/* * Copyright (c) 2013 Rob Clark * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef IR3_H_ #define IR3_H_ #include #include #include "compiler/shader_enums.h" #include "util/bitscan.h" #include "util/list.h" #include "util/set.h" #include "util/u_debug.h" #include "freedreno_common.h" #include "instr-a3xx.h" /* low level intermediate representation of an adreno shader program */ struct ir3_compiler; struct ir3; struct ir3_instruction; struct ir3_block; struct ir3_info { void *data; /* used internally in ir3 assembler */ /* Size in bytes of the shader binary, including NIR constants and * padding */ uint32_t size; /* byte offset from start of the shader to the NIR constant data. */ uint32_t constant_data_offset; /* Size in dwords of the instructions. */ uint16_t sizedwords; uint16_t instrs_count; /* expanded to account for rpt's */ uint16_t nops_count; /* # of nop instructions, including nopN */ uint16_t mov_count; uint16_t cov_count; uint16_t stp_count; uint16_t ldp_count; /* NOTE: max_reg, etc, does not include registers not touched * by the shader (ie. vertex fetched via VFD_DECODE but not * touched by shader) */ int8_t max_reg; /* highest GPR # used by shader */ int8_t max_half_reg; int16_t max_const; /* This is the maximum # of waves that can executed at once in one core, * assuming that they are all executing this shader. */ int8_t max_waves; uint8_t subgroup_size; bool double_threadsize; bool multi_dword_ldp_stp; /* number of sync bits: */ uint16_t ss, sy; /* estimate of number of cycles stalled on (ss) */ uint16_t sstall; /* estimate of number of cycles stalled on (sy) */ uint16_t systall; uint16_t last_baryf; /* instruction # of last varying fetch */ /* Number of instructions of a given category: */ uint16_t instrs_per_cat[8]; }; struct ir3_merge_set { uint16_t preferred_reg; uint16_t size; uint16_t alignment; unsigned interval_start; unsigned spill_slot; unsigned regs_count; struct ir3_register **regs; }; typedef enum ir3_register_flags { IR3_REG_CONST = BIT(0), IR3_REG_IMMED = BIT(1), IR3_REG_HALF = BIT(2), /* Shared registers have the same value for all threads when read. * They can only be written when one thread is active (that is, inside * a "getone" block). */ IR3_REG_SHARED = BIT(3), IR3_REG_RELATIV = BIT(4), IR3_REG_R = BIT(5), /* Most instructions, it seems, can do float abs/neg but not * integer. The CP pass needs to know what is intended (int or * float) in order to do the right thing. For this reason the * abs/neg flags are split out into float and int variants. In * addition, .b (bitwise) operations, the negate is actually a * bitwise not, so split that out into a new flag to make it * more clear. */ IR3_REG_FNEG = BIT(6), IR3_REG_FABS = BIT(7), IR3_REG_SNEG = BIT(8), IR3_REG_SABS = BIT(9), IR3_REG_BNOT = BIT(10), /* (ei) flag, end-input? Set on last bary, presumably to signal * that the shader needs no more input: * * Note: Has different meaning on other instructions like add.s/u */ IR3_REG_EI = BIT(11), /* meta-flags, for intermediate stages of IR, ie. * before register assignment is done: */ IR3_REG_SSA = BIT(12), /* 'def' is ptr to assigning destination */ IR3_REG_ARRAY = BIT(13), /* Set on a use whenever the SSA value becomes dead after the current * instruction. */ IR3_REG_KILL = BIT(14), /* Similar to IR3_REG_KILL, except that if there are multiple uses of the * same SSA value in a single instruction, this is only set on the first * use. */ IR3_REG_FIRST_KILL = BIT(15), /* Set when a destination doesn't have any uses and is dead immediately * after the instruction. This can happen even after optimizations for * corner cases such as destinations of atomic instructions. */ IR3_REG_UNUSED = BIT(16), /* "Early-clobber" on a destination means that the destination is * (potentially) written before any sources are read and therefore * interferes with the sources of the instruction. */ IR3_REG_EARLY_CLOBBER = BIT(17), } ir3_register_flags; struct ir3_register { BITMASK_ENUM(ir3_register_flags) flags; unsigned name; /* used for cat5 instructions, but also for internal/IR level * tracking of what registers are read/written by an instruction. * wrmask may be a bad name since it is used to represent both * src and dst that touch multiple adjacent registers. */ unsigned wrmask : 16; /* up to vec16 */ /* for relative addressing, 32bits for array size is too small, * but otoh we don't need to deal with disjoint sets, so instead * use a simple size field (number of scalar components). * * Note the size field isn't important for relative const (since * we don't have to do register allocation for constants). */ unsigned size : 16; /* normal registers: * the component is in the low two bits of the reg #, so * rN.x becomes: (N << 2) | x */ uint16_t num; union { /* immediate: */ int32_t iim_val; uint32_t uim_val; float fim_val; /* relative: */ struct { uint16_t id; int16_t offset; uint16_t base; } array; }; /* For IR3_REG_SSA, dst registers contain pointer back to the instruction * containing this register. */ struct ir3_instruction *instr; /* For IR3_REG_SSA, src registers contain ptr back to assigning * instruction. * * For IR3_REG_ARRAY, the pointer is back to the last dependent * array access (although the net effect is the same, it points * back to a previous instruction that we depend on). */ struct ir3_register *def; /* Pointer to another register in the instruction that must share the same * physical register. Each destination can be tied with one source, and * they must have "tied" pointing to each other. */ struct ir3_register *tied; unsigned spill_slot, next_use; unsigned merge_set_offset; struct ir3_merge_set *merge_set; unsigned interval_start, interval_end; }; /* * Stupid/simple growable array implementation: */ #define DECLARE_ARRAY(type, name) \ unsigned name##_count, name##_sz; \ type *name; #define array_insert(ctx, arr, ...) \ do { \ if (arr##_count == arr##_sz) { \ arr##_sz = MAX2(2 * arr##_sz, 16); \ arr = reralloc_size(ctx, arr, arr##_sz * sizeof(arr[0])); \ } \ arr[arr##_count++] = __VA_ARGS__; \ } while (0) typedef enum { REDUCE_OP_ADD_U, REDUCE_OP_ADD_F, REDUCE_OP_MUL_U, REDUCE_OP_MUL_F, REDUCE_OP_MIN_U, REDUCE_OP_MIN_S, REDUCE_OP_MIN_F, REDUCE_OP_MAX_U, REDUCE_OP_MAX_S, REDUCE_OP_MAX_F, REDUCE_OP_AND_B, REDUCE_OP_OR_B, REDUCE_OP_XOR_B, } reduce_op_t; typedef enum ir3_instruction_flags { /* (sy) flag is set on first instruction, and after sample * instructions (probably just on RAW hazard). */ IR3_INSTR_SY = BIT(0), /* (ss) flag is set on first instruction, and first instruction * to depend on the result of "long" instructions (RAW hazard): * * rcp, rsq, log2, exp2, sin, cos, sqrt * * It seems to synchronize until all in-flight instructions are * completed, for example: * * rsq hr1.w, hr1.w * add.f hr2.z, (neg)hr2.z, hc0.y * mul.f hr2.w, (neg)hr2.y, (neg)hr2.y * rsq hr2.x, hr2.x * (rpt1)nop * mad.f16 hr2.w, hr2.z, hr2.z, hr2.w * nop * mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w * (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w * (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x * * The last mul.f does not have (ss) set, presumably because the * (ss) on the previous instruction does the job. * * The blob driver also seems to set it on WAR hazards, although * not really clear if this is needed or just blob compiler being * sloppy. So far I haven't found a case where removing the (ss) * causes problems for WAR hazard, but I could just be getting * lucky: * * rcp r1.y, r3.y * (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z * */ IR3_INSTR_SS = BIT(1), /* (jp) flag is set on jump targets: */ IR3_INSTR_JP = BIT(2), IR3_INSTR_UL = BIT(3), IR3_INSTR_3D = BIT(4), IR3_INSTR_A = BIT(5), IR3_INSTR_O = BIT(6), IR3_INSTR_P = BIT(7), IR3_INSTR_S = BIT(8), IR3_INSTR_S2EN = BIT(9), IR3_INSTR_SAT = BIT(10), /* (cat5/cat6) Bindless */ IR3_INSTR_B = BIT(11), /* (cat5/cat6) nonuniform */ IR3_INSTR_NONUNIF = BIT(12), /* (cat5-only) Get some parts of