/* * Copyright © 2019 Raspberry Pi Ltd * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "vk_descriptors.h" #include "vk_util.h" #include "v3dv_private.h" /* * For a given descriptor defined by the descriptor_set it belongs, its * binding layout, array_index, and plane, it returns the map region assigned * to it from the descriptor pool bo. */ static void * descriptor_bo_map(struct v3dv_device *device, struct v3dv_descriptor_set *set, const struct v3dv_descriptor_set_binding_layout *binding_layout, uint32_t array_index) { /* Inline uniform blocks use BO memory to store UBO contents, not * descriptor data, so their descriptor BO size is 0 even though they * do use BO memory. */ uint32_t bo_size = v3dv_X(device, descriptor_bo_size)(binding_layout->type); assert(bo_size > 0 || binding_layout->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK); return set->pool->bo->map + set->base_offset + binding_layout->descriptor_offset + array_index * binding_layout->plane_stride * bo_size; } static bool descriptor_type_is_dynamic(VkDescriptorType type) { switch (type) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: return true; break; default: return false; } } /* * Tries to get a real descriptor using a descriptor map index from the * descriptor_state + pipeline_layout. */ struct v3dv_descriptor * v3dv_descriptor_map_get_descriptor(struct v3dv_descriptor_state *descriptor_state, struct v3dv_descriptor_map *map, struct v3dv_pipeline_layout *pipeline_layout, uint32_t index, uint32_t *dynamic_offset) { assert(index < map->num_desc); uint32_t set_number = map->set[index]; assert((descriptor_state->valid & 1 << set_number)); struct v3dv_descriptor_set *set = descriptor_state->descriptor_sets[set_number]; assert(set); uint32_t binding_number = map->binding[index]; assert(binding_number < set->layout->binding_count); const struct v3dv_descriptor_set_binding_layout *binding_layout = &set->layout->binding[binding_number]; uint32_t array_index = map->array_index[index]; assert(array_index < binding_layout->array_size); if (descriptor_type_is_dynamic(binding_layout->type)) { uint32_t dynamic_offset_index = pipeline_layout->set[set_number].dynamic_offset_start + binding_layout->dynamic_offset_index + array_index; *dynamic_offset = descriptor_state->dynamic_offsets[dynamic_offset_index]; } return &set->descriptors[binding_layout->descriptor_index + array_index]; } /* Equivalent to map_get_descriptor but it returns a reloc with the bo * associated with that descriptor (suballocation of the descriptor pool bo) * * It also returns the descriptor type, so the caller could do extra * validation or adding extra offsets if the bo contains more that one field. */ struct v3dv_cl_reloc v3dv_descriptor_map_get_descriptor_bo(struct v3dv_device *device, struct v3dv_descriptor_state *descriptor_state, struct v3dv_descriptor_map *map, struct v3dv_pipeline_layout *pipeline_layout, uint32_t index, VkDescriptorType *out_type) { assert(index < map->num_desc); uint32_t set_number = map->set[index]; assert(descriptor_state->valid & 1 << set_number); struct v3dv_descriptor_set *set = descriptor_state->descriptor_sets[set_number]; assert(set); uint32_t binding_number = map->binding[index]; assert(binding_number < set->layout->binding_count); const struct v3dv_descriptor_set_binding_layout *binding_layout = &set->layout->binding[binding_number]; uint32_t bo_size = v3dv_X(device, descriptor_bo_size)(binding_layout->type); assert(binding_layout->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK || bo_size > 0); if (out_type) *out_type = binding_layout->type; uint32_t array_index = map->array_index[index]; assert(array_index < binding_layout->array_size); struct v3dv_cl_reloc reloc = { .bo = set->pool->bo, .offset = set->base_offset + binding_layout->descriptor_offset + array_index * binding_layout->plane_stride * bo_size, }; return reloc; } /* * The difference between this method and v3dv_descriptor_map_get_descriptor, * is that if the sampler are added as immutable when creating the set layout, * they are bound to the set layout, so not part of the descriptor per * se. This method return early in that case. */ const struct v3dv_sampler * v3dv_descriptor_map_get_sampler(struct v3dv_descriptor_state *descriptor_state, struct v3dv_descriptor_map *map, struct v3dv_pipeline_layout *pipeline_layout, uint32_t index) { assert(index < map->num_desc); uint32_t set_number = map->set[index]; assert(descriptor_state->valid & 1 << set_number); struct v3dv_descriptor_set *set = descriptor_state->descriptor_sets[set_number]; assert(set); uint32_t binding_number = map->binding[index]; assert(binding_number < set->layout->binding_count); const struct v3dv_descriptor_set_binding_layout *binding_layout = &set->layout->binding[binding_number]; uint32_t array_index = map->array_index[index]; assert(array_index < binding_layout->array_size); if (binding_layout->immutable_samplers_offset != 0) { assert(binding_layout->type == VK_DESCRIPTOR_TYPE_SAMPLER || binding_layout->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER); const struct v3dv_sampler *immutable_samplers = v3dv_immutable_samplers(set->layout, binding_layout); assert(immutable_samplers); const struct v3dv_sampler *sampler = &immutable_samplers[array_index]; assert(sampler); return sampler; } struct v3dv_descriptor *descriptor = &set->descriptors[binding_layout->descriptor_index + array_index]; assert(descriptor->type == VK_DESCRIPTOR_TYPE_SAMPLER || descriptor->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER); assert(descriptor->sampler); return descriptor->sampler; } struct v3dv_cl_reloc v3dv_descriptor_map_get_sampler_state(struct v3dv_device *device, struct v3dv_descriptor_state *descriptor_state, struct v3dv_descriptor_map *map, struct v3dv_pipeline_layout *pipeline_layout, uint32_t index) { VkDescriptorType type; struct v3dv_cl_reloc reloc = v3dv_descriptor_map_get_descriptor_bo(device, descriptor_state, map, pipeline_layout, index, &type); assert(type == VK_DESCRIPTOR_TYPE_SAMPLER || type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER); if (type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) reloc.offset += v3dv_X(device, combined_image_sampler_sampler_state_offset)(map->plane[index]); return reloc; } struct v3dv_bo* v3dv_descriptor_map_get_texture_bo(struct v3dv_descriptor_state *descriptor_state, struct v3dv_descriptor_map *map, struct v3dv_pipeline_layout *pipeline_layout, uint32_t index) { struct v3dv_descriptor *descriptor = v3dv_descriptor_map_get_descriptor(descriptor_state, map, pipeline_layout, index, NULL); switch (descriptor->type) { case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: assert(descriptor->buffer_view); return descriptor->buffer_view->buffer->mem->bo; case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: { assert(descriptor->image_view); struct v3dv_image *image = (struct v3dv_image *) descriptor->image_view->vk.image; assert(map->plane[index] < image->plane_count); return image->planes[map->plane[index]].mem->bo; } default: unreachable("descriptor type doesn't has a texture bo"); } } struct v3dv_cl_reloc v3dv_descriptor_map_get_texture_shader_state(struct v3dv_device *device, struct v3dv_descriptor_state *descriptor_state, struct v3dv_descriptor_map *map, struct v3dv_pipeline_layout *pipeline_layout, uint32_t index) { VkDescriptorType type; struct v3dv_cl_reloc reloc = v3dv_descriptor_map_get_descriptor_bo(device, descriptor_state, map, pipeline_layout, index, &type); assert(type == VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE || type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER || type == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT || type == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE || type == VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER || type == VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER); if (type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) reloc.offset += v3dv_X(device, combined_image_sampler_texture_state_offset)(map->plane[index]); return reloc; } #define SHA1_UPDATE_VALUE(ctx, x) _mesa_sha1_update(ctx, &(x), sizeof(x)); static void sha1_update_ycbcr_conversion(struct mesa_sha1 *ctx, const struct vk_ycbcr_conversion_state *conversion) { SHA1_UPDATE_VALUE(ctx, conversion->format); SHA1_UPDATE_VALUE(ctx, conversion->ycbcr_model); SHA1_UPDATE_VALUE(ctx, conversion->ycbcr_range); SHA1_UPDATE_VALUE(ctx, conversion->mapping); SHA1_UPDATE_VALUE(ctx, conversion->chroma_offsets); SHA1_UPDATE_VALUE(ctx, conversion->chroma_reconstruction); } static void sha1_update_descriptor_set_binding_layout(struct mesa_sha1 *ctx, const struct v3dv_descriptor_set_binding_layout *layout, const struct v3dv_descriptor_set_layout *set_layout) { SHA1_UPDATE_VALUE(ctx, layout->type); SHA1_UPDATE_VALUE(ctx, layout->array_size); SHA1_UPDATE_VALUE(ctx, layout->descriptor_index); SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_count); SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_index); SHA1_UPDATE_VALUE(ctx, layout->descriptor_offset); SHA1_UPDATE_VALUE(ctx, layout->immutable_samplers_offset); SHA1_UPDATE_VALUE(ctx, layout->plane_stride); if (layout->immutable_samplers_offset) { const struct v3dv_sampler *immutable_samplers = v3dv_immutable_samplers(set_layout, layout); for (unsigned i = 0; i < layout->array_size; i++) { const struct v3dv_sampler *sampler = &immutable_samplers[i]; if (sampler->conversion) sha1_update_ycbcr_conversion(ctx, &sampler->conversion->state); } } } static void sha1_update_descriptor_set_layout(struct mesa_sha1 *ctx, const struct v3dv_descriptor_set_layout *layout) { SHA1_UPDATE_VALUE(ctx, layout->flags); SHA1_UPDATE_VALUE(ctx, layout->binding_count); SHA1_UPDATE_VALUE(ctx, layout->shader_stages); SHA1_UPDATE_VALUE(ctx, layout->descriptor_count); SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_count); for (uint16_t i = 0; i < layout->binding_count; i++) sha1_update_descriptor_set_binding_layout(ctx, &layout->binding[i], layout); } /* * As anv and tu already points: * * "Pipeline layouts. These have nothing to do with the pipeline. They are * just multiple descriptor set layouts pasted together." */ VKAPI_ATTR VkResult VKAPI_CALL v3dv_CreatePipelineLayout(VkDevice _device, const VkPipelineLayoutCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout) { V3DV_FROM_HANDLE(v3dv_device, device, _device); struct v3dv_pipeline_layout *layout; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO); layout = vk_object_zalloc(&device->vk, pAllocator, sizeof(*layout), VK_OBJECT_TYPE_PIPELINE_LAYOUT); if (layout == NULL) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); layout->num_sets = pCreateInfo->setLayoutCount; layout->ref_cnt = 1; uint32_t dynamic_offset_count = 0; for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) { V3DV_FROM_HANDLE(v3dv_descriptor_set_layout, set_layout, pCreateInfo->pSetLayouts[set]); v3dv_descriptor_set_layout_ref(set_layout); layout->set[set].layout = set_layout; layout->set[set].dynamic_offset_start = dynamic_offset_count; for (uint32_t b = 0; b < set_layout->binding_count; b++) { dynamic_offset_count += set_layout->binding[b].array_size * set_layout->binding[b].dynamic_offset_count; } layout->shader_stages |= set_layout->shader_stages; } layout->push_constant_size = 0; for (unsigned i = 0; i < pCreateInfo->pushConstantRangeCount; ++i) { const VkPushConstantRange *range = pCreateInfo->pPushConstantRanges + i; layout->push_constant_size = MAX2(layout->push_constant_size, range->offset + range->size); } layout->push_constant_size = align(layout->push_constant_size, 4096); layout->dynamic_offset_count = dynamic_offset_count; struct mesa_sha1 ctx; _mesa_sha1_init(&ctx); for (unsigned s = 0; s < layout->num_sets; s++) { sha1_update_descriptor_set_layout(&ctx, layout->set[s].layout); _mesa_sha1_update(&ctx, &layout->set[s].dynamic_offset_start, sizeof(layout->set[s].dynamic_offset_start)); } _mesa_sha1_update(&ctx, &layout->num_sets, sizeof(layout->num_sets)); _mesa_sha1_final(&ctx, layout->sha1); *pPipelineLayout = v3dv_pipeline_layout_to_handle(layout); return VK_SUCCESS; } void v3dv_pipeline_layout_destroy(struct v3dv_device *device, struct v3dv_pipeline_layout *layout, const VkAllocationCallbacks *alloc) { assert(layout); for (uint32_t i = 0; i < layout->num_sets; i++) v3dv_descriptor_set_layout_unref(device, layout->set[i].layout); vk_object_free(&device->vk, alloc, layout); } VKAPI_ATTR void VKAPI_CALL v3dv_DestroyPipelineLayout(VkDevice _device, VkPipelineLayout _pipelineLayout, const VkAllocationCallbacks *pAllocator) { V3DV_FROM_HANDLE(v3dv_device, device, _device); V3DV_FROM_HANDLE(v3dv_pipeline_layout, pipeline_layout, _pipelineLayout); if (!pipeline_layout) return; v3dv_pipeline_layout_unref(device, pipeline_layout, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL v3dv_CreateDescriptorPool(VkDevice _device, const VkDescriptorPoolCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDescriptorPool *pDescriptorPool) { V3DV_FROM_HANDLE(v3dv_device, device, _device); struct v3dv_descriptor_pool *pool; /* size is for the vulkan object descriptor pool. The final size would * depend on some of FREE_DESCRIPTOR flags used */ uint64_t size = sizeof(struct v3dv_descriptor_pool); /* bo_size is for the descriptor related info that we need to have on a GPU * address (so on v3dv_bo_alloc allocated memory), like for example the * texture sampler state. Note that not all the descriptors use it */ uint32_t bo_size = 0; uint32_t descriptor_count = 0; const VkDescriptorPoolInlineUniformBlockCreateInfo *inline_info = vk_find_struct_const(pCreateInfo->pNext, DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO); for (unsigned i = 0; i < pCreateInfo->poolSizeCount; ++i) { /* Verify supported descriptor type */ switch(pCreateInfo->pPoolSizes[i].type) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_SAMPLER: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK: break; default: unreachable("Unimplemented descriptor type"); break; } assert(pCreateInfo->pPoolSizes[i].descriptorCount > 0); if (pCreateInfo->pPoolSizes[i].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) { /* Inline uniform blocks are specified to use the descriptor array * size as the size in bytes of the block. */ assert(inline_info); descriptor_count += inline_info->maxInlineUniformBlockBindings; bo_size += pCreateInfo->pPoolSizes[i].descriptorCount; } else { descriptor_count += pCreateInfo->pPoolSizes[i].descriptorCount; bo_size += v3dv_X(device, descriptor_bo_size)(pCreateInfo->pPoolSizes[i].type) * pCreateInfo->pPoolSizes[i].descriptorCount; } } /* We align all our buffers to V3D_NON_COHERENT_ATOM_SIZE, make sure we * allocate enough memory to honor that requirement for all our inline * buffers too. */ if (inline_info) { bo_size += V3D_NON_COHERENT_ATOM_SIZE * inline_info->maxInlineUniformBlockBindings; } if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) { uint64_t host_size = pCreateInfo->maxSets * sizeof(struct v3dv_descriptor_set); host_size += sizeof(struct v3dv_descriptor) * descriptor_count; size += host_size; } else { size += sizeof(struct v3dv_descriptor_pool_entry) * pCreateInfo->maxSets; } pool = vk_object_zalloc(&device->vk, pAllocator, size, VK_OBJECT_TYPE_DESCRIPTOR_POOL); if (!pool) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) { pool->host_memory_base = (uint8_t*)pool + sizeof(struct v3dv_descriptor_pool); pool->host_memory_ptr = pool->host_memory_base; pool->host_memory_end = (uint8_t*)pool + size; } pool->max_entry_count = pCreateInfo->maxSets; if (bo_size > 0) { pool->bo = v3dv_bo_alloc(device, bo_size, "descriptor pool bo", true); if (!pool->bo) goto out_of_device_memory; bool ok = v3dv_bo_map(device, pool->bo, pool->bo->size); if (!ok) goto out_of_device_memory; pool->current_offset = 0; } else { pool->bo = NULL; } list_inithead(&pool->set_list); *pDescriptorPool = v3dv_descriptor_pool_to_handle(pool); return VK_SUCCESS; out_of_device_memory: vk_object_free(&device->vk, pAllocator, pool); return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY); } static void descriptor_set_destroy(struct v3dv_device *device, struct v3dv_descriptor_pool *pool, struct v3dv_descriptor_set *set, bool free_bo) { assert(!pool->host_memory_base); if (free_bo && !pool->host_memory_base) { for (uint32_t i = 0; i < pool->entry_count; i++) { if (pool->entries[i].set == set) { memmove(&pool->entries[i], &pool->entries[i+1], sizeof(pool->entries[i]) * (pool->entry_count - i - 1)); --pool->entry_count; break; } } } vk_object_free(&device->vk, NULL, set); } VKAPI_ATTR void VKAPI_CALL v3dv_DestroyDescriptorPool(VkDevice _device, VkDescriptorPool _pool, const VkAllocationCallbacks *pAllocator) { V3DV_FROM_HANDLE(v3dv_device, device, _device); V3DV_FROM_HANDLE(v3dv_descriptor_pool, pool, _pool); if (!pool) return; list_for_each_entry_safe(struct v3dv_descriptor_set, set, &pool->set_list, pool_link) { v3dv_descriptor_set_layout_unref(device, set->layout); } if (!pool->host_memory_base) { for(int i = 0; i < pool->entry_count; ++i) { descriptor_set_destroy(device, pool, pool->entries[i].set, false); } } if (pool->bo) { v3dv_bo_free(device, pool->bo); pool->bo = NULL; } vk_object_free(&device->vk, pAllocator, pool); } VKAPI_ATTR VkResult VKAPI_CALL v3dv_ResetDescriptorPool(VkDevice _device, VkDescriptorPool descriptorPool, VkDescriptorPoolResetFlags flags) { V3DV_FROM_HANDLE(v3dv_device, device, _device); V3DV_FROM_HANDLE(v3dv_descriptor_pool, pool, descriptorPool); list_for_each_entry_safe(struct v3dv_descriptor_set, set, &pool->set_list, pool_link) { v3dv_descriptor_set_layout_unref(device, set->layout); } list_inithead(&pool->set_list); if (!pool->host_memory_base) { for(int i = 0; i < pool->entry_count; ++i) { descriptor_set_destroy(device, pool, pool->entries[i].set, false); } } else { /* We clean-up the host memory, so when allocating a new set from the * pool, it is already 0 */ uint32_t host_size = pool->host_memory_end - pool->host_memory_base; memset(pool->host_memory_base, 0, host_size); } pool->entry_count = 0; pool->host_memory_ptr = pool->host_memory_base; pool->current_offset = 0; return VK_SUCCESS; } void v3dv_descriptor_set_layout_destroy(struct v3dv_device *device, struct v3dv_descriptor_set_layout *set_layout) { assert(set_layout->ref_cnt == 0); vk_object_base_finish(&set_layout->base); vk_free2(&device->vk.alloc, NULL, set_layout); } VKAPI_ATTR VkResult VKAPI_CALL v3dv_CreateDescriptorSetLayout(VkDevice _device, const VkDescriptorSetLayoutCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDescriptorSetLayout *pSetLayout) { V3DV_FROM_HANDLE(v3dv_device, device, _device); struct v3dv_descriptor_set_layout *set_layout; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO); uint32_t num_bindings = 0; uint32_t immutable_sampler_count = 0; /* for immutable descriptors, the plane stride is the largest plane * count of all combined image samplers. For mutable descriptors * this is always 1 since multiplanar images are restricted to * immutable combined image samplers. */ uint8_t plane_stride = 1; for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) { num_bindings = MAX2(num_bindings, pCreateInfo->pBindings[j].binding + 1); /* From the Vulkan 1.1.97 spec for VkDescriptorSetLayoutBinding: * * "If descriptorType specifies a VK_DESCRIPTOR_TYPE_SAMPLER or * VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER type descriptor, then * pImmutableSamplers can be used to initialize a set of immutable * samplers. [...] If descriptorType is not one of these descriptor * types, then pImmutableSamplers is ignored. * * We need to be careful here and only parse pImmutableSamplers if we * have one of the right descriptor types. */ VkDescriptorType desc_type = pCreateInfo->pBindings[j].descriptorType; if ((desc_type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER || desc_type == VK_DESCRIPTOR_TYPE_SAMPLER) && pCreateInfo->pBindings[j].pImmutableSamplers) { uint32_t descriptor_count = pCreateInfo->pBindings[j].descriptorCount; immutable_sampler_count += descriptor_count; for (uint32_t i = 0; i < descriptor_count; i++) { const VkSampler vk_sampler = pCreateInfo->pBindings[j].pImmutableSamplers[i]; VK_FROM_HANDLE(v3dv_sampler, sampler, vk_sampler); plane_stride = MAX2(plane_stride, sampler->plane_count); } } } /* We place immutable samplers after the binding data. We want to use * offsetof instead of any sizeof(struct v3dv_descriptor_set_layout) * because the latter may include padding at the end of the struct. */ uint32_t samplers_offset = offsetof(struct v3dv_descriptor_set_layout, binding[num_bindings]); uint32_t size = samplers_offset + immutable_sampler_count * sizeof(struct v3dv_sampler); /* Descriptor set layouts are reference counted and therefore can survive * vkDestroyPipelineSetLayout, so they need to be allocated with a device * scope. */ set_layout = vk_zalloc(&device->vk.alloc, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); if (!set_layout) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); vk_object_base_init(&device->vk, &set_layout->base, VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT); struct v3dv_sampler *samplers = (void*) &set_layout->binding[num_bindings]; assert(pCreateInfo->bindingCount == 0 || num_bindings > 0); VkDescriptorSetLayoutBinding *bindings = NULL; VkResult result = vk_create_sorted_bindings(pCreateInfo->pBindings, pCreateInfo->bindingCount, &bindings); if (result != VK_SUCCESS) { v3dv_descriptor_set_layout_destroy(device, set_layout); return vk_error(device, result); } set_layout->binding_count = num_bindings; set_layout->flags = pCreateInfo->flags; set_layout->shader_stages = 0; set_layout->bo_size = 0; set_layout->ref_cnt = 1; uint32_t descriptor_count = 0; uint32_t dynamic_offset_count = 0; for (uint32_t i = 0; i < pCreateInfo->bindingCount; i++) { const VkDescriptorSetLayoutBinding *binding = bindings + i; uint32_t binding_number = binding->binding; switch (binding->descriptorType) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: break; case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: set_layout->binding[binding_number].dynamic_offset_count = 1; break; case VK_DESCRIPTOR_TYPE_SAMPLER: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK: /* Nothing here, just to keep the descriptor type filtering below */ break; default: unreachable("Unknown descriptor type\n"); break; } set_layout->binding[binding_number].type = binding->descriptorType; set_layout->binding[binding_number].array_size = binding->descriptorCount; set_layout->binding[binding_number].descriptor_index = descriptor_count; set_layout->binding[binding_number].dynamic_offset_index = dynamic_offset_count; set_layout->binding[binding_number].plane_stride = plane_stride; if ((binding->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER || binding->descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) && binding->pImmutableSamplers) { set_layout->binding[binding_number].immutable_samplers_offset = samplers_offset; for (uint32_t i = 0; i < binding->descriptorCount; i++) samplers[i] = *v3dv_sampler_from_handle(binding->pImmutableSamplers[i]); samplers += binding->descriptorCount; samplers_offset += sizeof(struct v3dv_sampler) * binding->descriptorCount; set_layout->binding[binding_number].plane_stride = plane_stride; } set_layout->shader_stages |= binding->stageFlags; if (binding->descriptorType != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) { dynamic_offset_count += binding->descriptorCount * set_layout->binding[binding_number].dynamic_offset_count; descriptor_count += binding->descriptorCount; set_layout->binding[binding_number].descriptor_offset = set_layout->bo_size; set_layout->bo_size += v3dv_X(device, descriptor_bo_size)(set_layout->binding[binding_number].type) * binding->descriptorCount * set_layout->binding[binding_number].plane_stride; } else { /* We align all our buffers, inline buffers too. We made sure to take * this account when calculating total BO size requirements at pool * creation time. */ set_layout->bo_size = align(set_layout->bo_size, V3D_NON_COHERENT_ATOM_SIZE); set_layout->binding[binding_number].descriptor_offset = set_layout->bo_size; /* Inline uniform blocks are not arrayed, instead descriptorCount * specifies the size of the buffer in bytes. */ set_layout->bo_size += binding->descriptorCount; descriptor_count++; } } free(bindings); set_layout->descriptor_count = descriptor_count; set_layout->dynamic_offset_count = dynamic_offset_count; *pSetLayout = v3dv_descriptor_set_layout_to_handle(set_layout); return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL v3dv_DestroyDescriptorSetLayout(VkDevice _device, VkDescriptorSetLayout _set_layout, const VkAllocationCallbacks *pAllocator) { V3DV_FROM_HANDLE(v3dv_device, device, _device); V3DV_FROM_HANDLE(v3dv_descriptor_set_layout, set_layout, _set_layout); if (!set_layout) return; v3dv_descriptor_set_layout_unref(device, set_layout); } static inline VkResult out_of_pool_memory(const struct v3dv_device *device, const struct v3dv_descriptor_pool *pool) { /* Don't log OOPM errors for internal driver pools, we handle these properly * by allocating a new pool, so they don't point to real issues. */ if (!pool->is_driver_internal) return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY); else return VK_ERROR_OUT_OF_POOL_MEMORY; } static VkResult descriptor_set_create(struct v3dv_device *device, struct v3dv_descriptor_pool *pool, struct v3dv_descriptor_set_layout *layout, struct v3dv_descriptor_set **out_set) { struct v3dv_descriptor_set *set; uint32_t descriptor_count = layout->descriptor_count; unsigned mem_size = sizeof(struct v3dv_descriptor_set) + sizeof(struct v3dv_descriptor) * descriptor_count; if (pool->host_memory_base) { if (pool->host_memory_end - pool->host_memory_ptr < mem_size) return out_of_pool_memory(device, pool); set = (struct v3dv_descriptor_set*)pool->host_memory_ptr; pool->host_memory_ptr += mem_size; vk_object_base_init(&device->vk, &set->base, VK_OBJECT_TYPE_DESCRIPTOR_SET); } else { set = vk_object_zalloc(&device->vk, NULL, mem_size, VK_OBJECT_TYPE_DESCRIPTOR_SET); if (!set) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); } set->pool = pool; set->layout = layout; /* FIXME: VK_EXT_descriptor_indexing introduces * VARIABLE_DESCRIPTOR_LAYOUT_COUNT. That would affect the layout_size used * below for bo allocation */ uint32_t offset = 0; uint32_t index = pool->entry_count; if (layout->bo_size) { if (!pool->host_memory_base && pool->entry_count == pool->max_entry_count) { vk_object_free(&device->vk, NULL, set); return out_of_pool_memory(device, pool); } /* We first try to allocate linearly fist, so that we don't spend time * looking for gaps if the app only allocates & resets via the pool. * * If that fails, we try to find a gap from previously freed subregions * iterating through the descriptor pool entries. Note that we are not * doing that if we have a pool->host_memory_base. We only have that if * VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT is not set, so in * that case the user can't free subregions, so it doesn't make sense to * even try (or track those subregions). */ if (pool->current_offset + layout->bo_size <= pool->bo->size) { offset = pool->current_offset; pool->current_offset += layout->bo_size; } else if (!pool->host_memory_base) { for (index = 0; index < pool->entry_count; index++) { if (pool->entries[index].offset - offset >= layout->bo_size) break; offset = pool->entries[index].offset + pool->entries[index].size; } if (pool->bo->size - offset < layout->bo_size) { vk_object_free(&device->vk, NULL, set); return out_of_pool_memory(device, pool); } memmove(&pool->entries[index + 1], &pool->entries[index], sizeof(pool->entries[0]) * (pool->entry_count - index)); } else { assert(pool->host_memory_base); return out_of_pool_memory(device, pool); } set->base_offset = offset; } if (!pool->host_memory_base) { pool->entries[index].set = set; pool->entries[index].offset = offset; pool->entries[index].size = layout->bo_size; pool->entry_count++; } /* Go through and fill out immutable samplers if we have any */ for (uint32_t b = 0; b < layout->binding_count; b++) { if (layout->binding[b].immutable_samplers_offset == 0) continue; const struct v3dv_sampler *samplers = (const struct v3dv_sampler *)((const char *)layout + layout->binding[b].immutable_samplers_offset); for (uint32_t i = 0; i < layout->binding[b].array_size; i++) { assert(samplers[i].plane_count <= V3DV_MAX_PLANE_COUNT); for (uint8_t plane = 0; plane < samplers[i].plane_count; plane++) { uint32_t combined_offset = layout->binding[b].type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ? v3dv_X(device, combined_image_sampler_sampler_state_offset)(plane) : 0; void *desc_map = descriptor_bo_map(device, set, &layout->binding[b], i); desc_map += combined_offset; memcpy(desc_map, samplers[i].sampler_state, sizeof(samplers[i].sampler_state)); } } } v3dv_descriptor_set_layout_ref(layout); list_addtail(&set->pool_link, &pool->set_list); *out_set = set; return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL v3dv_AllocateDescriptorSets(VkDevice _device, const VkDescriptorSetAllocateInfo *pAllocateInfo, VkDescriptorSet *pDescriptorSets) { V3DV_FROM_HANDLE(v3dv_device, device, _device); V3DV_FROM_HANDLE(v3dv_descriptor_pool, pool, pAllocateInfo->descriptorPool); VkResult result = VK_SUCCESS; struct v3dv_descriptor_set *set = NULL; uint32_t i = 0; for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) { V3DV_FROM_HANDLE(v3dv_descriptor_set_layout, layout, pAllocateInfo->pSetLayouts[i]); result = descriptor_set_create(device, pool, layout, &set); if (result != VK_SUCCESS) break; pDescriptorSets[i] = v3dv_descriptor_set_to_handle(set); } if (result != VK_SUCCESS) { v3dv_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool, i, pDescriptorSets); for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) { pDescriptorSets[i] = VK_NULL_HANDLE; } } return result; } VKAPI_ATTR VkResult VKAPI_CALL v3dv_FreeDescriptorSets(VkDevice _device, VkDescriptorPool descriptorPool, uint32_t count, const VkDescriptorSet *pDescriptorSets) { V3DV_FROM_HANDLE(v3dv_device, device, _device); V3DV_FROM_HANDLE(v3dv_descriptor_pool, pool, descriptorPool); for (uint32_t i = 0; i < count; i++) { V3DV_FROM_HANDLE(v3dv_descriptor_set, set, pDescriptorSets[i]); if (set) { v3dv_descriptor_set_layout_unref(device, set->layout); list_del(&set->pool_link); if (!pool->host_memory_base) descriptor_set_destroy(device, pool, set, true); } } return VK_SUCCESS; } static void descriptor_bo_copy(struct v3dv_device *device, struct v3dv_descriptor_set *dst_set, const struct v3dv_descriptor_set_binding_layout *dst_binding_layout, uint32_t dst_array_index, struct v3dv_descriptor_set *src_set, const struct v3dv_descriptor_set_binding_layout *src_binding_layout, uint32_t src_array_index) { assert(dst_binding_layout->type == src_binding_layout->type); assert(src_binding_layout->plane_stride == dst_binding_layout->plane_stride); void *dst_map = descriptor_bo_map(device, dst_set, dst_binding_layout, dst_array_index); void *src_map = descriptor_bo_map(device, src_set, src_binding_layout, src_array_index); memcpy(dst_map, src_map, v3dv_X(device, descriptor_bo_size)(src_binding_layout->type) * src_binding_layout->plane_stride); } static void write_buffer_descriptor(struct v3dv_descriptor *descriptor, VkDescriptorType desc_type, const VkDescriptorBufferInfo *buffer_info) { V3DV_FROM_HANDLE(v3dv_buffer, buffer, buffer_info->buffer); descriptor->type = desc_type; descriptor->buffer = buffer; descriptor->offset = buffer_info->offset; if (buffer_info->range == VK_WHOLE_SIZE) { descriptor->range = buffer->size - buffer_info->offset; } else { assert(descriptor->range <= UINT32_MAX); descriptor->range = buffer_info->range; } } static void write_image_descriptor(struct v3dv_device *device, struct v3dv_descriptor *descriptor, VkDescriptorType desc_type, struct v3dv_descriptor_set *set, const struct v3dv_descriptor_set_binding_layout *binding_layout, struct v3dv_image_view *iview, struct v3dv_sampler *sampler, uint32_t array_index) { descriptor->type = desc_type; descriptor->sampler = sampler; descriptor->image_view = iview; assert(iview || sampler); uint8_t plane_count = iview ? iview->plane_count : sampler->plane_count; void *desc_map = descriptor_bo_map(device, set, binding_layout, array_index); for (uint8_t plane = 0; plane < plane_count; plane++) { if (iview) { uint32_t offset = desc_type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ? v3dv_X(device, combined_image_sampler_texture_state_offset)(plane) : 0; void *plane_desc_map = desc_map + offset; const uint32_t tex_state_index = iview->vk.view_type != VK_IMAGE_VIEW_TYPE_CUBE_ARRAY || desc_type != VK_DESCRIPTOR_TYPE_STORAGE_IMAGE ? 