/* * Copyright © 2019 Raspberry Pi Ltd * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "v3dv_private.h" #include "drm-uapi/drm_fourcc.h" #include "util/format/u_format.h" #include "util/u_math.h" #include "vk_util.h" #include "vulkan/wsi/wsi_common.h" /** * Computes the HW's UIFblock padding for a given height/cpp. * * The goal of the padding is to keep pages of the same color (bank number) at * least half a page away from each other vertically when crossing between * columns of UIF blocks. */ static uint32_t v3d_get_ub_pad(uint32_t cpp, uint32_t height) { uint32_t utile_h = v3d_utile_height(cpp); uint32_t uif_block_h = utile_h * 2; uint32_t height_ub = height / uif_block_h; uint32_t height_offset_in_pc = height_ub % PAGE_CACHE_UB_ROWS; /* For the perfectly-aligned-for-UIF-XOR case, don't add any pad. */ if (height_offset_in_pc == 0) return 0; /* Try padding up to where we're offset by at least half a page. */ if (height_offset_in_pc < PAGE_UB_ROWS_TIMES_1_5) { /* If we fit entirely in the page cache, don't pad. */ if (height_ub < PAGE_CACHE_UB_ROWS) return 0; else return PAGE_UB_ROWS_TIMES_1_5 - height_offset_in_pc; } /* If we're close to being aligned to page cache size, then round up * and rely on XOR. */ if (height_offset_in_pc > PAGE_CACHE_MINUS_1_5_UB_ROWS) return PAGE_CACHE_UB_ROWS - height_offset_in_pc; /* Otherwise, we're far enough away (top and bottom) to not need any * padding. */ return 0; } static void v3d_setup_plane_slices(struct v3dv_image *image, uint8_t plane, uint32_t plane_offset) { assert(image->planes[plane].cpp > 0); /* Texture Base Adress needs to be 64-byte aligned */ assert(plane_offset % 64 == 0); uint32_t width = image->planes[plane].width; uint32_t height = image->planes[plane].height; uint32_t depth = image->vk.extent.depth; /* Note that power-of-two padding is based on level 1. These are not * equivalent to just util_next_power_of_two(dimension), because at a * level 0 dimension of 9, the level 1 power-of-two padded value is 4, * not 8. */ uint32_t pot_width = 2 * util_next_power_of_two(u_minify(width, 1)); uint32_t pot_height = 2 * util_next_power_of_two(u_minify(height, 1)); uint32_t pot_depth = 2 * util_next_power_of_two(u_minify(depth, 1)); uint32_t utile_w = v3d_utile_width(image->planes[plane].cpp); uint32_t utile_h = v3d_utile_height(image->planes[plane].cpp); uint32_t uif_block_w = utile_w * 2; uint32_t uif_block_h = utile_h * 2; uint32_t block_width = vk_format_get_blockwidth(image->vk.format); uint32_t block_height = vk_format_get_blockheight(image->vk.format); assert(image->vk.samples == VK_SAMPLE_COUNT_1_BIT || image->vk.samples == VK_SAMPLE_COUNT_4_BIT); bool msaa = image->vk.samples != VK_SAMPLE_COUNT_1_BIT; bool uif_top = msaa; assert(image->vk.array_layers > 0); assert(depth > 0); assert(image->vk.mip_levels >= 1); uint32_t offset = plane_offset; for (int32_t i = image->vk.mip_levels - 1; i >= 0; i--) { struct v3d_resource_slice *slice = &image->planes[plane].slices[i]; uint32_t level_width, level_height, level_depth; if (i < 2) { level_width = u_minify(width, i); level_height = u_minify(height, i); } else { level_width = u_minify(pot_width, i); level_height = u_minify(pot_height, i); } if (i < 1) level_depth = u_minify(depth, i); else level_depth = u_minify(pot_depth, i); if (msaa) { level_width *= 2; level_height *= 2; } level_width = DIV_ROUND_UP(level_width, block_width); level_height = DIV_ROUND_UP(level_height, block_height); if (!image->tiled) { slice->tiling = V3D_TILING_RASTER; if (image->vk.image_type == VK_IMAGE_TYPE_1D) level_width = align(level_width, 64 / image->planes[plane].cpp); } else { if ((i != 0 || !uif_top) && (level_width <= utile_w || level_height <= utile_h)) { slice->tiling = V3D_TILING_LINEARTILE; level_width = align(level_width, utile_w); level_height = align(level_height, utile_h); } else if ((i != 0 || !uif_top) && level_width <= uif_block_w) { slice->tiling = V3D_TILING_UBLINEAR_1_COLUMN; level_width = align(level_width, uif_block_w); level_height = align(level_height, uif_block_h); } else