the encoding from a1.x */ IR3_INSTR_A1EN = BIT(13), /* meta-flags, for intermediate stages of IR, ie. * before register assignment is done: */ IR3_INSTR_MARK = BIT(14), IR3_INSTR_UNUSED = BIT(16), } ir3_instruction_flags; struct ir3_instruction { struct ir3_block *block; opc_t opc; BITMASK_ENUM(ir3_instruction_flags) flags; uint8_t repeat; uint8_t nop; #ifdef DEBUG unsigned srcs_max, dsts_max; #endif unsigned srcs_count, dsts_count; struct ir3_register **dsts; struct ir3_register **srcs; union { struct { char inv1, inv2; char comp1, comp2; int immed; struct ir3_block *target; const char *target_label; brtype_t brtype; unsigned idx; /* for brac.N */ } cat0; struct { type_t src_type, dst_type; round_t round; reduce_op_t reduce_op; } cat1; struct { enum { IR3_COND_LT = 0, IR3_COND_LE = 1, IR3_COND_GT = 2, IR3_COND_GE = 3, IR3_COND_EQ = 4, IR3_COND_NE = 5, } condition; } cat2; struct { enum { IR3_SRC_UNSIGNED = 0, IR3_SRC_MIXED = 1, } signedness; enum { IR3_SRC_PACKED_LOW = 0, IR3_SRC_PACKED_HIGH = 1, } packed; bool swapped; } cat3; struct { unsigned samp, tex; unsigned tex_base : 3; unsigned cluster_size : 4; type_t type; } cat5; struct { type_t type; /* TODO remove dst_offset and handle as a ir3_register * which might be IMMED, similar to how src_offset is * handled. */ int dst_offset; int iim_val; /* for ldgb/stgb, # of components */ unsigned d : 3; /* for ldc, component offset */ bool typed : 1; unsigned base : 3; } cat6; struct { unsigned w : 1; /* write */ unsigned r : 1; /* read */ unsigned l : 1; /* local */ unsigned g : 1; /* global */ } cat7; /* for meta-instructions, just used to hold extra data * before instruction scheduling, etc */ struct { int off; /* component/offset */ } split; struct { /* Per-source index back to the entry in the * ir3_shader_variant::outputs table. */ unsigned *outidxs; } end; struct { /* used to temporarily hold reference to nir_phi_instr * until we resolve the phi srcs */ void *nphi; } phi; struct { unsigned samp, tex; unsigned input_offset; unsigned samp_base : 3; unsigned tex_base : 3; } prefetch; struct { /* maps back to entry in ir3_shader_variant::inputs table: */ int inidx; /* for sysvals, identifies the sysval type. Mostly so we can * identify the special cases where a sysval should not be DCE'd * (currently, just pre-fs texture fetch) */ gl_system_value sysval; } input; struct { uint64_t value; } raw; }; /* For assigning jump offsets, we need instruction's position: */ uint32_t ip; /* used for per-pass extra instruction data. * * TODO we should remove the per-pass data like this and 'use_count' * and do something similar to what RA does w/ ir3_ra_instr_data.. * ie. use the ir3_count_instructions pass, and then use instr->ip * to index into a table of pass-private data. */ void *data; /** * Valid if pass calls ir3_find_ssa_uses().. see foreach_ssa_use() */ struct set *uses; int use_count; /* currently just updated/used by cp */ /* an instruction can reference at most one address register amongst * it's src/dst registers. Beyond that, you need to insert mov's. * * NOTE: do not write this directly, use ir3_instr_set_address() */ struct ir3_register *address; /* Tracking for additional dependent instructions. Used to handle * barriers, WAR hazards for arrays/SSBOs/etc. */ DECLARE_ARRAY(struct ir3_instruction *, deps); /* * From PoV of instruction scheduling, not execution (ie. ignores global/ * local distinction): * shared image atomic SSBO everything * barrier()/ - R/W R/W R/W R/W X * groupMemoryBarrier() * memoryBarrier() * (but only images declared coherent?) * memoryBarrierAtomic() - R/W * memoryBarrierBuffer() - R/W * memoryBarrierImage() - R/W * memoryBarrierShared() - R/W * * TODO I think for SSBO/image/shared, in cases where we can determine * which variable is accessed, we don't need to care about accesses to * different variables (unless declared coherent??) */ enum { IR3_BARRIER_EVERYTHING = 1 << 0, IR3_BARRIER_SHARED_R = 1 << 1, IR3_BARRIER_SHARED_W = 1 << 2, IR3_BARRIER_IMAGE_R = 1 << 3, IR3_BARRIER_IMAGE_W = 1 << 4, IR3_BARRIER_BUFFER_R = 1 << 5, IR3_BARRIER_BUFFER_W = 1 << 6, IR3_BARRIER_ARRAY_R = 1 << 7, IR3_BARRIER_ARRAY_W = 1 << 8, IR3_BARRIER_PRIVATE_R = 1 << 9, IR3_BARRIER_PRIVATE_W = 1 << 10, IR3_BARRIER_CONST_W = 1 << 11, IR3_BARRIER_ACTIVE_FIBERS_R = 1 << 12, IR3_BARRIER_ACTIVE_FIBERS_W = 1 << 13, } barrier_class, barrier_conflict; /* Entry in ir3_block's instruction list: */ struct list_head node; uint32_t serialno; // TODO only computerator/assembler: int line; }; struct ir3 { struct ir3_compiler *compiler; gl_shader_stage type; DECLARE_ARRAY(struct ir3_instruction *, inputs); /* Track bary.f (and ldlv) instructions.. this is needed in * scheduling to ensure that all varying fetches happen before * any potential kill instructions. The hw gets grumpy if all * threads in a group are killed before the last bary.f gets * a chance to signal end of input (ei). */ DECLARE_ARRAY(struct ir3_instruction *, baryfs); /* Track all indirect instructions (read and write). To avoid * deadlock scenario where an address register gets scheduled, * but other dependent src instructions cannot be scheduled due * to dependency on a *different* address register value, the * scheduler needs to ensure that all dependencies other than * the instruction other than the address register are scheduled * before the one that writes the address register. Having a * convenient list of instructions that reference some address * register simplifies this. */ DECLARE_ARRAY(struct ir3_instruction *, a0_users); /* same for a1.x: */ DECLARE_ARRAY(struct ir3_instruction *, a1_users); /* and same for instructions that consume predicate register: */ DECLARE_ARRAY(struct ir3_instruction *, predicates); /* Track texture sample instructions which need texture state * patched in (for astc-srgb workaround): */ DECLARE_ARRAY(struct ir3_instruction *, astc_srgb); /* Track tg4 instructions which need texture state patched in (for tg4 * swizzling workaround): */ DECLARE_ARRAY(struct ir3_instruction *, tg4); /* List of blocks: */ struct list_head block_list; /* List of ir3_array's: */ struct list_head array_list; #ifdef DEBUG unsigned block_count; #endif unsigned instr_count; }; struct ir3_array { struct list_head node; unsigned length; unsigned id; struct nir_register *r; /* To avoid array write's from getting DCE'd, keep track of the * most recent write. Any array access depends on the most * recent write. This way, nothing depends on writes after the * last read. But all the writes that happen before that have * something depending on them */ struct ir3_register *last_write; /* extra stuff used in RA pass: */ unsigned base; /* base vreg name */ unsigned reg; /* base physical reg */ uint16_t start_ip, end_ip; /* Indicates if half-precision */ bool half; bool unused; }; struct ir3_array *ir3_lookup_array(struct ir3 *ir, unsigned id); enum ir3_branch_type { IR3_BRANCH_COND, /* condition */ IR3_BRANCH_ANY, /* subgroupAny(condition) */ IR3_BRANCH_ALL, /* subgroupAll(condition) */ IR3_BRANCH_GETONE, /* subgroupElect() */ IR3_BRANCH_SHPS, /* preamble start */ }; struct ir3_block { struct list_head node; struct ir3 *shader; const struct nir_block *nblock; struct list_head instr_list; /* list of ir3_instruction */ /* The actual branch condition, if there are two successors */ enum ir3_branch_type brtype; /* each block has either one or two successors.. in case of two * successors, 'condition' decides which one to follow. A block preceding * an if/else has two successors. * * In some cases the path that the machine actually takes through the * program may not match the per-thread view of the CFG. In particular * this is the case for if/else, where the machine jumps from the end of * the if to the beginning of the else and switches active lanes. While * most things only care about the per-thread view, we need to use the * "physical" view when allocating shared registers. "successors" contains * the