/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "nir.h" #include "nir_builder.h" #include "nir_deref.h" #include "util/bitscan.h" #include "util/u_dynarray.h" static const bool debug = false; /** * Variable-based copy propagation * * Normally, NIR trusts in SSA form for most of its copy-propagation needs. * However, there are cases, especially when dealing with indirects, where SSA * won't help you. This pass is for those times. Specifically, it handles * the following things that the rest of NIR can't: * * 1) Copy-propagation on variables that have indirect access. This includes * propagating from indirect stores into indirect loads. * * 2) Removal of redundant load_deref intrinsics. We can't trust regular CSE * to do this because it isn't aware of variable writes that may alias the * value and make the former load invalid. * * This pass uses an intermediate solution between being local / "per-block" * and a complete data-flow analysis. It follows the control flow graph, and * propagate the available copy information forward, invalidating data at each * cf_node. * * Removal of dead writes to variables is handled by another pass. */ struct copies { struct list_head node; /* Hash table of copies referenced by variables */ struct hash_table *ht; /* Array of derefs that can't be chased back to a variable */ struct util_dynarray arr; }; struct copies_dynarray { struct list_head node; struct util_dynarray arr; /* The copies structure this dynarray was cloned or created for */ struct copies *owner; }; struct vars_written { nir_variable_mode modes; /* Key is deref and value is the uintptr_t with the write mask. */ struct hash_table *derefs; }; struct value { bool is_ssa; union { struct { nir_def *def[NIR_MAX_VEC_COMPONENTS]; uint8_t component[NIR_MAX_VEC_COMPONENTS]; } ssa; nir_deref_and_path deref; }; }; static void value_set_ssa_components(struct value *value, nir_def *def, unsigned num_components) { value->is_ssa = true; for (unsigned i = 0; i < num_components; i++) { value->ssa.def[i] = def; value->ssa.component[i] = i; } } struct copy_entry { struct value src; nir_deref_and_path dst; }; struct copy_prop_var_state { nir_function_impl *impl; void *mem_ctx; linear_ctx *lin_ctx; /* Maps nodes to vars_written. Used to invalidate copy entries when * visiting each node. */ struct hash_table *vars_written_map; /* List of copy structures ready for reuse */ struct list_head unused_copy_structs_list; bool progress; }; static bool value_equals_store_src(struct value *value, nir_intrinsic_instr *intrin) { assert(intrin->intrinsic == nir_intrinsic_store_deref); nir_component_mask_t write_mask = nir_intrinsic_write_mask(intrin); for (unsigned i = 0; i < intrin->num_components; i++) { if ((write_mask & (1 << i)) && (value->ssa.def[i] != intrin->src[1].ssa || value->ssa.component[i] != i)) return false; } return true; } static struct vars_written * create_vars_written(struct copy_prop_var_state *state) { struct vars_written *written = linear_zalloc_child(state->lin_ctx, sizeof(struct vars_written)); written->derefs = _mesa_pointer_hash_table_create(state->mem_ctx); return written; } static void gather_vars_written(struct copy_prop_var_state *state, struct vars_written *written, nir_cf_node *cf_node) { struct vars_written *new_written = NULL; switch (cf_node->type) { case nir_cf_node_function: { nir_function_impl *impl = nir_cf_node_as_function(cf_node); foreach_list_typed_safe(nir_cf_node, cf_node, node, &impl->body) gather_vars_written(state, NULL, cf_node); break; } case nir_cf_node_block: { if (!written) break; nir_block *block = nir_cf_node_as_block(cf_node); nir_foreach_instr(instr, block) { if (instr->type == nir_instr_type_call) { written->modes |= nir_var_shader_out | nir_var_shader_temp | nir_var_function_temp | nir_var_mem_ssbo | nir_var_mem_shared | nir_var_mem_global; continue; } if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_barrier: if (nir_intrinsic_memory_semantics(intrin) & NIR_MEMORY_ACQUIRE) written->modes |= nir_intrinsic_memory_modes(intrin); break; case nir_intrinsic_emit_vertex: case nir_intrinsic_emit_vertex_with_counter: written->modes = nir_var_shader_out; break; case nir_intrinsic_trace_ray: case nir_intrinsic_execute_callable: case nir_intrinsic_rt_trace_ray: case nir_intrinsic_rt_execute_callable: { nir_deref_instr *payload = nir_src_as_deref(*nir_get_shader_call_payload_src(intrin)); nir_component_mask_t mask = (1 << glsl_get_vector_elements(payload->type)) - 1; struct hash_entry *ht_entry = _mesa_hash_table_search(written->derefs, payload); if (ht_entry) { ht_entry->data = (void *)(mask | (uintptr_t)ht_entry->data); } else { _mesa_hash_table_insert(written->derefs, payload, (void *)(uintptr_t)mask); } break; } case nir_intrinsic_report_ray_intersection: written->modes |= nir_var_mem_ssbo | nir_var_mem_global | nir_var_shader_call_data | nir_var_ray_hit_attrib; break; case nir_intrinsic_ignore_ray_intersection: case nir_intrinsic_terminate_ray: written->modes |= nir_var_mem_ssbo | nir_var_mem_global | nir_var_shader_call_data; break; case nir_intrinsic_deref_atomic: case nir_intrinsic_deref_atomic_swap: case nir_intrinsic_store_deref: case nir_intrinsic_copy_deref: case nir_intrinsic_memcpy_deref: { /* Destination