if ((i != 0 || !uif_top) && level_width <= 2 * uif_block_w) { slice->tiling = V3D_TILING_UBLINEAR_2_COLUMN; level_width = align(level_width, 2 * uif_block_w); level_height = align(level_height, uif_block_h); } else { /* We align the width to a 4-block column of UIF blocks, but we * only align height to UIF blocks. */ level_width = align(level_width, 4 * uif_block_w); level_height = align(level_height, uif_block_h); slice->ub_pad = v3d_get_ub_pad(image->planes[plane].cpp, level_height); level_height += slice->ub_pad * uif_block_h; /* If the padding set us to to be aligned to the page cache size, * then the HW will use the XOR bit on odd columns to get us * perfectly misaligned. */ if ((level_height / uif_block_h) % (V3D_PAGE_CACHE_SIZE / V3D_UIFBLOCK_ROW_SIZE) == 0) { slice->tiling = V3D_TILING_UIF_XOR; } else { slice->tiling = V3D_TILING_UIF_NO_XOR; } } } slice->offset = offset; slice->stride = level_width * image->planes[plane].cpp; slice->padded_height = level_height; if (slice->tiling == V3D_TILING_UIF_NO_XOR || slice->tiling == V3D_TILING_UIF_XOR) { slice->padded_height_of_output_image_in_uif_blocks = slice->padded_height / (2 * v3d_utile_height(image->planes[plane].cpp)); } slice->size = level_height * slice->stride; uint32_t slice_total_size = slice->size * level_depth; /* The HW aligns level 1's base to a page if any of level 1 or * below could be UIF XOR. The lower levels then inherit the * alignment for as long as necessary, thanks to being power of * two aligned. */ if (i == 1 && level_width > 4 * uif_block_w && level_height > PAGE_CACHE_MINUS_1_5_UB_ROWS * uif_block_h) { slice_total_size = align(slice_total_size, V3D_UIFCFG_PAGE_SIZE); } offset += slice_total_size; } image->planes[plane].size = offset - plane_offset; /* UIF/UBLINEAR levels need to be aligned to UIF-blocks, and LT only * needs to be aligned to utile boundaries. Since tiles are laid out * from small to big in memory, we need to align the later UIF slices * to UIF blocks, if they were preceded by non-UIF-block-aligned LT * slices. * * We additionally align to 4k, which improves UIF XOR performance. * * Finally, because the Texture Base Address field must be 64-byte aligned, * we also need to align linear images to 64 if the image is going to be * used for transfer. */ if (image->tiled) { image->planes[plane].alignment = 4096; } else { image->planes[plane].alignment = (image->vk.usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) ? 64 : image->planes[plane].cpp; } uint32_t align_offset = align(image->planes[plane].slices[0].offset, image->planes[plane].alignment) - image->planes[plane].slices[0].offset; if (align_offset) { image->planes[plane].size += align_offset; for (int i = 0; i < image->vk.mip_levels; i++) image->planes[plane].slices[i].offset += align_offset; } /* Arrays and cube textures have a stride which is the distance from * one full mipmap tree to the next (64b aligned). For 3D textures, * we need to program the stride between slices of miplevel 0. */ if (image->vk.image_type != VK_IMAGE_TYPE_3D) { image->planes[plane].cube_map_stride = align(image->planes[plane].slices[0].offset + image->planes[plane].slices[0].size, 64); image->planes[plane].size += image->planes[plane].cube_map_stride * (image->vk.array_layers - 1); } else { image->planes[plane].cube_map_stride = image->planes[plane].slices[0].size; } } static void v3d_setup_slices(struct v3dv_image *image, bool disjoint) { if (disjoint && image->plane_count == 1) disjoint = false; uint32_t offset = 0; for (uint8_t plane = 0; plane < image->plane_count; plane++) { offset = disjoint ? 0 : offset; v3d_setup_plane_slices(image, plane, offset); offset += align(image->planes[plane].size, 64); } image->non_disjoint_size = disjoint ? 