/* * Copyright (C) 2019-2021 Collabora, Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors (Collabora): * Alyssa Rosenzweig */ #include "compiler.h" /* Bifrost texture operations have a `skip` bit, instructing helper invocations * to skip execution. Each clause has a `terminate_discarded_threads` bit, * which will terminate helper invocations. * * The terminate bit should be set on the last clause requiring helper * invocations. Without control flow, that's the last source-order instruction; * with control flow, there may be multiple such instructions (with ifs) or no * such instruction (with loops). * * The skip bit should be set unless the value of this instruction is required * by a future instruction requiring helper invocations. Consider: * * 0 = texture ... * 1 = fmul 0, #10 * 2 = dfdx 1 * store 2 * * Since the derivative calculation 2 requires helper invocations, the value 1 * must be calculated by helper invocations, and since it depends on 0, 0 must * be calculated by helpers. Hence the texture op does NOT have the skip bit * set, and the clause containing the derivative has the terminate bit set. * * Calculating the terminate bit occurs by forward dataflow analysis to * determine which blocks require helper invocations. A block requires * invocations in if any of its instructions use helper invocations, or if it * depends on a block that requires invocation. With that analysis, the * terminate bit is set on the last instruction using invocations within any * block that does *not* require invocations out. * * Likewise, calculating the execute bit requires backward dataflow analysis * with union as the join operation and the generating set being the union of * sources of instructions writing executed values. The skip bit is the inverse * of the execute bit. */ static bool bi_has_skip_bit(enum bi_opcode op) { switch (op) { case BI_OPCODE_TEX_SINGLE: case BI_OPCODE_TEXC: case BI_OPCODE_TEXC_DUAL: case BI_OPCODE_TEXS_2D_F16: case BI_OPCODE_TEXS_2D_F32: case BI_OPCODE_TEXS_CUBE_F16: case BI_OPCODE_TEXS_CUBE_F32: case BI_OPCODE_VAR_TEX_F16: case BI_OPCODE_VAR_TEX_F32: return true; default: return false; } } /* Does a given instruction require helper threads to be active (because it * reads from other subgroup lanes)? This only applies to fragment shaders. * Other shader stages do not have a notion of helper threads. */ bool bi_instr_uses_helpers(bi_instr *I) { switch (I->op) { case BI_OPCODE_TEXC: case BI_OPCODE_TEXC_DUAL: case BI_OPCODE_TEXS_2D_F16: case BI_OPCODE_TEXS_2D_F32: case BI_OPCODE_TEXS_CUBE_F16: case BI_OPCODE_TEXS_CUBE_F32: case BI_OPCODE_VAR_TEX_F16: case BI_OPCODE_VAR_TEX_F32: return !I->lod_mode; /* set for zero, clear for computed */ case BI_OPCODE_TEX_SINGLE: return (I->va_lod_mode == BI_VA_LOD_MODE_COMPUTED_LOD) || (I->va_lod_mode == BI_VA_LOD_MODE_COMPUTED_BIAS); case BI_OPCODE_CLPER_I32: case BI_OPCODE_CLPER_OLD_I32: /* Fragment shaders require helpers to implement derivatives. * Other shader stages don't have helpers at all */ return true; default: return false; } } /* Does a block use helpers directly */ static bool bi_block_uses_helpers(bi_block *block) { bi_foreach_instr_in_block(block, I) { if (bi_instr_uses_helpers(I)) return true; } return false; } bool bi_block_terminates_helpers(bi_block *block) { /* Can't terminate if a successor needs helpers */ bi_foreach_successor(block, succ) { if (succ->pass_flags & 1) return false; } /* Otherwise we terminate */ return true; } /* * Propagate the pass flag up the control flow graph by performing depth-first * search on the directed control flow graph. */ static void bi_propagate_pass_flag(bi_block *block) { block->pass_flags = 1; bi_foreach_predecessor(block, pred) { if ((*pred)->pass_flags == 0) bi_propagate_pass_flag(*pred); } } void bi_analyze_helper_terminate(bi_context *ctx) { /* Other shader stages do not have a notion of helper threads, so we * can skip the analysis. Don't run for blend shaders, either, since * they run in the context of another shader that we don't see. */ if (ctx->stage != MESA_SHADER_FRAGMENT || ctx->inputs->is_blend) return; /* Clear flags */ bi_foreach_block(ctx, block) block->pass_flags = 0; /* For each block, check if it uses helpers and propagate that fact if * so. We walk in reverse order to minimize the number of blocks tested: * if the (unique) last block uses helpers, only that block is tested. */ bi_foreach_block_rev(ctx, block) { if (block->pass_flags == 0 && bi_block_uses_helpers(block)) bi_propagate_pass_flag(block); } } void bi_mark_clauses_td(bi_context *ctx) { if (ctx->stage != MESA_SHADER_FRAGMENT || ctx->inputs->is_blend) return; /* Finally, mark clauses requiring helpers */ bi_foreach_block(ctx, block) { /* At the end, there are helpers iff we don't terminate */ bool helpers = !bi_block_terminates_helpers(block); bi_foreach_clause_in_block_rev(block, clause) { bi_foreach_instr_in_clause_rev(block, clause, I) { helpers |= bi_instr_uses_helpers(I); } clause->td = !helpers; } } } static bool bi_helper_block_update(BITSET_WORD *deps, bi_block *block) { bool progress = false; bi_foreach_instr_in_block_rev(block, I) { /* If a destination is required by helper invocation... */ bi_foreach_dest(I, d) { if (!BITSET_TEST(deps, I->dest[d].value)) continue; /* ...so are the sources */ bi_foreach_ssa_src(I, s) { progress |= !BITSET_TEST(deps, I->src[s].value); BITSET_SET(deps, I->src[s].value); } break; } } return progress; } void bi_analyze_helper_requirements(bi_context *ctx) { BITSET_WORD *deps = calloc(sizeof(BITSET_WORD), ctx->ssa_alloc); /* Initialize with the sources of instructions consuming * derivatives */ bi_foreach_instr_global(ctx, I) { if (!bi_instr_uses_helpers(I)) continue; bi_foreach_ssa_src(I, s) BITSET_SET(deps, I->src[s].value); } /* Propagate that up */ u_worklist worklist; bi_worklist_init(ctx, &worklist); bi_foreach_block(ctx, block) { bi_worklist_push_tail(&worklist, block); } while (!u_worklist_is_empty(&worklist)) { bi_block *blk = bi_worklist_pop_tail(&worklist); if (bi_helper_block_update(deps, blk)) { bi_foreach_predecessor(blk, pred) bi_worklist_push_head(&worklist, *pred); } } u_worklist_fini(&worklist); /* Set the execute bits */ bi_foreach_instr_global(ctx, I) { if (!bi_has_skip_bit(I->op)) continue; bool exec = false; bi_foreach_dest(I, d) exec |= BITSET_TEST(deps, I->dest[d].value); I->skip = !exec; } free(deps); }