RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
+--------------------+--------------+--------------------+--------------+
| A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
+--------------------+--------------+--------------------+--------------+
| L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
+--------------------+--------------+--------------------+--------------+
| LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
+--------------------+--------------+--------------------+--------------+
| I | (i, i, i, i) | (i, i, i, i) | N/A |
+--------------------+--------------+--------------------+--------------+
| UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
| | | [#envmap-bumpmap]_ | |
+--------------------+--------------+--------------------+--------------+
| Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
| | | [#depth-tex-mode]_ | |
+--------------------+--------------+--------------------+--------------+
| S | (s, s, s, s) | unknown | unknown |
+--------------------+--------------+--------------------+--------------+
.. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
.. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.