/* * Copyright © 2018 Valve Corporation * Copyright © 2018 Google * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "aco_instruction_selection.h" #include "aco_builder.h" #include "aco_ir.h" #include "aco_interface.h" #include "common/ac_nir.h" #include "common/sid.h" #include "util/fast_idiv_by_const.h" #include "util/memstream.h" #include #include #include #include #include #include #include namespace aco { namespace { #define isel_err(...) _isel_err(ctx, __FILE__, __LINE__, __VA_ARGS__) static void _isel_err(isel_context* ctx, const char* file, unsigned line, const nir_instr* instr, const char* msg) { char* out; size_t outsize; struct u_memstream mem; u_memstream_open(&mem, &out, &outsize); FILE* const memf = u_memstream_get(&mem); fprintf(memf, "%s: ", msg); nir_print_instr(instr, memf); u_memstream_close(&mem); _aco_err(ctx->program, file, line, out); free(out); } struct if_context { Temp cond; bool divergent_old; bool exec_potentially_empty_discard_old; bool exec_potentially_empty_break_old; bool had_divergent_discard_old; bool had_divergent_discard_then; uint16_t exec_potentially_empty_break_depth_old; unsigned BB_if_idx; unsigned invert_idx; bool uniform_has_then_branch; bool then_branch_divergent; Block BB_invert; Block BB_endif; }; struct loop_context { Block loop_exit; unsigned header_idx_old; Block* exit_old; bool divergent_cont_old; bool divergent_branch_old; bool divergent_if_old; }; static bool visit_cf_list(struct isel_context* ctx, struct exec_list* list); static void add_logical_edge(unsigned pred_idx, Block* succ) { succ->logical_preds.emplace_back(pred_idx); } static void add_linear_edge(unsigned pred_idx, Block* succ) { succ->linear_preds.emplace_back(pred_idx); } static void add_edge(unsigned pred_idx, Block* succ) { add_logical_edge(pred_idx, succ); add_linear_edge(pred_idx, succ); } static void append_logical_start(Block* b) { Builder(NULL, b).pseudo(aco_opcode::p_logical_start); } static void append_logical_end(Block* b) { Builder(NULL, b).pseudo(aco_opcode::p_logical_end); } Temp get_ssa_temp(struct isel_context* ctx, nir_ssa_def* def) { uint32_t id = ctx->first_temp_id + def->index; return Temp(id, ctx->program->temp_rc[id]); } Temp emit_mbcnt(isel_context* ctx, Temp dst, Operand mask = Operand(), Operand base = Operand::zero()) { Builder bld(ctx->program, ctx->block); assert(mask.isUndefined() || mask.isTemp() || (mask.isFixed() && mask.physReg() == exec)); assert(mask.isUndefined() || mask.bytes() == bld.lm.bytes()); if (ctx->program->wave_size == 32) { Operand mask_lo = mask.isUndefined() ? Operand::c32(-1u) : mask; return bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, Definition(dst), mask_lo, base); } Operand mask_lo = Operand::c32(-1u); Operand mask_hi = Operand::c32(-1u); if (mask.isTemp()) { RegClass rc = RegClass(mask.regClass().type(), 1); Builder::Result mask_split = bld.pseudo(aco_opcode::p_split_vector, bld.def(rc), bld.def(rc), mask); mask_lo = Operand(mask_split.def(0).getTemp()); mask_hi = Operand(mask_split.def(1).getTemp()); } else if (mask.physReg() == exec) { mask_lo = Operand(exec_lo, s1); mask_hi = Operand(exec_hi, s1); } Temp mbcnt_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), mask_lo, base); if (ctx->program->gfx_level <= GFX7) return bld.vop2(aco_opcode::v_mbcnt_hi_u32_b32, Definition(dst), mask_hi, mbcnt_lo); else return bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32_e64, Definition(dst), mask_hi, mbcnt_lo); } Temp emit_wqm(Builder& bld, Temp src, Temp dst = Temp(0, s1), bool program_needs_wqm = false) { if (bld.program->stage != fragment_fs) { if (!dst.id()) return src; else return bld.copy(Definition(dst), src); } else if (!dst.id()) { dst = bld.tmp(src.regClass()); } assert(src.size() == dst.size()); bld.pseudo(aco_opcode::p_wqm, Definition(dst), src); bld.program->needs_wqm |= program_needs_wqm; return dst; } static Temp emit_bpermute(isel_context* ctx, Builder& bld, Temp index, Temp data) { if (index.regClass() == s1) return bld.readlane(bld.def(s1), data, index); /* Avoid using shared VGPRs for shuffle on GFX10 when the shader consists * of multiple binaries, because the VGPR use is not known when choosing * which registers to use for the shared VGPRs. */ const bool avoid_shared_vgprs = ctx->options->gfx_level >= GFX10 && ctx->options->gfx_level < GFX11 && ctx->program->wave_size == 64 && ((ctx->stage == fragment_fs && ctx->program->info.ps.has_epilog) || ctx->stage == raytracing_cs); if (ctx->options->gfx_level <= GFX7 || avoid_shared_vgprs) { /* GFX6-7: there is no bpermute instruction */ Operand index_op(index); Operand input_data(data); index_op.setLateKill(true); input_data.setLateKill(true); return bld.pseudo(aco_opcode::p_bpermute_gfx6, bld.def(v1), bld.def(bld.lm), bld.def(bld.lm, vcc), index_op, input_data); } else if (ctx->options->gfx_level >= GFX10 && ctx->program->wave_size == 64) { /* GFX10 wave64 mode: emulate full-wave bpermute */ Temp index_is_lo = bld.vopc(aco_opcode::v_cmp_ge_u32, bld.def(bld.lm), Operand::c32(31u), index); Builder::Result index_is_lo_split = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), index_is_lo); Temp index_is_lo_n1 = bld.sop1(aco_opcode::s_not_b32, bld.def(s1), bld.def(s1, scc), index_is_lo_split.def(1).getTemp()); Operand same_half = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), index_is_lo_split.def(0).getTemp(), index_is_lo_n1); Operand index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand::c32(2u), index); Operand input_data(data); index_x4.setLateKill(true); input_data.setLateKill(true); same_half.setLateKill(true); if (ctx->options->gfx_level <= GFX10_3) { /* We need one pair of shared VGPRs: * Note, that these have twice the allocation granularity of normal VGPRs */ ctx->program->config->num_shared_vgprs = 2 * ctx->program->dev.vgpr_alloc_granule; return bld.pseudo(aco_opcode::p_bpermute_gfx10w64, bld.def(v1), bld.def(s2), bld.def(s1, scc), index_x4, input_data, same_half); } else { return bld.pseudo(aco_opcode::p_bpermute_gfx11w64, bld.def(v1), bld.def(s2), bld.def(s1, scc), Operand(v1.as_linear()), index_x4, input_data, same_half); } } else { /* GFX8-9 or GFX10 wave32: bpermute works normally */ Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand::c32(2u), index); return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data); } } static Temp emit_masked_swizzle(isel_context* ctx, Builder& bld, Temp src, unsigned mask) { if (ctx->options->gfx_level >= GFX8) { unsigned and_mask = mask & 0x1f; unsigned or_mask = (mask >> 5) & 0x1f; unsigned xor_mask = (mask >> 10) & 0x1f; uint16_t dpp_ctrl = 0xffff; /* DPP16 before DPP8 before v_permlane(x)16_b32 * because DPP16 supports modifiers and v_permlane * can't be folded into valu instructions. */ if ((and_mask & 0x1c) == 0x1c && or_mask < 4 && xor_mask < 4) { unsigned res[4] = {0, 1, 2, 3}; for (unsigned i = 0; i < 4; i++) res[i] = (((res[i] & and_mask) | or_mask) ^ xor_mask) & 0x3; dpp_ctrl = dpp_quad_perm(res[0], res[1], res[2], res[3]); } else if (and_mask == 0x1f && !or_mask && xor_mask == 8) { dpp_ctrl = dpp_row_rr(8); } else if (and_mask == 0x1f && !or_mask && xor_mask == 0xf) { dpp_ctrl = dpp_row_mirror; } else if (and_mask == 0x1f && !or_mask && xor_mask == 0x7) { dpp_ctrl = dpp_row_half_mirror; } else if (ctx->options->gfx_level >= GFX11 && and_mask == 0x10 && or_mask < 0x10 && xor_mask < 0x10) { dpp_ctrl = dpp_row_share(or_mask ^ xor_mask); } else if (ctx->options->gfx_level >= GFX11 && and_mask == 0x1f && !or_mask && xor_mask < 0x10) { dpp_ctrl = dpp_row_xmask(xor_mask); } else if (ctx->options->gfx_level >= GFX10 && (and_mask & 0x18) == 0x18 && or_mask < 8 && xor_mask < 8) { Builder::Result ret = bld.vop1_dpp8(aco_opcode::v_mov_b32, bld.def(v1), src); for (unsigned i = 0; i < 8; i++) { ret->dpp8().lane_sel[i] = (((i & and_mask) | or_mask) ^ xor_mask) & 0x7; } return ret; } else if (ctx->options->gfx_level >= GFX10 && (and_mask & 0x10) == 0x10 && or_mask < 0x10) { uint64_t lane_mask = 0; for (unsigned i = 0; i < 16; i++) lane_mask |= uint64_t(((i & and_mask) | or_mask) ^ (xor_mask & 0xf)) << i * 4; aco_opcode opcode = xor_mask & 0x10 ? aco_opcode::v_permlanex16_b32 : aco_opcode::v_permlane16_b32; Temp op1 = bld.copy(bld.def(s1), Operand::c32(lane_mask & 0xffffffff)); Temp op2 = bld.copy(bld.def(s1), Operand::c32(lane_mask >> 32)); Builder::Result ret = bld.vop3(opcode, bld.def(v1), src, op1, op2); ret->valu().opsel = 0x3; /* set BOUND_CTRL/FETCH_INACTIVE */ return ret; } if (dpp_ctrl != 0xffff) return bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl); } return bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false); } Temp as_vgpr(Builder& bld, Temp val) { if (val.type() == RegType::sgpr) return bld.copy(bld.def(RegType::vgpr, val.size()), val); assert(val.type() == RegType::vgpr); return val; } Temp as_vgpr(isel_context* ctx, Temp val) { Builder bld(ctx->program, ctx->block); return as_vgpr(bld, val); } void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst) { Builder bld(ctx->program, ctx->block); bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand::c32(idx)); } Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc) { /* no need to extract the whole vector */ if (src.regClass() == dst_rc) { assert(idx == 0); return src; } assert(src.bytes() > (idx * dst_rc.bytes())); Builder bld(ctx->program, ctx->block); auto it = ctx->allocated_vec.find(src.id()); if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) { if (it->second[idx].regClass() == dst_rc) { return it->second[idx]; } else { assert(!dst_rc.is_subdword()); assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr); return bld.copy(bld.def(dst_rc), it->second[idx]); } } if (dst_rc.is_subdword()) src = as_vgpr(ctx, src); if (src.bytes() == dst_rc.bytes()) { assert(idx == 0); return bld.copy(bld.def(dst_rc), src); } else { Temp dst = bld.tmp(dst_rc); emit_extract_vector(ctx, src, idx, dst); return dst; } } void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components) { if (num_components == 1) return; if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end()) return; RegClass rc; if (num_components > vec_src.size()) { if (vec_src.type() == RegType::sgpr) { /* should still help get_alu_src() */ emit_split_vector(ctx, vec_src, vec_src.size()); return; } /* sub-dword split */ rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword(); } else { rc = RegClass(vec_src.type(), vec_src.size() / num_components); } aco_ptr split{create_instruction( aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)}; split->operands[0] = Operand(vec_src); std::array elems; for (unsigned i = 0; i < num_components; i++) { elems[i] = ctx->program->allocateTmp(rc); split->definitions[i] = Definition(elems[i]); } ctx->block->instructions.emplace_back(std::move(split)); ctx->allocated_vec.emplace(vec_src.id(), elems); } /* This vector expansion uses a mask to determine which elements in the new vector * come from the original vector. The other elements are undefined. */ void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask, bool zero_padding = false) { assert(vec_src.type() == RegType::vgpr); Builder bld(ctx->program, ctx->block); if (dst.type() == RegType::sgpr && num_components > dst.size()) { Temp tmp_dst = bld.tmp(RegClass::get(RegType::vgpr, 2 * num_components)); expand_vector(ctx, vec_src, tmp_dst, num_components, mask, zero_padding); bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp_dst); ctx->allocated_vec[dst.id()] = ctx->allocated_vec[tmp_dst.id()]; return; } emit_split_vector(ctx, vec_src, util_bitcount(mask)); if (vec_src == dst) return; if (num_components == 1) { if (dst.type() == RegType::sgpr) bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src); else bld.copy(Definition(dst), vec_src); return; } unsigned component_bytes = dst.bytes() / num_components; RegClass src_rc = RegClass::get(RegType::vgpr, component_bytes); RegClass dst_rc = RegClass::get(dst.type(), component_bytes); assert(dst.type() == RegType::vgpr || !src_rc.is_subdword()); std::array elems; Temp padding = Temp(0, dst_rc); if (zero_padding) padding = bld.copy(bld.def(dst_rc), Operand::zero(component_bytes)); aco_ptr vec{create_instruction( aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)}; vec->definitions[0] = Definition(dst); unsigned k = 0; for (unsigned i = 0; i < num_components; i++) { if (mask & (1 << i)) { Temp src = emit_extract_vector(ctx, vec_src, k++, src_rc); if (dst.type() == RegType::sgpr) src = bld.as_uniform(src); vec->operands[i] = Operand(src); elems[i] = src; } else { vec->operands[i] = Operand::zero(component_bytes); elems[i] = padding; } } ctx->block->instructions.emplace_back(std::move(vec)); ctx->allocated_vec.emplace(dst.id(), elems); } /* adjust misaligned small bit size loads */ void byte_align_scalar(isel_context* ctx, Temp vec, Operand offset, Temp dst) { Builder bld(ctx->program, ctx->block); Operand shift; Temp select = Temp(); if (offset.isConstant()) { assert(offset.constantValue() && offset.constantValue() < 4); shift = Operand::c32(offset.constantValue() * 8); } else { /* bit_offset = 8 * (offset & 0x3) */ Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand::c32(3u)); select = bld.tmp(s1); shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand::c32(3u)); } if (vec.size() == 1) { bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift); } else if (vec.size() == 2) { Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2); bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift); if (tmp == dst) emit_split_vector(ctx, dst, 2); else emit_extract_vector(ctx, tmp, 0, dst); } else if (vec.size() == 3 || vec.size() == 4) { Temp lo = bld.tmp(s2), hi; if (vec.size() == 3) { /* this can happen if we use VMEM for a uniform load */ hi = bld.tmp(s1); bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec); } else { hi = bld.tmp(s2); bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec); hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand::zero()); } if (select != Temp()) hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand::zero(), bld.scc(select)); lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift); Temp mid = bld.tmp(s1); lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo); hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift); mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid); emit_split_vector(ctx, dst, 2); } } void byte_align_vector(isel_context* ctx, Temp vec, Operand offset, Temp dst, unsigned component_size) { Builder bld(ctx->program, ctx->block); if (offset.isTemp()) { Temp tmp[4] = {vec, vec, vec, vec}; if (vec.size() == 4) { tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1), tmp[3] = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), Definition(tmp[3]), vec); } else if (vec.size() == 3) { tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec); } else if (vec.size() == 2) { tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1]; bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec); } for (unsigned i = 0; i < dst.size(); i++) tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], offset); vec = tmp[0]; if (dst.size() == 2) vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]); offset = Operand::zero(); } unsigned num_components = vec.bytes() / component_size; if (vec.regClass() == dst.regClass()) { assert(offset.constantValue() == 0); bld.copy(Definition(dst), vec); emit_split_vector(ctx, dst, num_components); return; } emit_split_vector(ctx, vec, num_components); std::array elems; RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword(); assert(offset.constantValue() % component_size == 0); unsigned skip = offset.constantValue() / component_size; for (unsigned i = skip; i < num_components; i++) elems[i - skip] = emit_extract_vector(ctx, vec, i, rc); if (dst.type() == RegType::vgpr) { /* if dst is vgpr - split the src and create a shrunk version according to the mask. */ num_components = dst.bytes() / component_size; aco_ptr create_vec{create_instruction( aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)}; for (unsigned i = 0; i < num_components; i++) create_vec->operands[i] = Operand(elems[i]); create_vec->definitions[0] = Definition(dst); bld.insert(std::move(create_vec)); } else if (skip) { /* if dst is sgpr - split the src, but move the original to sgpr. */ vec = bld.pseudo(aco_opcode::p_as_uniform, bld.def(RegClass(RegType::sgpr, vec.size())), vec); byte_align_scalar(ctx, vec, offset, dst); } else { assert(dst.size() == vec.size()); bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec); } ctx->allocated_vec.emplace(dst.id(), elems); } Temp get_ssa_temp_tex(struct isel_context* ctx, nir_ssa_def* def, bool is_16bit) { RegClass rc = RegClass::get(RegType::vgpr, (is_16bit ? 