in all of store_deref, copy_deref and the atomics is src[0]. */ nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]); uintptr_t mask = intrin->intrinsic == nir_intrinsic_store_deref ? nir_intrinsic_write_mask(intrin) : (1 << glsl_get_vector_elements(dst->type)) - 1; struct hash_entry *ht_entry = _mesa_hash_table_search(written->derefs, dst); if (ht_entry) ht_entry->data = (void *)(mask | (uintptr_t)ht_entry->data); else _mesa_hash_table_insert(written->derefs, dst, (void *)mask); break; } default: break; } } break; } case nir_cf_node_if: { nir_if *if_stmt = nir_cf_node_as_if(cf_node); new_written = create_vars_written(state); foreach_list_typed_safe(nir_cf_node, cf_node, node, &if_stmt->then_list) gather_vars_written(state, new_written, cf_node); foreach_list_typed_safe(nir_cf_node, cf_node, node, &if_stmt->else_list) gather_vars_written(state, new_written, cf_node); break; } case nir_cf_node_loop: { nir_loop *loop = nir_cf_node_as_loop(cf_node); assert(!nir_loop_has_continue_construct(loop)); new_written = create_vars_written(state); foreach_list_typed_safe(nir_cf_node, cf_node, node, &loop->body) gather_vars_written(state, new_written, cf_node); break; } default: unreachable("Invalid CF node type"); } if (new_written) { /* Merge new information to the parent control flow node. */ if (written) { written->modes |= new_written->modes; hash_table_foreach(new_written->derefs, new_entry) { struct hash_entry *old_entry = _mesa_hash_table_search_pre_hashed(written->derefs, new_entry->hash, new_entry->key); if (old_entry) { nir_component_mask_t merged = (uintptr_t)new_entry->data | (uintptr_t)old_entry->data; old_entry->data = (void *)((uintptr_t)merged); } else { _mesa_hash_table_insert_pre_hashed(written->derefs, new_entry->hash, new_entry->key, new_entry->data); } } } _mesa_hash_table_insert(state->vars_written_map, cf_node, new_written); } } /* Creates a fresh dynarray */ static struct copies_dynarray * get_copies_dynarray(struct copy_prop_var_state *state) { struct copies_dynarray *cp_arr = ralloc(state->mem_ctx, struct copies_dynarray); util_dynarray_init(&cp_arr->arr, state->mem_ctx); return cp_arr; } /* Checks if the pointer leads to a cloned copy of the array for this hash * table or if the pointer was inherited from when the hash table was cloned. */ static bool copies_owns_ht_entry(struct copies *copies, struct hash_entry *ht_entry) { assert(copies && ht_entry && ht_entry->data); struct copies_dynarray *copies_array = ht_entry->data; return copies_array->owner == copies; } static void clone_copies_dynarray_from_src(struct copies_dynarray *dst, struct copies_dynarray *src) { util_dynarray_append_dynarray(&dst->arr, &src->arr); } /* Gets copies array from the hash table entry or clones the source array if * the hash entry contains NULL. The values are not cloned when the hash table * is created because its expensive to clone everything and most value will * never actually be accessed. */ static struct copies_dynarray * get_copies_array_from_ht_entry(struct copy_prop_var_state *state, struct copies *copies, struct hash_entry *ht_entry) { struct copies_dynarray *copies_array; if (copies_owns_ht_entry(copies, ht_entry)) { /* The array already exists so just return it */ copies_array = (struct copies_dynarray *)ht_entry->data; } else { /* Clone the array and set the data value for future access */ copies_array = get_copies_dynarray(state); copies_array->owner = copies; clone_copies_dynarray_from_src(copies_array, ht_entry->data); ht_entry->data = copies_array; } return copies_array; } static struct copies_dynarray * copies_array_for_var(struct copy_prop_var_state *state, struct copies *copies, nir_variable *var) { struct hash_entry *entry = _mesa_hash_table_search(copies->ht, var); if (entry != NULL) return get_copies_array_from_ht_entry(state, copies, entry); struct copies_dynarray *copies_array = get_copies_dynarray(state); copies_array->owner = copies; _mesa_hash_table_insert(copies->ht, var, copies_array); return copies_array; } static struct util_dynarray * copies_array_for_deref(struct copy_prop_var_state *state, struct copies *copies, nir_deref_and_path *deref) { nir_get_deref_path(state->mem_ctx, deref); struct util_dynarray *copies_array; if (deref->_path->path[0]->deref_type != nir_deref_type_var) { copies_array = &copies->arr; } else { struct copies_dynarray *cpda = copies_array_for_var(state, copies, deref->_path->path[0]->var); copies_array = &cpda->arr; } return copies_array; } static struct copy_entry * copy_entry_create(struct copy_prop_var_state *state, struct copies *copies, nir_deref_and_path *deref) { struct util_dynarray *copies_array = copies_array_for_deref(state, copies, deref); struct copy_entry new_entry = { .dst = *deref, }; util_dynarray_append(copies_array, struct copy_entry, new_entry); return util_dynarray_top_ptr(copies_array, struct copy_entry); } /* Remove copy entry by swapping it with the last element and reducing the * size. If used inside an iteration on copies, it must be a reverse * (backwards) iteration. It is safe to use in those cases because the swap * will not affect the rest of the iteration. */ static void copy_entry_remove(struct util_dynarray *copies, struct copy_entry *entry, struct