0 : offset; } uint32_t v3dv_layer_offset(const struct v3dv_image *image, uint32_t level, uint32_t layer, uint8_t plane) { const struct v3d_resource_slice *slice = &image->planes[plane].slices[level]; if (image->vk.image_type == VK_IMAGE_TYPE_3D) return image->planes[plane].mem_offset + slice->offset + layer * slice->size; else return image->planes[plane].mem_offset + slice->offset + layer * image->planes[plane].cube_map_stride; } VkResult v3dv_image_init(struct v3dv_device *device, const VkImageCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, struct v3dv_image *image) { /* When using the simulator the WSI common code will see that our * driver wsi device doesn't match the display device and because of that * it will not attempt to present directly from the swapchain images, * instead it will use the prime blit path (use_buffer_blit flag in * struct wsi_swapchain), where it copies the contents of the swapchain * images to a linear buffer with appropriate row stride for presentation. * As a result, on that path, swapchain images do not have any special * requirements and are not created with the pNext structs below. */ VkImageTiling tiling = pCreateInfo->tiling; uint64_t modifier = DRM_FORMAT_MOD_INVALID; if (tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) { const VkImageDrmFormatModifierListCreateInfoEXT *mod_info = vk_find_struct_const(pCreateInfo->pNext, IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT); const VkImageDrmFormatModifierExplicitCreateInfoEXT *explicit_mod_info = vk_find_struct_const(pCreateInfo->pNext, IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT); assert(mod_info || explicit_mod_info); if (mod_info) { for (uint32_t i = 0; i < mod_info->drmFormatModifierCount; i++) { switch (mod_info->pDrmFormatModifiers[i]) { case DRM_FORMAT_MOD_LINEAR: if (modifier == DRM_FORMAT_MOD_INVALID) modifier = DRM_FORMAT_MOD_LINEAR; break; case DRM_FORMAT_MOD_BROADCOM_UIF: modifier = DRM_FORMAT_MOD_BROADCOM_UIF; break; } } } else { modifier = explicit_mod_info->drmFormatModifier; } assert(modifier == DRM_FORMAT_MOD_LINEAR || modifier == DRM_FORMAT_MOD_BROADCOM_UIF); } else if (pCreateInfo->imageType == VK_IMAGE_TYPE_1D || image->vk.wsi_legacy_scanout) { tiling = VK_IMAGE_TILING_LINEAR; } #ifdef ANDROID const VkNativeBufferANDROID *native_buffer = vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID); int native_buf_fd = -1; int native_buf_stride = 0; int native_buf_size = 0; if (native_buffer != NULL) { VkResult result = v3dv_gralloc_info(device, native_buffer, &native_buf_fd, &native_buf_stride, &native_buf_size, &modifier); if (result != VK_SUCCESS) return result; if (modifier != DRM_FORMAT_MOD_BROADCOM_UIF) tiling = VK_IMAGE_TILING_LINEAR; } #endif const struct v3dv_format *format = v3dv_X(device, get_format)(pCreateInfo->format); v3dv_assert(format != NULL && format->plane_count); assert(pCreateInfo->samples == VK_SAMPLE_COUNT_1_BIT || pCreateInfo->samples == VK_SAMPLE_COUNT_4_BIT); image->format = format; image->plane_count = vk_format_get_plane_count(pCreateInfo->format); const struct vk_format_ycbcr_info *ycbcr_info = vk_format_get_ycbcr_info(image->vk.format); for (uint8_t plane = 0; plane < image->plane_count; plane++) { VkFormat plane_format = vk_format_get_plane_format(image->vk.format, plane); image->planes[plane].cpp = vk_format_get_blocksize(plane_format); image->planes[plane].vk_format = plane_format; image->planes[plane].width = image->vk.extent.width; image->planes[plane].height = image->vk.extent.height; if (ycbcr_info) { image->planes[plane].width /= ycbcr_info->planes[plane].denominator_scales[0]; image->planes[plane].height /= ycbcr_info->planes[plane].denominator_scales[1]; } } image->tiled = tiling == VK_IMAGE_TILING_OPTIMAL || (tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT && modifier != DRM_FORMAT_MOD_LINEAR); image->vk.tiling = tiling; image->vk.drm_format_mod = modifier; /* Our meta paths can create image views with compatible formats for any * image, so always set this flag to keep the common Vulkan image code * happy. */ image->vk.create_flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT; bool disjoint = image->vk.create_flags & VK_IMAGE_CREATE_DISJOINT_BIT; v3d_setup_slices(image, disjoint); #ifdef ANDROID if (native_buffer != NULL) { assert(image->plane_count == 