per-thread successors, and "physical_successors" contains the * physical successors which includes the fallthrough edge from the if to * the else. */ struct ir3_instruction *condition; struct ir3_block *successors[2]; struct ir3_block *physical_successors[2]; DECLARE_ARRAY(struct ir3_block *, predecessors); DECLARE_ARRAY(struct ir3_block *, physical_predecessors); uint16_t start_ip, end_ip; /* Track instructions which do not write a register but other- * wise must not be discarded (such as kill, stg, etc) */ DECLARE_ARRAY(struct ir3_instruction *, keeps); /* used for per-pass extra block data. Mainly used right * now in RA step to track livein/liveout. */ void *data; uint32_t index; struct ir3_block *imm_dom; DECLARE_ARRAY(struct ir3_block *, dom_children); uint32_t dom_pre_index; uint32_t dom_post_index; uint32_t loop_id; uint32_t loop_depth; #ifdef DEBUG uint32_t serialno; #endif }; static inline uint32_t block_id(struct ir3_block *block) { #ifdef DEBUG return block->serialno; #else return (uint32_t)(unsigned long)block; #endif } static inline struct ir3_block * ir3_start_block(struct ir3 *ir) { return list_first_entry(&ir->block_list, struct ir3_block, node); } static inline struct ir3_block * ir3_after_preamble(struct ir3 *ir) { struct ir3_block *block = ir3_start_block(ir); /* The preamble will have a usually-empty else branch, and we want to skip * that to get to the block after the preamble. */ if (block->brtype == IR3_BRANCH_SHPS) return block->successors[1]->successors[0]; else return block; } void ir3_block_add_predecessor(struct ir3_block *block, struct ir3_block *pred); void ir3_block_add_physical_predecessor(struct ir3_block *block, struct ir3_block *pred); void ir3_block_remove_predecessor(struct ir3_block *block, struct ir3_block *pred); void ir3_block_remove_physical_predecessor(struct ir3_block *block, struct ir3_block *pred); unsigned ir3_block_get_pred_index(struct ir3_block *block, struct ir3_block *pred); void ir3_calc_dominance(struct ir3 *ir); bool ir3_block_dominates(struct ir3_block *a, struct ir3_block *b); struct ir3_shader_variant; struct ir3 *ir3_create(struct ir3_compiler *compiler, struct ir3_shader_variant *v); void ir3_destroy(struct ir3 *shader); void ir3_collect_info(struct ir3_shader_variant *v); void *ir3_alloc(struct ir3 *shader, int sz); unsigned ir3_get_reg_dependent_max_waves(const struct ir3_compiler *compiler, unsigned reg_count, bool double_threadsize); unsigned ir3_get_reg_independent_max_waves(struct ir3_shader_variant *v, bool double_threadsize); bool ir3_should_double_threadsize(struct ir3_shader_variant *v, unsigned regs_count); struct ir3_block *ir3_block_create(struct ir3 *shader); struct ir3_instruction *ir3_instr_create(struct ir3_block *block, opc_t opc, int ndst, int nsrc); struct ir3_instruction *ir3_instr_clone(struct ir3_instruction *instr); void ir3_instr_add_dep(struct ir3_instruction *instr, struct ir3_instruction *dep); const char *ir3_instr_name(struct ir3_instruction *instr); struct ir3_register *ir3_src_create(struct ir3_instruction *instr, int num, int flags); struct ir3_register *ir3_dst_create(struct ir3_instruction *instr, int num, int flags); struct ir3_register *ir3_reg_clone(struct ir3 *shader, struct ir3_register *reg); static inline void ir3_reg_tie(struct ir3_register *dst, struct ir3_register *src) { assert(!dst->tied && !src->tied); dst->tied = src; src->tied = dst; } void ir3_reg_set_last_array(struct ir3_instruction *instr, struct ir3_register *reg, struct ir3_register *last_write); void ir3_instr_set_address(struct ir3_instruction *instr, struct ir3_instruction *addr); static inline bool ir3_instr_check_mark(struct ir3_instruction *instr) { if (instr->flags & IR3_INSTR_MARK) return true; /* already visited */ instr->flags |= IR3_INSTR_MARK; return false; } void ir3_block_clear_mark(struct ir3_block *block); void ir3_clear_mark(struct ir3 *shader); unsigned ir3_count_instructions(struct ir3 *ir); unsigned ir3_count_instructions_ra(struct ir3 *ir); /** * Move 'instr' to just before 'after' */ static inline void ir3_instr_move_before(struct ir3_instruction *instr, struct ir3_instruction *after) { list_delinit(&instr->node); list_addtail(&instr->node, &after->node); } /** * Move 'instr' to just after 'before': */ static inline void ir3_instr_move_after(struct ir3_instruction *instr, struct ir3_instruction *before) { list_delinit(&instr->node); list_add(&instr->node, &before->node); } /** * Move 'instr' to the beginning of the block: */ static inline void ir3_instr_move_before_block(struct ir3_instruction *instr, struct ir3_block *block) { list_delinit(&instr->node); list_add(&instr->node, &block->instr_list); } void ir3_find_ssa_uses(struct ir3 *ir, void *mem_ctx, bool falsedeps); void ir3_set_dst_type(struct ir3_instruction *instr, bool half); void ir3_fixup_src_type(struct ir3_instruction *instr); int ir3_flut(struct ir3_register *src_reg); bool ir3_valid_flags(struct ir3_instruction *instr, unsigned n, unsigned flags); bool ir3_valid_immediate(struct ir3_instruction *instr, int32_t immed); #include "util/set.h" #define foreach_ssa_use(__use, __instr) \ for (struct ir3_instruction *__use = (void *)~0; __use && (__instr)->uses; \ __use = NULL) \ set_foreach ((__instr)->uses, __entry) \ if ((__use = (void *)__entry->key)) static inline uint32_t reg_num(const struct ir3_register *reg) { return reg->num >> 2; } static inline uint32_t reg_comp(const struct ir3_register *reg) { return reg->num & 0x3; } static inline bool is_flow(struct ir3_instruction *instr) { return (opc_cat(instr->opc) == 0); } static inline bool is_kill_or_demote(struct ir3_instruction *instr) { return instr->opc == OPC_KILL || instr->opc == OPC_DEMOTE; } static inline bool is_nop(struct ir3_instruction *instr) { return instr->opc == OPC_NOP; } static inline bool is_same_type_reg(struct ir3_register *dst, struct ir3_register *src) { unsigned dst_type = (dst->flags & IR3_REG_HALF); unsigned src_type = (src->flags & IR3_REG_HALF); /* Treat shared->normal copies as same-type, because they can generally be * folded, but not normal->shared copies. */ if (dst_type != src_type || ((dst->flags & IR3_REG_SHARED) && !(src->flags & IR3_REG_SHARED))) return false; else return true; } /* Is it a non-transformative (ie. not type changing) mov? This can * also include absneg.s/absneg.f, which for the most part can be * treated as a mov (single src argument). */ static inline bool is_same_type_mov(struct ir3_instruction *instr) { struct ir3_register *dst; switch (instr->opc) { case OPC_MOV: if (instr->cat1.src_type != instr->cat1.dst_type) return false; /* If the type of dest reg and src reg are different, * it shouldn't be considered as same type mov */ if (!is_same_type_reg(instr->dsts[0], instr->srcs[0])) return false; break; case OPC_ABSNEG_F: case OPC_ABSNEG_S: if (instr->flags & IR3_INSTR_SAT) return false; /* If the type of dest reg and src reg are different, * it shouldn't be considered as same type mov */ if (!is_same_type_reg(instr->dsts[0], instr->srcs[0])) return false; break; case OPC_META_PHI: return instr->srcs_count == 1; default: return false; } dst = instr->dsts[0]; /* mov's that write to a0 or p0.x are special: */ if (dst->num == regid(REG_P0, 0)) return false; if (reg_num(dst) == REG_A0) return false; if (dst->flags & (IR3_REG_RELATIV | IR3_REG_ARRAY)) return false; return true; } /* A move from const, which changes size but not type, can also be * folded into dest instruction in some cases. */ static inline bool is_const_mov(struct ir3_instruction *instr) { if (instr->opc != OPC_MOV) return false; if (!