2 : 4) * def->num_components); Temp tmp = get_ssa_temp(ctx, def); if (tmp.bytes() != rc.bytes()) return emit_extract_vector(ctx, tmp, 0, rc); else return tmp; } Temp bool_to_vector_condition(isel_context* ctx, Temp val, Temp dst = Temp(0, s2)) { Builder bld(ctx->program, ctx->block); if (!dst.id()) dst = bld.tmp(bld.lm); assert(val.regClass() == s1); assert(dst.regClass() == bld.lm); return bld.sop2(Builder::s_cselect, Definition(dst), Operand::c32(-1), Operand::zero(), bld.scc(val)); } Temp bool_to_scalar_condition(isel_context* ctx, Temp val, Temp dst = Temp(0, s1)) { Builder bld(ctx->program, ctx->block); if (!dst.id()) dst = bld.tmp(s1); assert(val.regClass() == bld.lm); assert(dst.regClass() == s1); /* if we're currently in WQM mode, ensure that the source is also computed in WQM */ bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(dst)), val, Operand(exec, bld.lm)); return dst; } /** * Copies the first src_bits of the input to the output Temp. Input bits at positions larger than * src_bits and dst_bits are truncated. * * Sign extension may be applied using the sign_extend parameter. The position of the input sign * bit is indicated by src_bits in this case. * * If dst.bytes() is larger than dst_bits/8, the value of the upper bits is undefined. */ Temp convert_int(isel_context* ctx, Builder& bld, Temp src, unsigned src_bits, unsigned dst_bits, bool sign_extend, Temp dst = Temp()) { assert(!(sign_extend && dst_bits < src_bits) && "Shrinking integers is not supported for signed inputs"); if (!dst.id()) { if (dst_bits % 32 == 0 || src.type() == RegType::sgpr) dst = bld.tmp(src.type(), DIV_ROUND_UP(dst_bits, 32u)); else dst = bld.tmp(RegClass(RegType::vgpr, dst_bits / 8u).as_subdword()); } assert(src.type() == RegType::sgpr || src_bits == src.bytes() * 8); assert(dst.type() == RegType::sgpr || dst_bits == dst.bytes() * 8); if (dst.bytes() == src.bytes() && dst_bits < src_bits) { /* Copy the raw value, leaving an undefined value in the upper bits for * the caller to handle appropriately */ return bld.copy(Definition(dst), src); } else if (dst.bytes() < src.bytes()) { return bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand::zero()); } Temp tmp = dst; if (dst_bits == 64) tmp = src_bits == 32 ? src : bld.tmp(src.type(), 1); if (tmp == src) { } else if (src.regClass() == s1) { assert(src_bits < 32); bld.pseudo(aco_opcode::p_extract, Definition(tmp), bld.def(s1, scc), src, Operand::zero(), Operand::c32(src_bits), Operand::c32((unsigned)sign_extend)); } else { assert(src_bits < 32); bld.pseudo(aco_opcode::p_extract, Definition(tmp), src, Operand::zero(), Operand::c32(src_bits), Operand::c32((unsigned)sign_extend)); } if (dst_bits == 64) { if (sign_extend && dst.regClass() == s2) { Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), tmp, Operand::c32(31u)); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high); } else if (sign_extend && dst.regClass() == v2) { Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand::c32(31u), tmp); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high); } else { bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand::zero()); } } return dst; } enum sgpr_extract_mode { sgpr_extract_sext, sgpr_extract_zext, sgpr_extract_undef, }; Temp extract_8_16_bit_sgpr_element(isel_context* ctx, Temp dst, nir_alu_src* src, sgpr_extract_mode mode) { Temp vec = get_ssa_temp(ctx, src->src.ssa); unsigned src_size = src->src.ssa->bit_size; unsigned swizzle = src->swizzle[0]; if (vec.size() > 1) { assert(src_size == 16); vec = emit_extract_vector(ctx, vec, swizzle / 2, s1); swizzle = swizzle & 1; } Builder bld(ctx->program, ctx->block); Temp tmp = dst.regClass() == s2 ? bld.tmp(s1) : dst; if (mode == sgpr_extract_undef && swizzle == 0) bld.copy(Definition(tmp), vec); else bld.pseudo(aco_opcode::p_extract, Definition(tmp), bld.def(s1, scc), Operand(vec), Operand::c32(swizzle), Operand::c32(src_size), Operand::c32((mode == sgpr_extract_sext))); if (dst.regClass() == s2) convert_int(ctx, bld, tmp, 32, 64, mode == sgpr_extract_sext, dst); return dst; } Temp get_alu_src(struct isel_context* ctx, nir_alu_src src, unsigned size = 1) { if (src.src.ssa->num_components == 1 && size == 1) return get_ssa_temp(ctx, src.src.ssa); Temp vec = get_ssa_temp(ctx, src.src.ssa); unsigned elem_size = src.src.ssa->bit_size / 8u; bool identity_swizzle = true; for (unsigned i = 0; identity_swizzle && i < size; i++) { if (src.swizzle[i] != i) identity_swizzle = false; } if (identity_swizzle) return emit_extract_vector(ctx, vec, 0, RegClass::get(vec.type(), elem_size * size)); assert(elem_size > 0); assert(vec.bytes() % elem_size == 0); if (elem_size < 4 && vec.type() == RegType::sgpr && size == 1) { assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16); return extract_8_16_bit_sgpr_element(ctx, ctx->program->allocateTmp(s1), &src, sgpr_extract_undef); } bool as_uniform = elem_size < 4 && vec.type() == RegType::sgpr; if (as_uniform) vec = as_vgpr(ctx, vec); RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4); if (size == 1) { return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc); } else { assert(size <= 4); std::array elems; aco_ptr vec_instr{create_instruction( aco_opcode::p_create_vector, Format::PSEUDO, size, 1)}; for (unsigned i = 0; i < size; ++i) { elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc); vec_instr->operands[i] = Operand{elems[i]}; } Temp dst = ctx->program->allocateTmp(RegClass(vec.type(), elem_size * size / 4)); vec_instr->definitions[0] = Definition(dst); ctx->block->instructions.emplace_back(std::move(vec_instr)); ctx->allocated_vec.emplace(dst.id(), elems); return vec.type() == RegType::sgpr ? Builder(ctx->program, ctx->block).as_uniform(dst) : dst; } } Temp get_alu_src_vop3p(struct isel_context* ctx, nir_alu_src src) { /* returns v2b or v1 for vop3p usage. * The source expects exactly 2 16bit components * which are within the same dword */ assert(src.src.ssa->bit_size == 16); assert(src.swizzle[0] >> 1 == src.swizzle[1] >> 1); Temp tmp = get_ssa_temp(ctx, src.src.ssa); if (tmp.size() == 1) return tmp; /* the size is larger than 1 dword: check the swizzle */ unsigned dword = src.swizzle[0] >> 1; /* extract a full dword if possible */ if (tmp.bytes() >= (dword + 1) * 4) { /* if the source is splitted into components, use p_create_vector */ auto it = ctx->allocated_vec.find(tmp.id()); if (it != ctx->allocated_vec.end()) { unsigned index = dword << 1; Builder bld(ctx->program, ctx->block); if (it->second[index].regClass() == v2b) return bld.pseudo(aco_opcode::p_create_vector, bld.def(v1), it->second[index], it->second[index + 1]); } return emit_extract_vector(ctx, tmp, dword, v1); } else { /* This must be a swizzled access to %a.zz where %a is v6b */ assert(((src.swizzle[0] | src.swizzle[1]) & 1) == 0); assert(tmp.regClass() == v6b && dword == 1); return emit_extract_vector(ctx, tmp, dword * 2, v2b); } } uint32_t get_alu_src_ub(isel_context* ctx, nir_alu_instr* instr, int src_idx) { nir_ssa_scalar scalar = nir_ssa_scalar{instr->src[src_idx].src.ssa, instr->src[src_idx].swizzle[0]}; return nir_unsigned_upper_bound(ctx->shader, ctx->range_ht, scalar, &ctx->ub_config); } Temp convert_pointer_to_64_bit(isel_context* ctx, Temp ptr, bool non_uniform = false) { if (ptr.size() == 2) return ptr; Builder bld(ctx->program, ctx->block); if (ptr.type() == RegType::vgpr && !non_uniform) ptr = bld.as_uniform(ptr); return bld.pseudo(aco_opcode::p_create_vector, bld.def(RegClass(ptr.type(), 2)), ptr, Operand::c32((unsigned)ctx->options->address32_hi)); } void emit_sop2_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst, bool writes_scc, uint8_t uses_ub = 0) { aco_ptr sop2{ create_instruction(op, Format::SOP2, 2, writes_scc ? 