1); image->planes[0].slices[0].stride = native_buf_stride; image->non_disjoint_size = image->planes[0].slices[0].size = image->planes[0].size = native_buf_size; VkResult result = v3dv_import_native_buffer_fd(v3dv_device_to_handle(device), native_buf_fd, pAllocator, v3dv_image_to_handle(image)); if (result != VK_SUCCESS) return result; } #endif return VK_SUCCESS; } static VkResult create_image(struct v3dv_device *device, const VkImageCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImage *pImage) { struct v3dv_image *image = NULL; image = vk_image_create(&device->vk, pCreateInfo, pAllocator, sizeof(*image)); if (image == NULL) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); VkResult result = v3dv_image_init(device, pCreateInfo, pAllocator, image); if (result != VK_SUCCESS) { vk_image_destroy(&device->vk, pAllocator, &image->vk); return result; } *pImage = v3dv_image_to_handle(image); return VK_SUCCESS; } static VkResult create_image_from_swapchain(struct v3dv_device *device, const VkImageCreateInfo *pCreateInfo, const VkImageSwapchainCreateInfoKHR *swapchain_info, const VkAllocationCallbacks *pAllocator, VkImage *pImage) { struct v3dv_image *swapchain_image = v3dv_wsi_get_image_from_swapchain(swapchain_info->swapchain, 0); assert(swapchain_image); VkImageCreateInfo local_create_info = *pCreateInfo; local_create_info.pNext = NULL; /* Added by wsi code. */ local_create_info.usage |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; /* The spec requires TILING_OPTIMAL as input, but the swapchain image may * privately use a different tiling. See spec anchor * #swapchain-wsi-image-create-info . */ assert(local_create_info.tiling == VK_IMAGE_TILING_OPTIMAL); local_create_info.tiling = swapchain_image->vk.tiling; VkImageDrmFormatModifierListCreateInfoEXT local_modifier_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT, .drmFormatModifierCount = 1, .pDrmFormatModifiers = &swapchain_image->vk.drm_format_mod, }; if (swapchain_image->vk.drm_format_mod != DRM_FORMAT_MOD_INVALID) __vk_append_struct(&local_create_info, &local_modifier_info); assert(swapchain_image->vk.image_type == local_create_info.imageType); assert(swapchain_image->vk.format == local_create_info.format); assert(swapchain_image->vk.extent.width == local_create_info.extent.width); assert(swapchain_image->vk.extent.height == local_create_info.extent.height); assert(swapchain_image->vk.extent.depth == local_create_info.extent.depth); assert(swapchain_image->vk.array_layers == local_create_info.arrayLayers); assert(swapchain_image->vk.samples == local_create_info.samples); assert(swapchain_image->vk.tiling == local_create_info.tiling); assert((swapchain_image->vk.usage & local_create_info.usage) == local_create_info.usage); return create_image(device, &local_create_info, pAllocator, pImage); } VKAPI_ATTR VkResult VKAPI_CALL v3dv_CreateImage(VkDevice _device, const VkImageCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImage *pImage) { V3DV_FROM_HANDLE(v3dv_device, device, _device); #ifdef ANDROID /* VkImageSwapchainCreateInfoKHR is not useful at all */ const VkImageSwapchainCreateInfoKHR *swapchain_info = NULL; #else const VkImageSwapchainCreateInfoKHR *swapchain_info = vk_find_struct_const(pCreateInfo->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR); #endif if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE) return create_image_from_swapchain(device, pCreateInfo, swapchain_info, pAllocator, pImage); return create_image(device, pCreateInfo, pAllocator, pImage); } VKAPI_ATTR void VKAPI_CALL v3dv_GetImageSubresourceLayout(VkDevice device, VkImage _image, const VkImageSubresource *subresource, VkSubresourceLayout *layout) { V3DV_FROM_HANDLE(v3dv_image, image, _image); uint8_t plane = v3dv_plane_from_aspect(subresource->aspectMask); const struct v3d_resource_slice *slice = &image->planes[plane].slices[subresource->mipLevel]; /* About why the offset below works for both disjoint and non-disjoint * cases, from the Vulkan spec: * * "If the image is disjoint, then the offset is