(instr->srcs[0]->flags & IR3_REG_CONST)) return false; type_t src_type = instr->cat1.src_type; type_t dst_type = instr->cat1.dst_type; return (type_float(src_type) && type_float(dst_type)) || (type_uint(src_type) && type_uint(dst_type)) || (type_sint(src_type) && type_sint(dst_type)); } static inline bool is_subgroup_cond_mov_macro(struct ir3_instruction *instr) { switch (instr->opc) { case OPC_BALLOT_MACRO: case OPC_ANY_MACRO: case OPC_ALL_MACRO: case OPC_ELECT_MACRO: case OPC_READ_COND_MACRO: case OPC_READ_FIRST_MACRO: case OPC_SWZ_SHARED_MACRO: case OPC_SCAN_MACRO: return true; default: return false; } } static inline bool is_alu(struct ir3_instruction *instr) { return (1 <= opc_cat(instr->opc)) && (opc_cat(instr->opc) <= 3); } static inline bool is_sfu(struct ir3_instruction *instr) { return (opc_cat(instr->opc) == 4) || instr->opc == OPC_GETFIBERID; } static inline bool is_tex(struct ir3_instruction *instr) { return (opc_cat(instr->opc) == 5) && instr->opc != OPC_TCINV; } static inline bool is_tex_or_prefetch(struct ir3_instruction *instr) { return is_tex(instr) || (instr->opc == OPC_META_TEX_PREFETCH); } static inline bool is_mem(struct ir3_instruction *instr) { return (opc_cat(instr->opc) == 6) && instr->opc != OPC_GETFIBERID; } static inline bool is_barrier(struct ir3_instruction *instr) { return (opc_cat(instr->opc) == 7); } static inline bool is_half(struct ir3_instruction *instr) { return !!(instr->dsts[0]->flags & IR3_REG_HALF); } static inline bool is_shared(struct ir3_instruction *instr) { return !!(instr->dsts[0]->flags & IR3_REG_SHARED); } static inline bool is_store(struct ir3_instruction *instr) { /* these instructions, the "destination" register is * actually a source, the address to store to. */ switch (instr->opc) { case OPC_STG: case OPC_STG_A: case OPC_STGB: case OPC_STIB: case OPC_STP: case OPC_STL: case OPC_STLW: case OPC_L2G: case OPC_G2L: return true; default: return false; } } static inline bool is_load(struct ir3_instruction *instr) { switch (instr->opc) { case OPC_LDG: case OPC_LDG_A: case OPC_LDGB: case OPC_LDIB: case OPC_LDL: case OPC_LDP: case OPC_L2G: case OPC_LDLW: case OPC_LDC: case OPC_LDLV: /* probably some others too.. */ return true; default: return false; } } static inline bool is_input(struct ir3_instruction *instr) { /* in some cases, ldlv is used to fetch varying without * interpolation.. fortunately inloc is the first src * register in either case */ switch (instr->opc) { case OPC_LDLV: case OPC_BARY_F: case OPC_FLAT_B: return true; default: return false; } } static inline bool is_bool(struct ir3_instruction *instr) { switch (instr->opc) { case OPC_CMPS_F: case OPC_CMPS_S: case OPC_CMPS_U: return true; default: return false; } } static inline opc_t cat3_half_opc(opc_t opc) { switch (opc) { case OPC_MAD_F32: return OPC_MAD_F16; case OPC_SEL_B32: return OPC_SEL_B16; case OPC_SEL_S32: return OPC_SEL_S16; case OPC_SEL_F32: return OPC_SEL_F16; case OPC_SAD_S32: return OPC_SAD_S16; default: return opc; } } static inline opc_t cat3_full_opc(opc_t opc) { switch (opc) { case OPC_MAD_F16: return OPC_MAD_F32; case OPC_SEL_B16: return OPC_SEL_B32; case OPC_SEL_S16: return OPC_SEL_S32; case OPC_SEL_F16: return OPC_SEL_F32; case OPC_SAD_S16: return OPC_SAD_S32; default: return opc; } } static inline opc_t cat4_half_opc(opc_t opc) { switch (opc) { case OPC_RSQ: return OPC_HRSQ; case OPC_LOG2: return OPC_HLOG2; case OPC_EXP2: return OPC_HEXP2; default: return opc; } } static inline opc_t cat4_full_opc(opc_t opc) { switch (opc) { case OPC_HRSQ: return OPC_RSQ; case OPC_HLOG2: return OPC_LOG2; case OPC_HEXP2: return OPC_EXP2; default: return opc; } } static inline bool is_meta(struct ir3_instruction *instr) { return (opc_cat(instr->opc) == OPC_META); } static inline unsigned reg_elems(const struct ir3_register *reg) { if (reg->flags & IR3_REG_ARRAY) return reg->size; else return util_last_bit(reg->wrmask); } static inline unsigned reg_elem_size(const struct ir3_register *reg) { return (reg->flags & IR3_REG_HALF) ? 1 : 2; } static inline unsigned reg_size(const struct ir3_register *reg) { return reg_elems(reg) * reg_elem_size(reg); } static inline unsigned dest_regs(struct ir3_instruction *instr) { if (instr->dsts_count == 0) return 0; assert(instr->dsts_count == 1); return util_last_bit(instr->dsts[0]->wrmask); } /* is dst a normal temp register: */ static inline bool is_dest_gpr(struct ir3_register *dst) { if (dst->wrmask == 0) return false; if ((reg_num(dst) == REG_A0) || (dst->num == regid(REG_P0, 0))) return false; return true; } static inline bool writes_gpr(struct ir3_instruction *instr) { if (dest_regs(instr) == 0) return false; return is_dest_gpr(instr->dsts[0]); } static inline bool writes_addr0(struct ir3_instruction *instr) { /* Note: only the first dest can write to a0.x */ if (instr->dsts_count > 0) { struct ir3_register *dst = instr->dsts[0]; return dst->num == regid(REG_A0, 0); } return false; } static inline bool writes_addr1(struct ir3_instruction *instr) { /* Note: only the first dest can write to a1.x */ if (instr->dsts_count > 0) { struct ir3_register *dst = instr->dsts[0]; return dst->num == regid(REG_A0, 1); } return false; } static inline bool writes_pred(struct ir3_instruction *instr) { /* Note: only the first dest can write to p0.x */ if (instr->dsts_count > 0) { struct ir3_register *dst = instr->dsts[0]; return reg_num(dst) == REG_P0; } return false; } /* Is it something other than a normal register. Shared regs, p0, and a0/a1 * are considered special here. Special registers are always accessed with one * size and never alias normal registers, even though a naive calculation * would sometimes make it seem like e.g. r30.z aliases a0.x. */ static inline bool is_reg_special(const struct ir3_register *reg) { return (reg->flags & IR3_REG_SHARED) || (reg_num(reg) == REG_A0) || (reg_num(reg) == REG_P0); } /* Same as above but in cases where we don't have a register. r48.x and above * are shared/special. */ static inline bool is_reg_num_special(unsigned num) { return num >= 48 * 4; } /* returns defining instruction for reg */ /* TODO better name */ static inline struct ir3_instruction * ssa(struct ir3_register *reg) { if ((reg->flags & (IR3_REG_SSA | IR3_REG_ARRAY)) && reg->def) return reg->def->instr; return NULL; } static inline bool conflicts(struct ir3_register *a, struct ir3_register *b) { return (a && b) && (a->def != b->def); } static inline bool reg_gpr(struct ir3_register *r) { if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED)) return false; if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0)) return false; return true; } static inline type_t half_type(type_t type) { switch (type) { case TYPE_F32: return TYPE_F16; case TYPE_U32: return TYPE_U16; case TYPE_S32: return TYPE_S16; case TYPE_F16: case TYPE_U16: case TYPE_S16: return type; case TYPE_U8: case TYPE_S8: return type; default: assert(0); return (type_t)~0; } } static inline type_t full_type(type_t type) { switch (type) { case TYPE_F16: return TYPE_F32; case TYPE_U8: case TYPE_U16: return TYPE_U32; case TYPE_S8: case TYPE_S16: return TYPE_S32; case TYPE_F32: case TYPE_U32: case TYPE_S32: return type; default: assert(0); return (type_t)~0; } } /* some cat2 instructions (ie. those which are not float) can embed an * immediate: */ static inline bool ir3_cat2_int(opc_t opc) { switch (opc) { case OPC_ADD_U: case OPC_ADD_S: case OPC_SUB_U: case OPC_SUB_S: case OPC_CMPS_U: case OPC_CMPS_S: case OPC_MIN_U: case OPC_MIN_S: case OPC_MAX_U: case OPC_MAX_S: case OPC_CMPV_U: case OPC_CMPV_S: case OPC_MUL_U24: case OPC_MUL_S24: case OPC_MULL_U: case OPC_CLZ_S: case OPC_ABSNEG_S: case OPC_AND_B: case OPC_OR_B: case OPC_NOT_B: case OPC_XOR_B: case OPC_BFREV_B: case OPC_CLZ_B: case OPC_SHL_B: case OPC_SHR_B: case OPC_ASHR_B: case OPC_MGEN_B: case OPC_GETBIT_B: case OPC_CBITS_B: case OPC_BARY_F: case OPC_FLAT_B: return true; default: return false; } } /* map cat2 instruction to valid abs/neg flags: */ static inline unsigned ir3_cat2_absneg(opc_t opc) { switch (opc) { case OPC_ADD_F: case OPC_MIN_F: case OPC_MAX_F: case OPC_MUL_F: case OPC_SIGN_F: case OPC_CMPS_F: case OPC_ABSNEG_F: case OPC_CMPV_F: case OPC_FLOOR_F: case OPC_CEIL_F: case OPC_RNDNE_F: case OPC_RNDAZ_F: case OPC_TRUNC_F: case OPC_BARY_F: return IR3_REG_FABS | IR3_REG_FNEG; case OPC_ADD_U: case OPC_ADD_S: case OPC_SUB_U: case OPC_SUB_S: case OPC_CMPS_U: case OPC_CMPS_S: case OPC_MIN_U: case OPC_MIN_S: case OPC_MAX_U: case OPC_MAX_S: case OPC_CMPV_U: case OPC_CMPV_S: case OPC_MUL_U24: case OPC_MUL_S24: case OPC_MULL_U: case OPC_CLZ_S: return 0; case OPC_ABSNEG_S: return IR3_REG_SABS | IR3_REG_SNEG; case OPC_AND_B: case OPC_OR_B: case OPC_NOT_B: case OPC_XOR_B: case OPC_BFREV_B: case OPC_CLZ_B: case OPC_SHL_B: case OPC_SHR_B: case OPC_ASHR_B: case OPC_MGEN_B: case OPC_GETBIT_B: case OPC_CBITS_B: return IR3_REG_BNOT; default: return 0; } } /* map cat3 instructions to valid abs/neg flags: */ static inline unsigned ir3_cat3_absneg(opc_t opc) { switch (opc) { case OPC_MAD_F16: case OPC_MAD_F32: case OPC_SEL_F16: case OPC_SEL_F32: return IR3_REG_FNEG; case OPC_MAD_U16: case OPC_MADSH_U16: case OPC_MAD_S16: case OPC_MADSH_M16: case OPC_MAD_U24: case OPC_MAD_S24: case OPC_SEL_S16: case OPC_SEL_S32: case OPC_SAD_S16: case OPC_SAD_S32: /* neg *may* work on 3rd src.. */ case OPC_SEL_B16: case OPC_SEL_B32: case OPC_SHRM: case OPC_SHLM: case OPC_SHRG: case OPC_SHLG: case OPC_ANDG: case OPC_WMM: case OPC_WMM_ACCU: default: return 0; } } /* Return the type (float, int, or uint) the op uses when converting from the * internal result of the op (which is assumed to be the same size as the * sources) to the destination when they are not the same size. If F32 it does * a floating-point conversion, if U32 it does a truncation/zero-extension, if * S32 it does a truncation/sign-extension. "can_fold" will be false if it * doesn't do anything sensible or is unknown. */ static inline type_t ir3_output_conv_type(struct ir3_instruction *instr, bool *can_fold) { *can_fold = true; switch (instr->opc) { case OPC_ADD_F: case OPC_MUL_F: case OPC_BARY_F: case OPC_MAD_F32: case OPC_MAD_F16: case OPC_WMM: case OPC_WMM_ACCU: return TYPE_F32; case OPC_ADD_U: case OPC_SUB_U: case OPC_MIN_U: case OPC_MAX_U: case OPC_AND_B: case OPC_OR_B: case OPC_NOT_B: case OPC_XOR_B: case OPC_MUL_U24: case OPC_MULL_U: case OPC_SHL_B: case OPC_SHR_B: case OPC_ASHR_B: case OPC_MAD_U24: case OPC_SHRM: case OPC_SHLM: case OPC_SHRG: case OPC_SHLG: case OPC_ANDG: /* Comparison ops zero-extend/truncate their results, so consider them as * unsigned here. */ case OPC_CMPS_F: case OPC_CMPV_F: case OPC_CMPS_U: case OPC_CMPS_S: return TYPE_U32; case OPC_ADD_S: case OPC_SUB_S: case OPC_MIN_S: case OPC_MAX_S: case OPC_ABSNEG_S: case OPC_MUL_S24: case OPC_MAD_S24: return TYPE_S32; /* We assume that any move->move folding that could be done was done by * NIR. */ case OPC_MOV: default: *can_fold = false; return TYPE_U32; } } /* Return the src and dst types for the conversion which is already folded * into the op. We can assume that instr has folded in a conversion from * ir3_output_conv_src_type() to ir3_output_conv_dst_type(). Only makes sense * to call if ir3_output_conv_type() returns can_fold = true. */ static inline type_t ir3_output_conv_src_type(struct ir3_instruction *instr, type_t base_type) { switch (instr->opc) { case OPC_CMPS_F: case OPC_CMPV_F: case OPC_CMPS_U: case OPC_CMPS_S: /* Comparisons only return 0/1 and the size of the comparison sources * is irrelevant, never consider them as having an output conversion * by returning a type with the dest size here: */ return (instr->dsts[0]->flags & IR3_REG_HALF) ? half_type(base_type) : full_type(base_type); case OPC_BARY_F: /* bary.f doesn't have an explicit source, but we can assume here that * the varying data it reads is in fp32. * * This may be fp16 on older gen's depending on some register * settings, but it's probably not worth plumbing that through for a * small improvement that NIR would hopefully handle for us anyway. */ return TYPE_F32; case OPC_FLAT_B: /* Treat the input data as u32 if not interpolating. */ return TYPE_U32; default: return (instr->srcs[0]->flags & IR3_REG_HALF) ? half_type(base_type) : full_type(base_type); } } static inline type_t ir3_output_conv_dst_type(struct ir3_instruction *instr, type_t base_type) { return (instr->dsts[0]->flags & IR3_REG_HALF) ? half_type(base_type) : full_type(base_type); } /* Some instructions have signed/unsigned variants which are identical except * for whether the folded conversion sign-extends or zero-extends, and we can * fold in a mismatching move by rewriting the opcode. Return the opcode to * switch signedness, and whether one exists. */ static inline opc_t ir3_try_swap_signedness(opc_t opc, bool *can_swap) { switch (opc) { #define PAIR(u, s) \ case OPC_##u: \ return OPC_##s; \ case OPC_##s: \ return OPC_##u; PAIR(ADD_U, ADD_S) PAIR(SUB_U, SUB_S) /* Note: these are only identical when the sources are half, but that's * the only case we call this function for anyway. */ PAIR(MUL_U24, MUL_S24) default: *can_swap = false; return opc; } } #define MASK(n) ((1 << (n)) - 1) /* iterator for an instructions's sources (reg), also returns src #: */ #define foreach_src_n(__srcreg, __n, __instr) \ if ((__instr)->srcs_count) \ for (struct ir3_register *__srcreg = (struct ir3_register *)~0; __srcreg;\ __srcreg = NULL) \ for (unsigned __cnt = (__instr)->srcs_count, __n = 0; __n < __cnt; \ __n++) \ if ((__srcreg = (__instr)->srcs[__n])) /* iterator for an instructions's sources (reg): */ #define foreach_src(__srcreg, __instr) foreach_src_n (__srcreg, __i, __instr) /* iterator for an instructions's destinations (reg), also returns dst #: */ #define foreach_dst_n(__dstreg, __n, __instr) \ if ((__instr)->dsts_count) \ for (struct ir3_register *__dstreg = (struct ir3_register *)~0; __dstreg;\ __dstreg = NULL) \ for (unsigned __cnt = (__instr)->dsts_count, __n = 0; __n < __cnt; \ __n++) \ if ((__dstreg = (__instr)->dsts[__n])) /* iterator for an instructions's destinations (reg): */ #define foreach_dst(__dstreg, __instr) foreach_dst_n (__dstreg, __i, __instr) static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr) { return instr->srcs_count + instr->deps_count; } static inline bool __is_false_dep(struct ir3_instruction *instr, unsigned n) { if (n >= instr->srcs_count) return true; return false; } static inline struct ir3_instruction ** __ssa_srcp_n(struct ir3_instruction *instr, unsigned n) { if (__is_false_dep(instr, n)) return &instr->deps[n - instr->srcs_count]; if (ssa(instr->srcs[n])) return &instr->srcs[n]->def->instr; return NULL; } #define foreach_ssa_srcp_n(__srcp, __n, __instr) \ for (struct ir3_instruction **__srcp = (void *)~0; __srcp; __srcp = NULL) \ for (unsigned __cnt = __ssa_src_cnt(__instr), __n = 0; __n < __cnt; \ __n++) \ if ((__srcp = __ssa_srcp_n(__instr, __n))) #define foreach_ssa_srcp(__srcp, __instr) \ foreach_ssa_srcp_n (__srcp, __i, __instr) /* iterator for an instruction's SSA sources (instr), also returns src #: */ #define foreach_ssa_src_n(__srcinst, __n, __instr) \ for (struct ir3_instruction *__srcinst = (void *)~0; __srcinst; \ __srcinst = NULL) \ foreach_ssa_srcp_n (__srcp, __n, __instr) \ if ((__srcinst = *__srcp)) /* iterator for an instruction's SSA sources (instr): */ #define foreach_ssa_src(__srcinst, __instr) \ foreach_ssa_src_n (__srcinst, __i, __instr) /* iterators for shader inputs: */ #define foreach_input_n(__ininstr, __cnt, __ir) \ for (struct ir3_instruction *__ininstr = (void *)~0; __ininstr; \ __ininstr = NULL) \ for (unsigned __cnt = 0; __cnt < (__ir)->inputs_count; __cnt++) \ if ((__ininstr = (__ir)->inputs[__cnt])) #define foreach_input(__ininstr, __ir) foreach_input_n (__ininstr, __i, __ir) /* iterators for instructions: */ #define foreach_instr(__instr, __list) \ list_for_each_entry (struct ir3_instruction, __instr, __list, node) #define foreach_instr_rev(__instr, __list) \ list_for_each_entry_rev (struct ir3_instruction, __instr, __list, node) #define foreach_instr_safe(__instr, __list) \ list_for_each_entry_safe (struct ir3_instruction, __instr, __list, node) #define foreach_instr_from_safe(__instr, __start, __list) \ list_for_each_entry_from_safe(struct ir3_instruction, __instr, __start, \ __list, node) /* iterators for blocks: */ #define foreach_block(__block, __list) \ list_for_each_entry (struct ir3_block, __block, __list, node) #define foreach_block_safe(__block, __list) \ list_for_each_entry_safe (struct ir3_block, __block, __list, node) #define foreach_block_rev(__block, __list) \ list_for_each_entry_rev (struct ir3_block, __block, __list, node) /* iterators for arrays: */ #define foreach_array(__array, __list) \ list_for_each_entry (struct ir3_array, __array, __list, node) #define foreach_array_safe(__array, __list) \ list_for_each_entry_safe (struct ir3_array, __array, __list, node) #define IR3_PASS(ir, pass, ...) \ ({ \ bool progress = pass(ir, ##__VA_ARGS__); \ if (progress) { \ ir3_debug_print(ir, "AFTER: " #pass); \ ir3_validate(ir); \ } \ progress; \ }) /* validate: */ void ir3_validate(struct ir3 *ir); /* dump: */ void ir3_print(struct ir3 *ir); void ir3_print_instr(struct ir3_instruction *instr); struct log_stream; void ir3_print_instr_stream(struct log_stream *stream, struct ir3_instruction *instr); /* delay calculation: */ int ir3_delayslots(struct ir3_instruction *assigner, struct ir3_instruction *consumer, unsigned n, bool soft); unsigned ir3_delayslots_with_repeat(struct ir3_instruction *assigner, struct ir3_instruction *consumer, unsigned assigner_n, unsigned consumer_n); unsigned ir3_delay_calc(struct ir3_block *block, struct ir3_instruction *instr, bool mergedregs); /* estimated (ss)/(sy) delay calculation */ static inline bool is_local_mem_load(struct ir3_instruction *instr) { return instr->opc == OPC_LDL || instr->opc == OPC_LDLV || instr->opc == OPC_LDLW; } /* Does this instruction need (ss) to wait for its result? */ static inline bool is_ss_producer(struct ir3_instruction *instr) { foreach_dst (dst, instr) { if (dst->flags & IR3_REG_SHARED) return true; } return is_sfu(instr) || is_local_mem_load(instr); } /* The soft delay for approximating the cost of (ss). */ static inline unsigned soft_ss_delay(struct ir3_instruction *instr) { /* On a6xx, it takes the number of delay slots to get a SFU result back (ie. * using nop's instead of (ss) is: * * 8 - single warp * 9 - two warps * 10 - four warps * * and so on. Not quite sure where it tapers out (ie. how many warps share an * SFU unit). But 10 seems like a reasonable # to choose: */ if (is_sfu(instr) || is_local_mem_load(instr)) return 10; /* The blob adds 6 nops between shared producers and consumers, and before we * used (ss) this was sufficient in most cases. */ return 6; } static inline bool is_sy_producer(struct ir3_instruction *instr) { return is_tex_or_prefetch(instr) || (is_load(instr) && !is_local_mem_load(instr)) || is_atomic(instr->opc); } static inline unsigned soft_sy_delay(struct ir3_instruction *instr, struct ir3 *shader) { /* TODO: this is just an optimistic guess, we can do better post-RA. */ bool double_wavesize = shader->type == MESA_SHADER_FRAGMENT || shader->type == MESA_SHADER_COMPUTE; unsigned components = reg_elems(instr->dsts[0]); /* These numbers come from counting the number of delay slots to get * cat5/cat6 results back using nops instead of (sy). Note that these numbers * are with the result preloaded to cache by loading it before in the same * shader - uncached results are much larger. * * Note: most ALU instructions can't complete at the full doubled rate, so * they take 2 cycles. The only exception is fp16 instructions with no * built-in conversions. Therefore divide the latency by 2. * * TODO: Handle this properly in the scheduler and remove this. */ if (instr->opc == OPC_LDC) { if (double_wavesize) return (21 + 8 * components) / 2; else return 18 + 4 * components; } else if (is_tex_or_prefetch(instr)) { if (double_wavesize) { switch (components) { case 1: return 58 / 2; case 2: return 60 / 2; case 3: return 77 / 2; case 4: return 79 / 2; default: unreachable("bad number of components"); } } else { switch (components) { case 1: return 51; case 2: return 53; case 3: return 62; case 4: return 64; default: unreachable("bad number of components"); } } } else { /* TODO: measure other cat6 opcodes like ldg */ if (double_wavesize) return (172 + components) / 2; else return 109 + components; } } /* unreachable block elimination: */ bool ir3_remove_unreachable(struct ir3 *ir); /* dead code elimination: */ struct ir3_shader_variant; bool ir3_dce(struct ir3 *ir, struct ir3_shader_variant *so); /* fp16 conversion folding */ bool ir3_cf(struct ir3 *ir); /* copy-propagate: */ bool ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so); /* common subexpression elimination: */ bool ir3_cse(struct ir3 *ir); /* Make arrays SSA */ bool ir3_array_to_ssa(struct ir3 *ir); /* scheduling: */ bool ir3_sched_add_deps(struct ir3 *ir); int ir3_sched(struct ir3 *ir); struct ir3_context; bool ir3_postsched(struct ir3 *ir, struct ir3_shader_variant *v); /* register assignment: */ int ir3_ra(struct ir3_shader_variant *v); /* lower subgroup ops: */ bool ir3_lower_subgroups(struct ir3 *ir); /* legalize: */ bool ir3_legalize(struct ir3 *ir, struct ir3_shader_variant *so, int *max_bary); bool ir3_legalize_relative(struct ir3 *ir); static inline bool ir3_has_latency_to_hide(struct ir3 *ir) { /* VS/GS/TCS/TESS co-exist with frag shader invocations, but we don't * know the nature of the fragment shader. Just assume it will have * latency to hide: */ if (ir->type != MESA_SHADER_FRAGMENT) return true; foreach_block (block, &ir->block_list) { foreach_instr (instr, &block->instr_list) { if (is_tex_or_prefetch(instr)) return true; if (is_load(instr)) { switch (instr->opc) { case OPC_LDLV: case OPC_LDL: case OPC_LDLW: break; default: return true; } } } } return false; } /* ************************************************************************* */ /* instruction helpers */ /* creates SSA src of correct type (ie. half vs full precision) */ static inline struct ir3_register * __ssa_src(struct ir3_instruction *instr, struct ir3_instruction *src, unsigned flags) { struct ir3_register *reg; if (src->dsts[0]->flags & IR3_REG_HALF) flags |= IR3_REG_HALF; reg = ir3_src_create(instr, INVALID_REG, IR3_REG_SSA | flags); reg->def = src->dsts[0]; reg->wrmask = src->dsts[0]->wrmask; return reg; } static inline struct ir3_register * __ssa_dst(struct ir3_instruction *instr) { struct ir3_register *reg = ir3_dst_create(instr, INVALID_REG, IR3_REG_SSA); reg->instr = instr; return reg; } static ir3_register_flags type_flags(type_t type) { if (type_size(type) < 32) return IR3_REG_HALF; return (ir3_register_flags)0; } static inline struct ir3_instruction * create_immed_typed(struct ir3_block *block, uint32_t val, type_t type) { struct ir3_instruction *mov; ir3_register_flags flags = type_flags(type); mov = ir3_instr_create(block, OPC_MOV, 1, 1); mov->cat1.src_type = type; mov->cat1.dst_type = type; __ssa_dst(mov)->flags |= flags; ir3_src_create(mov, 0, IR3_REG_IMMED | flags)->uim_val = val; return mov; } static inline struct ir3_instruction * create_immed(struct ir3_block *block, uint32_t val) { return create_immed_typed(block, val, TYPE_U32); } static inline struct ir3_instruction * create_uniform_typed(struct ir3_block *block, unsigned n, type_t type) { struct ir3_instruction *mov; ir3_register_flags flags = type_flags(type); mov = ir3_instr_create(block, OPC_MOV, 1, 1); mov->cat1.src_type = type; mov->cat1.dst_type = type; __ssa_dst(mov)->flags |= flags; ir3_src_create(mov, n, IR3_REG_CONST | flags); return mov; } static inline struct ir3_instruction * create_uniform(struct ir3_block *block, unsigned n) { return create_uniform_typed(block, n, TYPE_F32); } static inline struct ir3_instruction * create_uniform_indirect(struct ir3_block *block, int n, type_t type, struct ir3_instruction *address) { struct ir3_instruction *mov; mov = ir3_instr_create(block, OPC_MOV, 1, 1); mov->cat1.src_type = type; mov->cat1.dst_type = type; __ssa_dst(mov); ir3_src_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n; ir3_instr_set_address(mov, address); return mov; } static inline struct ir3_instruction * ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type) { struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV, 1, 1); ir3_register_flags flags = type_flags(type); __ssa_dst(instr)->flags |= flags; if (src->dsts[0]->flags & IR3_REG_ARRAY) { struct ir3_register *src_reg = __ssa_src(instr, src, IR3_REG_ARRAY); src_reg->array = src->dsts[0]->array; } else { __ssa_src(instr, src, src->dsts[0]->flags & IR3_REG_SHARED); } assert(!