#include "quakedef.h" #ifdef VKQUAKE #include "vkrenderer.h" #include "gl_draw.h" #include "shader.h" #include "renderque.h" //is anything still using this? extern qboolean vid_isfullscreen; extern cvar_t vk_submissionthread; extern cvar_t vk_debug; extern cvar_t vk_dualqueue; extern cvar_t vk_busywait; extern cvar_t vk_waitfence; extern cvar_t vk_nv_glsl_shader; extern cvar_t vk_nv_dedicated_allocation; extern cvar_t vk_khr_dedicated_allocation; extern cvar_t vk_khr_push_descriptor; extern cvar_t vk_amd_rasterization_order; extern cvar_t vid_srgb, vid_vsync, vid_triplebuffer, r_stereo_method, vid_multisample, vid_bpp; void R2D_Console_Resize(void); extern qboolean scr_con_forcedraw; #ifndef MULTITHREAD #define Sys_LockConditional(c) #define Sys_UnlockConditional(c) #endif const char *vklayerlist[] = { #if 1 "VK_LAYER_LUNARG_standard_validation" #else //older versions of the sdk were crashing out on me, // "VK_LAYER_LUNARG_api_dump", "VK_LAYER_LUNARG_device_limits", //"VK_LAYER_LUNARG_draw_state", "VK_LAYER_LUNARG_image", //"VK_LAYER_LUNARG_mem_tracker", "VK_LAYER_LUNARG_object_tracker", "VK_LAYER_LUNARG_param_checker", "VK_LAYER_LUNARG_screenshot", "VK_LAYER_LUNARG_swapchain", "VK_LAYER_GOOGLE_threading", "VK_LAYER_GOOGLE_unique_objects", //"VK_LAYER_LUNARG_vktrace", #endif }; #define vklayercount (vk_debug.ival>1?countof(vklayerlist):0) //code to initialise+destroy vulkan contexts. //this entire file is meant to be platform-agnostic. //the vid code still needs to set up vkGetInstanceProcAddr, and do all the window+input stuff. #ifdef VK_NO_PROTOTYPES #define VKFunc(n) PFN_vk##n vk##n; VKFunc(CreateDebugReportCallbackEXT) VKFunc(DestroyDebugReportCallbackEXT) VKFuncs #undef VKFunc #endif void VK_Submit_Work(VkCommandBuffer cmdbuf, VkSemaphore semwait, VkPipelineStageFlags semwaitstagemask, VkSemaphore semsignal, VkFence fencesignal, struct vkframe *presentframe, struct vk_fencework *fencedwork); #ifdef MULTITHREAD static int VK_Submit_Thread(void *arg); #endif static void VK_Submit_DoWork(void); static void VK_DestroyRenderPass(void); static void VK_CreateRenderPass(void); static void VK_Shutdown_PostProc(void); struct vulkaninfo_s vk; static struct vk_rendertarg postproc[4]; static unsigned int postproc_buf; static struct vk_rendertarg_cube vk_rt_cubemap; qboolean VK_SCR_GrabBackBuffer(void); #if defined(__linux__) && defined(__GLIBC__) #include #define DOBACKTRACE() \ do { \ void *bt[16]; \ int i, fr = backtrace(bt, countof(bt)); \ char **strings = backtrace_symbols(bt, fr); \ for (i = 0; i < fr; i++) \ if (strings) \ Con_Printf("\t%s\n", strings[i]); \ else \ Con_Printf("\t%p\n", bt[i]); \ free(strings); \ } while(0) #else #define DOBACKTRACE() #endif static VkDebugReportCallbackEXT vk_debugcallback; static VkBool32 VKAPI_PTR mydebugreportcallback( VkDebugReportFlagsEXT flags, VkDebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const char* pLayerPrefix, const char* pMessage, void* pUserData) { if (flags & VK_DEBUG_REPORT_ERROR_BIT_EXT) { Con_Printf("ERR: %s: %s\n", pLayerPrefix, pMessage); // DOBACKTRACE(); } else if (flags & VK_DEBUG_REPORT_WARNING_BIT_EXT) { if (!strncmp(pMessage, "Additional bits in Source accessMask", 36) && strstr(pMessage, "VK_IMAGE_LAYOUT_UNDEFINED")) return false; //I don't give a fuck. undefined can be used to change layouts on a texture that already exists too. Con_Printf("WARN: %s: %s\n", pLayerPrefix, pMessage); DOBACKTRACE(); } else if (flags & VK_DEBUG_REPORT_DEBUG_BIT_EXT) { Con_DPrintf("DBG: %s: %s\n", pLayerPrefix, pMessage); // DOBACKTRACE(); } else if (flags & VK_DEBUG_REPORT_INFORMATION_BIT_EXT) { #ifdef _WIN32 // OutputDebugString(va("INF: %s\n", pMessage)); #else Con_Printf("INF: %s: %s\n", pLayerPrefix, pMessage); // DOBACKTRACE(); #endif } else if (flags & VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT) { Con_Printf("PERF: %s: %s\n", pLayerPrefix, pMessage); DOBACKTRACE(); } else { Con_Printf("OTHER: %s: %s\n", pLayerPrefix, pMessage); DOBACKTRACE(); } return false; } //typeBits is some vulkan requirement thing (like textures must be device-local). //requirements_mask are things that the engine may require (like host-visible). //note that there is absolutely no guarentee that hardware requirements will match what the host needs. //thus you may need to use staging. uint32_t vk_find_memory_try(uint32_t typeBits, VkFlags requirements_mask) { uint32_t i; for (i = 0; i < 32; i++) { if ((typeBits & 1) == 1) { if ((vk.memory_properties.memoryTypes[i].propertyFlags & requirements_mask) == requirements_mask) return i; } typeBits >>= 1; } return ~0u; } uint32_t vk_find_memory_require(uint32_t typeBits, VkFlags requirements_mask) { uint32_t ret = vk_find_memory_try(typeBits, requirements_mask); if (ret == ~0) Sys_Error("Unable to find suitable vulkan memory pool\n"); return ret; } void VK_DestroyVkTexture(vk_image_t *img) { if (!img) return; if (img->sampler) vkDestroySampler(vk.device, img->sampler, vkallocationcb); if (img->view) vkDestroyImageView(vk.device, img->view, vkallocationcb); if (img->image) vkDestroyImage(vk.device, img->image, vkallocationcb); if (img->memory) vkFreeMemory(vk.device, img->memory, vkallocationcb); } static void VK_DestroyVkTexture_Delayed(void *w) { VK_DestroyVkTexture(w); } static void VK_DestroySwapChain(void) { uint32_t i; #ifdef MULTITHREAD if (vk.submitcondition) { Sys_LockConditional(vk.submitcondition); vk.neednewswapchain = true; Sys_ConditionSignal(vk.submitcondition); Sys_UnlockConditional(vk.submitcondition); } if (vk.submitthread) { Sys_WaitOnThread(vk.submitthread); vk.submitthread = NULL; } #endif while (vk.work) { Sys_LockConditional(vk.submitcondition); VK_Submit_DoWork(); Sys_UnlockConditional(vk.submitcondition); } if (vk.dopresent) vk.dopresent(NULL); if (vk.device) vkDeviceWaitIdle(vk.device); /*while (vk.aquirenext < vk.aquirelast) { VkWarnAssert(vkWaitForFences(vk.device, 1, &vk.acquirefences[vk.aquirenext%ACQUIRELIMIT], VK_FALSE, UINT64_MAX)); vk.aquirenext++; }*/ VK_FencedCheck(); while(vk.frameendjobs) { //we've fully synced the gpu now, we can clean up any resources that were pending but not assigned yet. struct vk_frameend *job = vk.frameendjobs; vk.frameendjobs = job->next; job->FrameEnded(job+1); Z_Free(job); } if (vk.frame) { vk.frame->next = vk.unusedframes; vk.unusedframes = vk.frame; vk.frame = NULL; } for (i = 0; i < vk.backbuf_count; i++) { //swapchain stuff if (vk.backbufs[i].framebuffer) vkDestroyFramebuffer(vk.device, vk.backbufs[i].framebuffer, vkallocationcb); vk.backbufs[i].framebuffer = VK_NULL_HANDLE; if (vk.backbufs[i].colour.view) vkDestroyImageView(vk.device, vk.backbufs[i].colour.view, vkallocationcb); vk.backbufs[i].colour.view = VK_NULL_HANDLE; VK_DestroyVkTexture(&vk.backbufs[i].depth); VK_DestroyVkTexture(&vk.backbufs[i].mscolour); } if (vk.dopresent) vk.dopresent(NULL); while (vk.aquirenext < vk.aquirelast) { if (vk.acquirefences[vk.aquirenext%ACQUIRELIMIT]) VkWarnAssert(vkWaitForFences(vk.device, 1, &vk.acquirefences[vk.aquirenext%ACQUIRELIMIT], VK_FALSE, UINT64_MAX)); vk.aquirenext++; } if (vk.device) vkDeviceWaitIdle(vk.device); for (i = 0; i < ACQUIRELIMIT; i++) { if (vk.acquirefences[i]) vkDestroyFence(vk.device, vk.acquirefences[i], vkallocationcb); vk.acquirefences[i] = VK_NULL_HANDLE; } while(vk.unusedframes) { struct vkframe *frame = vk.unusedframes; vk.unusedframes = frame->next; VKBE_ShutdownFramePools(frame); vkFreeCommandBuffers(vk.device, vk.cmdpool, frame->maxcbufs, frame->cbufs); BZ_Free(frame->cbufs); vkDestroyFence(vk.device, frame->finishedfence, vkallocationcb); Z_Free(frame); } if (vk.swapchain) { vkDestroySwapchainKHR(vk.device, vk.swapchain, vkallocationcb); vk.swapchain = VK_NULL_HANDLE; } if (vk.backbufs) free(vk.backbufs); vk.backbufs = NULL; vk.backbuf_count = 0; } static qboolean VK_CreateSwapChain(void) { qboolean reloadshaders = false; uint32_t fmtcount; VkSurfaceFormatKHR *surffmts; uint32_t presentmodes; VkPresentModeKHR *presentmode; VkSurfaceCapabilitiesKHR surfcaps; VkSwapchainCreateInfoKHR swapinfo = {VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR}; uint32_t i, curpri; VkSwapchainKHR newvkswapchain; VkImage *images; VkDeviceMemory *memories; VkImageView attachments[3]; VkFramebufferCreateInfo fb_info = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO}; VkSampleCountFlagBits oldms; vk.dopresent(NULL); //make sure they're all pushed through. vid_vsync.modified = false; vid_triplebuffer.modified = false; vid_srgb.modified = false; vk_submissionthread.modified = false; vk_waitfence.modified = false; vid_multisample.modified = false; vk.triplebuffer = vid_triplebuffer.ival; vk.vsync = vid_vsync.ival; if (!vk.khr_swapchain) { //headless if (vk.swapchain || vk.backbuf_count) VK_DestroySwapChain(); vk.backbufformat = ((vid.flags&VID_SRGBAWARE)||vid_srgb.ival)?VK_FORMAT_B8G8R8A8_SRGB:VK_FORMAT_B8G8R8A8_UNORM; vk.backbuf_count = 4; swapinfo.imageExtent.width = vid.pixelwidth; swapinfo.imageExtent.height = vid.pixelheight; images = malloc(sizeof(VkImage)*vk.backbuf_count); memset(images, 0, sizeof(VkImage)*vk.backbuf_count); memories = malloc(sizeof(VkDeviceMemory)*vk.backbuf_count); memset(memories, 0, sizeof(VkDeviceMemory)*vk.backbuf_count); vk.aquirelast = vk.aquirenext = 0; for (i = 0; i < ACQUIRELIMIT; i++) { if (1) { VkFenceCreateInfo fci = {VK_STRUCTURE_TYPE_FENCE_CREATE_INFO}; fci.flags = VK_FENCE_CREATE_SIGNALED_BIT; VkAssert(vkCreateFence(vk.device,&fci,vkallocationcb,&vk.acquirefences[i])); vk.acquiresemaphores[i] = VK_NULL_HANDLE; } else { VkSemaphoreCreateInfo sci = {VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO}; VkAssert(vkCreateSemaphore(vk.device, &sci, vkallocationcb, &vk.acquiresemaphores[i])); vk.acquirefences[i] = VK_NULL_HANDLE; } vk.acquirebufferidx[vk.aquirelast%ACQUIRELIMIT] = vk.aquirelast%vk.backbuf_count; vk.aquirelast++; } for (i = 0; i < vk.backbuf_count; i++) { VkMemoryRequirements mem_reqs; VkMemoryAllocateInfo memAllocInfo = {VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO}; VkMemoryDedicatedAllocateInfoKHR khr_mdai = {VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR}; VkDedicatedAllocationMemoryAllocateInfoNV nv_damai = {VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_MEMORY_ALLOCATE_INFO_NV}; VkImageCreateInfo ici = {VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO}; VkDedicatedAllocationImageCreateInfoNV nv_daici = {VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_IMAGE_CREATE_INFO_NV}; ici.flags = 0; ici.imageType = VK_IMAGE_TYPE_2D; ici.format = vk.backbufformat; ici.extent.width = vid.pixelwidth; ici.extent.height = vid.pixelheight; ici.extent.depth = 1; ici.mipLevels = 1; ici.arrayLayers = 1; ici.samples = VK_SAMPLE_COUNT_1_BIT; ici.tiling = VK_IMAGE_TILING_OPTIMAL; ici.usage = VK_IMAGE_USAGE_SAMPLED_BIT|VK_IMAGE_USAGE_TRANSFER_SRC_BIT|VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; ici.sharingMode = VK_SHARING_MODE_EXCLUSIVE; ici.queueFamilyIndexCount = 0; ici.pQueueFamilyIndices = NULL; ici.initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; if (vk.nv_dedicated_allocation) { //render targets should always have dedicated allocations, supposedly. and we're doing it anyway. nv_daici.dedicatedAllocation = true; nv_daici.pNext = ici.pNext; ici.pNext = &nv_daici; } VkAssert(vkCreateImage(vk.device, &ici, vkallocationcb, &images[i])); vkGetImageMemoryRequirements(vk.device, images[i], &mem_reqs); memAllocInfo.allocationSize = mem_reqs.size; memAllocInfo.memoryTypeIndex = vk_find_memory_try(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); if (memAllocInfo.memoryTypeIndex == ~0) memAllocInfo.memoryTypeIndex = vk_find_memory_try(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); if (memAllocInfo.memoryTypeIndex == ~0) memAllocInfo.memoryTypeIndex = vk_find_memory_try(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT); if (memAllocInfo.memoryTypeIndex == ~0) memAllocInfo.memoryTypeIndex = vk_find_memory_require(mem_reqs.memoryTypeBits, 0); if (vk.nv_dedicated_allocation) { //annoying, but hey. nv_damai.pNext = memAllocInfo.pNext; nv_damai.image = images[i]; memAllocInfo.pNext = &nv_damai; } if (vk.khr_dedicated_allocation) { khr_mdai.pNext = memAllocInfo.pNext; khr_mdai.image = images[i]; memAllocInfo.pNext = &khr_mdai; } VkAssert(vkAllocateMemory(vk.device, &memAllocInfo, vkallocationcb, &memories[i])); VkAssert(vkBindImageMemory(vk.device, images[i], memories[i], 0)); } } else { //using vulkan's presentation engine. int BOOST_UNORM, BOOST_SNORM, BOOST_SRGB, BOOST_UFLOAT, BOOST_SFLOAT; if (vid_srgb.ival > 1) { //favour float formats, then srgb, then unorms BOOST_UNORM = 0; BOOST_SNORM = 0; BOOST_SRGB = 128; BOOST_UFLOAT = 256; BOOST_SFLOAT = 256; } else if (vid_srgb.ival) { BOOST_UNORM = 0; BOOST_SNORM = 0; BOOST_SRGB = 256; BOOST_UFLOAT = 128; BOOST_SFLOAT = 128; } else { BOOST_UNORM = 256; BOOST_SNORM = 256; BOOST_SRGB = 0; BOOST_UFLOAT = 128; BOOST_SFLOAT = 128; } VkAssert(vkGetPhysicalDeviceSurfaceFormatsKHR(vk.gpu, vk.surface, &fmtcount, NULL)); surffmts = malloc(sizeof(VkSurfaceFormatKHR)*fmtcount); VkAssert(vkGetPhysicalDeviceSurfaceFormatsKHR(vk.gpu, vk.surface, &fmtcount, surffmts)); VkAssert(vkGetPhysicalDeviceSurfacePresentModesKHR(vk.gpu, vk.surface, &presentmodes, NULL)); presentmode = malloc(sizeof(VkPresentModeKHR)*presentmodes); VkAssert(vkGetPhysicalDeviceSurfacePresentModesKHR(vk.gpu, vk.surface, &presentmodes, presentmode)); vkGetPhysicalDeviceSurfaceCapabilitiesKHR(vk.gpu, vk.surface, &surfcaps); swapinfo.surface = vk.surface; swapinfo.minImageCount = surfcaps.minImageCount+vk.triplebuffer; if (swapinfo.minImageCount > surfcaps.maxImageCount) swapinfo.minImageCount = surfcaps.maxImageCount; if (swapinfo.minImageCount < surfcaps.minImageCount) swapinfo.minImageCount = surfcaps.minImageCount; swapinfo.imageExtent.width = surfcaps.currentExtent.width; swapinfo.imageExtent.height = surfcaps.currentExtent.height; swapinfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_TRANSFER_SRC_BIT; swapinfo.preTransform = surfcaps.currentTransform;//VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; if (surfcaps.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR) swapinfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; else if (surfcaps.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR) swapinfo.compositeAlpha = VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR; else if (surfcaps.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR) swapinfo.compositeAlpha = VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR; else swapinfo.compositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR; //erk? swapinfo.imageArrayLayers = /*(r_stereo_method.ival==1)?2:*/1; swapinfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; swapinfo.queueFamilyIndexCount = 0; swapinfo.pQueueFamilyIndices = NULL; swapinfo.oldSwapchain = vk.swapchain; swapinfo.clipped = vid_isfullscreen?VK_FALSE:VK_TRUE; //allow fragment shaders to be skipped on parts that are obscured by another window. screenshots might get weird, so use proper captures if required/automagic. swapinfo.presentMode = VK_PRESENT_MODE_FIFO_KHR; //support is guarenteed by spec, in theory. for (i = 0, curpri = 0; i < presentmodes; i++) { uint32_t priority = 0; switch(presentmode[i]) { default://ignore it if we don't know it. break; //this is awkward. normally we use vsync<0 to allow tearing-with-vsync, but that leaves us with a problem as far as what 0 should signify - tearing or not. //if we're using mailbox then we could instead discard the command buffers and skip rendering of the actual scenes. //we could have our submission thread wait some time period after the last vswap (ie: before the next) before submitting the command. //this could reduce gpu load at higher resolutions without lying too much about cpu usage... case VK_PRESENT_MODE_IMMEDIATE_KHR: priority = (vk.vsync?0:2) + 2; //for most quake players, latency trumps tearing. break; case VK_PRESENT_MODE_MAILBOX_KHR: priority = (vk.vsync?0:2) + 1; break; case VK_PRESENT_MODE_FIFO_KHR: priority = (vk.vsync?2:0) + 1; break; case VK_PRESENT_MODE_FIFO_RELAXED_KHR: priority = (vk.vsync?2:0) + 2; //strict vsync results in weird juddering if rtlights etc caues framerates to drop below the refreshrate. and nvidia just suck with vsync, so I'm not taking any chances. break; } if (priority > curpri) { curpri = priority; swapinfo.presentMode = presentmode[i]; } } if (!vk.vsync && swapinfo.presentMode != VK_PRESENT_MODE_IMMEDIATE_KHR) if (!vk.swapchain) //only warn on vid_restart, otherwise its annoying when resizing. Con_Printf("Warning: vulkan graphics driver does not support VK_PRESENT_MODE_IMMEDIATE_KHR.