2 : 1)}; sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0])); sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1])); sop2->definitions[0] = Definition(dst); if (instr->no_unsigned_wrap) sop2->definitions[0].setNUW(true); if (writes_scc) sop2->definitions[1] = Definition(ctx->program->allocateId(s1), scc, s1); for (int i = 0; i < 2; i++) { if (uses_ub & (1 << i)) { uint32_t src_ub = get_alu_src_ub(ctx, instr, i); if (src_ub <= 0xffff) sop2->operands[i].set16bit(true); else if (src_ub <= 0xffffff) sop2->operands[i].set24bit(true); } } ctx->block->instructions.emplace_back(std::move(sop2)); } void emit_vop2_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode opc, Temp dst, bool commutative, bool swap_srcs = false, bool flush_denorms = false, bool nuw = false, uint8_t uses_ub = 0) { Builder bld(ctx->program, ctx->block); bld.is_precise = instr->exact; Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]); Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]); if (src1.type() == RegType::sgpr) { if (commutative && src0.type() == RegType::vgpr) { Temp t = src0; src0 = src1; src1 = t; } else { src1 = as_vgpr(ctx, src1); } } Operand op[2] = {Operand(src0), Operand(src1)}; for (int i = 0; i < 2; i++) { if (uses_ub & (1 << i)) { uint32_t src_ub = get_alu_src_ub(ctx, instr, swap_srcs ? !i : i); if (src_ub <= 0xffff) op[i].set16bit(true); else if (src_ub <= 0xffffff) op[i].set24bit(true); } } if (flush_denorms && ctx->program->gfx_level < GFX9) { assert(dst.size() == 1); Temp tmp = bld.vop2(opc, bld.def(v1), op[0], op[1]); bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand::c32(0x3f800000u), tmp); } else { if (nuw) { bld.nuw().vop2(opc, Definition(dst), op[0], op[1]); } else { bld.vop2(opc, Definition(dst), op[0], op[1]); } } } void emit_vop2_instruction_logic64(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst) { Builder bld(ctx->program, ctx->block); bld.is_precise = instr->exact; Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); if (src1.type() == RegType::sgpr) { assert(src0.type() == RegType::vgpr); std::swap(src0, src1); } Temp src00 = bld.tmp(src0.type(), 1); Temp src01 = bld.tmp(src0.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); Temp src10 = bld.tmp(v1); Temp src11 = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1); Temp lo = bld.vop2(op, bld.def(v1), src00, src10); Temp hi = bld.vop2(op, bld.def(v1), src01, src11); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi); } void emit_vop3a_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst, bool flush_denorms = false, unsigned num_sources = 2, bool swap_srcs = false) { assert(num_sources == 2 || num_sources == 3); Temp src[3] = {Temp(0, v1), Temp(0, v1), Temp(0, v1)}; bool has_sgpr = false; for (unsigned i = 0; i < num_sources; i++) { src[i] = get_alu_src(ctx, instr->src[swap_srcs ? 1 - i : i]); if (has_sgpr) src[i] = as_vgpr(ctx, src[i]); else has_sgpr = src[i].type() == RegType::sgpr; } Builder bld(ctx->program, ctx->block); bld.is_precise = instr->exact; if (flush_denorms && ctx->program->gfx_level < GFX9) { Temp tmp; if (num_sources == 3) tmp = bld.vop3(op, bld.def(dst.regClass()), src[0], src[1], src[2]); else tmp = bld.vop3(op, bld.def(dst.regClass()), src[0], src[1]); if (dst.size() == 1) bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand::c32(0x3f800000u), tmp); else bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand::c64(0x3FF0000000000000), tmp); } else if (num_sources == 3) { bld.vop3(op, Definition(dst), src[0], src[1], src[2]); } else { bld.vop3(op, Definition(dst), src[0], src[1]); } } Builder::Result emit_vop3p_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst, bool swap_srcs = false) { Temp src0 = get_alu_src_vop3p(ctx, instr->src[swap_srcs]); Temp src1 = get_alu_src_vop3p(ctx, instr->src[!swap_srcs]); if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr) src1 = as_vgpr(ctx, src1); assert(instr->dest.dest.ssa.num_components == 2); /* swizzle to opsel: all swizzles are either 0 (x) or 1 (y) */ unsigned opsel_lo = (instr->src[!swap_srcs].swizzle[0] & 1) << 1 | (instr->src[swap_srcs].swizzle[0] & 1); unsigned opsel_hi = (instr->src[!swap_srcs].swizzle[1] & 1) << 1 | (instr->src[swap_srcs].swizzle[1] & 1); Builder bld(ctx->program, ctx->block); bld.is_precise = instr->exact; Builder::Result res = bld.vop3p(op, Definition(dst), src0, src1, opsel_lo, opsel_hi); return res; } void emit_idot_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst, bool clamp, unsigned neg_lo = 0) { Temp src[3] = {Temp(0, v1), Temp(0, v1), Temp(0, v1)}; bool has_sgpr = false; for (unsigned i = 0; i < 3; i++) { src[i] = get_alu_src(ctx, instr->src[i]); if (has_sgpr) src[i] = as_vgpr(ctx, src[i]); else has_sgpr = src[i].type() == RegType::sgpr; } Builder bld(ctx->program, ctx->block); bld.is_precise = instr->exact; VALU_instruction& vop3p = bld.vop3p(op, Definition(dst), src[0], src[1], src[2], 0x0, 0x7)->valu(); vop3p.clamp = clamp; vop3p.neg_lo = neg_lo; } void emit_vop1_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst) { Builder bld(ctx->program, ctx->block); bld.is_precise = instr->exact; if (dst.type() == RegType::sgpr) bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), bld.vop1(op, bld.def(RegType::vgpr, dst.size()), get_alu_src(ctx, instr->src[0]))); else bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0])); } void emit_vopc_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst) { Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); assert(src0.size() == src1.size()); aco_ptr vopc; if (src1.type() == RegType::sgpr) { if (src0.type() == RegType::vgpr) { /* to swap the operands, we might also have to change the opcode */ switch (op) { case aco_opcode::v_cmp_lt_f16: op = aco_opcode::v_cmp_gt_f16; break; case aco_opcode::v_cmp_ge_f16: op = aco_opcode::v_cmp_le_f16; break; case aco_opcode::v_cmp_lt_i16: op = aco_opcode::v_cmp_gt_i16; break; case aco_opcode::v_cmp_ge_i16: op = aco_opcode::v_cmp_le_i16; break; case aco_opcode::v_cmp_lt_u16: op = aco_opcode::v_cmp_gt_u16; break; case aco_opcode::v_cmp_ge_u16: op = aco_opcode::v_cmp_le_u16; break; case aco_opcode::v_cmp_lt_f32: op = aco_opcode::v_cmp_gt_f32; break; case aco_opcode::v_cmp_ge_f32: op = aco_opcode::v_cmp_le_f32; break; case aco_opcode::v_cmp_lt_i32: op = aco_opcode::v_cmp_gt_i32; break; case aco_opcode::v_cmp_ge_i32: op = aco_opcode::v_cmp_le_i32; break; case aco_opcode::v_cmp_lt_u32: op = aco_opcode::v_cmp_gt_u32; break; case aco_opcode::v_cmp_ge_u32: op = aco_opcode::v_cmp_le_u32; break; case aco_opcode::v_cmp_lt_f64: op = aco_opcode::v_cmp_gt_f64; break; case aco_opcode::v_cmp_ge_f64: op = aco_opcode::v_cmp_le_f64; break; case aco_opcode::v_cmp_lt_i64: op = aco_opcode::v_cmp_gt_i64; break; case aco_opcode::v_cmp_ge_i64: op = aco_opcode::v_cmp_le_i64; break; case aco_opcode::v_cmp_lt_u64: op = aco_opcode::v_cmp_gt_u64; break; case aco_opcode::v_cmp_ge_u64: op = aco_opcode::v_cmp_le_u64; break; default: /* eq and ne are commutative */ break; } Temp t = src0; src0 = src1; src1 = t; } else { src1 = as_vgpr(ctx, src1); } } Builder bld(ctx->program, ctx->block); bld.vopc(op, Definition(dst), src0, src1); } void emit_sopc_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst) { Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); Builder bld(ctx->program, ctx->block); assert(dst.regClass() == bld.lm); assert(src0.type() == RegType::sgpr); assert(src1.type() == RegType::sgpr); assert(src0.regClass() == src1.regClass()); /* Emit the SALU comparison instruction */ Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1); /* Turn the result into a per-lane bool */ bool_to_vector_condition(ctx, cmp, dst); } void emit_comparison(isel_context* ctx, nir_alu_instr* instr, Temp dst, aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes) { aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes; aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op; bool use_valu = s_op == aco_opcode::num_opcodes || nir_dest_is_divergent(instr->dest.dest) || get_ssa_temp(ctx, instr->src[0].src.ssa).type() == RegType::vgpr || get_ssa_temp(ctx, instr->src[1].src.ssa).type() == RegType::vgpr; aco_opcode op = use_valu ? v_op : s_op; assert(op != aco_opcode::num_opcodes); assert(dst.regClass() == ctx->program->lane_mask); if (use_valu) emit_vopc_instruction(ctx, instr, op, dst); else emit_sopc_instruction(ctx, instr, op, dst); } void emit_boolean_logic(isel_context* ctx, nir_alu_instr* instr, Builder::WaveSpecificOpcode op, Temp dst) { Builder bld(ctx->program, ctx->block); Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); assert(dst.regClass() == bld.lm); assert(src0.regClass() == bld.lm); assert(src1.regClass() == bld.lm); bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1); } void emit_bcsel(isel_context* ctx, nir_alu_instr* instr, Temp dst) { Builder bld(ctx->program, ctx->block); Temp cond = get_alu_src(ctx, instr->src[0]); Temp then = get_alu_src(ctx, instr->src[1]); Temp els = get_alu_src(ctx, instr->src[2]); assert(cond.regClass() == bld.lm); if (dst.type() == RegType::vgpr) { aco_ptr bcsel; if (dst.size() == 1) { then = as_vgpr(ctx, then); els = as_vgpr(ctx, els); bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond); } else if (dst.size() == 2) { Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then); Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els); Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond); Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } return; } if (instr->dest.dest.ssa.bit_size == 1) { assert(dst.regClass() == bld.lm); assert(then.regClass() == bld.lm); assert(els.regClass() == bld.lm); } if (!nir_src_is_divergent(instr->src[0].src)) { /* uniform condition and values in sgpr */ if (dst.regClass() == s1 || dst.regClass() == s2) { assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass()); assert(dst.size() == then.size()); aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64; bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond))); } else { isel_err(&instr->instr, "Unimplemented uniform bcsel bit size"); } return; } /* divergent boolean bcsel * this implements bcsel on bools: dst = s0 ? s1 : s2 * are going to be: dst = (s0 & s1) | (~s0 & s2) */ assert(instr->dest.dest.ssa.bit_size == 1); if (cond.id() != then.id()) then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then); if (cond.id() == els.id()) bld.copy(Definition(dst), then); else bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then, bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond)); } void emit_scaled_op(isel_context* ctx, Builder& bld, Definition dst, Temp val, aco_opcode op, uint32_t undo) { /* multiply by 16777216 to handle denormals */ Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.def(bld.lm), as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand::c32((1u << 7) | (1u << 4)))); Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand::c32(0x4b800000u), val); scaled = bld.vop1(op, bld.def(v1), scaled); scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand::c32(undo), scaled); Temp not_scaled = bld.vop1(op, bld.def(v1), val); bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal); } void emit_rcp(isel_context* ctx, Builder& bld, Definition dst, Temp val) { if (ctx->block->fp_mode.denorm32 == 0) { bld.vop1(aco_opcode::v_rcp_f32, dst, val); return; } emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u); } void emit_rsq(isel_context* ctx, Builder& bld, Definition dst, Temp val) { if (ctx->block->fp_mode.denorm32 == 0) { bld.vop1(aco_opcode::v_rsq_f32, dst, val); return; } emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u); } void emit_sqrt(isel_context* ctx, Builder& bld, Definition dst, Temp val) { if (ctx->block->fp_mode.denorm32 == 0) { bld.vop1(aco_opcode::v_sqrt_f32, dst, val); return; } emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u); } void emit_log2(isel_context* ctx, Builder& bld, Definition dst, Temp val) { if (ctx->block->fp_mode.denorm32 == 0) { bld.vop1(aco_opcode::v_log_f32, dst, val); return; } emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u); } Temp emit_trunc_f64(isel_context* ctx, Builder& bld, Definition dst, Temp val) { if (ctx->options->gfx_level >= GFX7) return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val); /* GFX6 doesn't support V_TRUNC_F64, lower it. */ /* TODO: create more efficient code! */ if (val.type() == RegType::sgpr) val = as_vgpr(ctx, val); /* Split the input value. */ Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val); /* Extract the exponent and compute the unbiased value. */ Temp exponent = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), val_hi, Operand::c32(20u), Operand::c32(11u)); exponent = bld.vsub32(bld.def(v1), exponent, Operand::c32(1023u)); /* Extract the fractional part. */ Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand::c32(-1u), Operand::c32(0x000fffffu)); fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent); Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask); Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1); Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo); fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp); tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi); fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp); /* Get the sign bit. */ Temp sign = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0x80000000u), val_hi); /* Decide the operation to apply depending on the unbiased exponent. */ Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.def(bld.lm), exponent, Operand::zero()); Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand::zero()), exp_lt0); Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0); Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand::c32(51u)); dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51); dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51); return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi); } Temp emit_floor_f64(isel_context* ctx, Builder& bld, Definition dst, Temp val) { if (ctx->options->gfx_level >= GFX7) return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val); /* GFX6 doesn't support V_FLOOR_F64, lower it (note that it's actually * lowered at NIR level for precision reasons). */ Temp src0 = as_vgpr(ctx, val); Temp mask = bld.copy(bld.def(s1), Operand::c32(3u)); /* isnan */ Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand::c32(-1u), Operand::c32(0x3fefffffu)); Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.def(bld.lm), src0, mask); Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0); Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val); Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0); Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min); Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan); Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan); Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1); Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v); add->valu().neg[1] = true; return add->definitions[0].getTemp(); } Temp uadd32_sat(Builder& bld, Definition dst, Temp src0, Temp src1) { if (bld.program->gfx_level < GFX8) { Builder::Result add = bld.vadd32(bld.def(v1), src0, src1, true); return bld.vop2_e64(aco_opcode::v_cndmask_b32, dst, add.def(0).getTemp(), Operand::c32(-1), add.def(1).getTemp()); } Builder::Result add(NULL); if (bld.program->gfx_level >= GFX9) { add = bld.vop2_e64(aco_opcode::v_add_u32, dst, src0, src1); } else { add = bld.vop2_e64(aco_opcode::v_add_co_u32, dst, bld.def(bld.lm), src0, src1); } add->valu().clamp = 1; return dst.getTemp(); } Temp usub32_sat(Builder& bld, Definition dst, Temp src0, Temp src1) { if (bld.program->gfx_level < GFX8) { Builder::Result sub = bld.vsub32(bld.def(v1), src0, src1, true); return bld.vop2_e64(aco_opcode::v_cndmask_b32, dst, sub.def(0).getTemp(), Operand::c32(0u), sub.def(1).getTemp()); } Builder::Result sub(NULL); if (bld.program->gfx_level >= GFX9) { sub = bld.vop2_e64(aco_opcode::v_sub_u32, dst, src0, src1); } else { sub = bld.vop2_e64(aco_opcode::v_sub_co_u32, dst, bld.def(bld.lm), src0, src1); } sub->valu().clamp = 1; return dst.getTemp(); } void visit_alu_instr(isel_context* ctx, nir_alu_instr* instr) { if (!instr->dest.dest.is_ssa) { isel_err(&instr->instr, "nir alu dst not in ssa"); abort(); } Builder bld(ctx->program, ctx->block); bld.is_precise = instr->exact; Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa); switch (instr->op) { case nir_op_vec2: case nir_op_vec3: case nir_op_vec4: case nir_op_vec5: case nir_op_vec8: case nir_op_vec16: { std::array elems; unsigned num = instr->dest.dest.ssa.num_components; for (unsigned i = 0; i < num; ++i) elems[i] = get_alu_src(ctx, instr->src[i]); if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) { aco_ptr vec{create_instruction( aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)}; RegClass elem_rc = RegClass::get(RegType::vgpr, instr->dest.dest.ssa.bit_size / 8u); for (unsigned i = 0; i < num; ++i) { if (elems[i].type() == RegType::sgpr && elem_rc.is_subdword()) elems[i] = emit_extract_vector(ctx, elems[i], 0, elem_rc); vec->operands[i] = Operand{elems[i]}; } vec->definitions[0] = Definition(dst); ctx->block->instructions.emplace_back(std::move(vec)); ctx->allocated_vec.emplace(dst.id(), elems); } else { bool use_s_pack = ctx->program->gfx_level >= GFX9; Temp mask = bld.copy(bld.def(s1), Operand::c32((1u << instr->dest.dest.ssa.bit_size) - 1)); std::array packed; uint32_t const_vals[NIR_MAX_VEC_COMPONENTS] = {}; for (unsigned i = 0; i < num; i++) { unsigned packed_size = use_s_pack ? 16 : 32; unsigned idx = i * instr->dest.dest.ssa.bit_size / packed_size; unsigned offset = i * instr->dest.dest.ssa.bit_size % packed_size; if (nir_src_is_const(instr->src[i].src)) { const_vals[idx] |= nir_src_as_uint(instr->src[i].src) << offset; continue; } if (nir_src_is_undef(instr->src[i].src)) continue; if (offset != packed_size - instr->dest.dest.ssa.bit_size) elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask); if (offset) elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), elems[i], Operand::c32(offset)); if (packed[idx].id()) packed[idx] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[i], packed[idx]); else packed[idx] = elems[i]; } if (use_s_pack) { for (unsigned i = 0; i < dst.size(); i++) { bool same = !!packed[i * 2].id() == !!packed[i * 2 + 1].id(); if (packed[i * 2].id() && packed[i * 2 + 1].id()) packed[i] = bld.sop2(aco_opcode::s_pack_ll_b32_b16, bld.def(s1), packed[i * 2], packed[i * 2 + 1]); else if (packed[i * 2 + 1].id()) packed[i] = bld.sop2(aco_opcode::s_pack_ll_b32_b16, bld.def(s1), Operand::c32(const_vals[i * 2]), packed[i * 2 + 1]); else if (packed[i * 2].id()) packed[i] = bld.sop2(aco_opcode::s_pack_ll_b32_b16, bld.def(s1), packed[i * 2], Operand::c32(const_vals[i * 2 + 1])); if (same) const_vals[i] = const_vals[i * 2] | (const_vals[i * 2 + 1] << 16); else const_vals[i] = 0; } } for (unsigned i = 0; i < dst.size(); i++) { if (const_vals[i] && packed[i].id()) packed[i] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand::c32(const_vals[i]), packed[i]); else if (!packed[i].id()) packed[i] = bld.copy(bld.def(s1), Operand::c32(const_vals[i])); } if (dst.size() == 1) bld.copy(Definition(dst), packed[0]); else if (dst.size() == 2) bld.pseudo(aco_opcode::p_create_vector, Definition(dst), packed[0], packed[1]); else bld.pseudo(aco_opcode::p_create_vector, Definition(dst), packed[0], packed[1], packed[2]); } break; } case nir_op_mov: { Temp src = get_alu_src(ctx, instr->src[0]); if (src.type() == RegType::vgpr && dst.type() == RegType::sgpr) { /* use size() instead of bytes() for 8/16-bit */ assert(src.size() == dst.size() && "wrong src or dst register class for nir_op_mov"); bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src); } else { assert(src.bytes() == dst.bytes() && "wrong src or dst register class for nir_op_mov"); bld.copy(Definition(dst), src); } break; } case nir_op_inot: { Temp src = get_alu_src(ctx, instr->src[0]); if (dst.regClass() == v1 || dst.regClass() == v2b || dst.regClass() == v1b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst); } else if (dst.regClass() == v2) { Temp lo = bld.tmp(v1), hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src); lo = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), lo); hi = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), hi); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi); } else if (dst.type() == RegType::sgpr) { aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64; bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_iabs: { if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { Temp src = get_alu_src_vop3p(ctx, instr->src[0]); unsigned opsel_lo = (instr->src[0].swizzle[0] & 1) << 1; unsigned opsel_hi = ((instr->src[0].swizzle[1] & 1) << 1) | 1; Temp sub = bld.vop3p(aco_opcode::v_pk_sub_u16, Definition(bld.tmp(v1)), Operand::zero(), src, opsel_lo, opsel_hi); bld.vop3p(aco_opcode::v_pk_max_i16, Definition(dst), sub, src, opsel_lo, opsel_hi); break; } Temp src = get_alu_src(ctx, instr->src[0]); if (dst.regClass() == s1) { bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), src); } else if (dst.regClass() == v1) { bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand::zero(), src)); } else if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) { bld.vop3( aco_opcode::v_max_i16_e64, Definition(dst), src, bld.vop3(aco_opcode::v_sub_u16_e64, Definition(bld.tmp(v2b)), Operand::zero(2), src)); } else if (dst.regClass() == v2b) { src = as_vgpr(ctx, src); bld.vop2(aco_opcode::v_max_i16, Definition(dst), src, bld.vop2(aco_opcode::v_sub_u16, Definition(bld.tmp(v2b)), Operand::zero(2), src)); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_isign: { Temp src = get_alu_src(ctx, instr->src[0]); if (dst.regClass() == s1) { Temp tmp = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), src, Operand::c32(-1)); bld.sop2(aco_opcode::s_min_i32, Definition(dst), bld.def(s1, scc), tmp, Operand::c32(1u)); } else if (dst.regClass() == s2) { Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand::c32(63u)); Temp neqz; if (ctx->program->gfx_level >= GFX8) neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand::zero()); else neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand::zero()) .def(1) .getTemp(); /* SCC gets zero-extended to 64 bit */ bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz)); } else if (dst.regClass() == v1) { bld.vop3(aco_opcode::v_med3_i32, Definition(dst), Operand::c32(-1), src, Operand::c32(1u)); } else if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX9) { bld.vop3(aco_opcode::v_med3_i16, Definition(dst), Operand::c16(-1), src, Operand::c16(1u)); } else if (dst.regClass() == v2b) { src = as_vgpr(ctx, src); bld.vop2(aco_opcode::v_max_i16, Definition(dst), Operand::c16(-1), bld.vop2(aco_opcode::v_min_i16, Definition(bld.tmp(v1)), Operand::c16(1u), src)); } else if (dst.regClass() == v2) { Temp upper = emit_extract_vector(ctx, src, 1, v1); Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand::c32(31u), upper); Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.def(bld.lm), Operand::zero(), src); Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::c32(1u), neg, gtz); upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::zero(), neg, gtz); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_imax: { if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_max_i16_e64, dst); } else if (dst.regClass() == v2b) { emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i16, dst, true); } else if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_max_i16, dst); } else if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_umax: { if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_max_u16_e64, dst); } else if (dst.regClass() == v2b) { emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u16, dst, true); } else if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_max_u16, dst); } else if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_imin: { if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_min_i16_e64, dst); } else if (dst.regClass() == v2b) { emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i16, dst, true); } else if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_min_i16, dst); } else