(src->dsts[0]->flags & IR3_REG_RELATIV)); instr->cat1.src_type = type; instr->cat1.dst_type = type; return instr; } static inline struct ir3_instruction * ir3_COV(struct ir3_block *block, struct ir3_instruction *src, type_t src_type, type_t dst_type) { struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV, 1, 1); ir3_register_flags dst_flags = type_flags(dst_type); ASSERTED ir3_register_flags src_flags = type_flags(src_type); assert((src->dsts[0]->flags & IR3_REG_HALF) == src_flags); __ssa_dst(instr)->flags |= dst_flags; __ssa_src(instr, src, 0); instr->cat1.src_type = src_type; instr->cat1.dst_type = dst_type; assert(!(src->dsts[0]->flags & IR3_REG_ARRAY)); return instr; } static inline struct ir3_instruction * ir3_MOVMSK(struct ir3_block *block, unsigned components) { struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOVMSK, 1, 0); struct ir3_register *dst = __ssa_dst(instr); dst->flags |= IR3_REG_SHARED; dst->wrmask = (1 << components) - 1; instr->repeat = components - 1; return instr; } static inline struct ir3_instruction * ir3_BALLOT_MACRO(struct ir3_block *block, struct ir3_instruction *src, unsigned components) { struct ir3_instruction *instr = ir3_instr_create(block, OPC_BALLOT_MACRO, 1, 1); struct ir3_register *dst = __ssa_dst(instr); dst->flags |= IR3_REG_SHARED; dst->wrmask = (1 << components) - 1; __ssa_src(instr, src, 0); return instr; } static inline struct ir3_instruction * ir3_NOP(struct ir3_block *block) { return ir3_instr_create(block, OPC_NOP, 0, 0); } /* clang-format off */ #define __INSTR0(flag, name, opc) \ static inline struct ir3_instruction *ir3_##name(struct ir3_block *block) \ { \ struct ir3_instruction *instr = ir3_instr_create(block, opc, 1, 0); \ instr->flags |= flag; \ return instr; \ } /* clang-format on */ #define INSTR0F(f, name) __INSTR0(IR3_INSTR_##f, name##_##f, OPC_##name) #define INSTR0(name) __INSTR0((ir3_instruction_flags)0, name, OPC_##name) /* clang-format off */ #define __INSTR1(flag, dst_count, name, opc) \ static inline struct ir3_instruction *ir3_##name( \ struct ir3_block *block, struct ir3_instruction *a, unsigned aflags) \ { \ struct ir3_instruction *instr = \ ir3_instr_create(block, opc, dst_count, 1); \ for (unsigned i = 0; i < dst_count; i++) \ __ssa_dst(instr); \ __ssa_src(instr, a, aflags); \ instr->flags |= flag; \ return instr; \ } /* clang-format on */ #define INSTR1F(f, name) __INSTR1(IR3_INSTR_##f, 1, name##_##f, OPC_##name) #define INSTR1(name) __INSTR1((ir3_instruction_flags)0, 1, name, OPC_##name) #define INSTR1NODST(name) __INSTR1((ir3_instruction_flags)0, 0, name, OPC_##name) /* clang-format off */ #define __INSTR2(flag, dst_count, name, opc) \ static inline struct ir3_instruction *ir3_##name( \ struct ir3_block *block, struct ir3_instruction *a, unsigned aflags, \ struct ir3_instruction *b, unsigned bflags) \ { \ struct ir3_instruction *instr = ir3_instr_create(block, opc, dst_count, 2); \ for (unsigned i = 0; i < dst_count; i++) \ __ssa_dst(instr); \ __ssa_src(instr, a, aflags); \ __ssa_src(instr, b, bflags); \ instr->flags |= flag; \ return instr; \ } /* clang-format on */ #define INSTR2F(f, name) __INSTR2(IR3_INSTR_##f, 1, name##_##f, OPC_##name) #define INSTR2(name) __INSTR2((ir3_instruction_flags)0, 1, name, OPC_##name) #define INSTR2NODST(name) __INSTR2((ir3_instruction_flags)0, 0, name, OPC_##name) /* clang-format off */ #define __INSTR3(flag, dst_count, name, opc) \ static inline struct ir3_instruction *ir3_##name( \ struct ir3_block *block, struct ir3_instruction *a, unsigned aflags, \ struct ir3_instruction *b, unsigned bflags, struct ir3_instruction *c, \ unsigned cflags) \ { \ struct ir3_instruction *instr = \ ir3_instr_create(block, opc, dst_count, 3); \ for (unsigned i = 0; i < dst_count; i++) \ __ssa_dst(instr); \ __ssa_src(instr, a, aflags); \ __ssa_src(instr, b, bflags); \ __ssa_src(instr, c, cflags); \ instr->flags |= flag; \ return instr; \ } /* clang-format on */ #define INSTR3F(f, name) __INSTR3(IR3_INSTR_##f, 1, name##_##f, OPC_##name) #define INSTR3(name) __INSTR3((ir3_instruction_flags)0, 1, name, OPC_##name) #define INSTR3NODST(name) __INSTR3((ir3_instruction_flags)0, 0, name, OPC_##name) /* clang-format off */ #define __INSTR4(flag, dst_count, name, opc) \ static inline struct ir3_instruction *ir3_##name( \ struct ir3_block *block, struct ir3_instruction *a, unsigned aflags, \ struct ir3_instruction *b, unsigned bflags, struct ir3_instruction *c, \ unsigned cflags, struct ir3_instruction *d, unsigned dflags) \ { \ struct ir3_instruction *instr = \ ir3_instr_create(block, opc, dst_count, 4); \ for (unsigned i = 0; i < dst_count; i++) \ __ssa_dst(instr); \ __ssa_src(instr, a, aflags); \ __ssa_src(instr, b, bflags); \ __ssa_src(instr, c, cflags); \ __ssa_src(instr, d, dflags); \ instr->flags |= flag; \ return instr; \ } /* clang-format on */ #define INSTR4F(f, name) __INSTR4(IR3_INSTR_##f, 1, name##_##f, OPC_##name) #define INSTR4(name) __INSTR4((ir3_instruction_flags)0, 1, name, OPC_##name) #define INSTR4NODST(name) __INSTR4((ir3_instruction_flags)0, 0, name, OPC_##name) /* clang-format off */ #define __INSTR5(flag, name, opc) \ static inline struct ir3_instruction *ir3_##name( \ struct ir3_block *block, struct ir3_instruction *a, unsigned aflags, \ struct ir3_instruction *b, unsigned bflags, struct ir3_instruction *c, \ unsigned cflags, struct ir3_instruction *d, unsigned dflags, \ struct ir3_instruction *e, unsigned eflags) \ { \ struct ir3_instruction *instr = ir3_instr_create(block, opc, 1, 5); \ __ssa_dst(instr); \ __ssa_src(instr, a, aflags); \ __ssa_src(instr, b, bflags); \ __ssa_src(instr, c, cflags); \ __ssa_src(instr, d, dflags); \ __ssa_src(instr, e, eflags); \ instr->flags |= flag; \ return instr; \ } /* clang-format on */ #define INSTR5F(f, name) __INSTR5(IR3_INSTR_##f, name##_##f, OPC_##name) #define INSTR5(name) __INSTR5((ir3_instruction_flags)0, name, OPC_##name) /* clang-format off */ #define __INSTR6(flag, dst_count, name, opc) \ static inline struct ir3_instruction *ir3_##name( \ struct ir3_block *block, struct ir3_instruction *a, unsigned aflags, \ struct ir3_instruction *b, unsigned bflags, struct ir3_instruction *c, \ unsigned cflags, struct ir3_instruction *d, unsigned dflags, \ struct ir3_instruction *e, unsigned eflags, struct ir3_instruction *f, \ unsigned fflags) \ { \ struct ir3_instruction *instr = ir3_instr_create(block, opc, 1, 6); \ for (unsigned i = 0; i < dst_count; i++) \ __ssa_dst(instr); \ __ssa_src(instr, a, aflags); \ __ssa_src(instr, b, bflags); \ __ssa_src(instr, c, cflags); \ __ssa_src(instr, d, dflags); \ __ssa_src(instr, e, eflags); \ __ssa_src(instr, f, fflags); \ instr->flags |= flag; \ return instr; \ } /* clang-format on */ #define INSTR6F(f, name) __INSTR6(IR3_INSTR_##f, 1, name##_##f, OPC_##name) #define INSTR6(name) __INSTR6((ir3_instruction_flags)0, 1, name, OPC_##name) #define INSTR6NODST(name) __INSTR6((ir3_instruction_flags)0, 0, name, OPC_##name) /* cat0 instructions: */ INSTR1NODST(B) INSTR0(JUMP) INSTR1NODST(KILL) INSTR1NODST(DEMOTE) INSTR0(END) INSTR0(CHSH) INSTR0(CHMASK) INSTR1NODST(PREDT) INSTR0(PREDF) INSTR0(PREDE) INSTR0(GETONE) INSTR0(SHPS) INSTR0(SHPE) /* cat1 macros */ INSTR1(ANY_MACRO) INSTR1(ALL_MACRO) INSTR1(READ_FIRST_MACRO) INSTR2(READ_COND_MACRO) static inline struct ir3_instruction * ir3_ELECT_MACRO(struct ir3_block *block) { struct ir3_instruction *instr = ir3_instr_create(block, OPC_ELECT_MACRO, 1, 0); __ssa_dst(instr); return instr; } static inline struct