\n"); vk.srgbcapable = false; swapinfo.imageColorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR; swapinfo.imageFormat = VK_FORMAT_UNDEFINED; for (i = 0, curpri = 0; i < fmtcount; i++) { uint32_t priority = 0; switch(surffmts[i].format) { case VK_FORMAT_B8G8R8A8_UNORM: case VK_FORMAT_R8G8B8A8_UNORM: case VK_FORMAT_A8B8G8R8_UNORM_PACK32: priority = ((vid_bpp.ival>=24)?24:11)+BOOST_UNORM; break; case VK_FORMAT_B8G8R8A8_SNORM: case VK_FORMAT_R8G8B8A8_SNORM: case VK_FORMAT_A8B8G8R8_SNORM_PACK32: priority = ((vid_bpp.ival>=21)?21:2)+BOOST_SNORM; break; case VK_FORMAT_B8G8R8A8_SRGB: case VK_FORMAT_R8G8B8A8_SRGB: case VK_FORMAT_A8B8G8R8_SRGB_PACK32: priority = ((vid_bpp.ival>=24)?24:11)+BOOST_SRGB; vk.srgbcapable = true; break; case VK_FORMAT_A2B10G10R10_UNORM_PACK32: case VK_FORMAT_A2R10G10B10_UNORM_PACK32: priority = ((vid_bpp.ival==30)?30:10)+BOOST_UNORM; break; case VK_FORMAT_B10G11R11_UFLOAT_PACK32: priority = ((vid_srgb.ival>=3||vid_bpp.ival==32)?32:11)+BOOST_UFLOAT; break; case VK_FORMAT_R16G16B16A16_SFLOAT: //16bit per-channel formats priority = ((vid_srgb.ival>=3||vid_bpp.ival>=48)?48:9)+BOOST_SFLOAT; break; case VK_FORMAT_R16G16B16A16_UNORM: priority = ((vid_srgb.ival>=3||vid_bpp.ival>=48)?48:9)+BOOST_UNORM; break; case VK_FORMAT_R16G16B16A16_SNORM: priority = ((vid_srgb.ival>=3||vid_bpp.ival>=48)?48:9)+BOOST_SFLOAT; break; case VK_FORMAT_R32G32B32A32_SFLOAT: //32bit per-channel formats priority = ((vid_bpp.ival>=47)?96:8)+BOOST_SFLOAT; break; case VK_FORMAT_B5G6R5_UNORM_PACK16: case VK_FORMAT_R5G6B5_UNORM_PACK16: priority = 16+BOOST_UNORM; break; case VK_FORMAT_R4G4B4A4_UNORM_PACK16: case VK_FORMAT_B4G4R4A4_UNORM_PACK16: priority = 12+BOOST_UNORM; break; case VK_FORMAT_A1R5G5B5_UNORM_PACK16: case VK_FORMAT_R5G5B5A1_UNORM_PACK16: case VK_FORMAT_B5G5R5A1_UNORM_PACK16: priority = 15+BOOST_UNORM; break; default: //no idea, use as lowest priority. priority = 1; break; } if (surffmts[i].colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR && //sRGB surffmts[i].colorSpace == VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT && //scRGB surffmts[i].colorSpace == VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT) //linear vaugely like sRGB priority += 512; //always favour supported colour spaces. if (priority > curpri) { curpri = priority; swapinfo.imageColorSpace = surffmts[i].colorSpace; swapinfo.imageFormat = surffmts[i].format; } } if (swapinfo.imageFormat == VK_FORMAT_UNDEFINED) { //if we found this format then it means the drivers don't really give a damn. pick a real format. if (vid_srgb.ival > 1 && swapinfo.imageColorSpace == VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT) swapinfo.imageFormat = VK_FORMAT_R16G16B16A16_SFLOAT; else if (vid_srgb.ival) swapinfo.imageFormat = VK_FORMAT_R8G8B8A8_SRGB; else swapinfo.imageFormat = VK_FORMAT_R8G8B8A8_UNORM; } if (vk.backbufformat != swapinfo.imageFormat) { VK_DestroyRenderPass(); reloadshaders = true; } vk.backbufformat = swapinfo.imageFormat; //VK_COLORSPACE_SRGB_NONLINEAR means the presentation engine will interpret the image as SRGB whether its a UNORM or SRGB format or not. //an SRGB format JUST means rendering converts linear->srgb and does not apply to the presentation engine. vid.flags &= ~VID_SRGB_FB; if (swapinfo.imageColorSpace == VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT) vid.flags |= VID_SRGB_FB_LINEAR; else { switch(vk.backbufformat) { case VK_FORMAT_R8G8B8_SRGB: case VK_FORMAT_B8G8R8_SRGB: case VK_FORMAT_B8G8R8A8_SRGB: case VK_FORMAT_R8G8B8A8_SRGB: case VK_FORMAT_A8B8G8R8_SRGB_PACK32: vid.flags |= VID_SRGB_FB_LINEAR; break; default: break; //non-srgb (or compressed) } } free(presentmode); free(surffmts); newvkswapchain = VK_NULL_HANDLE; VkAssert(vkCreateSwapchainKHR(vk.device, &swapinfo, vkallocationcb, &newvkswapchain)); if (!newvkswapchain) return false; if (vk.swapchain) { VK_DestroySwapChain(); } vk.swapchain = newvkswapchain; VkAssert(vkGetSwapchainImagesKHR(vk.device, vk.swapchain, &vk.backbuf_count, NULL)); images = malloc(sizeof(VkImage)*vk.backbuf_count); memories = NULL; VkAssert(vkGetSwapchainImagesKHR(vk.device, vk.swapchain, &vk.backbuf_count, images)); vk.aquirelast = vk.aquirenext = 0; for (i = 0; i < ACQUIRELIMIT; i++) { if (vk_waitfence.ival) { VkFenceCreateInfo fci = {VK_STRUCTURE_TYPE_FENCE_CREATE_INFO}; VkAssert(vkCreateFence(vk.device,&fci,vkallocationcb,&vk.acquirefences[i])); vk.acquiresemaphores[i] = VK_NULL_HANDLE; } else { VkSemaphoreCreateInfo sci = {VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO}; VkAssert(vkCreateSemaphore(vk.device, &sci, vkallocationcb, &vk.acquiresemaphores[i])); vk.acquirefences[i] = VK_NULL_HANDLE; } } /*-1 to hide any weird thread issues*/ while (vk.aquirelast < ACQUIRELIMIT-1 && vk.aquirelast < vk.backbuf_count && vk.aquirelast <= vk.backbuf_count-surfcaps.minImageCount) { VkAssert(vkAcquireNextImageKHR(vk.device, vk.swapchain, UINT64_MAX, vk.acquiresemaphores[vk.aquirelast%ACQUIRELIMIT], vk.acquirefences[vk.aquirelast%ACQUIRELIMIT], &vk.acquirebufferidx[vk.aquirelast%ACQUIRELIMIT])); vk.aquirelast++; } } oldms = vk.multisamplebits; vk.multisamplebits = VK_SAMPLE_COUNT_1_BIT; #ifdef _DEBUG if (vid_multisample.ival>1) { VkSampleCountFlags fl = vk.limits.framebufferColorSampleCounts & vk.limits.framebufferDepthSampleCounts; Con_Printf("Warning: vulkan multisample does not work with rtlights or render targets etc etc\n"); for (i = 1; i < 30; i++) if ((fl & (1<sampler) vkDestroySampler(vk.device, img->sampler, vkallocationcb); if (flags & IF_LINEAR) { lmsampinfo.minFilter = lmsampinfo.magFilter = VK_FILTER_LINEAR; lmsampinfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; } else if (flags & IF_NEAREST) { lmsampinfo.minFilter = lmsampinfo.magFilter = VK_FILTER_NEAREST; lmsampinfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; } else { int *filter = (flags & IF_UIPIC)?vk.filterpic:vk.filtermip; if (filter[0]) lmsampinfo.minFilter = VK_FILTER_LINEAR; else lmsampinfo.minFilter = VK_FILTER_NEAREST; if (filter[1]) lmsampinfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; else lmsampinfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; if (filter[2]) lmsampinfo.magFilter = VK_FILTER_LINEAR; else lmsampinfo.magFilter = VK_FILTER_NEAREST; } lmsampinfo.addressModeU = clamptoedge?VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE:VK_SAMPLER_ADDRESS_MODE_REPEAT; lmsampinfo.addressModeV = clamptoedge?VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE:VK_SAMPLER_ADDRESS_MODE_REPEAT; lmsampinfo.addressModeW = clamptoedge?VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE:VK_SAMPLER_ADDRESS_MODE_REPEAT; lmsampinfo.mipLodBias = 0.0; lmsampinfo.anisotropyEnable = (flags & IF_NEAREST)?false:(vk.max_anistophy > 1); lmsampinfo.maxAnisotropy = vk.max_anistophy; lmsampinfo.compareEnable = VK_FALSE; lmsampinfo.compareOp = VK_COMPARE_OP_NEVER; lmsampinfo.minLod = vk.mipcap[0]; //this isn't quite right lmsampinfo.maxLod = vk.mipcap[1]; lmsampinfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK; lmsampinfo.unnormalizedCoordinates = VK_FALSE; VkAssert(vkCreateSampler(vk.device, &lmsampinfo, NULL, &img->sampler)); } static void VK_DestroySampler(void *w) { VkSampler s = *(VkSampler*)w; vkDestroySampler(vk.device, s, vkallocationcb); } void VK_UpdateFiltering(image_t *imagelist, int filtermip[3], int filterpic[3], int mipcap[2], float anis) { uint32_t i; for (i = 0; i < countof(vk.filtermip); i++) vk.filtermip[i] = filtermip[i]; for (i = 0; i < countof(vk.filterpic); i++) vk.filterpic[i] = filterpic[i]; for (i = 0; i < countof(vk.mipcap); i++) vk.mipcap[i] = mipcap[i]; vk.max_anistophy = bound(1.0, anis, vk.max_anistophy_limit); while(imagelist) { if (imagelist->vkimage) { if (imagelist->vkimage->sampler) { //the sampler might still be in use, so clean it up at the end of the frame. //all this to avoid syncing all the queues... VK_AtFrameEnd(VK_DestroySampler, &imagelist->vkimage->sampler, sizeof(imagelist->vkimage->sampler)); imagelist->vkimage->sampler = VK_NULL_HANDLE; } VK_CreateSampler(imagelist->flags, imagelist->vkimage); } imagelist = imagelist->next; } } vk_image_t VK_CreateTexture2DArray(uint32_t width, uint32_t height, uint32_t layers, uint32_t mips, uploadfmt_t encoding, unsigned int type, qboolean rendertarget) { vk_image_t ret; #ifdef USE_STAGING_BUFFERS qboolean staging = layers == 0; #else const qboolean staging = false; #endif VkMemoryRequirements mem_reqs; VkMemoryAllocateInfo memAllocInfo = {VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO}; VkMemoryDedicatedAllocateInfoKHR khr_mdai = {VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR}; VkDedicatedAllocationMemoryAllocateInfoNV nv_damai = {VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_MEMORY_ALLOCATE_INFO_NV}; VkImageCreateInfo ici = {VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO}; VkDedicatedAllocationImageCreateInfoNV nv_daici = {VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_IMAGE_CREATE_INFO_NV}; VkFormat format = VK_FORMAT_UNDEFINED;; ret.width = width; ret.height = height; ret.layers = layers; ret.mipcount = mips; ret.encoding = encoding; ret.type = type; ret.layout = staging?VK_IMAGE_LAYOUT_PREINITIALIZED:VK_IMAGE_LAYOUT_UNDEFINED; //vulkan expresses packed formats in terms of native endian (if big-endian, then everything makes sense), non-packed formats are expressed in byte order (consistent with big-endian). //PTI formats are less well-defined... if ((int)encoding < 0) format = -(int)encoding; else switch(encoding) { //16bit formats. case PTI_RGB565: format = VK_FORMAT_R5G6B5_UNORM_PACK16; break; case PTI_RGBA4444: format = VK_FORMAT_R4G4B4A4_UNORM_PACK16; break; case PTI_ARGB4444: /*format = VK_FORMAT_A4R4G4B4_UNORM_PACK16;*/ break; case PTI_RGBA5551: format = VK_FORMAT_R5G5B5A1_UNORM_PACK16; break; case PTI_ARGB1555: format = VK_FORMAT_A1R5G5B5_UNORM_PACK16; break; //float formats case PTI_RGBA16F: format = VK_FORMAT_R16G16B16A16_SFLOAT; break; case PTI_RGBA32F: format = VK_FORMAT_R32G32B32A32_SFLOAT; break; //weird formats case PTI_R8: format = VK_FORMAT_R8_UNORM; break; case PTI_RG8: format = VK_FORMAT_R8G8_UNORM; break; case PTI_R8_SNORM: format = VK_FORMAT_R8_SNORM; break; case PTI_RG8_SNORM: format = VK_FORMAT_R8G8_SNORM; break; case PTI_A2BGR10: format = VK_FORMAT_A2B10G10R10_UNORM_PACK32; break; case PTI_E5BGR9: format = VK_FORMAT_E5B9G9R9_UFLOAT_PACK32; break; //swizzled/legacy formats case PTI_L8: format = VK_FORMAT_R8_UNORM; break; case PTI_L8A8: format = VK_FORMAT_R8G8_UNORM; break; //compressed formats case PTI_BC1_RGB: format = VK_FORMAT_BC1_RGB_UNORM_BLOCK; break; case PTI_BC1_RGB_SRGB: format = VK_FORMAT_BC1_RGB_SRGB_BLOCK; break; case PTI_BC1_RGBA: format = VK_FORMAT_BC1_RGBA_UNORM_BLOCK; break; case PTI_BC1_RGBA_SRGB: format = VK_FORMAT_BC1_RGBA_SRGB_BLOCK; break; case PTI_BC2_RGBA: format = VK_FORMAT_BC2_UNORM_BLOCK; break; case PTI_BC2_RGBA_SRGB: format = VK_FORMAT_BC2_SRGB_BLOCK; break; case PTI_BC3_RGBA: format = VK_FORMAT_BC3_UNORM_BLOCK; break; case PTI_BC3_RGBA_SRGB: format = VK_FORMAT_BC3_SRGB_BLOCK; break; case PTI_BC4_R8: format = VK_FORMAT_BC4_UNORM_BLOCK; break; case PTI_BC4_R8_SNORM: format = VK_FORMAT_BC4_SNORM_BLOCK; break; case PTI_BC5_RG8: format = VK_FORMAT_BC5_UNORM_BLOCK; break; case PTI_BC5_RG8_SNORM: format = VK_FORMAT_BC5_SNORM_BLOCK; break; case PTI_BC6_RGB_UFLOAT: format = VK_FORMAT_BC6H_UFLOAT_BLOCK; break; case PTI_BC6_RGB_SFLOAT: format = VK_FORMAT_BC6H_SFLOAT_BLOCK; break; case PTI_BC7_RGBA: format = VK_FORMAT_BC7_UNORM_BLOCK; break; case PTI_BC7_RGBA_SRGB: format = VK_FORMAT_BC7_SRGB_BLOCK; break; case PTI_ETC1_RGB8: format = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK; break; //vulkan doesn't support etc1, but etc2 is a superset so its all okay. case PTI_ETC2_RGB8: format = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK; break; case PTI_ETC2_RGB8_SRGB: format = VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK; break; case PTI_ETC2_RGB8A1: format = VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK; break; case PTI_ETC2_RGB8A1_SRGB: format = VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK; break; case PTI_ETC2_RGB8A8: format = VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK; break; case PTI_ETC2_RGB8A8_SRGB: format = VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK; break; case PTI_EAC_R11: format = VK_FORMAT_EAC_R11_UNORM_BLOCK; break; case PTI_EAC_R11_SNORM: format = VK_FORMAT_EAC_R11_SNORM_BLOCK; break; case PTI_EAC_RG11: format = VK_FORMAT_EAC_R11G11_UNORM_BLOCK; break; case PTI_EAC_RG11_SNORM: format = VK_FORMAT_EAC_R11G11_SNORM_BLOCK; break; case PTI_ASTC_4X4: format = VK_FORMAT_ASTC_4x4_UNORM_BLOCK; break; case PTI_ASTC_4X4_SRGB: format = VK_FORMAT_ASTC_4x4_SRGB_BLOCK; break; case PTI_ASTC_5X4: format = VK_FORMAT_ASTC_5x4_UNORM_BLOCK; break; case PTI_ASTC_5X4_SRGB: format = VK_FORMAT_ASTC_5x4_SRGB_BLOCK; break; case PTI_ASTC_5X5: format = VK_FORMAT_ASTC_5x5_UNORM_BLOCK; break; case PTI_ASTC_5X5_SRGB: format = VK_FORMAT_ASTC_5x5_SRGB_BLOCK; break; case PTI_ASTC_6X5: format = VK_FORMAT_ASTC_6x5_UNORM_BLOCK; break; case PTI_ASTC_6X5_SRGB: format = VK_FORMAT_ASTC_6x5_SRGB_BLOCK; break; case PTI_ASTC_6X6: format = VK_FORMAT_ASTC_6x6_UNORM_BLOCK; break; case PTI_ASTC_6X6_SRGB: format = VK_FORMAT_ASTC_6x6_SRGB_BLOCK; break; case PTI_ASTC_8X5: format = VK_FORMAT_ASTC_8x5_UNORM_BLOCK; break; case PTI_ASTC_8X5_SRGB: format = VK_FORMAT_ASTC_8x5_SRGB_BLOCK; break; case PTI_ASTC_8X6: format = VK_FORMAT_ASTC_8x6_UNORM_BLOCK; break; case PTI_ASTC_8X6_SRGB: format = VK_FORMAT_ASTC_8x6_SRGB_BLOCK; break; case PTI_ASTC_8X8: format = VK_FORMAT_ASTC_8x8_UNORM_BLOCK; break; case PTI_ASTC_8X8_SRGB: format = VK_FORMAT_ASTC_8x8_SRGB_BLOCK; break; case PTI_ASTC_10X5: format = VK_FORMAT_ASTC_10x5_UNORM_BLOCK; break; case PTI_ASTC_10X5_SRGB: format = VK_FORMAT_ASTC_10x5_SRGB_BLOCK; break; case PTI_ASTC_10X6: format = VK_FORMAT_ASTC_10x6_UNORM_BLOCK; break; case PTI_ASTC_10X6_SRGB: format = VK_FORMAT_ASTC_10x6_SRGB_BLOCK; break; case PTI_ASTC_10X8: format = VK_FORMAT_ASTC_10x8_UNORM_BLOCK; break; case PTI_ASTC_10X8_SRGB: format = VK_FORMAT_ASTC_10x8_SRGB_BLOCK; break; case PTI_ASTC_10X10: format = VK_FORMAT_ASTC_10x10_UNORM_BLOCK; break; case PTI_ASTC_10X10_SRGB: format = VK_FORMAT_ASTC_10x10_SRGB_BLOCK; break; case PTI_ASTC_12X10: format = VK_FORMAT_ASTC_12x10_UNORM_BLOCK; break; case PTI_ASTC_12X10_SRGB: format = VK_FORMAT_ASTC_12x10_SRGB_BLOCK; break; case PTI_ASTC_12X12: format = VK_FORMAT_ASTC_12x12_UNORM_BLOCK; break; case PTI_ASTC_12X12_SRGB: format = VK_FORMAT_ASTC_12x12_SRGB_BLOCK; break; //depth formats case PTI_DEPTH16: format = VK_FORMAT_D16_UNORM; break; case PTI_DEPTH24: format = VK_FORMAT_X8_D24_UNORM_PACK32; break; case PTI_DEPTH32: format = VK_FORMAT_D32_SFLOAT; break; case PTI_DEPTH24_8: format = VK_FORMAT_D24_UNORM_S8_UINT; break; //srgb formats case PTI_BGRA8_SRGB: case PTI_BGRX8_SRGB: format = VK_FORMAT_B8G8R8A8_SRGB; break; case PTI_RGBA8_SRGB: case PTI_RGBX8_SRGB: format = VK_FORMAT_R8G8B8A8_SRGB; break; //standard formats case PTI_BGRA8: case PTI_BGRX8: format = VK_FORMAT_B8G8R8A8_UNORM; break; case PTI_RGBA8: case PTI_RGBX8: format = VK_FORMAT_R8G8B8A8_UNORM; break; //misaligned formats case PTI_RGB8: format = VK_FORMAT_R8G8B8_UNORM; break; case PTI_BGR8: format = VK_FORMAT_B8G8R8_UNORM; break; //unsupported 'formats' case PTI_MAX: #ifdef FTE_TARGET_WEB case PTI_WHOLEFILE: #endif case PTI_EMULATED: break; } if (format == VK_FORMAT_UNDEFINED) //no default case means warnings for unsupported formats above. Sys_Error("VK_CreateTexture2DArray: Unrecognised image encoding: %u\n", encoding); ici.flags = (ret.type==PTI_CUBEMAP)?VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT:0; ici.imageType = VK_IMAGE_TYPE_2D; ici.format = format; ici.extent.width = width; ici.extent.height = height; ici.extent.depth = 1; ici.mipLevels = mips; ici.arrayLayers = staging?1:layers; ici.samples = VK_SAMPLE_COUNT_1_BIT; ici.tiling = staging?VK_IMAGE_TILING_LINEAR:VK_IMAGE_TILING_OPTIMAL; ici.usage = staging?VK_IMAGE_USAGE_TRANSFER_SRC_BIT:(VK_IMAGE_USAGE_SAMPLED_BIT|VK_IMAGE_USAGE_TRANSFER_DST_BIT); ici.sharingMode = VK_SHARING_MODE_EXCLUSIVE; ici.queueFamilyIndexCount = 0; ici.pQueueFamilyIndices = NULL; ici.initialLayout = ret.layout; if (vk.nv_dedicated_allocation/* && (size > foo || rendertarget)*/) //FIXME: should only really be used for rendertargets or large images, other stuff should be merged. however, as we don't support any memory suballocations, we're going to just flag everything for now. { nv_daici.dedicatedAllocation = true; nv_daici.pNext = ici.pNext; ici.pNext = &nv_daici; } VkAssert(vkCreateImage(vk.device, &ici, vkallocationcb, &ret.image)); vkGetImageMemoryRequirements(vk.device, ret.image, &mem_reqs); memAllocInfo.allocationSize = mem_reqs.size; if (staging) memAllocInfo.memoryTypeIndex = vk_find_memory_require(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT); else { memAllocInfo.memoryTypeIndex = vk_find_memory_try(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); if (memAllocInfo.memoryTypeIndex == ~0) memAllocInfo.memoryTypeIndex = vk_find_memory_try(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); if (memAllocInfo.memoryTypeIndex == ~0) memAllocInfo.memoryTypeIndex = vk_find_memory_try(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT); if (memAllocInfo.memoryTypeIndex == ~0) memAllocInfo.memoryTypeIndex = vk_find_memory_require(mem_reqs.memoryTypeBits, 0); } if (nv_daici.dedicatedAllocation) { nv_damai.image = ret.image; nv_damai.pNext = memAllocInfo.pNext; memAllocInfo.pNext = &nv_damai; } if (vk.khr_dedicated_allocation) { khr_mdai.image = ret.image; khr_mdai.pNext = memAllocInfo.pNext; memAllocInfo.pNext = &khr_mdai; } VkAssert(vkAllocateMemory(vk.device, &memAllocInfo, vkallocationcb, &ret.memory)); VkAssert(vkBindImageMemory(vk.device, ret.image, ret.memory, 0)); ret.view = VK_NULL_HANDLE; ret.sampler = VK_NULL_HANDLE; if (!staging) { VkImageViewCreateInfo viewInfo = {VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO}; viewInfo.flags = 0; viewInfo.image = ret.image; viewInfo.viewType = (ret.type==PTI_CUBEMAP)?VK_IMAGE_VIEW_TYPE_CUBE:VK_IMAGE_VIEW_TYPE_2D; viewInfo.format = format; switch(encoding) { //formats that explicitly drop the alpha case PTI_BC1_RGB: case PTI_BC1_RGB_SRGB: case PTI_RGBX8: case PTI_RGBX8_SRGB: case PTI_BGRX8: case PTI_BGRX8_SRGB: viewInfo.components.r = VK_COMPONENT_SWIZZLE_R; viewInfo.components.g = VK_COMPONENT_SWIZZLE_G; viewInfo.components.b = VK_COMPONENT_SWIZZLE_B; viewInfo.components.a = VK_COMPONENT_SWIZZLE_ONE; break; case PTI_L8: //must be an R8 texture viewInfo.components.r = VK_COMPONENT_SWIZZLE_R; viewInfo.components.g = VK_COMPONENT_SWIZZLE_R; viewInfo.components.b = VK_COMPONENT_SWIZZLE_R; viewInfo.components.a = VK_COMPONENT_SWIZZLE_ONE; break; case PTI_L8A8: //must be an RG8 texture viewInfo.components.r = VK_COMPONENT_SWIZZLE_R; viewInfo.components.g = VK_COMPONENT_SWIZZLE_R; viewInfo.components.b = VK_COMPONENT_SWIZZLE_R; viewInfo.components.a = VK_COMPONENT_SWIZZLE_G; break; default: viewInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY; viewInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY; viewInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY; viewInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY; break; } viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; viewInfo.subresourceRange.baseMipLevel = 0; viewInfo.subresourceRange.levelCount = mips; viewInfo.subresourceRange.baseArrayLayer = 0; viewInfo.subresourceRange.layerCount = layers; VkAssert(vkCreateImageView(vk.device, &viewInfo, NULL, &ret.view)); } return ret; } void set_image_layout(VkCommandBuffer cmd, VkImage image, VkImageAspectFlags aspectMask, VkImageLayout old_image_layout, VkAccessFlags srcaccess, VkPipelineStageFlagBits srcstagemask, VkImageLayout new_image_layout, VkAccessFlags dstaccess, VkPipelineStageFlagBits dststagemask) { //images have weird layout representations. //we need to use a side-effect of memory barriers in order to convert from one layout to another, so that we can actually use the image. VkImageMemoryBarrier imgbarrier = {VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER}; imgbarrier.pNext = NULL; imgbarrier.srcAccessMask = srcaccess; imgbarrier.dstAccessMask = dstaccess; imgbarrier.oldLayout = old_image_layout; imgbarrier.newLayout = new_image_layout; imgbarrier.image = image; imgbarrier.subresourceRange.aspectMask = aspectMask; imgbarrier.subresourceRange.baseMipLevel = 0; imgbarrier.subresourceRange.levelCount = 1; imgbarrier.subresourceRange.baseArrayLayer = 0; imgbarrier.subresourceRange.layerCount = 1; imgbarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgbarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; /* if (new_image_layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) // Make sure anything that was copying from this image has completed imgbarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; else if (new_image_layout == VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) // Make sure anything that was copying from this image has completed imgbarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT; else if (new_image_layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) imgbarrier.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; else if (new_image_layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) imgbarrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; else if (new_image_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) // Make sure any Copy or CPU writes to image are flushed imgbarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; if (old_image_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) imgbarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT; else if (old_image_layout == VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) imgbarrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT; else if (old_image_layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) imgbarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; */ vkCmdPipelineBarrier(cmd, srcstagemask, dststagemask, 0, 0, NULL, 0, NULL, 1, &imgbarrier); } void VK_FencedCheck(void) { while(vk.fencework) { Sys_LockConditional(vk.submitcondition); if (VK_SUCCESS == vkGetFenceStatus(vk.device, vk.fencework->fence)) { struct vk_fencework *w; w = vk.fencework; vk.fencework = w->next; if (!vk.fencework) vk.fencework_last = NULL; Sys_UnlockConditional(vk.submitcondition); if (w->Passed) w->Passed(w); if (w->cbuf) vkFreeCommandBuffers(vk.device, vk.cmdpool, 1, &w->cbuf); if (w->fence) vkDestroyFence(vk.device, w->fence, vkallocationcb); Z_Free(w); continue; } Sys_UnlockConditional(vk.submitcondition); break; } } //allocate and begin a commandbuffer so we can do the copies void *VK_FencedBegin(void (*passed)(void *work), size_t worksize) { struct vk_fencework *w = BZ_Malloc(worksize?worksize:sizeof(*w)); VkCommandBufferAllocateInfo cbai = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO}; VkCommandBufferInheritanceInfo cmdinh = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO}; VkCommandBufferBeginInfo cmdinf = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO}; cbai.commandPool = vk.cmdpool; cbai.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; cbai.commandBufferCount = 1; VkAssert(vkAllocateCommandBuffers(vk.device, &cbai, &w->cbuf)); cmdinf.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; cmdinf.pInheritanceInfo = &cmdinh; vkBeginCommandBuffer(w->cbuf, &cmdinf); w->Passed = passed; w->next = NULL; return w; } //end+submit a commandbuffer, and set up a fence so we know when its complete. this is not within the context of any frame, so make sure any textures are safe to rewrite early... //completion can be signalled before the current frame finishes, so watch out for that too. void VK_FencedSubmit(void *work) { struct vk_fencework *w = work; VkFenceCreateInfo fenceinfo = {VK_STRUCTURE_TYPE_FENCE_CREATE_INFO}; if (w->cbuf) vkEndCommandBuffer(w->cbuf); //check if we can release anything yet. VK_FencedCheck(); vkCreateFence(vk.device, &fenceinfo, vkallocationcb, &w->fence); VK_Submit_Work(w->cbuf, VK_NULL_HANDLE, 0, VK_NULL_HANDLE, w->fence, NULL, w); } void VK_FencedSync(void *work) { struct vk_fencework *w = work; VK_FencedSubmit(w); #ifdef MULTITHREAD //okay, this is crazy, but it ensures that the work was submitted BEFORE the WaitForFence call. //we should probably come up with a better sync method. if (vk.submitthread) { qboolean nnsc = vk.neednewswapchain; vk.neednewswapchain = true; Sys_LockConditional(vk.submitcondition); //annoying, but required for it to be reliable with respect to other things. Sys_ConditionSignal(vk.submitcondition); Sys_UnlockConditional(vk.submitcondition); Sys_WaitOnThread(vk.submitthread); vk.submitthread = NULL; while (vk.work) { Sys_LockConditional(vk.submitcondition); VK_Submit_DoWork(); Sys_UnlockConditional(vk.submitcondition); } //we know all work is synced now... vk.neednewswapchain = nnsc; vk.submitthread = Sys_CreateThread("vksubmission", VK_Submit_Thread, NULL, THREADP_HIGHEST, 0); } #endif //fixme: waiting for the fence while it may still be getting created by the worker is unsafe. vkWaitForFences(vk.device, 1, &w->fence, VK_FALSE, UINT64_MAX); } //called to schedule the release of a resource that may be referenced by an active command buffer. //the command buffer in question may even have not yet been submitted yet. void *VK_AtFrameEnd(void (*frameended)(void *work), void *workdata, size_t worksize) { struct vk_frameend *w = Z_Malloc(sizeof(*w) + worksize); w->FrameEnded = frameended; w->next = vk.frameendjobs; vk.frameendjobs = w; if (workdata) memcpy(w+1, workdata, worksize); return w+1; } #define USE_STAGING_BUFFERS struct texturefence { struct vk_fencework w; int mips; #ifdef USE_STAGING_BUFFERS VkBuffer stagingbuffer; VkDeviceMemory stagingmemory; #else vk_image_t staging[32]; #endif }; static void VK_TextureLoaded(void *ctx) { struct texturefence *w = ctx; #ifdef USE_STAGING_BUFFERS vkDestroyBuffer(vk.device, w->stagingbuffer, vkallocationcb); vkFreeMemory(vk.device, w->stagingmemory, vkallocationcb); #else unsigned int i; for (i = 0; i < w->mips; i++) if (w->staging[i].image != VK_NULL_HANDLE) { vkDestroyImage(vk.device, w->staging[i].image, vkallocationcb); vkFreeMemory(vk.device, w->staging[i].memory, vkallocationcb); } #endif } qboolean VK_LoadTextureMips (texid_t tex, const struct pendingtextureinfo *mips) { #ifdef USE_STAGING_BUFFERS VkBufferCreateInfo bci = {VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO}; VkMemoryRequirements mem_reqs; VkMemoryAllocateInfo memAllocInfo = {VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO}; void *mapdata; #else uint32_t y; #endif struct texturefence *fence; VkCommandBuffer vkloadcmd; vk_image_t target; uint32_t i; uint32_t blockwidth, blockheight; uint32_t blockbytes; uint32_t layers; uint32_t mipcount = mips->mipcount; if (mips->type != PTI_2D && mips->type != PTI_CUBEMAP)// && mips->type != PTI_2D_ARRAY) return false; if (!mipcount || mips->mip[0].width == 0 || mips->mip[0].height == 0) return false; layers = (mips->type == PTI_CUBEMAP)?6:1; layers *= mips->mip[0].depth; if (layers == 1 && mipcount > 1) { //npot mipmapped textures are awkward. //vulkan floors. for (i = 1; i < mipcount; i++) { if (mips->mip[i].width != max(1,(mips->mip[i-1].width>>1)) || mips->mip[i].height != max(1,(mips->mip[i-1].height>>1))) { //okay, this mip looks like it was sized wrongly. this can easily happen with dds files. mipcount = i; break; } } } Image_BlockSizeForEncoding(mips->encoding, &blockbytes, &blockwidth, &blockheight); fence = VK_FencedBegin(VK_TextureLoaded, sizeof(*fence)); fence->mips = mipcount; vkloadcmd = fence->w.cbuf; //create our target image if (tex->vkimage) { if (tex->vkimage->width != mips->mip[0].width || tex->vkimage->height != mips->mip[0].height || tex->vkimage->layers != layers || tex->vkimage->mipcount != mipcount || tex->vkimage->encoding != mips->encoding || tex->vkimage->type != mips->type) { VK_AtFrameEnd(VK_DestroyVkTexture_Delayed, tex->vkimage, sizeof(*tex->vkimage)); // vkDeviceWaitIdle(vk.device); //erk, we can't cope with a commandbuffer poking the texture while things happen // VK_FencedCheck(); // VK_DestroyVkTexture(tex->vkimage); Z_Free(tex->vkimage); tex->vkimage = NULL; } } if (tex->vkimage) { target = *tex->vkimage; //can reuse it Z_Free(tex->vkimage); //we're meant to be replacing the entire thing, so we can just transition from undefined here // set_image_layout(vkloadcmd, target.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_ACCESS_SHADER_READ_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT); { //images have weird layout representations. //we need to use a side-effect of memory barriers in order to convert from one layout to another, so that we can actually use the image. VkImageMemoryBarrier imgbarrier = {VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER}; imgbarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; imgbarrier.newLayout = target.layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; imgbarrier.image = target.image; imgbarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imgbarrier.subresourceRange.baseMipLevel = 0; imgbarrier.subresourceRange.levelCount = mipcount/layers; imgbarrier.subresourceRange.baseArrayLayer = 0; imgbarrier.subresourceRange.layerCount = layers; imgbarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgbarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgbarrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT; imgbarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; vkCmdPipelineBarrier(vkloadcmd, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, NULL, 0, NULL, 1, &imgbarrier); } } else { target = VK_CreateTexture2DArray(mips->mip[0].width, mips->mip[0].height, layers, mipcount/layers, mips->encoding, mips->type, !!(tex->flags&IF_RENDERTARGET)); { //images have weird layout representations. //we need to use a side-effect of memory barriers in order to convert from one layout to another, so that we can actually use the image. VkImageMemoryBarrier imgbarrier = {VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER}; imgbarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; imgbarrier.newLayout = target.layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; imgbarrier.image = target.image; imgbarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imgbarrier.subresourceRange.baseMipLevel = 0; imgbarrier.subresourceRange.levelCount = mipcount/layers; imgbarrier.subresourceRange.baseArrayLayer = 0; imgbarrier.subresourceRange.layerCount = layers; imgbarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgbarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgbarrier.srcAccessMask = 0; imgbarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; vkCmdPipelineBarrier(vkloadcmd, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, NULL, 0, NULL, 1, &imgbarrier); } } #ifdef USE_STAGING_BUFFERS //figure out how big our staging buffer needs to be bci.size = 0; for (i = 0; i < mipcount; i++) { uint32_t blockswidth = (mips->mip[i].width+blockwidth-1) / blockwidth; uint32_t blocksheight = (mips->mip[i].height+blockheight-1) / blockheight; bci.size += blockswidth*blocksheight*blockbytes; } bci.flags = 0; bci.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT; bci.sharingMode = VK_SHARING_MODE_EXCLUSIVE; bci.queueFamilyIndexCount = 0; bci.pQueueFamilyIndices = NULL; //FIXME: nvidia's vkCreateBuffer ends up calling NtYieldExecution. //which is basically a waste of time, and its hurting framerates. //create+map the staging buffer VkAssert(vkCreateBuffer(vk.device, &bci, vkallocationcb, &fence->stagingbuffer)); vkGetBufferMemoryRequirements(vk.device, fence->stagingbuffer, &mem_reqs); memAllocInfo.allocationSize = mem_reqs.size; memAllocInfo.memoryTypeIndex = vk_find_memory_require(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT); VkAssert(vkAllocateMemory(vk.device, &memAllocInfo, vkallocationcb, &fence->stagingmemory)); VkAssert(vkBindBufferMemory(vk.device, fence->stagingbuffer, fence->stagingmemory, 0)); VkAssert(vkMapMemory(vk.device, fence->stagingmemory, 0, bci.size, 0, &mapdata)); if (!mapdata) Sys_Error("Unable to map staging image\n"); bci.size = 0; for (i = 0; i < mipcount; i++) { VkBufferImageCopy region; //figure out the number of 'blocks' in the image. //for non-compressed formats this is just the width directly. //for compressed formats (ie: s3tc/dxt) we need to round up to deal with npot. uint32_t blockswidth = (mips->mip[i].width+blockwidth-1) / blockwidth; uint32_t blocksheight = (mips->mip[i].height+blockheight-1) / blockheight; if (mips->mip[i].data) memcpy((char*)mapdata + bci.size, (char*)mips->mip[i].data, blockswidth*blockbytes*blocksheight); else memset((char*)mapdata + bci.size, 0, blockswidth*blockbytes*blocksheight); //queue up a buffer->image copy for this mip region.bufferOffset = bci.size; region.bufferRowLength = blockswidth*blockwidth; region.bufferImageHeight = blocksheight*blockheight; region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; region.imageSubresource.mipLevel = i%(mipcount/layers); region.imageSubresource.baseArrayLayer = i/(mipcount/layers); region.imageSubresource.layerCount = 1; region.imageOffset.x = 0; region.imageOffset.y = 0; region.imageOffset.z = 0; region.imageExtent.width = mips->mip[i].width;//blockswidth*blockwidth; region.imageExtent.height = mips->mip[i].height;//blocksheight*blockheight; region.imageExtent.depth = 1; vkCmdCopyBufferToImage(vkloadcmd, fence->stagingbuffer, target.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion); bci.size += blockswidth*blocksheight*blockbytes; } vkUnmapMemory(vk.device, fence->stagingmemory); #else //create the staging images and fill them for (i = 0; i < mipcount; i++) { VkImageSubresource subres = {0}; VkSubresourceLayout layout; void *mapdata; //figure out the number of 'blocks' in the image. //for non-compressed formats this is just the width directly. //for compressed formats (ie: s3tc/dxt) we need to round up to deal with npot. uint32_t blockswidth = (mips->mip[i].width+blockwidth-1) / blockwidth; uint32_t blocksheight = (mips->mip[i].height+blockheight-1) / blockheight; fence->staging[i] = VK_CreateTexture2DArray(mips->mip[i].width, mips->mip[i].height, 0, 1, mips->encoding, PTI_2D); subres.