relative to the base * address of the plane." * * "If the image is non-disjoint, then the offset is relative to the base * address of the image." * * In our case, the per-plane mem_offset for non-disjoint images is the * same for all planes and matches the base address of the image. */ layout->offset = v3dv_layer_offset(image, subresource->mipLevel, subresource->arrayLayer, plane) - image->planes[plane].mem_offset; layout->rowPitch = slice->stride; layout->depthPitch = image->planes[plane].cube_map_stride; layout->arrayPitch = image->planes[plane].cube_map_stride; if (image->vk.image_type != VK_IMAGE_TYPE_3D) { layout->size = slice->size; } else { /* For 3D images, the size of the slice represents the size of a 2D slice * in the 3D image, so we have to multiply by the depth extent of the * miplevel. For levels other than the first, we just compute the size * as the distance between consecutive levels (notice that mip levels are * arranged in memory from last to first). */ if (subresource->mipLevel == 0) { layout->size = slice->size * image->vk.extent.depth; } else { const struct v3d_resource_slice *prev_slice = &image->planes[plane].slices[subresource->mipLevel - 1]; layout->size = prev_slice->offset - slice->offset; } } } VKAPI_ATTR void VKAPI_CALL v3dv_DestroyImage(VkDevice _device, VkImage _image, const VkAllocationCallbacks* pAllocator) { V3DV_FROM_HANDLE(v3dv_device, device, _device); V3DV_FROM_HANDLE(v3dv_image, image, _image); if (image == NULL) return; #ifdef ANDROID assert(image->plane_count == 1); if (image->is_native_buffer_memory) v3dv_FreeMemory(_device, v3dv_device_memory_to_handle(image->planes[0].mem), pAllocator); #endif vk_image_destroy(&device->vk, pAllocator, &image->vk); } VkImageViewType v3dv_image_type_to_view_type(VkImageType type) { switch (type) { case VK_IMAGE_TYPE_1D: return VK_IMAGE_VIEW_TYPE_1D; case VK_IMAGE_TYPE_2D: return VK_IMAGE_VIEW_TYPE_2D; case VK_IMAGE_TYPE_3D: return VK_IMAGE_VIEW_TYPE_3D; default: unreachable("Invalid image type"); } } static VkResult create_image_view(struct v3dv_device *device, bool driver_internal, const VkImageViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImageView *pView) { V3DV_FROM_HANDLE(v3dv_image, image, pCreateInfo->image); struct v3dv_image_view *iview; iview = vk_image_view_create(&device->vk, driver_internal, pCreateInfo, pAllocator, sizeof(*iview)); if (iview == NULL) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); const VkImageAspectFlagBits any_plane_aspect = VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT | VK_IMAGE_ASPECT_PLANE_2_BIT; if (image->vk.aspects & any_plane_aspect) { assert((image->vk.aspects & ~any_plane_aspect) == 0); iview->plane_count = 0; static const VkImageAspectFlagBits plane_aspects[]= { VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT, VK_IMAGE_ASPECT_PLANE_2_BIT }; for (uint8_t plane = 0; plane < V3DV_MAX_PLANE_COUNT; plane++) { if (iview->vk.aspects & plane_aspects[plane]) iview->planes[iview->plane_count++].image_plane = plane; } } else { iview->plane_count = 1; iview->planes[0].image_plane = 0; } /* At this point we should have at least one plane */ assert(iview->plane_count > 0); const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange; /* If we have D24S8 format but the view only selects the stencil aspect * we want to re-interpret the format as RGBA8_UINT, then map our stencil * data reads to the R component and ignore the GBA channels that contain * the depth aspect data. * * FIXME: thwe code belows calls vk_component_mapping_to_pipe_swizzle * only so it can then call util_format_compose_swizzles later. Maybe it * makes sense to implement swizzle composition using VkSwizzle directly. */ VkFormat format; uint8_t image_view_swizzle[4]; if (pCreateInfo->format == VK_FORMAT_D24_UNORM_S8_UINT && range->aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) { format = VK_FORMAT_R8G8B8A8_UINT; uint8_t stencil_aspect_swizzle[4] = { PIPE_SWIZZLE_X, PIPE_SWIZZLE_0, PIPE_SWIZZLE_0, PIPE_SWIZZLE_1, }; uint8_t