copy_entry **relocated_entry) { const struct copy_entry *src = util_dynarray_pop_ptr(copies, struct copy_entry); /* Because we're removing elements from an array, pointers to those * elements are not stable as we modify the array. * If relocated_entry != NULL, it's points to an entry we saved off earlier * and want to keep pointing to the right spot. */ if (relocated_entry && *relocated_entry == src) *relocated_entry = entry; if (src != entry) *entry = *src; } static bool is_array_deref_of_vector(const nir_deref_and_path *deref) { if (deref->instr->deref_type != nir_deref_type_array) return false; nir_deref_instr *parent = nir_deref_instr_parent(deref->instr); return glsl_type_is_vector(parent->type); } static struct copy_entry * lookup_entry_for_deref(struct copy_prop_var_state *state, struct copies *copies, nir_deref_and_path *deref, nir_deref_compare_result allowed_comparisons, bool *equal) { struct util_dynarray *copies_array = copies_array_for_deref(state, copies, deref); struct copy_entry *entry = NULL; util_dynarray_foreach(copies_array, struct copy_entry, iter) { nir_deref_compare_result result = nir_compare_derefs_and_paths(state->mem_ctx, &iter->dst, deref); if (result & allowed_comparisons) { entry = iter; if (result & nir_derefs_equal_bit) { if (equal != NULL) *equal = true; break; } /* Keep looking in case we have an equal match later in the array. */ } } return entry; } static void lookup_entry_and_kill_aliases_copy_array(struct copy_prop_var_state *state, struct util_dynarray *copies_array, nir_deref_and_path *deref, unsigned write_mask, bool remove_entry, struct copy_entry **entry, bool *entry_removed) { util_dynarray_foreach_reverse(copies_array, struct copy_entry, iter) { nir_deref_compare_result comp = nir_compare_derefs_and_paths(state->mem_ctx, &iter->dst, deref); if (comp & nir_derefs_equal_bit) { /* Make sure it is unique. */ assert(!*entry && !*entry_removed); if (remove_entry) { copy_entry_remove(copies_array, iter, NULL); *entry_removed = true; } else { *entry = iter; } } else if (comp & nir_derefs_may_alias_bit) { copy_entry_remove(copies_array, iter, entry); } } } static struct copy_entry * lookup_entry_and_kill_aliases(struct copy_prop_var_state *state, struct copies *copies, nir_deref_and_path *deref, unsigned write_mask, bool remove_entry) { /* TODO: Take into account the write_mask. */ bool UNUSED entry_removed = false; struct copy_entry *entry = NULL; nir_get_deref_path(state->mem_ctx, deref); /* For any other variable types if the variables are different, * they don't alias. So we only need to compare different vars and loop * over the hash table for ssbos and shared vars. */ if (deref->_path->path[0]->deref_type != nir_deref_type_var || deref->_path->path[0]->var->data.mode == nir_var_mem_ssbo || deref->_path->path[0]->var->data.mode == nir_var_mem_shared) { hash_table_foreach(copies->ht, ht_entry) { nir_variable *var = (nir_variable *)ht_entry->key; if (deref->_path->path[0]->deref_type == nir_deref_type_var && var->data.mode != deref->_path->path[0]->var->data.mode) continue; struct copies_dynarray *copies_array = get_copies_array_from_ht_entry(state, copies, ht_entry); lookup_entry_and_kill_aliases_copy_array(state, &copies_array->arr, deref, write_mask, remove_entry, &entry, &entry_removed); if (copies_array->arr.size == 0) { _mesa_hash_table_remove(copies->ht, ht_entry); } } lookup_entry_and_kill_aliases_copy_array(state, &copies->arr, deref, write_mask, remove_entry, &entry, &entry_removed); } else { struct copies_dynarray *cpda = copies_array_for_var(state, copies, deref->_path->path[0]->var); struct util_dynarray *copies_array = &cpda->arr; lookup_entry_and_kill_aliases_copy_array(state, copies_array, deref, write_mask, remove_entry, &entry, &entry_removed); if (copies_array->size == 0) { _mesa_hash_table_remove_key(copies->ht, deref->_path->path[0]->var); } } return entry; } static void kill_aliases(struct copy_prop_var_state *state, struct copies *copies, nir_deref_and_path *deref, unsigned write_mask) { /* TODO: Take into account the write_mask. */ lookup_entry_and_kill_aliases(state, copies, deref, write_mask, true); } static struct copy_entry * get_entry_and_kill_aliases(struct copy_prop_var_state *state, struct copies *copies, nir_deref_and_path *deref, unsigned write_mask) { /* TODO: Take into account the write_mask. */ struct copy_entry *entry = lookup_entry_and_kill_aliases(state, copies, deref, write_mask, false); if (entry == NULL) entry = copy_entry_create(state, copies, deref); return entry; } static void apply_barrier_for_modes_to_dynarr(struct util_dynarray *copies_array, nir_variable_mode modes) { util_dynarray_foreach_reverse(copies_array, struct copy_entry, iter) { if (nir_deref_mode_may_be(iter->dst.instr, modes) || (!iter->src.is_ssa && nir_deref_mode_may_be(iter->src.deref.instr, modes))) copy_entry_remove(copies_array, iter, NULL); } } static void apply_barrier_for_modes(struct copy_prop_var_state *state, struct copies *copies, nir_variable_mode modes) { hash_table_foreach(copies->ht, ht_entry) { struct copies_dynarray *copies_array = get_copies_array_from_ht_entry(state, copies, ht_entry); apply_barrier_for_modes_to_dynarr(&copies_array->arr, modes); } apply_barrier_for_modes_to_dynarr(&copies->arr, modes); } static