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subres.mipLevel = 0; subres.arrayLayer = 0; vkGetImageSubresourceLayout(vk.device, fence->staging[i].image, &subres, &layout); VkAssert(vkMapMemory(vk.device, fence->staging[i].memory, 0, layout.size, 0, &mapdata)); if (mapdata) { for (y = 0; y < blockheight; y++) memcpy((char*)mapdata + layout.offset + y*layout.rowPitch, (char*)mips->mip[i].data + y*blockswidth*blockbytes, blockswidth*blockbytes); } else Sys_Error("Unable to map staging image\n"); vkUnmapMemory(vk.device, fence->staging[i].memory); //queue up an image copy for this mip { VkImageCopy region; region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; region.srcSubresource.mipLevel = 0; region.srcSubresource.baseArrayLayer = 0; region.srcSubresource.layerCount = 1; region.srcOffset.x = 0; region.srcOffset.y = 0; region.srcOffset.z = 0; region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; region.dstSubresource.mipLevel = i%(mipcount/layers); region.dstSubresource.baseArrayLayer = i/(mipcount/layers); region.dstSubresource.layerCount = 1; region.dstOffset.x = 0; region.dstOffset.y = 0; region.dstOffset.z = 0; region.extent.width = mips->mip[i].width; region.extent.height = mips->mip[i].height; region.extent.depth = 1; set_image_layout(vkloadcmd, fence->staging[i].image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_PREINITIALIZED, VK_ACCESS_HOST_WRITE_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT); vkCmdCopyImage(vkloadcmd, fence->staging[i].image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, target.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion); } } #endif //layouts are annoying. and weird. { //images have weird layout representations. //we need to use a side-effect of memory barriers in order to convert from one layout to another, so that we can actually use the image. VkImageMemoryBarrier imgbarrier = {VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER}; imgbarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; imgbarrier.newLayout = target.layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; imgbarrier.image = target.image; imgbarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imgbarrier.subresourceRange.baseMipLevel = 0; imgbarrier.subresourceRange.levelCount = mipcount/layers; imgbarrier.subresourceRange.baseArrayLayer = 0; imgbarrier.subresourceRange.layerCount = layers; imgbarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgbarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgbarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; imgbarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; vkCmdPipelineBarrier(vkloadcmd, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, NULL, 0, NULL, 1, &imgbarrier); } VK_FencedSubmit(fence); //FIXME: should probably reuse these samplers. if (!target.sampler) VK_CreateSampler(tex->flags, &target); tex->vkdescriptor = VK_NULL_HANDLE; tex->vkimage = Z_Malloc(sizeof(*tex->vkimage)); *tex->vkimage = target; return true; } void VK_DestroyTexture (texid_t tex) { if (tex->vkimage) { VK_DestroyVkTexture(tex->vkimage); Z_Free(tex->vkimage); tex->vkimage = NULL; } tex->vkdescriptor = VK_NULL_HANDLE; } void VK_R_Init (void) { } void VK_R_DeInit (void) { R_GAliasFlushSkinCache(true); Surf_DeInit(); VK_Shutdown_PostProc(); VK_DestroySwapChain(); VKBE_Shutdown(); Shader_Shutdown(); Image_Shutdown(); } void VK_SetupViewPortProjection(qboolean flipy) { float fov_x, fov_y; float fovv_x, fovv_y; AngleVectors (r_refdef.viewangles, vpn, vright, vup); VectorCopy (r_refdef.vieworg, r_origin); fov_x = r_refdef.fov_x;//+sin(cl.time)*5; fov_y = r_refdef.fov_y;//-sin(cl.time+1)*5; fovv_x = r_refdef.fovv_x; fovv_y = r_refdef.fovv_y; if ((r_refdef.flags & RDF_UNDERWATER) && !(r_refdef.flags & RDF_WATERWARP)) { fov_x *= 1 + (((sin(cl.time * 4.7) + 1) * 0.015) * r_waterwarp.value); fov_y *= 1 + (((sin(cl.time * 3.0) + 1) * 0.015) * r_waterwarp.value); fovv_x *= 1 + (((sin(cl.time * 4.7) + 1) * 0.015) * r_waterwarp.value); fovv_y *= 1 + (((sin(cl.time * 3.0) + 1) * 0.015) * r_waterwarp.value); } // screenaspect = (float)r_refdef.vrect.width/r_refdef.vrect.height; /*view matrix*/ if (flipy) //mimic gl and give bottom-up { vec3_t down; VectorNegate(vup, down); VectorCopy(down, vup); Matrix4x4_CM_ModelViewMatrixFromAxis(r_refdef.m_view, vpn, vright, down, r_refdef.vieworg); r_refdef.flipcull = SHADER_CULL_FRONT | SHADER_CULL_BACK; } else { Matrix4x4_CM_ModelViewMatrixFromAxis(r_refdef.m_view, vpn, vright, vup, r_refdef.vieworg); r_refdef.flipcull = 0; } if (r_refdef.maxdist) { Matrix4x4_CM_Projection_Far(r_refdef.m_projection_std, fov_x, fov_y, r_refdef.mindist, r_refdef.maxdist, false); Matrix4x4_CM_Projection_Far(r_refdef.m_projection_view, fovv_x, fovv_y, r_refdef.mindist, r_refdef.maxdist, false); } else { Matrix4x4_CM_Projection_Inf(r_refdef.m_projection_std, fov_x, fov_y, r_refdef.mindist, false); Matrix4x4_CM_Projection_Inf(r_refdef.m_projection_view, fovv_x, fovv_y, r_refdef.mindist, false); } r_refdef.m_projection_view[2+4*0] *= 0.333; r_refdef.m_projection_view[2+4*1] *= 0.333; r_refdef.m_projection_view[2+4*2] *= 0.333; r_refdef.m_projection_view[2+4*3] *= 0.333; } void VK_Set2D(void) { vid.fbvwidth = vid.width; vid.fbvheight = vid.height; vid.fbpwidth = vid.pixelwidth; vid.fbpheight = vid.pixelheight; r_refdef.pxrect.x = 0; r_refdef.pxrect.y = 0; r_refdef.pxrect.width = vid.fbpwidth; r_refdef.pxrect.height = vid.fbpheight; r_refdef.pxrect.maxheight = vid.pixelheight; /* { VkClearDepthStencilValue val; VkImageSubresourceRange range; val.depth = 1; val.stencil = 0; range.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; range.baseArrayLayer = 0; range.baseMipLevel = 0; range.layerCount = 1; range.levelCount = 1; vkCmdClearDepthStencilImage(vk.frame->cbuf, vk.depthbuf.image, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, &val, 1, &range); } */ /* vkCmdEndRenderPass(vk.frame->cbuf); { VkRenderPassBeginInfo rpiinfo = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO}; VkClearValue clearvalues[1]; clearvalues[0].depthStencil.depth = 1.0; clearvalues[0].depthStencil.stencil = 0; rpiinfo.renderPass = vk.renderpass[1]; rpiinfo.renderArea.offset.x = r_refdef.pxrect.x; rpiinfo.renderArea.offset.y = r_refdef.pxrect.y; rpiinfo.renderArea.extent.width = r_refdef.pxrect.width; rpiinfo.renderArea.extent.height = r_refdef.pxrect.height; rpiinfo.framebuffer = vk.frame->backbuf->framebuffer; rpiinfo.clearValueCount = 1; rpiinfo.pClearValues = clearvalues; vkCmdBeginRenderPass(vk.frame->cbuf, &rpiinfo, VK_SUBPASS_CONTENTS_INLINE); } */ { VkViewport vp[1]; VkRect2D scissor[1]; vp[0].x = r_refdef.pxrect.x; vp[0].y = r_refdef.pxrect.y; vp[0].width = r_refdef.pxrect.width; vp[0].height = r_refdef.pxrect.height; vp[0].minDepth = 0.0; vp[0].maxDepth = 1.0; scissor[0].offset.x = r_refdef.pxrect.x; scissor[0].offset.y = r_refdef.pxrect.y; scissor[0].extent.width = r_refdef.pxrect.width; scissor[0].extent.height = r_refdef.pxrect.height; vkCmdSetViewport(vk.rendertarg->cbuf, 0, countof(vp), vp); vkCmdSetScissor(vk.rendertarg->cbuf, 0, countof(scissor), scissor); } VKBE_Set2D(true); if (0) Matrix4x4_CM_Orthographic(r_refdef.m_projection_std, 0, vid.fbvwidth, 0, vid.fbvheight, -99999, 99999); else Matrix4x4_CM_Orthographic(r_refdef.m_projection_std, 0, vid.fbvwidth, vid.fbvheight, 0, -99999, 99999); Matrix4x4_Identity(r_refdef.m_view); BE_SelectEntity(&r_worldentity); } static void VK_Shutdown_PostProc(void) { unsigned int i; for (i = 0; i < countof(postproc); i++) VKBE_RT_Gen(&postproc[i], 0, 0, true, RT_IMAGEFLAGS); vk.scenepp_waterwarp = NULL; vk.scenepp_antialias = NULL; VK_R_BloomShutdown(); } static void VK_Init_PostProc(void) { texid_t scenepp_texture_warp, scenepp_texture_edge; //this block liberated from the opengl code { #define PP_WARP_TEX_SIZE 64 #define PP_AMP_TEX_SIZE 64 #define PP_AMP_TEX_BORDER 4 int i, x, y; unsigned char pp_warp_tex[PP_WARP_TEX_SIZE*PP_WARP_TEX_SIZE*4]; unsigned char pp_edge_tex[PP_AMP_TEX_SIZE*PP_AMP_TEX_SIZE*4]; // scenepp_postproc_cube = r_nulltex; // TEXASSIGN(sceneblur_texture, Image_CreateTexture("***postprocess_blur***", NULL, 0)); TEXASSIGN(scenepp_texture_warp, Image_CreateTexture("***postprocess_warp***", NULL, IF_NOMIPMAP|IF_NOGAMMA|IF_LINEAR)); TEXASSIGN(scenepp_texture_edge, Image_CreateTexture("***postprocess_edge***", NULL, IF_NOMIPMAP|IF_NOGAMMA|IF_LINEAR)); // init warp texture - this specifies offset in for (y=0; y PP_AMP_TEX_SIZE - PP_AMP_TEX_BORDER) { fx = (PP_AMP_TEX_SIZE - (float)x) / PP_AMP_TEX_BORDER; } if (y < PP_AMP_TEX_BORDER) { fy = (float)y / PP_AMP_TEX_BORDER; } if (y > PP_AMP_TEX_SIZE - PP_AMP_TEX_BORDER) { fy = (PP_AMP_TEX_SIZE - (float)y) / PP_AMP_TEX_BORDER; } //avoid any sudden changes. fx=sin(fx*M_PI*0.5); fy=sin(fy*M_PI*0.5); //lame fx = fy = min(fx, fy); pp_edge_tex[i ] = fx * 255; pp_edge_tex[i+1] = fy * 255; pp_edge_tex[i+2] = 0; pp_edge_tex[i+3] = 0xff; } } Image_Upload(scenepp_texture_edge, TF_RGBX32, pp_edge_tex, NULL, PP_AMP_TEX_SIZE, PP_AMP_TEX_SIZE, IF_LINEAR|IF_NOMIPMAP|IF_NOGAMMA); } vk.scenepp_waterwarp = R_RegisterShader("waterwarp", SUF_NONE, "{\n" "program underwaterwarp\n" "{\n" "map $sourcecolour\n" "}\n" "{\n" "map $upperoverlay\n" "}\n" "{\n" "map $loweroverlay\n" "}\n" "}\n" ); vk.scenepp_waterwarp->defaulttextures->upperoverlay = scenepp_texture_warp; vk.scenepp_waterwarp->defaulttextures->loweroverlay = scenepp_texture_edge; vk.scenepp_antialias = R_RegisterShader("fte_ppantialias", 0, "{\n" "program fxaa\n" "{\n" "map $sourcecolour\n" "}\n" "}\n" ); } static qboolean VK_R_RenderScene_Cubemap(struct vk_rendertarg *fb) { int cmapsize = 512; int i; static vec3_t ang[6] = { {0, -90, 0}, {0, 90, 0}, {90, 0, 0}, {-90, 0, 0}, {0, 0, 0}, {0, -180, 0} }; vec3_t saveang; vec3_t saveorg; vrect_t vrect; pxrect_t prect; extern cvar_t ffov; shader_t *shader; int facemask; extern cvar_t r_projection; int osm; struct vk_rendertarg_cube *rtc = &vk_rt_cubemap; if (!*ffov.string || !strcmp(ffov.string, "0")) { if (ffov.vec4[0] != scr_fov.value) { ffov.value = ffov.vec4[0] = scr_fov.value; Shader_NeedReload(false); //gah! } } facemask = 0; switch(r_projection.ival) { default: //invalid. return false; case PROJ_STEREOGRAPHIC: shader = R_RegisterShader("postproc_stereographic", SUF_NONE, "{\n" "program postproc_stereographic\n" "{\n" "map $sourcecube\n" "}\n" "}\n" ); facemask |= 1<<4; /*front view*/ if (ffov.value > 70) { facemask |= (1<<0) | (1<<1); /*side/top*/ if (ffov.value > 85) facemask |= (1<<2) | (1<<3); /*bottom views*/ if (ffov.value > 300) facemask |= 1<<5; /*back view*/ } break; case PROJ_FISHEYE: shader = R_RegisterShader("postproc_fisheye", SUF_NONE, "{\n" "program postproc_fisheye\n" "{\n" "map $sourcecube\n" "}\n" "}\n" ); //fisheye view sees up to a full sphere facemask |= 1<<4; /*front view*/ if (ffov.value > 77) facemask |= (1<<0) | (1<<1) | (1<<2) | (1<<3); /*side/top/bottom views*/ if (ffov.value > 270) facemask |= 1<<5; /*back view*/ break; case PROJ_PANORAMA: shader = R_RegisterShader("postproc_panorama", SUF_NONE, "{\n" "program postproc_panorama\n" "{\n" "map $sourcecube\n" "}\n" "}\n" ); //panoramic view needs at most the four sides facemask |= 1<<4; /*front view*/ if (ffov.value > 90) { facemask |= (1<<0) | (1<<1); /*side views*/ if (ffov.value > 270) facemask |= 1<<5; /*back view*/ } facemask = 0x3f; break; case PROJ_LAEA: shader = R_RegisterShader("postproc_laea", SUF_NONE, "{\n" "program postproc_laea\n" "{\n" "map $sourcecube\n" "}\n" "}\n" ); facemask |= 1<<4; /*front view*/ if (ffov.value > 90) { facemask |= (1<<0) | (1<<1) | (1<<2) | (1<<3); /*side/top/bottom views*/ if (ffov.value > 270) facemask |= 1<<5; /*back view*/ } break; case PROJ_EQUIRECTANGULAR: shader = R_RegisterShader("postproc_equirectangular", SUF_NONE, "{\n" "program postproc_equirectangular\n" "{\n" "map $sourcecube\n" "}\n" "}\n" ); facemask = 0x3f; #if 0 facemask |= 1<<4; /*front view*/ if (ffov.value > 90) { facemask |= (1<<0) | (1<<1) | (1<<2) | (1<<3); /*side/top/bottom views*/ if (ffov.value > 270) facemask |= 1<<5; /*back view*/ } #endif break; } if (!shader || !shader->prog) return false; //erk. shader failed. //FIXME: we should be able to rotate the view vrect = r_refdef.vrect; prect = r_refdef.pxrect; // prect.x = (vrect.x * vid.pixelwidth)/vid.width; // prect.width = (vrect.width * vid.pixelwidth)/vid.width; // prect.y = (vrect.y * vid.pixelheight)/vid.height; // prect.height = (vrect.height * vid.pixelheight)/vid.height; if (sh_config.texture_non_power_of_two_pic) { cmapsize = prect.width > prect.height?prect.width:prect.height; if (cmapsize > 4096)//sh_config.texture_maxsize) cmapsize = 4096;//sh_config.texture_maxsize; } r_refdef.flags |= RDF_FISHEYE; vid.fbpwidth = vid.fbpheight = cmapsize; //FIXME: gl_max_size VectorCopy(r_refdef.vieworg, saveorg); VectorCopy(r_refdef.viewangles, saveang); saveang[2] = 0; osm = r_refdef.stereomethod; r_refdef.stereomethod = STEREO_OFF; VKBE_RT_Gen_Cube(rtc, cmapsize, r_clear.ival?true:false); vrect = r_refdef.vrect; //save off the old vrect r_refdef.vrect.width = (cmapsize * vid.fbvwidth) / vid.fbpwidth; r_refdef.vrect.height = (cmapsize * vid.fbvheight) / vid.fbpheight; r_refdef.vrect.x = 0; r_refdef.vrect.y = prect.y; ang[0][0] = -saveang[0]; ang[0][1] = -90; ang[0][2] = -saveang[0]; ang[1][0] = -saveang[0]; ang[1][1] = 90; ang[1][2] = saveang[0]; ang[5][0] = -saveang[0]*2; //in theory, we could use a geometry shader to duplicate the polygons to each face. //that would of course require that every bit of glsl had such a geometry shader. //it would at least reduce cpu load quite a bit. for (i = 0; i < 6; i++) { if (!(facemask & (1<face[i]); r_refdef.fov_x = 90; r_refdef.fov_y = 90; r_refdef.viewangles[0] = saveang[0]+ang[i][0]; r_refdef.viewangles[1] = saveang[1]+ang[i][1]; r_refdef.viewangles[2] = saveang[2]+ang[i][2]; VK_SetupViewPortProjection(true); /*if (!vk.rendertarg->depthcleared) { VkClearAttachment clr; VkClearRect rect; clr.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; clr.clearValue.depthStencil.depth = 1; clr.clearValue.depthStencil.stencil = 0; clr.colorAttachment = 1; rect.rect.offset.x = r_refdef.pxrect.x; rect.rect.offset.y = r_refdef.pxrect.y; rect.rect.extent.width = r_refdef.pxrect.width; rect.rect.extent.height = r_refdef.pxrect.height; rect.layerCount = 1; rect.baseArrayLayer = 0; vkCmdClearAttachments(vk.frame->cbuf, 1, &clr, 1, &rect); vk.rendertarg->depthcleared = true; }*/ VKBE_SelectEntity(&r_worldentity); R_SetFrustum (r_refdef.m_projection_std, r_refdef.m_view); RQ_BeginFrame(); if (!(r_refdef.flags & RDF_NOWORLDMODEL)) { if (cl.worldmodel) P_DrawParticles (); } Surf_DrawWorld(); RQ_RenderBatchClear(); vk.rendertarg->depthcleared = false; if (R2D_Flush) Con_Printf("no flush\n"); } r_refdef.vrect = vrect; r_refdef.pxrect = prect; VectorCopy(saveorg, r_refdef.vieworg); r_refdef.stereomethod = osm; VKBE_RT_Begin(fb); r_refdef.flipcull = 0; VK_Set2D(); shader->defaulttextures->reflectcube = &rtc->q_colour; // draw it through the shader if (r_projection.ival == PROJ_EQUIRECTANGULAR) { //note vr screenshots have requirements here R2D_Image(vrect.x, vrect.y, vrect.width, vrect.height, 0, 1, 1, 0, shader); } else if (r_projection.ival == PROJ_PANORAMA) { float saspect = .5; float taspect = vrect.height / vrect.width * ffov.value / 90;//(0.5 * vrect.width) / vrect.height; R2D_Image(vrect.x, vrect.y, vrect.width, vrect.height, -saspect, taspect, saspect, -taspect, shader); } else if (vrect.width > vrect.height) { float aspect = (0.5 * vrect.height) / vrect.width; R2D_Image(vrect.x, vrect.y, vrect.width, vrect.height, -0.5, aspect, 0.5, -aspect, shader); } else { float aspect = (0.5 * vrect.width) / vrect.height; R2D_Image(vrect.x, vrect.y, vrect.width, vrect.height, -aspect, 0.5, aspect, -0.5, shader); } if (R2D_Flush) R2D_Flush(); return true; } void VK_R_RenderView (void) { extern unsigned int r_viewcontents; struct vk_rendertarg *rt, *rtscreen = vk.rendertarg; extern cvar_t r_fxaa; extern cvar_t r_renderscale, r_postprocshader; float renderscale = r_renderscale.value; shader_t *custompostproc; if (r_norefresh.value || !vid.fbpwidth || !vid.fbpwidth) { VK_Set2D (); return; } VKBE_Set2D(false); Surf_SetupFrame(); //check if we can do underwater warp if (cls.protocol != CP_QUAKE2) //quake2 tells us directly { if (r_viewcontents & FTECONTENTS_FLUID) r_refdef.flags |= RDF_UNDERWATER; else r_refdef.flags &= ~RDF_UNDERWATER; } if (r_refdef.flags & RDF_UNDERWATER) { extern cvar_t r_projection; if (!r_waterwarp.value || r_projection.ival) r_refdef.flags &= ~RDF_UNDERWATER; //no warp at all else if (r_waterwarp.value > 0) r_refdef.flags |= RDF_WATERWARP; //try fullscreen warp instead if we can } if (!r_refdef.globalfog.density) { int fogtype = ((r_refdef.flags & RDF_UNDERWATER) && cl.fog[1].density)?1:0; CL_BlendFog(&r_refdef.globalfog, &cl.oldfog[fogtype], realtime, &cl.fog[fogtype]); r_refdef.globalfog.density /= 64; //FIXME } custompostproc = NULL; if (r_refdef.flags & RDF_NOWORLDMODEL) renderscale = 1; //with no worldmodel, this is probably meant to be transparent so make sure that there's no post-proc stuff messing up transparencies. else { if (*r_postprocshader.string) { custompostproc = R_RegisterCustom(r_postprocshader.string, SUF_NONE, NULL, NULL); if (custompostproc) r_refdef.flags |= RDF_CUSTOMPOSTPROC; } if (r_fxaa.ival) //overlays will have problems. r_refdef.flags |= RDF_ANTIALIAS; if (R_CanBloom()) r_refdef.flags |= RDF_BLOOM; } if (vk.multisamplebits != VK_SAMPLE_COUNT_1_BIT) //these are unsupported right now. r_refdef.flags &= ~(RDF_CUSTOMPOSTPROC|RDF_ANTIALIAS|RDF_BLOOM); // // figure out the viewport // { int x = r_refdef.vrect.x * vid.pixelwidth/(int)vid.width; int x2 = (r_refdef.vrect.x + r_refdef.vrect.width) * vid.pixelwidth/(int)vid.width; int y = (r_refdef.vrect.y) * vid.pixelheight/(int)vid.height; int y2 = ((int)(r_refdef.vrect.y + r_refdef.vrect.height)) * vid.pixelheight/(int)vid.height; // fudge around because of frac screen scale if (x > 0) x--; if (x2 < vid.pixelwidth) x2++; if (y < 0) y--; if (y2 < vid.pixelheight) y2++; r_refdef.pxrect.x = x; r_refdef.pxrect.y = y; r_refdef.pxrect.width = x2 - x; r_refdef.pxrect.height = y2 - y; r_refdef.pxrect.maxheight = vid.pixelheight; } if (renderscale != 1.0) { r_refdef.flags |= RDF_RENDERSCALE; if (renderscale < 0) renderscale *= -1; r_refdef.pxrect.width *= renderscale; r_refdef.pxrect.height *= renderscale; r_refdef.pxrect.maxheight = r_refdef.pxrect.height; } if (r_refdef.pxrect.width <= 0 || r_refdef.pxrect.height <= 0) return; //you're not allowed to do that, dude. //FIXME: VF_RT_* //FIXME: if we're meant to be using msaa, render the scene to an msaa target and then resolve. postproc_buf = 0; if (r_refdef.flags & (RDF_ALLPOSTPROC|RDF_RENDERSCALE)) { r_refdef.pxrect.x = 0; r_refdef.pxrect.y = 0; rt = &postproc[postproc_buf++%countof(postproc)]; VKBE_RT_Gen(rt, r_refdef.pxrect.width, r_refdef.pxrect.height, false, (r_renderscale.value < 0)?RT_IMAGEFLAGS-IF_LINEAR+IF_NEAREST:RT_IMAGEFLAGS); } else rt = rtscreen; if (!