//this shader is a light shader. ideally drawn with a quad covering the entire region //the output is contribution from this light (which will be additively blended) //you can blame Electro for much of the maths in here. //fixme: no fog //s_t0 is the normals and depth //output should be amount of light hitting the surface. varying vec4 tf; #ifdef VERTEX_SHADER void main() { tf = ftetransform(); gl_Position = tf; } #endif #ifdef FRAGMENT_SHADER uniform sampler2D s_t0; //norm.xyz, depth uniform vec3 l_lightposition; uniform mat4 m_invviewprojection; uniform vec3 l_lightcolour; uniform float l_lightradius; uniform mat4 l_cubematrix; #ifdef PCF #define USE_ARB_SHADOW #ifndef USE_ARB_SHADOW //fall back on regular samplers if we must #define sampler2DShadow sampler2D #endif uniform sampler2DShadow s_shadowmap; uniform vec4 l_shadowmapproj; //light projection matrix info uniform vec2 l_shadowmapscale; //xy are the texture scale, z is 1, w is the scale. vec3 ShadowmapCoord(vec4 cubeproj) { #ifdef SPOT //bias it. don't bother figuring out which side or anything, its not needed //l_projmatrix contains the light's projection matrix so no other magic needed return ((cubeproj.xyz-vec3(0.0,0.0,0.015))/cubeproj.w + vec3(1.0, 1.0, 1.0)) * vec3(0.5, 0.5, 0.5); //#elif defined(CUBESHADOW) // vec3 shadowcoord = vshadowcoord.xyz / vshadowcoord.w; // #define dosamp(x,y) shadowCube(s_shadowmap, shadowcoord + vec2(x,y)*texscale.xy).r #else //figure out which axis to use //texture is arranged thusly: //forward left up //back right down vec3 dir = abs(cubeproj.xyz); //assume z is the major axis (ie: forward from the light) vec3 t = cubeproj.xyz; float ma = dir.z; vec3 axis = vec3(0.5/3.0, 0.5/2.0, 0.5); if (dir.x > ma) { ma = dir.x; t = cubeproj.zyx; axis.x = 0.5; } if (dir.y > ma) { ma = dir.y; t = cubeproj.xzy; axis.x = 2.5/3.0; } //if the axis is negative, flip it. if (t.z > 0.0) { axis.y = 1.5/2.0; t.z = -t.z; } //we also need to pass the result through the light's projection matrix too //the 'matrix' we need only contains 5 actual values. and one of them is a -1. So we might as well just use a vec4. //note: the projection matrix also includes scalers to pinch the image inwards to avoid sampling over borders, as well as to cope with non-square source image //the resulting z is prescaled to result in a value between -0.5 and 0.5. //also make sure we're in the right quadrant type thing return axis + ((l_shadowmapproj.xyz*t.xyz + vec3(0.0, 0.0, l_shadowmapproj.w)) / -t.z); #endif } float ShadowmapFilter(vec4 vtexprojcoord) { vec3 shadowcoord = ShadowmapCoord(vtexprojcoord); #if 0//def GL_ARB_texture_gather vec2 ipart, fpart; #define dosamp(x,y) textureGatherOffset(s_shadowmap, ipart.xy, vec2(x,y))) vec4 tl = step(shadowcoord.z, dosamp(-1.0, -1.0)); vec4 bl = step(shadowcoord.z, dosamp(-1.0, 1.0)); vec4 tr = step(shadowcoord.z, dosamp(1.0, -1.0)); vec4 br = step(shadowcoord.z, dosamp(1.0, 1.0)); //we now have 4*4 results, woo //we can just average them for 1/16th precision, but that's still limited graduations //the middle four pixels are 'full strength', but we interpolate the sides to effectively give 3*3 vec4 col = vec4(tl.ba, tr.ba) + vec4(bl.rg, br.rg) + //middle two rows are full strength mix(vec4(tl.rg, tr.rg), vec4(bl.ba, br.ba), fpart.y); //top+bottom rows return dot(mix(col.rgb, col.agb, fpart.x), vec3(1.0/9.0)); //blend r+a, gb are mixed because its pretty much free and gives a nicer dot instruction instead of lots of adds. #else #ifdef USE_ARB_SHADOW //with arb_shadow, we can benefit from hardware acclerated pcf, for smoother shadows #define dosamp(x,y) shadow2D(s_shadowmap, shadowcoord.xyz + (vec3(x,y,0.0)*l_shadowmapscale.xyx)).r #else //this will probably be a bit blocky. #define dosamp(x,y) float(texture2D(s_shadowmap, shadowcoord.xy + (vec2(x,y)*l_shadowmapscale.xy)).r >= shadowcoord.z) #endif float s = 0.0; #if r_glsl_pcf >= 1 && r_glsl_pcf < 5 s += dosamp(0.0, 0.0); return s; #elif r_glsl_pcf >= 5 && r_glsl_pcf < 9 s += dosamp(-1.0, 0.0); s += dosamp(0.0, -1.0); s += dosamp(0.0, 0.0); s += dosamp(0.0, 1.0); s += dosamp(1.0, 0.0); return s/5.0; #else s += dosamp(-1.0, -1.0); s += dosamp(-1.0, 0.0); s += dosamp(-1.0, 1.0); s += dosamp(0.0, -1.0); s += dosamp(0.0, 0.0); s += dosamp(0.0, 1.0); s += dosamp(1.0, -1.0); s += dosamp(1.0, 0.0); s += dosamp(1.0, 1.0); return s/9.0; #endif #endif } #else float ShadowmapFilter(vec4 vtexprojcoord) { return 1.0; } #endif vec3 calcLightWorldPos(vec2 screenPos, float depth) { vec4 pos = m_invviewprojection * vec4(screenPos.xy, (depth*2.0)-1.0, 1.0); return pos.xyz / pos.w; } void main () { vec3 lightColour = l_lightcolour.rgb; float lightIntensity = 1.0; float lightAttenuation = l_lightradius; // fixme: just use the light radius for now, use better near/far att math separately once working float radiusFar = l_lightradius; float radiusNear = l_lightradius*0.5; vec2 fc; fc = tf.xy / tf.w; vec4 data = texture2D(s_t0, (1.0 + fc) / 2.0); float depth = data.a; vec3 norm = data.xyz; /* calc where the wall that generated this sample came from */ vec3 worldPos = calcLightWorldPos(fc, depth); /*we need to know the cube projection (for both cubemaps+shadows)*/ vec4 cubeaxis = l_cubematrix*vec4(worldPos.xyz, 1.0); /*calc diffuse lighting term*/ vec3 lightDir = l_lightposition - worldPos; float zdiff = 1.0 - clamp(length(lightDir) / lightAttenuation, 0.0, 1.0); float atten = (radiusFar * zdiff) / (radiusFar - radiusNear); atten = pow(atten, 2.0); lightDir = normalize(lightDir); float nDotL = dot(norm, lightDir); float lightDiffuse = max(0.0, nDotL) * atten; //fixme: apply fog //fixme: output a specular term //fixme: cubemap filters gl_FragColor = vec4(lightDiffuse * (lightColour * lightIntensity) * ShadowmapFilter(cubeaxis), 1.0); } #endif