ir3_instruction * ir3_SHPS_MACRO(struct ir3_block *block) { struct ir3_instruction *instr = ir3_instr_create(block, OPC_SHPS_MACRO, 1, 0); __ssa_dst(instr); return instr; } /* cat2 instructions, most 2 src but some 1 src: */ INSTR2(ADD_F) INSTR2(MIN_F) INSTR2(MAX_F) INSTR2(MUL_F) INSTR1(SIGN_F) INSTR2(CMPS_F) INSTR1(ABSNEG_F) INSTR2(CMPV_F) INSTR1(FLOOR_F) INSTR1(CEIL_F) INSTR1(RNDNE_F) INSTR1(RNDAZ_F) INSTR1(TRUNC_F) INSTR2(ADD_U) INSTR2(ADD_S) INSTR2(SUB_U) INSTR2(SUB_S) INSTR2(CMPS_U) INSTR2(CMPS_S) INSTR2(MIN_U) INSTR2(MIN_S) INSTR2(MAX_U) INSTR2(MAX_S) INSTR1(ABSNEG_S) INSTR2(AND_B) INSTR2(OR_B) INSTR1(NOT_B) INSTR2(XOR_B) INSTR2(CMPV_U) INSTR2(CMPV_S) INSTR2(MUL_U24) INSTR2(MUL_S24) INSTR2(MULL_U) INSTR1(BFREV_B) INSTR1(CLZ_S) INSTR1(CLZ_B) INSTR2(SHL_B) INSTR2(SHR_B) INSTR2(ASHR_B) INSTR2(BARY_F) INSTR2(FLAT_B) INSTR2(MGEN_B) INSTR2(GETBIT_B) INSTR1(SETRM) INSTR1(CBITS_B) INSTR2(SHB) INSTR2(MSAD) /* cat3 instructions: */ INSTR3(MAD_U16) INSTR3(MADSH_U16) INSTR3(MAD_S16) INSTR3(MADSH_M16) INSTR3(MAD_U24) INSTR3(MAD_S24) INSTR3(MAD_F16) INSTR3(MAD_F32) INSTR3(DP2ACC) INSTR3(DP4ACC) /* NOTE: SEL_B32 checks for zero vs nonzero */ INSTR3(SEL_B16) INSTR3(SEL_B32) INSTR3(SEL_S16) INSTR3(SEL_S32) INSTR3(SEL_F16) INSTR3(SEL_F32) INSTR3(SAD_S16) INSTR3(SAD_S32) /* cat4 instructions: */ INSTR1(RCP) INSTR1(RSQ) INSTR1(HRSQ) INSTR1(LOG2) INSTR1(HLOG2) INSTR1(EXP2) INSTR1(HEXP2) INSTR1(SIN) INSTR1(COS) INSTR1(SQRT) /* cat5 instructions: */ INSTR1(DSX) INSTR1(DSXPP_MACRO) INSTR1(DSY) INSTR1(DSYPP_MACRO) INSTR1F(3D, DSX) INSTR1F(3D, DSY) INSTR1(RGETPOS) static inline struct ir3_instruction * ir3_SAM(struct ir3_block *block, opc_t opc, type_t type, unsigned wrmask, ir3_instruction_flags flags, struct ir3_instruction *samp_tex, struct ir3_instruction *src0, struct ir3_instruction *src1) { struct ir3_instruction *sam; unsigned nreg = 0; if (flags & IR3_INSTR_S2EN) { nreg++; } if (src0) { nreg++; } if (src1) { nreg++; } sam = ir3_instr_create(block, opc, 1, nreg); sam->flags |= flags; __ssa_dst(sam)->wrmask = wrmask; if (flags & IR3_INSTR_S2EN) { __ssa_src(sam, samp_tex, (flags & IR3_INSTR_B) ? 0 : IR3_REG_HALF); } if (src0) { __ssa_src(sam, src0, 0); } if (src1) { __ssa_src(sam, src1, 0); } sam->cat5.type = type; return sam; } /* cat6 instructions: */ INSTR0(GETFIBERID) INSTR2(LDLV) INSTR3(LDG) INSTR3(LDL) INSTR3(LDLW) INSTR3(LDP) INSTR4NODST(STG) INSTR3NODST(STL) INSTR3NODST(STLW) INSTR3NODST(STP) INSTR1(RESINFO) INSTR1(RESFMT) INSTR2(ATOMIC_ADD) INSTR2(ATOMIC_SUB) INSTR2(ATOMIC_XCHG) INSTR2(ATOMIC_INC) INSTR2(ATOMIC_DEC) INSTR2(ATOMIC_CMPXCHG) INSTR2(ATOMIC_MIN) INSTR2(ATOMIC_MAX) INSTR2(ATOMIC_AND) INSTR2(ATOMIC_OR) INSTR2(ATOMIC_XOR) INSTR2(LDC) INSTR2(QUAD_SHUFFLE_BRCST) INSTR1(QUAD_SHUFFLE_HORIZ) INSTR1(QUAD_SHUFFLE_VERT) INSTR1(QUAD_SHUFFLE_DIAG) INSTR2NODST(LDC_K) INSTR2NODST(STC) #ifndef GPU #elif GPU >= 600 INSTR3NODST(STIB); INSTR2(LDIB); INSTR5(LDG_A); INSTR6NODST(STG_A); INSTR2(ATOMIC_G_ADD) INSTR2(ATOMIC_G_SUB) INSTR2(ATOMIC_G_XCHG) INSTR2(ATOMIC_G_INC) INSTR2(ATOMIC_G_DEC) INSTR2(ATOMIC_G_CMPXCHG) INSTR2(ATOMIC_G_MIN) INSTR2(ATOMIC_G_MAX) INSTR2(ATOMIC_G_AND) INSTR2(ATOMIC_G_OR) INSTR2(ATOMIC_G_XOR) INSTR3(ATOMIC_B_ADD) INSTR3(ATOMIC_B_SUB) INSTR3(ATOMIC_B_XCHG) INSTR3(ATOMIC_B_INC) INSTR3(ATOMIC_B_DEC) INSTR3(ATOMIC_B_CMPXCHG) INSTR3(ATOMIC_B_MIN) INSTR3(ATOMIC_B_MAX) INSTR3(ATOMIC_B_AND) INSTR3(ATOMIC_B_OR) INSTR3(ATOMIC_B_XOR) #elif GPU >= 400 INSTR3(LDGB) #if GPU >= 500 INSTR3(LDIB) #endif INSTR4NODST(STGB) INSTR4NODST(STIB) INSTR4(ATOMIC_S_ADD) INSTR4(ATOMIC_S_SUB) INSTR4(ATOMIC_S_XCHG) INSTR4(ATOMIC_S_INC) INSTR4(ATOMIC_S_DEC) INSTR4(ATOMIC_S_CMPXCHG) INSTR4(ATOMIC_S_MIN) INSTR4(ATOMIC_S_MAX) INSTR4(ATOMIC_S_AND) INSTR4(ATOMIC_S_OR) INSTR4(ATOMIC_S_XOR) #endif /* cat7 instructions: */ INSTR0(BAR) INSTR0(FENCE) /* ************************************************************************* */ #include "util/bitset.h" #define MAX_REG 256 typedef BITSET_DECLARE(regmaskstate_t, 2 * MAX_REG); typedef struct { bool mergedregs; regmaskstate_t mask; } regmask_t; static inline bool __regmask_get(regmask_t *regmask, bool half, unsigned n) { if (regmask->mergedregs) { /* a6xx+ case, with merged register file, we track things in terms * of half-precision registers, with a full precisions register * using two half-precision slots. * * Pretend that special regs (a0.x, a1.x, etc.) are full registers to * avoid having them alias normal full regs. */ if (half && !is_reg_num_special(n)) { return BITSET_TEST(regmask->mask, n); } else { n *= 2; return BITSET_TEST(regmask->mask, n) || BITSET_TEST(regmask->mask, n + 1); } } else { /* pre a6xx case, with separate register file for half and full * precision: */ if (half) n += MAX_REG; return BITSET_TEST(regmask->mask, n); } } static inline void __regmask_set(regmask_t *regmask, bool half, unsigned n) { if (regmask->mergedregs) { /* a6xx+ case, with merged register file, we track things in terms * of half-precision registers, with a full precisions register * using two half-precision slots: */ if (half && !is_reg_num_special(n)) { BITSET_SET(regmask->mask, n); } else { n *= 2; BITSET_SET(regmask->mask, n); BITSET_SET(regmask->mask, n + 1); } } else { /* pre a6xx case, with separate register file for half and full * precision: */ if (half) n += MAX_REG; BITSET_SET(regmask->mask, n); } } static inline void __regmask_clear(regmask_t *regmask, bool half, unsigned n) { if (regmask->mergedregs) { /* a6xx+ case, with merged register file, we track things in terms * of half-precision registers, with a full precisions register * using two half-precision slots: */ if (half && !is_reg_num_special(n)) { BITSET_CLEAR(regmask->mask, n); } else { n *= 2; BITSET_CLEAR(regmask->mask, n); BITSET_CLEAR(regmask->mask, n + 1); } } else { /* pre a6xx case, with separate register file for half and full * precision: */ if (half) n += MAX_REG; BITSET_CLEAR(regmask->mask, n); } } static inline void regmask_init(regmask_t *regmask, bool mergedregs) { memset(®mask->mask, 0, sizeof(regmask->mask)); regmask->mergedregs = mergedregs; } static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b) { assert(dst->mergedregs == a->mergedregs); assert(dst->mergedregs == b->mergedregs); for (unsigned i = 0; i < ARRAY_SIZE(dst->mask); i++) dst->mask[i] = a->mask[i] | b->mask[i]; } static inline void regmask_or_shared(regmask_t *dst, regmask_t *a, regmask_t *b) { regmaskstate_t shared_mask; BITSET_ZERO(shared_mask); if (b->mergedregs) { BITSET_SET_RANGE(shared_mask, 2 * 4 * 48, 2 * 4 * 56 - 1); } else { BITSET_SET_RANGE(shared_mask, 4 * 48, 4 * 56 - 1); } for (unsigned i = 0; i < ARRAY_SIZE(dst->mask); i++) dst->mask[i] = a->mask[i] | (b->mask[i] & shared_mask[i]); } static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg) { bool half = reg->flags & IR3_REG_HALF; if (reg->flags & IR3_REG_RELATIV) { for (unsigned i = 0; i < reg->size; i++) __regmask_set(regmask, half, reg->array.base + i); } else { for (unsigned mask = reg->wrmask, n = reg->num; mask; mask >>= 1, n++) if (mask & 1) __regmask_set(regmask, half, n); } } static inline void regmask_clear(regmask_t *regmask, struct ir3_register *reg) { bool half = reg->flags & IR3_REG_HALF; if (reg->flags & IR3_REG_RELATIV) { for (unsigned i = 0; i < reg->size; i++) __regmask_clear(regmask, half, reg->array.base + i); } else { for (unsigned mask = reg->wrmask, n = reg->num; mask; mask >>= 1, n++) if (mask & 1) __regmask_clear(regmask, half, n); } } static inline bool regmask_get(regmask_t *regmask, struct ir3_register *reg) { bool half = reg->flags & IR3_REG_HALF; if (reg->flags & IR3_REG_RELATIV) { for (unsigned i = 0; i < reg->size; i++) if (__regmask_get(regmask, half, reg->array.base + i)) return true; } else { for (unsigned mask = reg->wrmask, n = reg->num; mask; mask >>= 1, n++) if (mask & 1) if (__regmask_get(regmask, half, n)) return true; } return false; } /* ************************************************************************* */ #endif /* IR3_H_ */