(r_refdef.flags & RDF_NOWORLDMODEL) && VK_R_RenderScene_Cubemap(rt)) { } else { VK_SetupViewPortProjection(false); if (rt != rtscreen) VKBE_RT_Begin(rt); else { VkViewport vp[1]; VkRect2D scissor[1]; vp[0].x = r_refdef.pxrect.x; vp[0].y = r_refdef.pxrect.y; vp[0].width = r_refdef.pxrect.width; vp[0].height = r_refdef.pxrect.height; vp[0].minDepth = 0.0; vp[0].maxDepth = 1.0; scissor[0].offset.x = r_refdef.pxrect.x; scissor[0].offset.y = r_refdef.pxrect.y; scissor[0].extent.width = r_refdef.pxrect.width; scissor[0].extent.height = r_refdef.pxrect.height; vkCmdSetViewport(vk.rendertarg->cbuf, 0, countof(vp), vp); vkCmdSetScissor(vk.rendertarg->cbuf, 0, countof(scissor), scissor); } if (!vk.rendertarg->depthcleared) { VkClearAttachment clr; VkClearRect rect; clr.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; clr.clearValue.depthStencil.depth = 1; clr.clearValue.depthStencil.stencil = 0; clr.colorAttachment = 1; rect.rect.offset.x = r_refdef.pxrect.x; rect.rect.offset.y = r_refdef.pxrect.y; rect.rect.extent.width = r_refdef.pxrect.width; rect.rect.extent.height = r_refdef.pxrect.height; rect.layerCount = 1; rect.baseArrayLayer = 0; vkCmdClearAttachments(vk.rendertarg->cbuf, 1, &clr, 1, &rect); vk.rendertarg->depthcleared = true; } VKBE_SelectEntity(&r_worldentity); R_SetFrustum (r_refdef.m_projection_std, r_refdef.m_view); RQ_BeginFrame(); if (!(r_refdef.flags & RDF_NOWORLDMODEL)) { if (cl.worldmodel) P_DrawParticles (); } Surf_DrawWorld(); RQ_RenderBatchClear(); vk.rendertarg->depthcleared = false; VK_Set2D (); if (rt != rtscreen) VKBE_RT_End(rt); } if (r_refdef.flags & RDF_ALLPOSTPROC) { if (!vk.scenepp_waterwarp) VK_Init_PostProc(); //FIXME: chain renderpasses as required. if (r_refdef.flags & RDF_WATERWARP) { r_refdef.flags &= ~RDF_WATERWARP; vk.sourcecolour = &rt->q_colour; if (r_refdef.flags & RDF_ALLPOSTPROC) { rt = &postproc[postproc_buf++]; VKBE_RT_Gen(rt, 320, 200, false, RT_IMAGEFLAGS); } else rt = rtscreen; if (rt != rtscreen) VKBE_RT_Begin(rt); R2D_Image(r_refdef.vrect.x, r_refdef.vrect.y, r_refdef.vrect.width, r_refdef.vrect.height, 0, 0, 1, 1, vk.scenepp_waterwarp); R2D_Flush(); if (rt != rtscreen) VKBE_RT_End(rt); } if (r_refdef.flags & RDF_CUSTOMPOSTPROC) { r_refdef.flags &= ~RDF_CUSTOMPOSTPROC; vk.sourcecolour = &rt->q_colour; if (r_refdef.flags & RDF_ALLPOSTPROC) { rt = &postproc[postproc_buf++]; VKBE_RT_Gen(rt, 320, 200, false, RT_IMAGEFLAGS); } else rt = rtscreen; if (rt != rtscreen) VKBE_RT_Begin(rt); R2D_Image(r_refdef.vrect.x, r_refdef.vrect.y, r_refdef.vrect.width, r_refdef.vrect.height, 0, 1, 1, 0, custompostproc); R2D_Flush(); if (rt != rtscreen) VKBE_RT_End(rt); } if (r_refdef.flags & RDF_ANTIALIAS) { r_refdef.flags &= ~RDF_ANTIALIAS; R2D_ImageColours(rt->width, rt->height, 1, 1); vk.sourcecolour = &rt->q_colour; if (r_refdef.flags & RDF_ALLPOSTPROC) { rt = &postproc[postproc_buf++]; VKBE_RT_Gen(rt, 320, 200, false, RT_IMAGEFLAGS); } else rt = rtscreen; if (rt != rtscreen) VKBE_RT_Begin(rt); R2D_Image(r_refdef.vrect.x, r_refdef.vrect.y, r_refdef.vrect.width, r_refdef.vrect.height, 0, 1, 1, 0, vk.scenepp_antialias); R2D_ImageColours(1, 1, 1, 1); R2D_Flush(); if (rt != rtscreen) VKBE_RT_End(rt); } if (r_refdef.flags & RDF_BLOOM) { VK_R_BloomBlend(&rt->q_colour, r_refdef.vrect.x, r_refdef.vrect.y, r_refdef.vrect.width, r_refdef.vrect.height); rt = rtscreen; } } else if (r_refdef.flags & RDF_RENDERSCALE) { if (!vk.scenepp_rescale) vk.scenepp_rescale = R_RegisterShader("fte_rescaler", 0, "{\n" "program default2d\n" "{\n" "map $sourcecolour\n" "}\n" "}\n" ); vk.sourcecolour = &rt->q_colour; rt = rtscreen; R2D_Image(r_refdef.vrect.x, r_refdef.vrect.y, r_refdef.vrect.width, r_refdef.vrect.height, 0, 0, 1, 1, vk.scenepp_rescale); R2D_Flush(); } vk.sourcecolour = r_nulltex; } typedef struct { uint32_t imageformat; uint32_t imagestride; uint32_t imagewidth; uint32_t imageheight; VkBuffer buffer; size_t memsize; VkDeviceMemory memory; void (*gotrgbdata) (void *rgbdata, intptr_t bytestride, size_t width, size_t height, enum uploadfmt fmt); } vkscreencapture_t; static void VKVID_CopiedRGBData (void*ctx) { //some fence got hit, we did our copy, data is now cpu-visible, cache-willing. vkscreencapture_t *capt = ctx; void *imgdata; VkAssert(vkMapMemory(vk.device, capt->memory, 0, capt->memsize, 0, &imgdata)); capt->gotrgbdata(imgdata, capt->imagestride, capt->imagewidth, capt->imageheight, capt->imageformat); vkUnmapMemory(vk.device, capt->memory); vkDestroyBuffer(vk.device, capt->buffer, vkallocationcb); vkFreeMemory(vk.device, capt->memory, vkallocationcb); } void VKVID_QueueGetRGBData (void (*gotrgbdata) (void *rgbdata, intptr_t bytestride, size_t width, size_t height, enum uploadfmt fmt)) { //should be half way through rendering vkscreencapture_t *capt; VkBufferImageCopy icpy; VkMemoryRequirements mem_reqs; VkMemoryAllocateInfo memAllocInfo = {VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO}; VkBufferCreateInfo bci = {VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO}; if (!VK_SCR_GrabBackBuffer()) return; if (!vk.frame->backbuf->colour.width || !vk.frame->backbuf->colour.height) return; //erm, some kind of error? capt = VK_AtFrameEnd(VKVID_CopiedRGBData, NULL, sizeof(*capt)); capt->gotrgbdata = gotrgbdata; //FIXME: vkCmdBlitImage the image to convert it from half-float or whatever to a format that our screenshot etc code can cope with. capt->imageformat = TF_BGRA32; capt->imagestride = vk.frame->backbuf->colour.width*4; //vulkan is top-down, so this should be positive. capt->imagewidth = vk.frame->backbuf->colour.width; capt->imageheight = vk.frame->backbuf->colour.height; bci.flags = 0; bci.size = capt->memsize = capt->imagewidth*capt->imageheight*4; bci.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT; bci.sharingMode = VK_SHARING_MODE_EXCLUSIVE; bci.queueFamilyIndexCount = 0; bci.pQueueFamilyIndices = NULL; VkAssert(vkCreateBuffer(vk.device, &bci, vkallocationcb, &capt->buffer)); vkGetBufferMemoryRequirements(vk.device, capt->buffer, &mem_reqs); memAllocInfo.allocationSize = mem_reqs.size; memAllocInfo.memoryTypeIndex = vk_find_memory_try(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_CACHED_BIT); if (memAllocInfo.memoryTypeIndex == ~0u) memAllocInfo.memoryTypeIndex = vk_find_memory_require(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT); VkAssert(vkAllocateMemory(vk.device, &memAllocInfo, vkallocationcb, &capt->memory)); VkAssert(vkBindBufferMemory(vk.device, capt->buffer, capt->memory, 0)); set_image_layout(vk.rendertarg->cbuf, vk.frame->backbuf->colour.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT); icpy.bufferOffset = 0; icpy.bufferRowLength = 0; //packed icpy.bufferImageHeight = 0; //packed icpy.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; icpy.imageSubresource.mipLevel = 0; icpy.imageSubresource.baseArrayLayer = 0; icpy.imageSubresource.layerCount = 1; icpy.imageOffset.x = 0; icpy.imageOffset.y = 0; icpy.imageOffset.z = 0; icpy.imageExtent.width = capt->imagewidth; icpy.imageExtent.height = capt->imageheight; icpy.imageExtent.depth = 1; vkCmdCopyImageToBuffer(vk.rendertarg->cbuf, vk.frame->backbuf->colour.image, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, capt->buffer, 1, &icpy); set_image_layout(vk.rendertarg->cbuf, vk.frame->backbuf->colour.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT); } char *VKVID_GetRGBInfo (int *bytestride, int *truevidwidth, int *truevidheight, enum uploadfmt *fmt) { //in order to deal with various backbuffer formats (like half-float) etc, we play safe and blit the framebuffer to a safe format. //we then transfer that into a buffer that we can then directly read. //and then we allocate a C buffer that we then copy it into... //so yeah, 3 copies. life sucks. //blit requires support for VK_IMAGE_USAGE_TRANSFER_DST_BIT on our image, which means we need optimal, which means we can't directly map it, which means we need the buffer copy too. //this might be relaxed on mobile, but who really takes screenshots on mobiles anyway?!? anyway, video capture shouldn't be using this either way so top performance isn't a concern if (VK_SCR_GrabBackBuffer()) { VkImageLayout framebufferlayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;//vk.frame->backbuf->colour.layout; void *imgdata, *outdata; struct vk_fencework *fence = VK_FencedBegin(NULL, 0); VkImage tempimage; VkDeviceMemory tempmemory; VkBufferCreateInfo bci = {VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO}; VkBuffer tempbuffer; VkDeviceMemory tempbufmemory; VkMemoryRequirements mem_reqs; VkMemoryAllocateInfo memAllocInfo = {VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO}; VkImageCreateInfo ici = {VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO}; //VkFormatProperties vkfmt; ici.flags = 0; ici.imageType = VK_IMAGE_TYPE_2D; /*vkGetPhysicalDeviceFormatProperties(vk.gpu, VK_FORMAT_B8G8R8_UNORM, &vkfmt); if ((vkfmt.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_DST_BIT) && (vkfmt.optimalTilingFeatures & VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR)) { //if we can do BGR, then use it, because that's what most PC file formats use, like tga. //we don't really want alpha data anyway. if (vid.flags & VID_SRGB_FB) ici.format = VK_FORMAT_B8G8R8_SRGB; else ici.format = VK_FORMAT_B8G8R8_UNORM; } else*/ { //otherwise lets just get bgra data. if (vid.flags & VID_SRGB_FB) ici.format = VK_FORMAT_B8G8R8A8_SRGB; else ici.format = VK_FORMAT_B8G8R8A8_UNORM; } ici.extent.width = vid.pixelwidth; ici.extent.height = vid.pixelheight; ici.extent.depth = 1; ici.mipLevels = 1; ici.arrayLayers = 1; ici.samples = VK_SAMPLE_COUNT_1_BIT; ici.tiling = VK_IMAGE_TILING_OPTIMAL; ici.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT|VK_IMAGE_USAGE_TRANSFER_SRC_BIT; ici.sharingMode = VK_SHARING_MODE_EXCLUSIVE; ici.queueFamilyIndexCount = 0; ici.pQueueFamilyIndices = NULL; ici.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; VkAssert(vkCreateImage(vk.device, &ici, vkallocationcb, &tempimage)); vkGetImageMemoryRequirements(vk.device, tempimage, &mem_reqs); memAllocInfo.allocationSize = mem_reqs.size; memAllocInfo.memoryTypeIndex = vk_find_memory_require(mem_reqs.memoryTypeBits, 0); VkAssert(vkAllocateMemory(vk.device, &memAllocInfo, vkallocationcb, &tempmemory)); VkAssert(vkBindImageMemory(vk.device, tempimage, tempmemory, 0)); bci.flags = 0; bci.size = vid.pixelwidth*vid.pixelheight*4; bci.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT; bci.sharingMode = VK_SHARING_MODE_EXCLUSIVE; bci.queueFamilyIndexCount = 0; bci.pQueueFamilyIndices = NULL; VkAssert(vkCreateBuffer(vk.device, &bci, vkallocationcb, &tempbuffer)); vkGetBufferMemoryRequirements(vk.device, tempbuffer, &mem_reqs); memAllocInfo.allocationSize = mem_reqs.size; memAllocInfo.memoryTypeIndex = vk_find_memory_try(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_CACHED_BIT); if (memAllocInfo.memoryTypeIndex == ~0u) memAllocInfo.memoryTypeIndex = vk_find_memory_require(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT); VkAssert(vkAllocateMemory(vk.device, &memAllocInfo, vkallocationcb, &tempbufmemory)); VkAssert(vkBindBufferMemory(vk.device, tempbuffer, tempbufmemory, 0)); set_image_layout(fence->cbuf, vk.frame->backbuf->colour.image, VK_IMAGE_ASPECT_COLOR_BIT, framebufferlayout, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT); set_image_layout(fence->cbuf, tempimage, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, 0, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT); { VkImageBlit iblt; iblt.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; iblt.srcSubresource.mipLevel = 0; iblt.srcSubresource.baseArrayLayer = 0; iblt.srcSubresource.layerCount = 1; iblt.srcOffsets[0].x = 0; iblt.srcOffsets[0].y = 0; iblt.srcOffsets[0].z = 0; iblt.srcOffsets[1].x = vid.pixelwidth; iblt.srcOffsets[1].y = vid.pixelheight; iblt.srcOffsets[1].z = 1; iblt.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; iblt.dstSubresource.mipLevel = 0; iblt.dstSubresource.baseArrayLayer = 0; iblt.dstSubresource.layerCount = 1; iblt.dstOffsets[0].x = 0; iblt.dstOffsets[0].y = 0; iblt.dstOffsets[0].z = 0; iblt.dstOffsets[1].x = vid.pixelwidth; iblt.dstOffsets[1].y = vid.pixelheight; iblt.dstOffsets[1].z = 1; vkCmdBlitImage(fence->cbuf, vk.frame->backbuf->colour.image, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, tempimage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &iblt, VK_FILTER_LINEAR); } set_image_layout(fence->cbuf, vk.frame->backbuf->colour.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, framebufferlayout, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT); set_image_layout(fence->cbuf, tempimage, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT); { VkBufferImageCopy icpy; icpy.bufferOffset = 0; icpy.bufferRowLength = 0; //packed icpy.bufferImageHeight = 0; //packed icpy.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; icpy.imageSubresource.mipLevel = 0; icpy.imageSubresource.baseArrayLayer = 0; icpy.imageSubresource.layerCount = 1; icpy.imageOffset.x = 0; icpy.imageOffset.y = 0; icpy.imageOffset.z = 0; icpy.imageExtent.width = ici.extent.width; icpy.imageExtent.height = ici.extent.height; icpy.imageExtent.depth = 1; vkCmdCopyImageToBuffer(fence->cbuf, tempimage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, tempbuffer, 1, &icpy); } VK_FencedSync(fence); outdata = BZ_Malloc(4*ici.extent.width*ici.extent.height); if (ici.format == VK_FORMAT_B8G8R8_SRGB || ici.format == VK_FORMAT_B8G8R8_UNORM) *fmt = PTI_BGR8; else if (ici.format == VK_FORMAT_R8G8B8_SRGB || ici.format == VK_FORMAT_R8G8B8_UNORM) *fmt = PTI_RGB8; else if (ici.format == VK_FORMAT_R8G8B8A8_SRGB || ici.format == VK_FORMAT_R8G8B8A8_UNORM) *fmt = PTI_RGBA8; else *fmt = PTI_BGRA8; *bytestride = ici.extent.width*4; *truevidwidth = ici.extent.width; *truevidheight = ici.extent.height; VkAssert(vkMapMemory(vk.device, tempbufmemory, 0, 4*ici.extent.width*ici.extent.height, 0, &imgdata)); memcpy(outdata, imgdata, 4*ici.extent.width*ici.extent.height); vkUnmapMemory(vk.device, tempbufmemory); vkDestroyImage(vk.device, tempimage, vkallocationcb); vkFreeMemory(vk.device, tempmemory, vkallocationcb); vkDestroyBuffer(vk.device, tempbuffer, vkallocationcb); vkFreeMemory(vk.device, tempbufmemory, vkallocationcb); return outdata; } return NULL; } static void VK_PaintScreen(void) { int uimenu; qboolean nohud; qboolean noworld; vid.fbvwidth = vid.width; vid.fbvheight = vid.height; vid.fbpwidth = vid.pixelwidth; vid.fbpheight = vid.pixelheight; r_refdef.pxrect.x = 0; r_refdef.pxrect.y = 0; r_refdef.pxrect.width = vid.fbpwidth; r_refdef.pxrect.height = vid.fbpheight; r_refdef.pxrect.maxheight = vid.pixelheight; vid.numpages = vk.backbuf_count + 1; R2D_Font_Changed(); VK_Set2D (); Shader_DoReload(); if (scr_disabled_for_loading) { extern float scr_disabled_time; if (Sys_DoubleTime() - scr_disabled_time > 60 || !Key_Dest_Has(~kdm_game)) { //FIXME: instead of reenabling the screen, we should just draw the relevent things skipping only the game. scr_disabled_for_loading = false; } else { // scr_drawloading = true; SCR_DrawLoading (true); // scr_drawloading = false; return; } } /* if (!scr_initialized || !con_initialized) { RSpeedEnd(RSPEED_TOTALREFRESH); return; // not initialized yet } */ #ifdef VM_UI uimenu = UI_MenuState(); #else uimenu = 0; #endif #ifdef TEXTEDITOR if (editormodal) { Editor_Draw(); V_UpdatePalette (false); #if defined(_WIN32) && defined(GLQUAKE) Media_RecordFrame(); #endif R2D_BrightenScreen(); if (key_dest_mask & kdm_console) Con_DrawConsole(vid.height/2, false); else Con_DrawConsole(0, false); // SCR_DrawCursor(); return; } #endif if (Media_ShowFilm()) { M_Draw(0); V_UpdatePalette (false); R2D_BrightenScreen(); #if defined(_WIN32) && defined(GLQUAKE) Media_RecordFrame(); #endif return; } // // do 3D refresh drawing, and then update the screen // SCR_SetUpToDrawConsole (); noworld = false; nohud = false; #ifdef VM_CG if (CG_Refresh()) nohud = true; else #endif #ifdef CSQC_DAT if (CSQC_DrawView()) nohud = true; else #endif { if (uimenu != 1) { if (r_worldentity.model && cls.state == ca_active) V_RenderView (); else { noworld = true; } } } scr_con_forcedraw = false; if (noworld) { extern char levelshotname[]; //draw the levelshot or the conback fullscreen if (*levelshotname) R2D_ScalePic(0, 0, vid.width, vid.height, R2D_SafeCachePic (levelshotname)); else if (scr_con_current != vid.height) R2D_ConsoleBackground(0, vid.height, true); else scr_con_forcedraw = true; nohud = true; } SCR_DrawTwoDimensional(uimenu, nohud); V_UpdatePalette (false); R2D_BrightenScreen(); #if defined(_WIN32) && defined(GLQUAKE) Media_RecordFrame(); #endif RSpeedShow(); } VkCommandBuffer VK_AllocFrameCBuf(void) { struct vkframe *frame = vk.frame; if (frame->numcbufs == frame->maxcbufs) { VkCommandBufferAllocateInfo cbai = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO}; frame->maxcbufs++; frame->cbufs = BZ_Realloc(frame->cbufs, sizeof(*frame->cbufs)*frame->maxcbufs); cbai.commandPool = vk.cmdpool; cbai.