void value_set_from_value(struct value *value, const struct value *from, unsigned base_index, unsigned write_mask) { /* We can't have non-zero indexes with non-trivial write masks */ assert(base_index == 0 || write_mask == 1); if (from->is_ssa) { /* Clear value if it was being used as non-SSA. */ value->is_ssa = true; /* Only overwrite the written components */ for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) { if (write_mask & (1 << i)) { value->ssa.def[base_index + i] = from->ssa.def[i]; value->ssa.component[base_index + i] = from->ssa.component[i]; } } } else { /* Non-ssa stores always write everything */ value->is_ssa = false; value->deref = from->deref; } } /* Try to load a single element of a vector from the copy_entry. If the data * isn't available, just let the original intrinsic do the work. */ static bool load_element_from_ssa_entry_value(struct copy_prop_var_state *state, struct copy_entry *entry, nir_builder *b, nir_intrinsic_instr *intrin, struct value *value, unsigned index) { assert(index < glsl_get_vector_elements(entry->dst.instr->type)); /* We don't have the element available, so let the instruction do the work. */ if (!entry->src.ssa.def[index]) return false; b->cursor = nir_instr_remove(&intrin->instr); intrin->instr.block = NULL; assert(entry->src.ssa.component[index] < entry->src.ssa.def[index]->num_components); nir_def *def = nir_channel(b, entry->src.ssa.def[index], entry->src.ssa.component[index]); *value = (struct value){ .is_ssa = true, { .ssa = { .def = { def }, .component = { 0 }, }, } }; return true; } /* Do a "load" from an SSA-based entry return it in "value" as a value with a * single SSA def. Because an entry could reference multiple different SSA * defs, a vecN operation may be inserted to combine them into a single SSA * def before handing it back to the caller. If the load instruction is no * longer needed, it is removed and nir_instr::block is set to NULL. (It is * possible, in some cases, for the load to be used in the vecN operation in * which case it isn't deleted.) */ static bool load_from_ssa_entry_value(struct copy_prop_var_state *state, struct copy_entry *entry, nir_builder *b, nir_intrinsic_instr *intrin, nir_deref_and_path *src, struct value *value) { if (is_array_deref_of_vector(src)) { if (nir_src_is_const(src->instr->arr.index)) { unsigned index = nir_src_as_uint(src->instr->arr.index); return load_element_from_ssa_entry_value(state, entry, b, intrin, value, index); } /* An SSA copy_entry for the vector won't help indirect load. */ if (glsl_type_is_vector(entry->dst.instr->type)) { assert(entry->dst.instr->type == nir_deref_instr_parent(src->instr)->type); /* TODO: If all SSA entries are there, try an if-ladder. */ return false; } } *value = entry->src; const struct glsl_type *type = entry->dst.instr->type; unsigned num_components = glsl_get_vector_elements(type); nir_component_mask_t available = 0; bool all_same = true; for (unsigned i = 0; i < num_components; i++) { if (value->ssa.def[i]) available |= (1 << i); if (value->ssa.def[i] != value->ssa.def[0]) all_same = false; if (value->ssa.component[i] != i) all_same = false; } if (all_same) { /* Our work here is done */ b->cursor = nir_instr_remove(&intrin->instr); intrin->instr.block = NULL; return true; } if (available != (1 << num_components) - 1 && intrin->intrinsic == nir_intrinsic_load_deref && (available & nir_def_components_read(&intrin->def)) == 0) { /* If none of the components read are available as SSA values, then we * should just bail. Otherwise, we would end up replacing the uses of * the load_deref a vecN() that just gathers up its components. */ return false; } b->cursor = nir_after_instr(&intrin->instr); nir_def *load_def = intrin->intrinsic == nir_intrinsic_load_deref ? &intrin->def : NULL; bool keep_intrin = false; nir_scalar comps[NIR_MAX_VEC_COMPONENTS]; for (unsigned i = 0; i < num_components; i++) { if (value->ssa.def[i]) { comps[i] = nir_get_scalar(value->ssa.def[i], value->ssa.component[i]); } else { /* We don't have anything for this component in our * list. Just re-use a channel from the load. */ if (load_def == NULL) load_def = nir_load_deref(b, entry->dst.instr); if (load_def->parent_instr == &intrin->instr) keep_intrin = true; comps[i] = nir_get_scalar(load_def, i); } } nir_def *vec = nir_vec_scalars(b, comps, num_components); value_set_ssa_components(value, vec, num_components); if (!keep_intrin) { /* Removing this instruction should not touch the cursor because we * created the cursor after the intrinsic and have added at least one * instruction (the vec) since then. */ assert(b->cursor.instr != &intrin->instr); nir_instr_remove(&intrin->instr); intrin->instr.block = NULL; } return true; } /** * Specialize the wildcards in a deref chain * * This function returns a deref chain identical to \param deref except that * some of its wildcards are replaced with indices from \param specific. The * process is guided by \param guide which references the same type as \param * specific but has the same wildcard array lengths as \param deref. */ static nir_deref_instr * specialize_wildcards(nir_builder *b, nir_deref_path *deref, nir_deref_path *guide, nir_deref_path *specific) { nir_deref_instr **deref_p = &deref->path[1]; nir_deref_instr *ret_tail = deref->path[0]; for (; *deref_p; deref_p++) { if ((*deref_p)->deref_type == nir_deref_type_array_wildcard) break; ret_tail = *deref_p; } nir_deref_instr **guide_p = &guide->path[1]; nir_deref_instr **spec_p = &specific->path[1]; for (; *deref_p; deref_p++) { if ((*deref_p)->deref_type == nir_deref_type_array_wildcard) { /* This is where things get tricky. We have to search through * the entry deref to find its corresponding wildcard and fill * this slot in with the value from the src. */ while (*guide_p && (*guide_p)->deref_type != nir_deref_type_array_wildcard) { guide_p++; spec_p++; } assert(*guide_p && *spec_p); ret_tail = nir_build_deref_follower(b, ret_tail, *spec_p); guide_p++; spec_p++; } else { ret_tail = nir_build_deref_follower(b, ret_tail, *deref_p); } } return ret_tail; } /* Do a "load" from an deref-based entry return it in "value" as a value. The * deref returned in "value" will always be a fresh copy so the caller can * steal it and assign it to the instruction directly without copying it * again. */ static bool load_from_deref_entry_value(struct copy_prop_var_state *state, struct copy_entry *entry, nir_builder *b, nir_intrinsic_instr *intrin, nir_deref_and_path *src, struct value *value) { *value = entry->src; b->cursor = nir_instr_remove(&intrin->instr); nir_deref_path *entry_dst_path = nir_get_deref_path(state->mem_ctx, &entry->dst); nir_deref_path *src_path = nir_get_deref_path(state->mem_ctx, src); bool need_to_specialize_wildcards = false; nir_deref_instr **entry_p = &entry_dst_path->path[1]; nir_deref_instr **src_p = &src_path->path[1]; while (*entry_p && *src_p) { nir_deref_instr *entry_tail = *entry_p++; nir_deref_instr *src_tail = *src_p++; if (src_tail->deref_type == nir_deref_type_array && entry_tail->deref_type == nir_deref_type_array_wildcard) need_to_specialize_wildcards = true; } /* If the entry deref is longer than the source deref then it refers to a * smaller type and we can't source from it. */ assert(*entry_p == NULL); value->deref._path = NULL; if (need_to_specialize_wildcards) { /* The entry has some wildcards that are not in src. This means we need * to construct a new deref based on the entry but using the wildcards * from the source and guided by the entry dst. Oof. */ nir_deref_path *entry_src_path = nir_get_deref_path(state->mem_ctx, &entry->src.deref); value->deref.instr = specialize_wildcards(b, entry_src_path, entry_dst_path, src_path); } /* If our source deref is longer than the entry deref, that's ok because * it just means the entry deref needs to be extended a bit. */ while (*src_p) { nir_deref_instr *src_tail = *src_p++; value->deref.instr = nir_build_deref_follower(b, value->deref.instr, src_tail); } return true; } static bool try_load_from_entry(struct copy_prop_var_state *state, struct copy_entry *entry, nir_builder *b, nir_intrinsic_instr *intrin, nir_deref_and_path *src, struct value *value) { if (entry == NULL) return false; if (entry->src.is_ssa) { return load_from_ssa_entry_value(state, entry, b, intrin, src, value); } else { return load_from_deref_entry_value(state, entry, b, intrin, src, value); } } static void invalidate_copies_for_cf_node(struct copy_prop_var_state *state, struct copies *copies, nir_cf_node *cf_node) { struct hash_entry *ht_entry = _mesa_hash_table_search(state->vars_written_map, cf_node); assert(ht_entry); struct vars_written *written = ht_entry->data; if (written->modes) { hash_table_foreach(copies->ht, ht_entry) { struct copies_dynarray *copies_array = get_copies_array_from_ht_entry(state, copies, ht_entry); util_dynarray_foreach_reverse(&copies_array->arr, struct copy_entry, entry) { if (nir_deref_mode_may_be(entry->dst.instr, written->modes)) copy_entry_remove(&copies_array->arr, entry, NULL); } if (copies_array->arr.size == 0) { _mesa_hash_table_remove(copies->ht, ht_entry); } } util_dynarray_foreach_reverse(&copies->arr, struct copy_entry, entry) { if (nir_deref_mode_may_be(entry->dst.instr, written->modes)) copy_entry_remove(&copies->arr, entry, NULL); } } hash_table_foreach(written->derefs, entry) { nir_deref_instr *deref_written = (nir_deref_instr *)entry->key; nir_deref_and_path deref = { deref_written, NULL }; kill_aliases(state, copies, &deref, (uintptr_t)entry->data); } } static void print_value(struct value *value, unsigned num_components) { bool same_ssa = true; for (unsigned i = 0; i < num_components; i++) { if (value->ssa.component[i] != i || (i > 0 && value->ssa.def[i - 1] != value->ssa.def[i])) { same_ssa = false; break; } } if (same_ssa) { printf(" ssa_%d", value->ssa.def[0]->index); } else { for (int i = 0; i < num_components; i++) { if (value->ssa.def[i]) printf(" ssa_%d[%u]", value->ssa.def[i]->index, value->ssa.component[i]); else printf(" _"); } } } static void print_copy_entry(struct copy_entry *entry) { printf(" %s ", glsl_get_type_name(entry->dst.instr->type)); nir_print_deref(entry->dst.instr, stdout); printf(":\t"); unsigned num_components = glsl_get_vector_elements(entry->dst.instr->type); print_value(&entry->src, num_components); printf("\n"); } static void dump_instr(nir_instr *instr) { printf(" "); nir_print_instr(instr, stdout); printf("\n"); } static