view_swizzle[4]; vk_component_mapping_to_pipe_swizzle(iview->vk.swizzle, view_swizzle); util_format_compose_swizzles(stencil_aspect_swizzle, view_swizzle, image_view_swizzle); } else { format = pCreateInfo->format; vk_component_mapping_to_pipe_swizzle(iview->vk.swizzle, image_view_swizzle); } iview->vk.view_format = format; iview->format = v3dv_X(device, get_format)(format); assert(iview->format && iview->format->plane_count); for (uint8_t plane = 0; plane < iview->plane_count; plane++) { iview->planes[plane].offset = v3dv_layer_offset(image, iview->vk.base_mip_level, iview->vk.base_array_layer, plane); if (vk_format_is_depth_or_stencil(iview->vk.view_format)) { iview->planes[plane].internal_type = v3dv_X(device, get_internal_depth_type)(iview->vk.view_format); } else { v3dv_X(device, get_internal_type_bpp_for_output_format) (iview->format->planes[plane].rt_type, &iview->planes[plane].internal_type, &iview->planes[plane].internal_bpp); } const uint8_t *format_swizzle = v3dv_get_format_swizzle(device, format, plane); util_format_compose_swizzles(format_swizzle, image_view_swizzle, iview->planes[plane].swizzle); iview->planes[plane].swap_rb = v3dv_format_swizzle_needs_rb_swap(format_swizzle); iview->planes[plane].channel_reverse = v3dv_format_swizzle_needs_reverse(format_swizzle); } v3dv_X(device, pack_texture_shader_state)(device, iview); *pView = v3dv_image_view_to_handle(iview); return VK_SUCCESS; } VkResult v3dv_create_image_view(struct v3dv_device *device, const VkImageViewCreateInfo *pCreateInfo, VkImageView *pView) { return create_image_view(device, true, pCreateInfo, NULL, pView); } VKAPI_ATTR VkResult VKAPI_CALL v3dv_CreateImageView(VkDevice _device, const VkImageViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImageView *pView) { V3DV_FROM_HANDLE(v3dv_device, device, _device); return create_image_view(device, false, pCreateInfo, pAllocator, pView); } VKAPI_ATTR void VKAPI_CALL v3dv_DestroyImageView(VkDevice _device, VkImageView imageView, const VkAllocationCallbacks* pAllocator) { V3DV_FROM_HANDLE(v3dv_device, device, _device); V3DV_FROM_HANDLE(v3dv_image_view, image_view, imageView); if (image_view == NULL) return; vk_image_view_destroy(&device->vk, pAllocator, &image_view->vk); } VKAPI_ATTR VkResult VKAPI_CALL v3dv_CreateBufferView(VkDevice _device, const VkBufferViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkBufferView *pView) { V3DV_FROM_HANDLE(v3dv_device, device, _device); struct v3dv_buffer *buffer = v3dv_buffer_from_handle(pCreateInfo->buffer); struct v3dv_buffer_view *view = vk_object_zalloc(&device->vk, pAllocator, sizeof(*view), VK_OBJECT_TYPE_BUFFER_VIEW); if (!view) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); uint32_t range; if (pCreateInfo->range == VK_WHOLE_SIZE) range = buffer->size - pCreateInfo->offset; else range = pCreateInfo->range; enum pipe_format pipe_format = vk_format_to_pipe_format(pCreateInfo->format); uint32_t num_elements = range / util_format_get_blocksize(pipe_format); view->buffer = buffer; view->offset = pCreateInfo->offset; view->size = view->offset + range; view->num_elements = num_elements; view->vk_format = pCreateInfo->format; view->format = v3dv_X(device, get_format)(view->vk_format); /* We don't support multi-plane formats for buffer views */ assert(view->format->plane_count == 1); v3dv_X(device, get_internal_type_bpp_for_output_format) (view->format->planes[0].rt_type, &view->internal_type, &view->internal_bpp); if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT || buffer->usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) v3dv_X(device, pack_texture_shader_state_from_buffer_view)(device, view); *pView = v3dv_buffer_view_to_handle(view); return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL v3dv_DestroyBufferView(VkDevice _device, VkBufferView bufferView, const VkAllocationCallbacks *pAllocator) { V3DV_FROM_HANDLE(v3dv_device, device, _device); V3DV_FROM_HANDLE(v3dv_buffer_view, buffer_view, bufferView); if (buffer_view == NULL) return; vk_object_free(&device->vk, pAllocator, buffer_view); }