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; cbai.commandBufferCount = frame->maxcbufs - frame->numcbufs; VkAssert(vkAllocateCommandBuffers(vk.device, &cbai, frame->cbufs+frame->numcbufs)); } return frame->cbufs[frame->numcbufs++]; } qboolean VK_SCR_GrabBackBuffer(void) { VkSemaphore sem; RSpeedLocals(); if (vk.frame) //erk, we already have one... return true; RSpeedRemark(); VK_FencedCheck(); if (!vk.unusedframes) { struct vkframe *newframe = Z_Malloc(sizeof(*vk.frame)); VKBE_InitFramePools(newframe); newframe->next = vk.unusedframes; vk.unusedframes = newframe; } while (vk.aquirenext == vk.aquirelast) { //we're still waiting for the render thread to increment acquirelast. //shouldn't really happen, but can if the gpu is slow. Sys_Sleep(0); //o.O #ifdef _WIN32 Sys_SendKeyEvents(); #endif } if (vk.acquirefences[vk.aquirenext%ACQUIRELIMIT] != VK_NULL_HANDLE) { //wait for the queued acquire to actually finish if (vk_busywait.ival) { //busy wait, to try to get the highest fps possible while (VK_TIMEOUT == vkGetFenceStatus(vk.device, vk.acquirefences[vk.aquirenext%ACQUIRELIMIT])) ; } else { //friendly wait VkResult err = vkWaitForFences(vk.device, 1, &vk.acquirefences[vk.aquirenext%ACQUIRELIMIT], VK_FALSE, UINT64_MAX); if (err) { if (err == VK_ERROR_DEVICE_LOST) Sys_Error("Vulkan device lost"); return false; } } VkAssert(vkResetFences(vk.device, 1, &vk.acquirefences[vk.aquirenext%ACQUIRELIMIT])); } vk.bufferidx = vk.acquirebufferidx[vk.aquirenext%ACQUIRELIMIT]; sem = vk.acquiresemaphores[vk.aquirenext%ACQUIRELIMIT]; vk.aquirenext++; //grab the first unused Sys_LockConditional(vk.submitcondition); vk.frame = vk.unusedframes; vk.unusedframes = vk.frame->next; vk.frame->next = NULL; Sys_UnlockConditional(vk.submitcondition); VkAssert(vkResetFences(vk.device, 1, &vk.frame->finishedfence)); vk.frame->backbuf = &vk.backbufs[vk.bufferidx]; vk.rendertarg = vk.frame->backbuf; vk.frame->numcbufs = 0; vk.rendertarg->cbuf = VK_AllocFrameCBuf(); vk.frame->acquiresemaphore = sem; RSpeedEnd(RSPEED_SETUP); { VkCommandBufferBeginInfo begininf = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO}; VkCommandBufferInheritanceInfo inh = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO}; begininf.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; begininf.pInheritanceInfo = &inh; inh.renderPass = VK_NULL_HANDLE; //unused inh.subpass = 0; //unused inh.framebuffer = VK_NULL_HANDLE; //unused inh.occlusionQueryEnable = VK_FALSE; inh.queryFlags = 0; inh.pipelineStatistics = 0; vkBeginCommandBuffer(vk.rendertarg->cbuf, &begininf); } VKBE_RestartFrame(); // VK_DebugFramerate(); // vkCmdWriteTimestamp(vk.frame->cbuf, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, querypool, vk.bufferidx*2+0); if (vk.multisamplebits == VK_SAMPLE_COUNT_1_BIT) { VkImageMemoryBarrier imgbarrier = {VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER}; imgbarrier.pNext = NULL; imgbarrier.srcAccessMask = 0;//VK_ACCESS_MEMORY_READ_BIT; imgbarrier.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; imgbarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;//vk.rendertarg->colour.layout; //'Alternately, oldLayout can be VK_IMAGE_LAYOUT_UNDEFINED, if the image’s contents need not be preserved.' imgbarrier.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; imgbarrier.image = vk.frame->backbuf->colour.image; imgbarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imgbarrier.subresourceRange.baseMipLevel = 0; imgbarrier.subresourceRange.levelCount = 1; imgbarrier.subresourceRange.baseArrayLayer = 0; imgbarrier.subresourceRange.layerCount = 1; imgbarrier.srcQueueFamilyIndex = vk.queuefam[1]; imgbarrier.dstQueueFamilyIndex = vk.queuefam[0]; if (vk.frame->backbuf->firstuse) { imgbarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; imgbarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgbarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; vk.frame->backbuf->firstuse = false; } vk.rendertarg->colour.layout = imgbarrier.newLayout; vkCmdPipelineBarrier(vk.rendertarg->cbuf, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0, NULL, 0, NULL, 1, &imgbarrier); } { VkImageMemoryBarrier imgbarrier = {VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER}; imgbarrier.pNext = NULL; imgbarrier.srcAccessMask = 0; imgbarrier.dstAccessMask = 0;//VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; imgbarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; imgbarrier.newLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; imgbarrier.image = vk.frame->backbuf->depth.image; imgbarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; imgbarrier.subresourceRange.baseMipLevel = 0; imgbarrier.subresourceRange.levelCount = 1; imgbarrier.subresourceRange.baseArrayLayer = 0; imgbarrier.subresourceRange.layerCount = 1; imgbarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgbarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; vkCmdPipelineBarrier(vk.rendertarg->cbuf, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0, NULL, 0, NULL, 1, &imgbarrier); } { VkClearValue clearvalues[3]; extern cvar_t r_clear; VkRenderPassBeginInfo rpbi = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO}; //attachments are: screen[1], depth[msbits], (screen[msbits]) clearvalues[0].color.float32[0] = !!(r_clear.ival & 1); clearvalues[0].color.float32[1] = !!(r_clear.ival & 2); clearvalues[0].color.float32[2] = !!(r_clear.ival & 4); clearvalues[0].color.float32[3] = 1; clearvalues[1].depthStencil.depth = 1.0; clearvalues[1].depthStencil.stencil = 0; if (vk.multisamplebits != VK_SAMPLE_COUNT_1_BIT) { clearvalues[2].color.float32[0] = !!(r_clear.ival & 1); clearvalues[2].color.float32[1] = !!(r_clear.ival & 2); clearvalues[2].color.float32[2] = !!(r_clear.ival & 4); clearvalues[2].color.float32[3] = 1; rpbi.clearValueCount = 3; } else rpbi.clearValueCount = 2; if (r_clear.ival) rpbi.renderPass = vk.renderpass[2]; else rpbi.renderPass = vk.renderpass[1]; //may still clear rpbi.framebuffer = vk.frame->backbuf->framebuffer; rpbi.renderArea.offset.x = 0; rpbi.renderArea.offset.y = 0; rpbi.renderArea.extent.width = vid.pixelwidth; rpbi.renderArea.extent.height = vid.pixelheight; rpbi.pClearValues = clearvalues; vkCmdBeginRenderPass(vk.rendertarg->cbuf, &rpbi, VK_SUBPASS_CONTENTS_INLINE); vk.frame->backbuf->width = vid.pixelwidth; vk.frame->backbuf->height = vid.pixelheight; rpbi.clearValueCount = 0; rpbi.pClearValues = NULL; rpbi.renderPass = vk.renderpass[0]; vk.rendertarg->restartinfo = rpbi; vk.rendertarg->depthcleared = true; } return true; } struct vk_presented { struct vk_fencework fw; struct vkframe *frame; }; void VK_Presented(void *fw) { struct vk_presented *pres = fw; struct vkframe *frame = pres->frame; pres->fw.fence = VK_NULL_HANDLE; //don't allow that to be freed. while(frame->frameendjobs) { struct vk_frameend *job = frame->frameendjobs; frame->frameendjobs = job->next; job->FrameEnded(job+1); Z_Free(job); } frame->next = vk.unusedframes; vk.unusedframes = frame; } #if 0 void VK_DebugFramerate(void) { static double lastupdatetime; static double lastsystemtime; double t; extern int fps_count; float lastfps; float frametime; t = Sys_DoubleTime(); if ((t - lastupdatetime) >= 1.0) { lastfps = fps_count/(t - lastupdatetime); fps_count = 0; lastupdatetime = t; OutputDebugStringA(va("%g fps\n", lastfps)); } frametime = t - lastsystemtime; lastsystemtime = t; } #endif qboolean VK_SCR_UpdateScreen (void) { uint32_t fblayout; VK_FencedCheck(); //a few cvars need some extra work if they're changed if ((vk.allowsubmissionthread && vk_submissionthread.modified) || vid_vsync.modified || vk_waitfence.modified || vid_triplebuffer.modified || vid_srgb.modified || vid_multisample.modified) vk.neednewswapchain = true; if (vk.devicelost) { //vkQueueSubmit returning vk_error_device_lost means we give up and try resetting everything. //if someone's installing new drivers then wait a little time before reloading everything, in the hope that any other dependant files got copied. or something. //fixme: don't allow this to be spammed... Sys_Sleep(5); Con_Printf("Device was lost. Restarting video\n"); Cmd_ExecuteString("vid_restart", RESTRICT_LOCAL); return false; } if (vk.neednewswapchain && !vk.frame) { #ifdef MULTITHREAD //kill the thread if (vk.submitthread) { Sys_LockConditional(vk.submitcondition); //annoying, but required for it to be reliable with respect to other things. Sys_ConditionSignal(vk.submitcondition); Sys_UnlockConditional(vk.submitcondition); Sys_WaitOnThread(vk.submitthread); vk.submitthread = NULL; } #endif //make sure any work is actually done BEFORE the swapchain gets destroyed while (vk.work) { Sys_LockConditional(vk.submitcondition); VK_Submit_DoWork(); Sys_UnlockConditional(vk.submitcondition); } if (vk.dopresent) vk.dopresent(NULL); vkDeviceWaitIdle(vk.device); VK_CreateSwapChain(); vk.neednewswapchain = false; #ifdef MULTITHREAD if (vk.allowsubmissionthread && (vk_submissionthread.ival || !*vk_submissionthread.string)) { vk.submitthread = Sys_CreateThread("vksubmission", VK_Submit_Thread, NULL, THREADP_HIGHEST, 0); } #endif } if (!VK_SCR_GrabBackBuffer()) return false; VKBE_Set2D(true); VKBE_SelectDLight(NULL, vec3_origin, NULL, 0); VK_PaintScreen(); if (R2D_Flush) R2D_Flush(); vkCmdEndRenderPass(vk.rendertarg->cbuf); fblayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; /*if (0) { vkscreencapture_t *capt = VK_AtFrameEnd(atframeend, sizeof(vkscreencapture_t)); VkImageMemoryBarrier imgbarrier = {VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER}; VkBufferImageCopy region; imgbarrier.pNext = NULL; imgbarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; imgbarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT; imgbarrier.oldLayout = fblayout; imgbarrier.newLayout = fblayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL; imgbarrier.image = vk.frame->backbuf->colour.image; imgbarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imgbarrier.subresourceRange.baseMipLevel = 0; imgbarrier.subresourceRange.levelCount = 1; imgbarrier.subresourceRange.baseArrayLayer = 0; imgbarrier.subresourceRange.layerCount = 1; imgbarrier.srcQueueFamilyIndex = vk.queuefam[0]; imgbarrier.dstQueueFamilyIndex = vk.queuefam[0]; vkCmdPipelineBarrier(vk.frame->cbuf, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0, NULL, 0, NULL, 1, &imgbarrier); region.bufferOffset = 0; region.bufferRowLength = 0; //tightly packed region.bufferImageHeight = 0; //tightly packed region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; region.imageSubresource.mipLevel = 0; region.imageSubresource.baseArrayLayer = 0; region.imageSubresource.layerCount = 1; region.imageOffset.x = 0; region.imageOffset.y = 0; region.imageOffset.z = 0; region.imageExtent.width = capt->imagewidth = vk.frame->backbuf->colour.width; region.imageExtent.height = capt->imageheight = vk.frame->backbuf->colour.height; region.imageExtent.depth = 1; vkCmdCopyImageToBuffer(vk.frame->cbuf, vk.frame->backbuf->colour.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, buffer, 1, ®ion); }*/ if (vk.multisamplebits == VK_SAMPLE_COUNT_1_BIT) { VkImageMemoryBarrier imgbarrier = {VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER}; imgbarrier.pNext = NULL; imgbarrier.srcAccessMask = /*VK_ACCESS_TRANSFER_READ_BIT|*/VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; imgbarrier.dstAccessMask = 0; imgbarrier.oldLayout = fblayout; imgbarrier.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; imgbarrier.image = vk.frame->backbuf->colour.image; imgbarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imgbarrier.subresourceRange.baseMipLevel = 0; imgbarrier.subresourceRange.levelCount = 1; imgbarrier.subresourceRange.baseArrayLayer = 0; imgbarrier.subresourceRange.layerCount = 1; imgbarrier.srcQueueFamilyIndex = vk.queuefam[0]; imgbarrier.dstQueueFamilyIndex = vk.queuefam[1]; vkCmdPipelineBarrier(vk.rendertarg->cbuf, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, NULL, 0, NULL, 1, &imgbarrier); vk.rendertarg->colour.layout = imgbarrier.newLayout; } // vkCmdWriteTimestamp(vk.rendertarg->cbuf, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, querypool, vk.bufferidx*2+1); vkEndCommandBuffer(vk.rendertarg->cbuf); VKBE_FlushDynamicBuffers(); { struct vk_presented *fw = Z_Malloc(sizeof(*fw)); fw->fw.Passed = VK_Presented; fw->fw.fence = vk.frame->finishedfence; fw->frame = vk.frame; //hand over any post-frame jobs to the frame in question. vk.frame->frameendjobs = vk.frameendjobs; vk.frameendjobs = NULL; VK_Submit_Work(vk.rendertarg->cbuf, vk.frame->acquiresemaphore, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, vk.frame->backbuf->presentsemaphore, vk.frame->finishedfence, vk.frame, &fw->fw); } //now would be a good time to do any compute work or lightmap updates... vk.frame = NULL; VK_FencedCheck(); VID_SwapBuffers(); #ifdef TEXTEDITOR if (editormodal) { //FIXME VK_SCR_GrabBackBuffer(); } #endif return true; } void VKBE_RenderToTextureUpdate2d(qboolean destchanged) { } static void VK_DestroyRenderPass(void) { int i; for (i = 0; i < countof(vk.renderpass); i++) { if (vk.renderpass[i] != VK_NULL_HANDLE) { vkDestroyRenderPass(vk.device, vk.renderpass[i], vkallocationcb); vk.renderpass[i] = VK_NULL_HANDLE; } } } static void VK_CreateRenderPass(void) { int pass; int numattachments; static VkAttachmentReference color_reference; static VkAttachmentReference depth_reference; static VkAttachmentReference resolve_reference; static VkAttachmentDescription attachments[3] = {{0}}; static VkSubpassDescription subpass = {0}; static VkRenderPassCreateInfo rp_info = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO}; //two render passes are compatible for piplines when they match exactly except for: //initial and final layouts in attachment descriptions. //load and store operations in attachment descriptions. //image layouts in attachment references. for (pass = 0; pass < 3; pass++) { if (vk.renderpass[pass] != VK_NULL_HANDLE) continue; numattachments = 0; if (vk.multisamplebits != VK_SAMPLE_COUNT_1_BIT) { resolve_reference.attachment = numattachments++; depth_reference.attachment = numattachments++; color_reference.attachment = numattachments++; } else { color_reference.attachment = numattachments++; depth_reference.attachment = numattachments++; resolve_reference.attachment = ~(uint32_t)0; } color_reference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; depth_reference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; resolve_reference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; attachments[color_reference.attachment].format = vk.backbufformat; attachments[color_reference.attachment].samples = vk.multisamplebits; // attachments[color_reference.attachment].loadOp = pass?VK_ATTACHMENT_LOAD_OP_LOAD:VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[color_reference.attachment].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachments[color_reference.attachment].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[color_reference.attachment].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[color_reference.attachment].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; attachments[color_reference.attachment].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; attachments[depth_reference.attachment].format = vk.depthformat; attachments[depth_reference.attachment].samples = vk.multisamplebits; // attachments[depth_reference.attachment].loadOp = pass?VK_ATTACHMENT_LOAD_OP_LOAD:VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[depth_reference.attachment].storeOp = VK_ATTACHMENT_STORE_OP_STORE;//VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[depth_reference.attachment].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[depth_reference.attachment].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[depth_reference.attachment].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; attachments[depth_reference.attachment].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; if (resolve_reference.attachment != ~(uint32_t)0) { attachments[resolve_reference.attachment].format = vk.backbufformat; attachments[resolve_reference.attachment].samples = VK_SAMPLE_COUNT_1_BIT; attachments[resolve_reference.attachment].