void dump_copy_entries(struct copies *copies) { hash_table_foreach(copies->ht, ht_entry) { struct util_dynarray *copies_array = &((struct copies_dynarray *)ht_entry->data)->arr; util_dynarray_foreach(copies_array, struct copy_entry, iter) print_copy_entry(iter); } util_dynarray_foreach(&copies->arr, struct copy_entry, iter) print_copy_entry(iter); printf("\n"); } static void copy_prop_vars_block(struct copy_prop_var_state *state, nir_builder *b, nir_block *block, struct copies *copies) { if (debug) { printf("# block%d\n", block->index); dump_copy_entries(copies); } nir_foreach_instr_safe(instr, block) { if (debug && instr->type == nir_instr_type_deref) dump_instr(instr); if (instr->type == nir_instr_type_call) { if (debug) dump_instr(instr); apply_barrier_for_modes(state, copies, nir_var_shader_out | nir_var_shader_temp | nir_var_function_temp | nir_var_mem_ssbo | nir_var_mem_shared | nir_var_mem_global); if (debug) dump_copy_entries(copies); continue; } if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_barrier: if (debug) dump_instr(instr); if (nir_intrinsic_memory_semantics(intrin) & NIR_MEMORY_ACQUIRE) apply_barrier_for_modes(state, copies, nir_intrinsic_memory_modes(intrin)); break; case nir_intrinsic_emit_vertex: case nir_intrinsic_emit_vertex_with_counter: if (debug) dump_instr(instr); apply_barrier_for_modes(state, copies, nir_var_shader_out); break; case nir_intrinsic_report_ray_intersection: apply_barrier_for_modes(state, copies, nir_var_mem_ssbo | nir_var_mem_global | nir_var_shader_call_data | nir_var_ray_hit_attrib); break; case nir_intrinsic_ignore_ray_intersection: case nir_intrinsic_terminate_ray: apply_barrier_for_modes(state, copies, nir_var_mem_ssbo | nir_var_mem_global | nir_var_shader_call_data); break; case nir_intrinsic_load_deref: { if (debug) dump_instr(instr); if (nir_intrinsic_access(intrin) & ACCESS_VOLATILE) break; nir_deref_and_path src = { nir_src_as_deref(intrin->src[0]), NULL }; /* If this is a load from a read-only mode, then all this pass would * do is combine redundant loads and CSE should be more efficient for * that. */ nir_variable_mode ignore = nir_var_read_only_modes & ~nir_var_vec_indexable_modes; if (nir_deref_mode_must_be(src.instr, ignore)) break; /* Ignore trivial casts. If trivial casts are applied to array derefs of vectors, * not doing this causes is_array_deref_of_vector to (wrongly) return false. */ while (src.instr->deref_type == nir_deref_type_cast && nir_deref_instr_parent(src.instr) && nir_deref_cast_is_trivial(src.instr)) src.instr = nir_deref_instr_parent(src.instr); /* Direct array_derefs of vectors operate on the vectors (the parent * deref). Indirects will be handled like other derefs. */ int vec_index = 0; nir_deref_and_path vec_src = src; if (is_array_deref_of_vector(&src) && nir_src_is_const(src.instr->arr.index)) { vec_src.instr = nir_deref_instr_parent(src.instr); unsigned vec_comps = glsl_get_vector_elements(vec_src.instr->type); vec_index = nir_src_as_uint(src.instr->arr.index); /* Loading from an invalid index yields an undef */ if (vec_index >= vec_comps) { b->cursor = nir_instr_remove(instr); nir_def *u = nir_undef(b, 1, intrin->def.bit_size); nir_def_rewrite_uses(&intrin->def, u); state->progress = true; break; } } bool src_entry_equal = false; struct copy_entry *src_entry = lookup_entry_for_deref(state, copies, &src, nir_derefs_a_contains_b_bit, &src_entry_equal); struct value value = { 0 }; if (try_load_from_entry(state, src_entry, b, intrin, &src, &value)) { if (value.is_ssa) { /* lookup_load has already ensured that we get a single SSA * value that has all of the channels. We just have to do the * rewrite operation. Note for array derefs of vectors, the * channel 0 is used. */ if (intrin->instr.block) { /* The lookup left our instruction in-place. This means it * must have used it to vec up a bunch of different sources. * We need to be careful when rewriting uses so we don't * rewrite the vecN itself. */ nir_def_rewrite_uses_after(&intrin->def, value.ssa.def[0], value.ssa.def[0]->parent_instr); } else { nir_def_rewrite_uses(&intrin->def, value.ssa.def[0]); } } else { /* We're turning it into a load of a different variable */ intrin->src[0] = nir_src_for_ssa(&value.deref.instr->def); /* Put it back in again. */ nir_builder_instr_insert(b, instr); value_set_ssa_components(&value, &intrin->def, intrin->num_components); } state->progress = true; } else { value_set_ssa_components(&value, &intrin->def, intrin->num_components); } /* Now that we have a value, we're going to store it back so that we * have the right value next time we come looking for it. In order * to do this, we need an exact match, not just something that * contains what we're looking for. * * We avoid doing another lookup if src.instr == vec_src.instr. */ struct copy_entry *entry = src_entry; if (src.instr != vec_src.instr) entry = lookup_entry_for_deref(state, copies, &vec_src, nir_derefs_equal_bit, NULL); else if (!src_entry_equal) entry = NULL; if (!entry) entry = copy_entry_create(state, copies, &vec_src); /* Update the entry with the value of the load. This way * we can potentially remove subsequent loads. */ value_set_from_value(&entry->src, &value, vec_index, (1 << intrin->num_components) - 