0 : 1; memcpy(plane_desc_map, iview->planes[plane].texture_shader_state[tex_state_index], sizeof(iview->planes[plane].texture_shader_state[0])); } if (sampler && !binding_layout->immutable_samplers_offset) { uint32_t offset = desc_type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ? v3dv_X(device, combined_image_sampler_sampler_state_offset)(plane) : 0; void *plane_desc_map = desc_map + offset; /* For immutable samplers this was already done as part of the * descriptor set create, as that info can't change later */ memcpy(plane_desc_map, sampler->sampler_state, sizeof(sampler->sampler_state)); } } } static void write_buffer_view_descriptor(struct v3dv_device *device, struct v3dv_descriptor *descriptor, VkDescriptorType desc_type, struct v3dv_descriptor_set *set, const struct v3dv_descriptor_set_binding_layout *binding_layout, struct v3dv_buffer_view *bview, uint32_t array_index) { assert(bview); descriptor->type = desc_type; descriptor->buffer_view = bview; void *desc_map = descriptor_bo_map(device, set, binding_layout, array_index); memcpy(desc_map, bview->texture_shader_state, sizeof(bview->texture_shader_state)); } static void write_inline_uniform_descriptor(struct v3dv_device *device, struct v3dv_descriptor *descriptor, struct v3dv_descriptor_set *set, const struct v3dv_descriptor_set_binding_layout *binding_layout, const void *data, size_t offset, size_t size) { assert(binding_layout->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK); descriptor->type = VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK; descriptor->buffer = NULL; void *desc_map = descriptor_bo_map(device, set, binding_layout, 0); memcpy(desc_map + offset, data, size); /* Inline uniform buffers allocate BO space in the pool for all inline * buffers it may allocate and then this space is assigned to individual * descriptors when they are written, so we define the range of an inline * buffer as the largest range of data that the client has written to it. */ descriptor->offset = 0; descriptor->range = MAX2(descriptor->range, offset + size); } VKAPI_ATTR void VKAPI_CALL v3dv_UpdateDescriptorSets(VkDevice _device, uint32_t descriptorWriteCount, const VkWriteDescriptorSet *pDescriptorWrites, uint32_t descriptorCopyCount, const VkCopyDescriptorSet *pDescriptorCopies) { V3DV_FROM_HANDLE(v3dv_device, device, _device); for (uint32_t i = 0; i < descriptorWriteCount; i++) { const VkWriteDescriptorSet *writeset = &pDescriptorWrites[i]; V3DV_FROM_HANDLE(v3dv_descriptor_set, set, writeset->dstSet); const struct v3dv_descriptor_set_binding_layout *binding_layout = set->layout->binding + writeset->dstBinding; struct v3dv_descriptor *descriptor = set->descriptors; descriptor += binding_layout->descriptor_index; /* Inline uniform blocks are not arrayed, instead they use dstArrayElement * to specify the byte offset of the uniform update and descriptorCount * to specify the size (in bytes) of the update. */ uint32_t descriptor_count; if (writeset->descriptorType != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) { descriptor += writeset->dstArrayElement; descriptor_count = writeset->descriptorCount; } else { descriptor_count = 1; } for (uint32_t j = 0; j < descriptor_count; ++j) { switch(writeset->descriptorType) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: { const VkDescriptorBufferInfo *buffer_info = writeset->pBufferInfo + j; write_buffer_descriptor(descriptor, writeset->descriptorType, buffer_info); break; } case VK_DESCRIPTOR_TYPE_SAMPLER: { /* If we are here we shouldn't be modifying an immutable sampler */ assert(!binding_layout->immutable_samplers_offset); const VkDescriptorImageInfo *image_info = writeset->pImageInfo + j; V3DV_FROM_HANDLE(v3dv_sampler, sampler, image_info->sampler); write_image_descriptor(device, descriptor, writeset->descriptorType, set, binding_layout, NULL, sampler, writeset->dstArrayElement + j); break; } case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: { const VkDescriptorImageInfo *image_info = writeset->pImageInfo + j; V3DV_FROM_HANDLE(v3dv_image_view, iview, image_info->imageView); write_image_descriptor(device, descriptor, writeset->descriptorType, set, binding_layout, iview, NULL, writeset->dstArrayElement + j); break; } case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: { const VkDescriptorImageInfo *image_info = writeset->pImageInfo + j; V3DV_FROM_HANDLE(v3dv_image_view, iview, image_info->imageView); struct v3dv_sampler *sampler = NULL; if (!binding_layout->immutable_samplers_offset) { /* In general we ignore the sampler when updating a combined * image sampler, but for YCbCr we kwnow that we must use * immutable combined image samplers */ assert(iview->plane_count == 1); V3DV_FROM_HANDLE(v3dv_sampler, _sampler, image_info->sampler); sampler = _sampler; } write_image_descriptor(device, descriptor, writeset->descriptorType, set, binding_layout, iview, sampler, writeset->dstArrayElement + j); break; } case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: { V3DV_FROM_HANDLE(v3dv_buffer_view, buffer_view, writeset->pTexelBufferView[j]); write_buffer_view_descriptor(device, descriptor, writeset->descriptorType, set, binding_layout, buffer_view, writeset->dstArrayElement + j); break; } case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK: { const VkWriteDescriptorSetInlineUniformBlock *inline_write = vk_find_struct_const(writeset->pNext, WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK); assert(inline_write->dataSize == writeset->descriptorCount); write_inline_uniform_descriptor(device, descriptor, set, binding_layout, inline_write->pData, writeset->dstArrayElement, /* offset */ inline_write->dataSize); break; } default: unreachable("unimplemented descriptor type"); break; } descriptor++; } } for (uint32_t i = 0; i < descriptorCopyCount; i++) { const VkCopyDescriptorSet *copyset = &pDescriptorCopies[i]; V3DV_FROM_HANDLE(v3dv_descriptor_set, src_set, copyset->srcSet); V3DV_FROM_HANDLE(v3dv_descriptor_set, dst_set, copyset->dstSet); const struct v3dv_descriptor_set_binding_layout *src_binding_layout = src_set->layout->binding + copyset->srcBinding; const struct v3dv_descriptor_set_binding_layout *dst_binding_layout = dst_set->layout->binding + copyset->dstBinding; assert(src_binding_layout->type == dst_binding_layout->type); struct v3dv_descriptor *src_descriptor = src_set->descriptors; struct v3dv_descriptor *dst_descriptor = dst_set->descriptors; src_descriptor += src_binding_layout->descriptor_index; dst_descriptor += dst_binding_layout->descriptor_index; if (src_binding_layout->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) { /* {src,dst}ArrayElement specifies src/dst start offset and * descriptorCount specifies size (in bytes) to copy. */ const void *src_data = src_set->pool->bo->map + src_set->base_offset + src_binding_layout->descriptor_offset + copyset->srcArrayElement; write_inline_uniform_descriptor(device, dst_descriptor, dst_set, dst_binding_layout, src_data, copyset->dstArrayElement, copyset->descriptorCount); continue; } src_descriptor += copyset->srcArrayElement; dst_descriptor += copyset->dstArrayElement; for (uint32_t j = 0; j < copyset->descriptorCount; j++) { *dst_descriptor = *src_descriptor; dst_descriptor++; src_descriptor++; if (v3dv_X(device, descriptor_bo_size)(src_binding_layout->type) > 0) { descriptor_bo_copy(device, dst_set, dst_binding_layout, j + copyset->dstArrayElement, src_set, src_binding_layout, j + copyset->srcArrayElement); } } } } VKAPI_ATTR void VKAPI_CALL v3dv_GetDescriptorSetLayoutSupport( VkDevice _device, const VkDescriptorSetLayoutCreateInfo *pCreateInfo, VkDescriptorSetLayoutSupport *pSupport) { V3DV_FROM_HANDLE(v3dv_device, device, _device); VkDescriptorSetLayoutBinding *bindings = NULL; VkResult result = vk_create_sorted_bindings( pCreateInfo->pBindings, pCreateInfo->bindingCount, &bindings); if (result != VK_SUCCESS) { pSupport->supported = false; return; } bool supported = true; uint32_t desc_host_size = sizeof(struct v3dv_descriptor); uint32_t host_size = sizeof(struct v3dv_descriptor_set); uint32_t bo_size = 0; for (uint32_t i = 0; i < pCreateInfo->bindingCount; i++) { const VkDescriptorSetLayoutBinding *binding = bindings + i; if ((UINT32_MAX - host_size) / desc_host_size < binding->descriptorCount) { supported = false; break; } uint32_t desc_bo_size = v3dv_X(device, descriptor_bo_size)(binding->descriptorType); if (desc_bo_size > 0 && (UINT32_MAX - bo_size) / desc_bo_size < binding->descriptorCount) { supported = false; break; } host_size += binding->descriptorCount * desc_host_size; bo_size += binding->descriptorCount * desc_bo_size; } free(bindings); pSupport->supported = supported; } void v3dv_UpdateDescriptorSetWithTemplate( VkDevice _device, VkDescriptorSet descriptorSet, VkDescriptorUpdateTemplate descriptorUpdateTemplate, const void *pData) { V3DV_FROM_HANDLE(v3dv_device, device, _device); V3DV_FROM_HANDLE(v3dv_descriptor_set, set, descriptorSet); V3DV_FROM_HANDLE(vk_descriptor_update_template, template, descriptorUpdateTemplate); for (int i = 0; i < template->entry_count; i++) { const struct vk_descriptor_template_entry *entry = &template->entries[i]; const struct v3dv_descriptor_set_binding_layout *binding_layout = set->layout->binding + entry->binding; struct v3dv_descriptor *descriptor = set->descriptors + binding_layout->descriptor_index; switch (entry->type) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: for (uint32_t j = 0; j < entry->array_count; j++) { const VkDescriptorBufferInfo *info = pData + entry->offset + j * entry->stride; write_buffer_descriptor(descriptor + entry->array_element + j, entry->type, info); } break; case VK_DESCRIPTOR_TYPE_SAMPLER: case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: for (uint32_t j = 0; j < entry->array_count; j++) { const VkDescriptorImageInfo *info = pData + entry->offset + j * entry->stride; V3DV_FROM_HANDLE(v3dv_image_view, iview, info->imageView); V3DV_FROM_HANDLE(v3dv_sampler, sampler, info->sampler); write_image_descriptor(device, descriptor + entry->array_element + j, entry->type, set, binding_layout, iview, sampler, entry->array_element + j); } break; case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: for (uint32_t j = 0; j < entry->array_count; j++) { const VkBufferView *_bview = pData + entry->offset + j * entry->stride; V3DV_FROM_HANDLE(v3dv_buffer_view, bview, *_bview); write_buffer_view_descriptor(device, descriptor + entry->array_element + j, entry->type, set, binding_layout, bview, entry->array_element + j); } break; case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK: { write_inline_uniform_descriptor(device, descriptor, set, binding_layout, pData + entry->offset, entry->array_element, /* offset */ entry->array_count); /* size */ break; } default: unreachable("Unsupported descriptor type"); } } }