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[resolve_reference.attachment].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachments[resolve_reference.attachment].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[resolve_reference.attachment].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[resolve_reference.attachment].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachments[resolve_reference.attachment].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; } subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.flags = 0; subpass.inputAttachmentCount = 0; subpass.pInputAttachments = NULL; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &color_reference; subpass.pResolveAttachments = (resolve_reference.attachment != ~(uint32_t)0)?&resolve_reference:NULL; subpass.pDepthStencilAttachment = &depth_reference; subpass.preserveAttachmentCount = 0; subpass.pPreserveAttachments = NULL; rp_info.attachmentCount = numattachments; rp_info.pAttachments = attachments; rp_info.subpassCount = 1; rp_info.pSubpasses = &subpass; rp_info.dependencyCount = 0; rp_info.pDependencies = NULL; if (pass == 0) { //nothing cleared, both are just re-loaded. attachments[color_reference.attachment].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; attachments[depth_reference.attachment].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; } else if (pass == 1) { //depth cleared, colour is whatever. attachments[color_reference.attachment].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[depth_reference.attachment].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; } else { //both cleared attachments[color_reference.attachment].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[depth_reference.attachment].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; } VkAssert(vkCreateRenderPass(vk.device, &rp_info, vkallocationcb, &vk.renderpass[pass])); } } void VK_DoPresent(struct vkframe *theframe) { VkResult err; uint32_t framenum; VkPresentInfoKHR presinfo = {VK_STRUCTURE_TYPE_PRESENT_INFO_KHR}; if (!theframe) return; //used to ensure that the queue is flushed at shutdown framenum = theframe->backbuf - vk.backbufs; presinfo.waitSemaphoreCount = 1; presinfo.pWaitSemaphores = &theframe->backbuf->presentsemaphore; presinfo.swapchainCount = 1; presinfo.pSwapchains = &vk.swapchain; presinfo.pImageIndices = &framenum; { RSpeedMark(); err = vkQueuePresentKHR(vk.queue_present, &presinfo); RSpeedEnd(RSPEED_PRESENT); } { RSpeedMark(); if (err) { Con_Printf("ERROR: vkQueuePresentKHR: %x\n", err); vk.neednewswapchain = true; } else { err = vkAcquireNextImageKHR(vk.device, vk.swapchain, 0, vk.acquiresemaphores[vk.aquirelast%ACQUIRELIMIT], vk.acquirefences[vk.aquirelast%ACQUIRELIMIT], &vk.acquirebufferidx[vk.aquirelast%ACQUIRELIMIT]); if (err) { Con_Printf("ERROR: vkAcquireNextImageKHR: %x\n", err); vk.neednewswapchain = true; vk.devicelost |= (err == VK_ERROR_DEVICE_LOST); } vk.aquirelast++; } RSpeedEnd(RSPEED_ACQUIRE); } } static void VK_Submit_DoWork(void) { VkCommandBuffer cbuf[64]; VkSemaphore wsem[64]; VkPipelineStageFlags wsemstageflags[64]; VkSemaphore ssem[64]; VkQueue subqueue = NULL; VkSubmitInfo subinfo[64]; unsigned int subcount = 0; struct vkwork_s *work; struct vkframe *present = NULL; VkFence waitfence = VK_NULL_HANDLE; VkResult err; struct vk_fencework *fencedwork = NULL; qboolean errored = false; while(vk.work && !present && !waitfence && !fencedwork && subcount < countof(subinfo)) { work = vk.work; if (subcount && subqueue != work->queue) break; subinfo[subcount].sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; subinfo[subcount].pNext = NULL; subinfo[subcount].waitSemaphoreCount = work->semwait?1:0; subinfo[subcount].pWaitSemaphores = &wsem[subcount]; wsem[subcount] = work->semwait; subinfo[subcount].pWaitDstStageMask = &wsemstageflags[subcount]; wsemstageflags[subcount] = work->semwaitstagemask; subinfo[subcount].commandBufferCount = work->cmdbuf?1:0; subinfo[subcount].pCommandBuffers = &cbuf[subcount]; cbuf[subcount] = work->cmdbuf; subinfo[subcount].signalSemaphoreCount = work->semsignal?1:0; subinfo[subcount].pSignalSemaphores = &ssem[subcount]; ssem[subcount] = work->semsignal; waitfence = work->fencesignal; fencedwork = work->fencedwork; subqueue = work->queue; subcount++; present = work->present; vk.work = work->next; Z_Free(work); } Sys_UnlockConditional(vk.submitcondition); //don't block people giving us work while we're occupied if (subcount || waitfence) { RSpeedMark(); err = vkQueueSubmit(subqueue, subcount, subinfo, waitfence); if (err) { Con_Printf("ERROR: vkQueueSubmit: %i\n", err); errored = vk.neednewswapchain = true; vk.devicelost |= (err==VK_ERROR_DEVICE_LOST); } RSpeedEnd(RSPEED_SUBMIT); } if (present && !errored) { vk.dopresent(present); } Sys_LockConditional(vk.submitcondition); if (fencedwork) { //this is used for loading and cleaning up things after the gpu has consumed it. if (vk.fencework_last) { vk.fencework_last->next = fencedwork; vk.fencework_last = fencedwork; } else vk.fencework_last = vk.fencework = fencedwork; } } #ifdef MULTITHREAD //oh look. a thread. //nvidia's drivers seem to like doing a lot of blocking in queuesubmit and queuepresent(despite the whole QUEUE thing). //so thread this work so the main thread doesn't have to block so much. int VK_Submit_Thread(void *arg) { Sys_LockConditional(vk.submitcondition); while(!vk.neednewswapchain) { if (!vk.work) Sys_ConditionWait(vk.submitcondition); VK_Submit_DoWork(); } Sys_UnlockConditional(vk.submitcondition); return true; } #endif void VK_Submit_Work(VkCommandBuffer cmdbuf, VkSemaphore semwait, VkPipelineStageFlags semwaitstagemask, VkSemaphore semsignal, VkFence fencesignal, struct vkframe *presentframe, struct vk_fencework *fencedwork) { struct vkwork_s *work = Z_Malloc(sizeof(*work)); struct vkwork_s **link; work->queue = vk.queue_render; work->cmdbuf = cmdbuf; work->semwait = semwait; work->semwaitstagemask = semwaitstagemask; work->semsignal = semsignal; work->fencesignal = fencesignal; work->present = presentframe; work->fencedwork = fencedwork; Sys_LockConditional(vk.submitcondition); //add it on the end in a lazy way. for (link = &vk.work; *link; link = &(*link)->next) ; *link = work; #ifdef MULTITHREAD if (vk.submitthread && !vk.neednewswapchain) Sys_ConditionSignal(vk.submitcondition); else #endif VK_Submit_DoWork(); Sys_UnlockConditional(vk.submitcondition); } void VK_Submit_Sync(void) { Sys_LockConditional(vk.submitcondition); //FIXME: vkDeviceWaitIdle(vk.device); //just in case Sys_UnlockConditional(vk.submitcondition); } void VK_CheckTextureFormats(void) { struct { unsigned int pti; VkFormat vulkan; unsigned int needextra; } texfmt[] = { {PTI_RGBA8, VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_RGBX8, VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_BGRA8, VK_FORMAT_B8G8R8A8_UNORM, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_BGRX8, VK_FORMAT_B8G8R8A8_UNORM, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_RGB8, VK_FORMAT_R8G8B8_UNORM, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_BGR8, VK_FORMAT_B8G8R8_UNORM, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_RGBA8_SRGB, VK_FORMAT_R8G8B8A8_SRGB, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT|VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT}, {PTI_RGBX8_SRGB, VK_FORMAT_R8G8B8A8_SRGB, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT|VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT}, {PTI_BGRA8_SRGB, VK_FORMAT_B8G8R8A8_SRGB, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT|VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT}, {PTI_BGRX8_SRGB, VK_FORMAT_B8G8R8A8_SRGB, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT|VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT}, {PTI_E5BGR9, VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT|VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT}, {PTI_A2BGR10, VK_FORMAT_A2B10G10R10_UNORM_PACK32, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT|VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT}, {PTI_RGB565, VK_FORMAT_R5G6B5_UNORM_PACK16, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_RGBA4444, VK_FORMAT_R4G4B4A4_UNORM_PACK16, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, // {PTI_ARGB4444, VK_FORMAT_A4R4G4B4_UNORM_PACK16, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_RGBA5551, VK_FORMAT_R5G5B5A1_UNORM_PACK16, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ARGB1555, VK_FORMAT_A1R5G5B5_UNORM_PACK16, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_RGBA16F, VK_FORMAT_R16G16B16A16_SFLOAT, VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT|VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT|VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT}, {PTI_RGBA32F, VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT|VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT|VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT}, {PTI_R8, VK_FORMAT_R8_UNORM, VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT}, {PTI_RG8, VK_FORMAT_R8G8_UNORM, VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT}, {PTI_R8_SNORM, VK_FORMAT_R8_SNORM, VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT}, {PTI_RG8_SNORM, VK_FORMAT_R8G8_SNORM, VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT}, {PTI_DEPTH16, VK_FORMAT_D16_UNORM, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT}, {PTI_DEPTH24, VK_FORMAT_X8_D24_UNORM_PACK32, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT}, {PTI_DEPTH32, VK_FORMAT_D32_SFLOAT, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT}, {PTI_DEPTH24_8, VK_FORMAT_D24_UNORM_S8_UINT, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT}, {PTI_BC1_RGB, VK_FORMAT_BC1_RGB_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_BC1_RGBA, VK_FORMAT_BC1_RGBA_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_BC2_RGBA, VK_FORMAT_BC2_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_BC3_RGBA, VK_FORMAT_BC3_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_BC1_RGB_SRGB, VK_FORMAT_BC1_RGB_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_BC1_RGBA_SRGB, VK_FORMAT_BC1_RGBA_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_BC2_RGBA_SRGB, VK_FORMAT_BC2_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_BC3_RGBA_SRGB, VK_FORMAT_BC3_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_BC4_R8, VK_FORMAT_BC4_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_BC4_R8_SNORM, VK_FORMAT_BC4_SNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_BC5_RG8, VK_FORMAT_BC5_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_BC5_RG8_SNORM, VK_FORMAT_BC5_SNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_BC6_RGB_UFLOAT, VK_FORMAT_BC6H_UFLOAT_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_BC6_RGB_SFLOAT, VK_FORMAT_BC6H_SFLOAT_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_BC7_RGBA, VK_FORMAT_BC7_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_BC7_RGBA_SRGB, VK_FORMAT_BC7_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ETC1_RGB8, VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, //vulkan doesn't support etc1 (but that's okay, because etc2 is a superset). {PTI_ETC2_RGB8, VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ETC2_RGB8A1, VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK,VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ETC2_RGB8A8, VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK,VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ETC2_RGB8_SRGB, VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ETC2_RGB8A1_SRGB, VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ETC2_RGB8A8_SRGB, VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_EAC_R11, VK_FORMAT_EAC_R11_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_EAC_R11_SNORM, VK_FORMAT_EAC_R11_SNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_EAC_RG11, VK_FORMAT_EAC_R11G11_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_EAC_RG11_SNORM, VK_FORMAT_EAC_R11G11_SNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_4X4, VK_FORMAT_ASTC_4x4_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_4X4_SRGB, VK_FORMAT_ASTC_4x4_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_5X4, VK_FORMAT_ASTC_5x4_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_5X4_SRGB, VK_FORMAT_ASTC_5x4_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_5X5, VK_FORMAT_ASTC_5x5_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_5X5_SRGB, VK_FORMAT_ASTC_5x5_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_6X5, VK_FORMAT_ASTC_6x5_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_6X5_SRGB, VK_FORMAT_ASTC_6x5_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_6X6, VK_FORMAT_ASTC_6x6_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_6X6_SRGB, VK_FORMAT_ASTC_6x6_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_8X5, VK_FORMAT_ASTC_8x5_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_8X5_SRGB, VK_FORMAT_ASTC_8x5_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_8X6, VK_FORMAT_ASTC_8x6_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_8X6_SRGB, VK_FORMAT_ASTC_8x6_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_8X8, VK_FORMAT_ASTC_8x8_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_8X8_SRGB, VK_FORMAT_ASTC_8x8_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_10X5, VK_FORMAT_ASTC_10x5_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_10X5_SRGB, VK_FORMAT_ASTC_10x5_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_10X6, VK_FORMAT_ASTC_10x6_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_10X6_SRGB, VK_FORMAT_ASTC_10x6_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_10X8, VK_FORMAT_ASTC_10x8_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_10X8_SRGB, VK_FORMAT_ASTC_10x8_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_10X10, VK_FORMAT_ASTC_10x10_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_10X10_SRGB, VK_FORMAT_ASTC_10x10_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_12X10, VK_FORMAT_ASTC_12x10_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_12X10_SRGB, VK_FORMAT_ASTC_12x10_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_12X12, VK_FORMAT_ASTC_12x12_UNORM_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, {PTI_ASTC_12X12_SRGB, VK_FORMAT_ASTC_12x12_SRGB_BLOCK, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT}, }; unsigned int i; VkPhysicalDeviceProperties props; vkGetPhysicalDeviceProperties(vk.gpu, &props); vk.limits = props.limits; sh_config.texture2d_maxsize = props.limits.maxImageDimension2D; sh_config.texturecube_maxsize = props.limits.maxImageDimensionCube; for (i = 0; i < countof(texfmt); i++) { unsigned int need = /*VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT |*/ texfmt[i].needextra; VkFormatProperties fmt; vkGetPhysicalDeviceFormatProperties(vk.gpu, texfmt[i].vulkan, &fmt); if ((fmt.optimalTilingFeatures & need) == need) sh_config.texfmt[texfmt[i].pti] = true; } } //initialise the vulkan instance, context, device, etc. qboolean VK_Init(rendererstate_t *info, const char **sysextnames, qboolean (*createSurface)(void), void (*dopresent)(struct vkframe *theframe)) { VkQueueFamilyProperties *queueprops; VkResult err; VkApplicationInfo app; VkInstanceCreateInfo inst_info; const char *extensions[8]; uint32_t extensions_count = 0; //device extensions that want to enable //initialised in reverse order, so superseeded should name later extensions. struct { qboolean *flag; const char *name; cvar_t *var; qboolean def; qboolean *superseeded; //if this is set then the extension will not be enabled after all const char *warningtext; //printed if the extension is requested but not supported by the device qboolean supported; } knowndevexts[] = { {&vk.khr_swapchain, VK_KHR_SWAPCHAIN_EXTENSION_NAME, NULL, true, NULL, " Nothing will be drawn!"}, {&vk.nv_glsl_shader, VK_NV_GLSL_SHADER_EXTENSION_NAME, &vk_nv_glsl_shader, false, NULL, " Direct use of glsl is not supported."