1); break; } case nir_intrinsic_store_deref: { if (debug) dump_instr(instr); nir_deref_and_path dst = { nir_src_as_deref(intrin->src[0]), NULL }; assert(glsl_type_is_vector_or_scalar(dst.instr->type)); /* Ignore trivial casts. If trivial casts are applied to array derefs of vectors, * not doing this causes is_array_deref_of_vector to (wrongly) return false. */ while (dst.instr->deref_type == nir_deref_type_cast && nir_deref_instr_parent(dst.instr) && nir_deref_cast_is_trivial(dst.instr)) dst.instr = nir_deref_instr_parent(dst.instr); /* Direct array_derefs of vectors operate on the vectors (the parent * deref). Indirects will be handled like other derefs. */ int vec_index = 0; nir_deref_and_path vec_dst = dst; if (is_array_deref_of_vector(&dst) && nir_src_is_const(dst.instr->arr.index)) { vec_dst.instr = nir_deref_instr_parent(dst.instr); unsigned vec_comps = glsl_get_vector_elements(vec_dst.instr->type); vec_index = nir_src_as_uint(dst.instr->arr.index); /* Storing to an invalid index is a no-op. */ if (vec_index >= vec_comps) { nir_instr_remove(instr); state->progress = true; break; } } if (nir_intrinsic_access(intrin) & ACCESS_VOLATILE) { unsigned wrmask = nir_intrinsic_write_mask(intrin); kill_aliases(state, copies, &dst, wrmask); break; } struct copy_entry *entry = lookup_entry_for_deref(state, copies, &dst, nir_derefs_equal_bit, NULL); if (entry && value_equals_store_src(&entry->src, intrin)) { /* If we are storing the value from a load of the same var the * store is redundant so remove it. */ nir_instr_remove(instr); state->progress = true; } else { struct value value = { 0 }; value_set_ssa_components(&value, intrin->src[1].ssa, intrin->num_components); unsigned wrmask = nir_intrinsic_write_mask(intrin); struct copy_entry *entry = get_entry_and_kill_aliases(state, copies, &vec_dst, wrmask); value_set_from_value(&entry->src, &value, vec_index, wrmask); } break; } case nir_intrinsic_copy_deref: { if (debug) dump_instr(instr); nir_deref_and_path dst = { nir_src_as_deref(intrin->src[0]), NULL }; nir_deref_and_path src = { nir_src_as_deref(intrin->src[1]), NULL }; /* The copy_deref intrinsic doesn't keep track of num_components, so * get it ourselves. */ unsigned num_components = glsl_get_vector_elements(dst.instr->type); unsigned full_mask = (1 << num_components) - 1; if ((nir_intrinsic_src_access(intrin) & ACCESS_VOLATILE) || (nir_intrinsic_dst_access(intrin) & ACCESS_VOLATILE)) { kill_aliases(state, copies, &dst, full_mask); break; } nir_deref_compare_result comp = nir_compare_derefs_and_paths(state->mem_ctx, &src, &dst); if (comp & nir_derefs_equal_bit) { /* This is a no-op self-copy. Get rid of it */ nir_instr_remove(instr); state->progress = true; continue; } /* Copy of direct array derefs of vectors are not handled. Just * invalidate what's written and bail. */ if ((is_array_deref_of_vector(&src) && nir_src_is_const(src.instr->arr.index)) || (is_array_deref_of_vector(&dst) && nir_src_is_const(dst.instr->arr.index))) { kill_aliases(state, copies, &dst, full_mask); break; } struct copy_entry *src_entry = lookup_entry_for_deref(state, copies, &src, nir_derefs_a_contains_b_bit, NULL); struct value value; if (try_load_from_entry(state, src_entry, b, intrin, &src, &value)) { /* If load works, intrin (the copy_deref) is removed. */ if (value.is_ssa) { nir_store_deref(b, dst.instr, value.ssa.def[0], full_mask); } else { /* If this would be a no-op self-copy, don't bother. */ comp = nir_compare_derefs_and_paths(state->mem_ctx, &value.deref, &dst); if (comp & nir_derefs_equal_bit) continue; /* Just turn it into a copy of a different deref */ intrin->src[1] = nir_src_for_ssa(&value.deref.instr->def); /* Put it back in again. */ nir_builder_instr_insert(b, instr); } state->progress = true; } else { value = (struct value){ .is_ssa = false, { .deref = src }, }; } nir_variable *src_var = nir_deref_instr_get_variable(src.instr); if (src_var && src_var->data.cannot_coalesce) { /* The source cannot be coaleseced, which means we can't propagate * this copy. */ break; } struct copy_entry *dst_entry = get_entry_and_kill_aliases(state, copies, &dst, full_mask); value_set_from_value(&dst_entry->src, &value, 0, full_mask); break; } case nir_intrinsic_trace_ray: case nir_intrinsic_execute_callable: case nir_intrinsic_rt_trace_ray: case nir_intrinsic_rt_execute_callable: { if (debug) dump_instr(instr); nir_deref_and_path payload = { nir_src_as_deref(*nir_get_shader_call_payload_src(intrin)), NULL }; nir_component_mask_t full_mask = (1 << glsl_get_vector_elements(payload.instr->type)) - 1; kill_aliases(state, copies, &payload, full_mask); break; } case nir_intrinsic_memcpy_deref: case nir_intrinsic_deref_atomic: case nir_intrinsic_deref_atomic_swap: if (debug) dump_instr(instr); nir_deref_and_path dst = { nir_src_as_deref(intrin->src[0]), NULL }; unsigned num_components = glsl_get_vector_elements(dst.instr->type); unsigned full_mask = (1 << num_components) - 1; kill_aliases(state, copies, &dst, full_mask); break; case nir_intrinsic_store_deref_block_intel: { if (debug) dump_instr(instr); /* Invalidate the whole variable (or cast) and anything that alias * with it. */ nir_deref_and_path dst = { nir_src_as_deref(intrin->src[0]), NULL }; while (nir_deref_instr_parent(dst.instr)) dst.instr = nir_deref_instr_parent(dst.instr); assert(dst.instr->deref_type == nir_deref_type_var || dst.instr->deref_type == nir_deref_type_cast); unsigned num_components = glsl_get_vector_elements(dst.instr->type); unsigned full_mask = (1 << num_components) - 1; kill_aliases(state, copies, &dst, full_mask); break; } default: continue; /* To skip the debug below. */ } if (debug) dump_copy_entries(copies); } } static void clone_copies(struct copy_prop_var_state *state, struct copies *clones, struct copies *copies) { /* Simply clone the entire hash table. This is much faster than trying to * rebuild it and is needed to avoid slow compilation of very large shaders. * If needed we will clone the data later if it is ever looked up. */ assert(clones->ht == NULL); clones->ht = _mesa_hash_table_clone(copies->ht, state->mem_ctx); util_dynarray_clone(&clones->arr, state->mem_ctx, &copies->arr); } /* Returns an existing struct for reuse or creates a new on if they are * all in use. This greatly reduces the time spent allocating memory if we * were to just creating a fresh one each time. */ static struct copies * get_copies_structure(struct copy_prop_var_state *state) { struct copies *copies; if (list_is_empty(&state->unused_copy_structs_list)) { copies = ralloc(state->mem_ctx, struct copies); copies->ht = NULL; util_dynarray_init(&copies->arr, state->mem_ctx); } else { copies = list_entry(state->unused_copy_structs_list.next, struct copies, node); list_del(&copies->node); } return copies; } static void clear_copies_structure(struct copy_prop_var_state *state, struct copies *copies) { ralloc_free(copies->ht); copies->ht = NULL; list_add(&copies->node, &state->unused_copy_structs_list); } static void copy_prop_vars_cf_node(struct copy_prop_var_state *state, struct copies *copies, nir_cf_node *cf_node) { switch (cf_node->type) { case nir_cf_node_function: { nir_function_impl *impl = nir_cf_node_as_function(cf_node); struct copies *impl_copies = get_copies_structure(state); impl_copies->ht = _mesa_hash_table_create(state->mem_ctx, _mesa_hash_pointer, _mesa_key_pointer_equal); foreach_list_typed_safe(nir_cf_node, cf_node, node, &impl->body) copy_prop_vars_cf_node(state, impl_copies, cf_node); clear_copies_structure(state, impl_copies); break; } case nir_cf_node_block: { nir_block *block = nir_cf_node_as_block(cf_node); nir_builder b = nir_builder_create(state->impl); copy_prop_vars_block(state, &b, block, copies); break; } case nir_cf_node_if: { nir_if *if_stmt = nir_cf_node_as_if(cf_node); /* Create new hash tables for tracking vars and fill it with clones of * the copy arrays for each variable we are tracking. * * We clone the copies for each branch of the if statement. The idea is * that they both see the same state of available copies, but do not * interfere to each other. */ if (!exec_list_is_empty(&if_stmt->then_list)) { struct copies *then_copies = get_copies_structure(state); clone_copies(state, then_copies, copies); foreach_list_typed_safe(nir_cf_node, cf_node, node, &if_stmt->then_list) copy_prop_vars_cf_node(state, then_copies, cf_node); clear_copies_structure(state, then_copies); } if (!exec_list_is_empty(&if_stmt->else_list)) { struct copies *else_copies = get_copies_structure(state); clone_copies(state, else_copies, copies); foreach_list_typed_safe(nir_cf_node, cf_node, node, &if_stmt->else_list) copy_prop_vars_cf_node(state, else_copies, cf_node); clear_copies_structure(state, else_copies); } /* Both branches copies can be ignored, since the effect of running both * branches was captured in the first pass that collects vars_written. */ invalidate_copies_for_cf_node(state, copies, cf_node); break; } case nir_cf_node_loop: { nir_loop *loop = nir_cf_node_as_loop(cf_node); assert(!nir_loop_has_continue_construct(loop)); /* Invalidate before cloning the copies for the loop, since the loop * body can be executed more than once. */ invalidate_copies_for_cf_node(state, copies, cf_node); struct copies *loop_copies = get_copies_structure(state); clone_copies(state, loop_copies, copies); foreach_list_typed_safe(nir_cf_node, cf_node, node, &loop->body) copy_prop_vars_cf_node(state, loop_copies, cf_node); clear_copies_structure(state, loop_copies); break; } default: unreachable("Invalid CF node type"); } } static bool nir_copy_prop_vars_impl(nir_function_impl *impl) { void *mem_ctx = ralloc_context(NULL); if (debug) { nir_metadata_require(impl, nir_metadata_block_index); printf("## nir_copy_prop_vars_impl for %s\n", impl->function->name); } struct copy_prop_var_state state = { .impl = impl, .mem_ctx = mem_ctx, .lin_ctx = linear_context(mem_ctx), .vars_written_map = _mesa_pointer_hash_table_create(mem_ctx), }; list_inithead(&state.unused_copy_structs_list); gather_vars_written(&state, NULL, &impl->cf_node); copy_prop_vars_cf_node(&state, NULL, &impl->cf_node); if (state.progress) { nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); } else { nir_metadata_preserve(impl, nir_metadata_all); } ralloc_free(mem_ctx); return state.progress; } bool nir_opt_copy_prop_vars(nir_shader *shader) { bool progress = false; nir_foreach_function_impl(impl, shader) { progress |= nir_copy_prop_vars_impl(impl); } return progress; }