if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_umin: { if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_min_u16_e64, dst); } else if (dst.regClass() == v2b) { emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u16, dst, true); } else if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_min_u16, dst); } else if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_ior: { if (instr->dest.dest.ssa.bit_size == 1) { emit_boolean_logic(ctx, instr, Builder::s_or, dst); } else if (dst.regClass() == v1 || dst.regClass() == v2b || dst.regClass() == v1b) { emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true); } else if (dst.regClass() == v2) { emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_or_b32, dst); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true); } else if (dst.regClass() == s2) { emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_iand: { if (instr->dest.dest.ssa.bit_size == 1) { emit_boolean_logic(ctx, instr, Builder::s_and, dst); } else if (dst.regClass() == v1 || dst.regClass() == v2b || dst.regClass() == v1b) { emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true); } else if (dst.regClass() == v2) { emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_and_b32, dst); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true); } else if (dst.regClass() == s2) { emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_ixor: { if (instr->dest.dest.ssa.bit_size == 1) { emit_boolean_logic(ctx, instr, Builder::s_xor, dst); } else if (dst.regClass() == v1 || dst.regClass() == v2b || dst.regClass() == v1b) { emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true); } else if (dst.regClass() == v2) { emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_xor_b32, dst); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true); } else if (dst.regClass() == s2) { emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_ushr: { if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_lshrrev_b16_e64, dst, false, 2, true); } else if (dst.regClass() == v2b) { emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b16, dst, false, true); } else if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_lshrrev_b16, dst, true); } else if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true); } else if (dst.regClass() == v2 && ctx->program->gfx_level >= GFX8) { bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst), get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0])); } else if (dst.regClass() == v2) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_lshr_b64, dst); } else if (dst.regClass() == s2) { emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_ishl: { if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_lshlrev_b16_e64, dst, false, 2, true); } else if (dst.regClass() == v2b) { emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b16, dst, false, true); } else if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_lshlrev_b16, dst, true); } else if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true, false, false, 2); } else if (dst.regClass() == v2 && ctx->program->gfx_level >= GFX8) { bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst), get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0])); } else if (dst.regClass() == v2) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_lshl_b64, dst); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true, 1); } else if (dst.regClass() == s2) { emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_ishr: { if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_ashrrev_i16_e64, dst, false, 2, true); } else if (dst.regClass() == v2b) { emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i16, dst, false, true); } else if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_ashrrev_i16, dst, true); } else if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true); } else if (dst.regClass() == v2 && ctx->program->gfx_level >= GFX8) { bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst), get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0])); } else if (dst.regClass() == v2) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_ashr_i64, dst); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true); } else if (dst.regClass() == s2) { emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_find_lsb: { Temp src = get_alu_src(ctx, instr->src[0]); if (src.regClass() == s1) { bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src); } else if (src.regClass() == v1) { emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst); } else if (src.regClass() == s2) { bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_ufind_msb: case nir_op_ifind_msb: { Temp src = get_alu_src(ctx, instr->src[0]); if (src.regClass() == s1 || src.regClass() == s2) { aco_opcode op = src.regClass() == s2 ? (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) : (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32); Temp msb_rev = bld.sop1(op, bld.def(s1), src); Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand::c32(src.size() * 32u - 1u), msb_rev); Temp msb = sub.def(0).getTemp(); Temp carry = sub.def(1).getTemp(); bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand::c32(-1), msb, bld.scc(carry)); } else if (src.regClass() == v1) { aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32; Temp msb_rev = bld.tmp(v1); emit_vop1_instruction(ctx, instr, op, msb_rev); Temp msb = bld.tmp(v1); Temp carry = bld.vsub32(Definition(msb), Operand::c32(31u), Operand(msb_rev), true).def(1).getTemp(); bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), msb, msb_rev, carry); } else if (src.regClass() == v2) { aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32; Temp lo = bld.tmp(v1), hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src); lo = uadd32_sat(bld, bld.def(v1), bld.copy(bld.def(s1), Operand::c32(32u)), bld.vop1(op, bld.def(v1), lo)); hi = bld.vop1(op, bld.def(v1), hi); Temp found_hi = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand::c32(-1), hi); Temp msb_rev = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lo, hi, found_hi); Temp msb = bld.tmp(v1); Temp carry = bld.vsub32(Definition(msb), Operand::c32(63u), Operand(msb_rev), true).def(1).getTemp(); bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), msb, msb_rev, carry); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_ufind_msb_rev: case nir_op_ifind_msb_rev: { Temp src = get_alu_src(ctx, instr->src[0]); if (src.regClass() == s1) { aco_opcode op = instr->op == nir_op_ufind_msb_rev ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32; bld.sop1(op, Definition(dst), src); } else if (src.regClass() == v1) { aco_opcode op = instr->op == nir_op_ufind_msb_rev ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32; emit_vop1_instruction(ctx, instr, op, dst); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_bitfield_reverse: { if (dst.regClass() == s1) { bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0])); } else if (dst.regClass() == v1) { bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0])); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_iadd: { if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true); break; } else if (dst.bytes() <= 2 && ctx->program->gfx_level >= GFX10) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_add_u16_e64, dst); break; } else if (dst.bytes() <= 2 && ctx->program->gfx_level >= GFX8) { emit_vop2_instruction(ctx, instr, aco_opcode::v_add_u16, dst, true); break; } else if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_add_u16, dst); break; } Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); if (dst.type() == RegType::vgpr && dst.bytes() <= 4) { if (instr->no_unsigned_wrap) bld.nuw().vadd32(Definition(dst), Operand(src0), Operand(src1)); else bld.vadd32(Definition(dst), Operand(src0), Operand(src1)); break; } assert(src0.size() == 2 && src1.size() == 2); Temp src00 = bld.tmp(src0.type(), 1); Temp src01 = bld.tmp(dst.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); Temp src10 = bld.tmp(src1.type(), 1); Temp src11 = bld.tmp(dst.