}, {&vk.nv_dedicated_allocation, VK_NV_DEDICATED_ALLOCATION_EXTENSION_NAME, &vk_nv_dedicated_allocation, true, &vk.khr_dedicated_allocation, NULL}, {&vk.khr_dedicated_allocation, VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, &vk_khr_dedicated_allocation, true, NULL, NULL}, {&vk.khr_push_descriptor, VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME, &vk_khr_push_descriptor, true, NULL, NULL}, {&vk.amd_rasterization_order, VK_AMD_RASTERIZATION_ORDER_EXTENSION_NAME, &vk_amd_rasterization_order, false, NULL, NULL}, }; size_t e; for (e = 0; e < countof(knowndevexts); e++) *knowndevexts[e].flag = false; #ifdef MULTITHREAD vk.allowsubmissionthread = true; #endif vk.neednewswapchain = true; vk.triplebuffer = info->triplebuffer; vk.vsync = info->wait; vk.dopresent = dopresent?dopresent:VK_DoPresent; vk.max_anistophy_limit = 1.0; memset(&sh_config, 0, sizeof(sh_config)); //get second set of pointers... (instance-level) #ifdef VK_NO_PROTOTYPES if (!vkGetInstanceProcAddr) { Con_Printf("vkGetInstanceProcAddr is null\n"); return false; } #define VKFunc(n) vk##n = (PFN_vk##n)vkGetInstanceProcAddr(VK_NULL_HANDLE, "vk"#n); VKInstFuncs #undef VKFunc #endif //try and enable some instance extensions... { qboolean surfext = false; uint32_t count, i, j; VkExtensionProperties *ext; vkEnumerateInstanceExtensionProperties(NULL, &count, NULL); ext = malloc(sizeof(*ext)*count); vkEnumerateInstanceExtensionProperties(NULL, &count, ext); for (i = 0; i < count && extensions_count < countof(extensions); i++) { if (!strcmp(ext[i].extensionName, VK_EXT_DEBUG_REPORT_EXTENSION_NAME) && vk_debug.ival) extensions[extensions_count++] = VK_EXT_DEBUG_REPORT_EXTENSION_NAME; else if (!strcmp(ext[i].extensionName, VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) extensions[extensions_count++] = VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME; else if (sysextnames && !strcmp(ext[i].extensionName, VK_KHR_SURFACE_EXTENSION_NAME)) { extensions[extensions_count++] = VK_KHR_SURFACE_EXTENSION_NAME; surfext = true; } else if (sysextnames) { for (j = 0; sysextnames[j]; j++) { if (!strcmp(ext[i].extensionName, sysextnames[j])) { extensions[extensions_count++] = sysextnames[j]; vk.khr_swapchain = true; } } } } free(ext); if (sysextnames && (!vk.khr_swapchain || !surfext)) { Con_Printf("Vulkan instance driver lacks support for %s\n", sysextnames[0]); return false; } } #define ENGINEVERSION 1 memset(&app, 0, sizeof(app)); app.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; app.pNext = NULL; app.pApplicationName = NULL; app.applicationVersion = 0; app.pEngineName = FULLENGINENAME; app.engineVersion = ENGINEVERSION; app.apiVersion = VK_MAKE_VERSION(1, 0, 2); memset(&inst_info, 0, sizeof(inst_info)); inst_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; inst_info.pApplicationInfo = &app; inst_info.enabledLayerCount = vklayercount; inst_info.ppEnabledLayerNames = vklayerlist; inst_info.enabledExtensionCount = extensions_count; inst_info.ppEnabledExtensionNames = extensions; err = vkCreateInstance(&inst_info, vkallocationcb, &vk.instance); switch(err) { case VK_ERROR_INCOMPATIBLE_DRIVER: Con_Printf("VK_ERROR_INCOMPATIBLE_DRIVER: please install an appropriate vulkan driver\n"); return false; case VK_ERROR_EXTENSION_NOT_PRESENT: Con_Printf("VK_ERROR_EXTENSION_NOT_PRESENT: something on a system level is probably misconfigured\n"); return false; case VK_ERROR_LAYER_NOT_PRESENT: Con_Printf("VK_ERROR_LAYER_NOT_PRESENT: requested layer is not known/usable\n"); return false; default: Con_Printf("Unknown vulkan instance creation error: %x\n", err); return false; case VK_SUCCESS: break; } //third set of functions... #ifdef VK_NO_PROTOTYPES vkGetInstanceProcAddr = (PFN_vkGetInstanceProcAddr)vkGetInstanceProcAddr(vk.instance, "vkGetInstanceProcAddr"); #define VKFunc(n) vk##n = (PFN_vk##n)vkGetInstanceProcAddr(vk.instance, "vk"#n); VKInst2Funcs #undef VKFunc #endif //set up debug callbacks if (vk_debug.ival) { vkCreateDebugReportCallbackEXT = (PFN_vkCreateDebugReportCallbackEXT)vkGetInstanceProcAddr(vk.instance, "vkCreateDebugReportCallbackEXT"); vkDestroyDebugReportCallbackEXT = (PFN_vkDestroyDebugReportCallbackEXT)vkGetInstanceProcAddr(vk.instance, "vkDestroyDebugReportCallbackEXT"); if (vkCreateDebugReportCallbackEXT && vkDestroyDebugReportCallbackEXT) { VkDebugReportCallbackCreateInfoEXT dbgCreateInfo; memset(&dbgCreateInfo, 0, sizeof(dbgCreateInfo)); dbgCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT; dbgCreateInfo.pfnCallback = mydebugreportcallback; dbgCreateInfo.pUserData = NULL; dbgCreateInfo.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT | /* VK_DEBUG_REPORT_INFORMATION_BIT_EXT | */ VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT | VK_DEBUG_REPORT_DEBUG_BIT_EXT; vkCreateDebugReportCallbackEXT(vk.instance, &dbgCreateInfo, vkallocationcb, &vk_debugcallback); } } //create the platform-specific surface createSurface(); //figure out which gpu we're going to use { uint32_t gpucount = 0, i; uint32_t bestpri = ~0u, pri; VkPhysicalDevice *devs; vkEnumeratePhysicalDevices(vk.instance, &gpucount, NULL); if (!gpucount) { Con_Printf("vulkan: no devices known!\n"); return false; } devs = malloc(sizeof(VkPhysicalDevice)*gpucount); vkEnumeratePhysicalDevices(vk.instance, &gpucount, devs); for (i = 0; i < gpucount; i++) { VkPhysicalDeviceProperties props; uint32_t j, queue_count; vkGetPhysicalDeviceProperties(devs[i], &props); vkGetPhysicalDeviceQueueFamilyProperties(devs[i], &queue_count, NULL); if (vk.khr_swapchain) { for (j = 0; j < queue_count; j++) { VkBool32 supportsPresent = false; VkAssert(vkGetPhysicalDeviceSurfaceSupportKHR(devs[i], j, vk.surface, &supportsPresent)); if (supportsPresent) break; //okay, this one should be usable } if (j == queue_count) { //no queues can present to that surface, so I guess we can't use that device Con_DPrintf("vulkan: ignoring device \"%s\" as it can't present to window\n", props.deviceName); continue; } } Con_DPrintf("Found Vulkan Device \"%s\"\n", props.deviceName); if (!vk.gpu) vk.gpu = devs[i]; switch(props.deviceType) { default: case VK_PHYSICAL_DEVICE_TYPE_OTHER: pri = 5; break; case VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU: pri = 2; break; case VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU: pri = 1; break; case VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU: pri = 3; break; case VK_PHYSICAL_DEVICE_TYPE_CPU: pri = 4; break; } if (!Q_strcasecmp(props.deviceName, info->subrenderer)) pri = 0; if (pri < bestpri) { vk.gpu = devs[i]; bestpri = pri; } } free(devs); if (bestpri == ~0u) { Con_Printf("vulkan: unable to pick a usable device\n"); return false; } } { char *vendor, *type; VkPhysicalDeviceProperties props; vkGetPhysicalDeviceProperties(vk.gpu, &props); switch(props.vendorID) { //explicit vendors case 0x10001: vendor = "Vivante"; break; case 0x10002: vendor = "VeriSilicon"; break; //pci vendor ids //there's a lot of pci vendors, some even still exist, but not all of them actually have 3d hardware. //many of these probably won't even be used... Oh well. //anyway, here's some of the ones that are listed case 0x1002: vendor = "AMD"; break; case 0x10DE: vendor = "NVIDIA"; break; case 0x8086: vendor = "Intel"; break; //cute case 0x13B5: vendor = "ARM"; break; case 0x5143: vendor = "Qualcomm"; break; case 0x1AEE: vendor = "Imagination";break; case 0x1957: vendor = "Freescale"; break; case 0x1AE0: vendor = "Google"; break; case 0x5333: vendor = "S3"; break; case 0xA200: vendor = "NEC"; break; case 0x0A5C: vendor = "Broadcom"; break; case 0x1131: vendor = "NXP"; break; case 0x1099: vendor = "Samsung"; break; case 0x10C3: vendor = "Samsung"; break; case 0x11E2: vendor = "Samsung"; break; case 0x1249: vendor = "Samsung"; break; default: vendor = va("VEND_%x", props.vendorID); break; } switch(props.deviceType) { default: case VK_PHYSICAL_DEVICE_TYPE_OTHER: type = "(other)"; break; case VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU: type = "integrated"; break; case VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU: type = "discrete"; break; case VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU: type = "virtual"; break; case VK_PHYSICAL_DEVICE_TYPE_CPU: type = "software"; break; } Con_Printf("Vulkan %u.%u.%u: %s %s %s (%u.%u.%u)\n", VK_VERSION_MAJOR(props.apiVersion), VK_VERSION_MINOR(props.apiVersion), VK_VERSION_PATCH(props.apiVersion), type, vendor, props.deviceName, VK_VERSION_MAJOR(props.driverVersion), VK_VERSION_MINOR(props.driverVersion), VK_VERSION_PATCH(props.driverVersion) ); } //figure out which of the device's queue's we're going to use { uint32_t queue_count, i; vkGetPhysicalDeviceQueueFamilyProperties(vk.gpu, &queue_count, NULL); queueprops = malloc(sizeof(VkQueueFamilyProperties)*queue_count); //Oh how I wish I was able to use C99. vkGetPhysicalDeviceQueueFamilyProperties(vk.gpu, &queue_count, queueprops); vk.queuefam[0] = ~0u; vk.queuefam[1] = ~0u; vk.queuenum[0] = 0; vk.queuenum[1] = 0; /* //try to find a 'dedicated' present queue for (i = 0; i < queue_count; i++) { VkBool32 supportsPresent = FALSE; VkAssert(vkGetPhysicalDeviceSurfaceSupportKHR(vk.gpu, i, vk.surface, &supportsPresent)); if (supportsPresent && !(queueprops[i].queueFlags & VK_QUEUE_GRAPHICS_BIT)) { vk.queuefam[1] = i; break; } } if (vk.queuefam[1] != ~0u) { //try to find a good graphics queue for (i = 0; i < queue_count; i++) { if (queueprops[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) { vk.queuefam[0] = i; break; } } } else*/ { for (i = 0; i < queue_count; i++) { VkBool32 supportsPresent = false; if (!vk.khr_swapchain) supportsPresent = true; //won't be used anyway. else VkAssert(vkGetPhysicalDeviceSurfaceSupportKHR(vk.gpu, i, vk.surface, &supportsPresent)); if ((queueprops[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) && supportsPresent) { vk.queuefam[0] = i; vk.queuefam[1] = i; break; } else if (vk.queuefam[0] == ~0u && (queueprops[i].queueFlags & VK_QUEUE_GRAPHICS_BIT)) vk.queuefam[0] = i; else if (vk.queuefam[1] == ~0u && supportsPresent) vk.queuefam[1] = i; } } if (vk.queuefam[0] == ~0u || vk.queuefam[1] == ~0u) { free(queueprops); Con_Printf("unable to find suitable queues\n"); return false; } } { uint32_t extcount = 0; VkExtensionProperties *ext; vkEnumerateDeviceExtensionProperties(vk.gpu, NULL, &extcount, NULL); ext = malloc(sizeof(*ext)*extcount); vkEnumerateDeviceExtensionProperties(vk.gpu, NULL, &extcount, ext); while (extcount --> 0) { for (e = 0; e < countof(knowndevexts); e++) { if (!strcmp(ext[extcount].extensionName, knowndevexts[e].name)) { if (knowndevexts[e].var) *knowndevexts[e].flag = !!knowndevexts[e].var->ival || (!*knowndevexts[e].var->string && knowndevexts[e].def); knowndevexts[e].supported = true; } } } free(ext); } { const char *devextensions[1+countof(knowndevexts)]; size_t numdevextensions = 0; float queue_priorities[2] = {0.8, 1.0}; VkDeviceQueueCreateInfo queueinf[2] = {{VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO},{VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO}}; VkDeviceCreateInfo devinf = {VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO}; VkPhysicalDeviceFeatures features; VkPhysicalDeviceFeatures avail; memset(&features, 0, sizeof(features)); vkGetPhysicalDeviceFeatures(vk.gpu, &avail); //try to enable whatever we can use, if we can. features.robustBufferAccess = avail.robustBufferAccess; features.textureCompressionBC = avail.textureCompressionBC; features.textureCompressionETC2 = avail.textureCompressionETC2; features.textureCompressionASTC_LDR = avail.textureCompressionASTC_LDR; features.samplerAnisotropy = avail.samplerAnisotropy; features.geometryShader = avail.geometryShader; features.tessellationShader = avail.tessellationShader; //Add in the extensions we support for (e = 0; e < countof(knowndevexts); e++) { //prints are to let the user know what's going on. only warn if its explicitly enabled if (knowndevexts[e].superseeded && *knowndevexts[e].superseeded) { Con_DPrintf("Superseeded %s.\n", knowndevexts[e].name); *knowndevexts[e].flag = false; } else if (*knowndevexts[e].flag) { Con_DPrintf("Using %s.\n", knowndevexts[e].name); devextensions[numdevextensions++] = knowndevexts[e].name; } else if (knowndevexts[e].var->ival) Con_Printf("unable to enable %s extension.%s\n", knowndevexts[e].name, knowndevexts[e].warningtext?knowndevexts[e].warningtext:""); else if (knowndevexts[e].supported) Con_DPrintf("Ignoring %s.\n", knowndevexts[e].name); else Con_DPrintf("Unavailable %s.\n", knowndevexts[e].name); } queueinf[0].pNext = NULL; queueinf[0].queueFamilyIndex = vk.queuefam[0]; queueinf[0].queueCount = 1; queueinf[0].pQueuePriorities = &queue_priorities[0]; queueinf[1].pNext = NULL; queueinf[1].queueFamilyIndex = vk.queuefam[1]; queueinf[1].queueCount = 1; queueinf[1].pQueuePriorities = &queue_priorities[1]; if (vk.queuefam[0] == vk.queuefam[1]) { devinf.queueCreateInfoCount = 1; if (queueprops[queueinf[0].queueFamilyIndex].queueCount >= 2 && vk_dualqueue.ival) { queueinf[0].queueCount = 2; vk.queuenum[1] = 1; Con_DPrintf("Using duel queue\n"); } else { queueinf[0].queueCount = 1; if (vk.khr_swapchain) vk.dopresent = VK_DoPresent; //can't split submit+present onto different queues, so do these on a single thread. Con_DPrintf("Using single queue\n"); } } else { devinf.queueCreateInfoCount = 2; Con_DPrintf("Using separate queue families\n"); } free(queueprops); devinf.pQueueCreateInfos = queueinf; devinf.enabledLayerCount = vklayercount; devinf.ppEnabledLayerNames = vklayerlist; devinf.enabledExtensionCount = numdevextensions; devinf.ppEnabledExtensionNames = devextensions; devinf.pEnabledFeatures = &features; err = vkCreateDevice(vk.gpu, &devinf, NULL, &vk.device); switch(err) { case VK_ERROR_INCOMPATIBLE_DRIVER: Con_Printf("VK_ERROR_INCOMPATIBLE_DRIVER: please install an appropriate vulkan driver\n"); return false; case VK_ERROR_EXTENSION_NOT_PRESENT: Con_Printf("VK_ERROR_EXTENSION_NOT_PRESENT: something on a system level is probably misconfigured\n"); return false; default: Con_Printf("Unknown vulkan device creation error: %x\n", err); return false; case VK_SUCCESS: break; } } #ifdef VK_NO_PROTOTYPES vkGetDeviceProcAddr = (PFN_vkGetDeviceProcAddr)vkGetInstanceProcAddr(vk.instance, "vkGetDeviceProcAddr"); #define VKFunc(n) vk##n = (PFN_vk##n)vkGetDeviceProcAddr(vk.device, "vk"#n); VKDevFuncs #undef VKFunc #endif vkGetDeviceQueue(vk.device, vk.queuefam[0], vk.queuenum[0], &vk.queue_render); vkGetDeviceQueue(vk.device, vk.queuefam[1], vk.queuenum[1], &vk.queue_present); vkGetPhysicalDeviceMemoryProperties(vk.gpu, &vk.memory_properties); { VkCommandPoolCreateInfo cpci = {VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO}; cpci.queueFamilyIndex = vk.queuefam[0]; cpci.flags = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT|VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; VkAssert(vkCreateCommandPool(vk.device, &cpci, vkallocationcb, &vk.cmdpool)); } sh_config.progpath = NULL; sh_config.blobpath = "spirv"; sh_config.shadernamefmt = NULL;//".spv"; if (vk.nv_glsl_shader) { sh_config.progpath = "glsl/%s.glsl"; sh_config.shadernamefmt = "%s_glsl"; } sh_config.progs_supported = true; sh_config.progs_required = true; sh_config.minver = -1; sh_config.maxver = -1; sh_config.texture_allow_block_padding = true; sh_config.texture_non_power_of_two = true; //is this always true? sh_config.texture_non_power_of_two_pic = true; //probably true... sh_config.npot_rounddown = false; sh_config.tex_env_combine = false; //fixme: figure out what this means... sh_config.nv_tex_env_combine4 = false; //fixme: figure out what this means... sh_config.env_add = false; //fixme: figure out what this means... sh_config.can_mipcap = true; sh_config.havecubemaps = true; VK_CheckTextureFormats(); sh_config.pDeleteProg = NULL; sh_config.pLoadBlob = NULL; if (vk.nv_glsl_shader) sh_config.pCreateProgram = VK_LoadGLSL; else sh_config.pCreateProgram = NULL; sh_config.pValidateProgram = NULL; sh_config.pProgAutoFields = NULL; if (sh_config.texfmt[PTI_DEPTH32]) vk.depthformat = VK_FORMAT_D32_SFLOAT; else if (sh_config.texfmt[PTI_DEPTH24]) vk.depthformat = VK_FORMAT_X8_D24_UNORM_PACK32; else if (sh_config.texfmt[PTI_DEPTH24_8]) vk.depthformat = VK_FORMAT_D24_UNORM_S8_UINT; else //16bit depth is guarenteed in vulkan vk.depthformat = VK_FORMAT_D16_UNORM; #ifdef MULTITHREAD vk.submitcondition = Sys_CreateConditional(); #endif { VkPipelineCacheCreateInfo pci = {VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO}; qofs_t size = 0; pci.pInitialData = FS_MallocFile("vulkan.pcache", FS_ROOT, &size); pci.initialDataSize = size; VkAssert(vkCreatePipelineCache(vk.device, &pci, vkallocationcb, &vk.pipelinecache)); FS_FreeFile((void*)pci.pInitialData); } if (VK_CreateSwapChain()) { vk.neednewswapchain = false; #ifdef MULTITHREAD if (vk.allowsubmissionthread && (vk_submissionthread.ival || !*vk_submissionthread.string)) { vk.submitthread = Sys_CreateThread("vksubmission", VK_Submit_Thread, NULL, THREADP_HIGHEST, 0); } #endif } if (info->srgb != 1 && (vid.flags & VID_SRGB_FB)) vid.flags |= VID_SRGBAWARE; return true; } void VK_Shutdown(void) { uint32_t i; VK_DestroySwapChain(); for (i = 0; i < countof(postproc); i++) VKBE_RT_Gen(&postproc[i], 0, 0, false, RT_IMAGEFLAGS); VKBE_RT_Gen_Cube(&vk_rt_cubemap, 0, false); VK_R_BloomShutdown(); if (vk.cmdpool) vkDestroyCommandPool(vk.device, vk.cmdpool, vkallocationcb); VK_DestroyRenderPass(); if (vk.pipelinecache) { size_t size; if (VK_SUCCESS == vkGetPipelineCacheData(vk.device, vk.pipelinecache, &size, NULL)) { void *ptr = Z_Malloc(size); //valgrind says nvidia isn't initialising this. if (VK_SUCCESS == vkGetPipelineCacheData(vk.device, vk.pipelinecache, &size, ptr)) FS_WriteFile("vulkan.pcache", ptr, size, FS_ROOT); Z_Free(ptr); } vkDestroyPipelineCache(vk.device, vk.pipelinecache, vkallocationcb); } if (vk.device) vkDestroyDevice(vk.device, vkallocationcb); if (vk_debugcallback) { vkDestroyDebugReportCallbackEXT(vk.instance, vk_debugcallback, vkallocationcb); vk_debugcallback = VK_NULL_HANDLE; } if (vk.surface) vkDestroySurfaceKHR(vk.instance, vk.surface, vkallocationcb); if (vk.instance) vkDestroyInstance(vk.instance, vkallocationcb); #ifdef MULTITHREAD if (vk.submitcondition) Sys_DestroyConditional(vk.submitcondition); #endif memset(&vk, 0, sizeof(vk)); #ifdef VK_NO_PROTOTYPES #define VKFunc(n) vk##n = NULL; VKFuncs #undef VKFunc #endif } #endif