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1); if (dst.regClass() == s2) { Temp carry = bld.tmp(s1); Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10); Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry)); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1); } else if (dst.regClass() == v2) { Temp dst0 = bld.tmp(v1); Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp(); Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_uadd_sat: { if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { Instruction* add_instr = emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_add_u16, dst); add_instr->valu().clamp = 1; break; } Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); if (dst.regClass() == s1) { Temp tmp = bld.tmp(s1), carry = bld.tmp(s1); bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)), src0, src1); bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand::c32(-1), tmp, bld.scc(carry)); break; } else if (dst.regClass() == v2b) { Instruction* add_instr; if (ctx->program->gfx_level >= GFX10) { add_instr = bld.vop3(aco_opcode::v_add_u16_e64, Definition(dst), src0, src1).instr; } else { if (src1.type() == RegType::sgpr) std::swap(src0, src1); add_instr = bld.vop2_e64(aco_opcode::v_add_u16, Definition(dst), src0, as_vgpr(ctx, src1)).instr; } add_instr->valu().clamp = 1; break; } else if (dst.regClass() == v1) { uadd32_sat(bld, Definition(dst), src0, src1); break; } assert(src0.size() == 2 && src1.size() == 2); Temp src00 = bld.tmp(src0.type(), 1); Temp src01 = bld.tmp(src0.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); Temp src10 = bld.tmp(src1.type(), 1); Temp src11 = bld.tmp(src1.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1); if (dst.regClass() == s2) { Temp carry0 = bld.tmp(s1); Temp carry1 = bld.tmp(s1); Temp no_sat0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry0)), src00, src10); Temp no_sat1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(Definition(carry1)), src01, src11, bld.scc(carry0)); Temp no_sat = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), no_sat0, no_sat1); bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand::c64(-1), no_sat, bld.scc(carry1)); } else if (dst.regClass() == v2) { Temp no_sat0 = bld.tmp(v1); Temp dst0 = bld.tmp(v1); Temp dst1 = bld.tmp(v1); Temp carry0 = bld.vadd32(Definition(no_sat0), src00, src10, true).def(1).getTemp(); Temp carry1; if (ctx->program->gfx_level >= GFX8) { carry1 = bld.tmp(bld.lm); bld.vop2_e64(aco_opcode::v_addc_co_u32, Definition(dst1), Definition(carry1), as_vgpr(ctx, src01), as_vgpr(ctx, src11), carry0) ->valu() .clamp = 1; } else { Temp no_sat1 = bld.tmp(v1); carry1 = bld.vadd32(Definition(no_sat1), src01, src11, true, carry0).def(1).getTemp(); bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst1), no_sat1, Operand::c32(-1), carry1); } bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst0), no_sat0, Operand::c32(-1), carry1); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_iadd_sat: { if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { Instruction* add_instr = emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_add_i16, dst); add_instr->valu().clamp = 1; break; } Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); if (dst.regClass() == s1) { Temp cond = bld.sopc(aco_opcode::s_cmp_lt_i32, bld.def(s1, scc), src1, Operand::zero()); Temp bound = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(bld.def(s1, scc)), Operand::c32(INT32_MAX), cond); Temp overflow = bld.tmp(s1); Temp add = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.scc(Definition(overflow)), src0, src1); bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), bound, add, bld.scc(overflow)); break; } src1 = as_vgpr(ctx, src1); if (dst.regClass() == v2b) { Instruction* add_instr = bld.vop3(aco_opcode::v_add_i16, Definition(dst), src0, src1).instr; add_instr->valu().clamp = 1; } else if (dst.regClass() == v1) { Instruction* add_instr = bld.vop3(aco_opcode::v_add_i32, Definition(dst), src0, src1).instr; add_instr->valu().clamp = 1; } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_uadd_carry: { Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); if (dst.regClass() == s1) { bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1); break; } if (dst.regClass() == v1) { Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp(); bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand::zero(), Operand::c32(1u), carry); break; } Temp src00 = bld.tmp(src0.type(), 1); Temp src01 = bld.tmp(dst.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); Temp src10 = bld.tmp(src1.type(), 1); Temp src11 = bld.tmp(dst.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1); if (dst.regClass() == s2) { Temp carry = bld.tmp(s1); bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10); carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)) .def(1) .getTemp(); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand::zero()); } else if (dst.regClass() == v2) { Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp(); carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp(); carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::zero(), Operand::c32(1u), carry); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand::zero()); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_isub: { if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true); break; } else if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_sub_u16, dst); break; } Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); if (dst.regClass() == v1) { bld.vsub32(Definition(dst), src0, src1); break; } else if (dst.bytes() <= 2) { if (ctx->program->gfx_level >= GFX10) bld.vop3(aco_opcode::v_sub_u16_e64, Definition(dst), src0, src1); else if (src1.type() == RegType::sgpr) bld.vop2(aco_opcode::v_subrev_u16, Definition(dst), src1, as_vgpr(ctx, src0)); else if (ctx->program->gfx_level >= GFX8) bld.vop2(aco_opcode::v_sub_u16, Definition(dst), src0, as_vgpr(ctx, src1)); else bld.vsub32(Definition(dst), src0, src1); break; } Temp src00 = bld.tmp(src0.type(), 1); Temp src01 = bld.tmp(dst.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); Temp src10 = bld.tmp(src1.type(), 1); Temp src11 = bld.tmp(dst.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1); if (dst.regClass() == s2) { Temp borrow = bld.tmp(s1); Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10); Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(borrow)); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1); } else if (dst.regClass() == v2) { Temp lower = bld.tmp(v1); Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp(); Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_usub_borrow: { Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); if (dst.regClass() == s1) { bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1); break; } else if (dst.regClass() == v1) { Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp(); bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand::zero(), Operand::c32(1u), borrow); break; } Temp src00 = bld.tmp(src0.type(), 1); Temp src01 = bld.tmp(dst.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); Temp src10 = bld.tmp(src1.type(), 1); Temp src11 = bld.tmp(dst.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1); if (dst.regClass() == s2) { Temp borrow = bld.tmp(s1); bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10); borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)) .def(1) .getTemp(); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand::zero()); } else if (dst.regClass() == v2) { Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp(); borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp(); borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::zero(), Operand::c32(1u), borrow); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand::zero()); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_usub_sat: { if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { Instruction* sub_instr = emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_sub_u16, dst); sub_instr->valu().clamp = 1; break; } Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); if (dst.regClass() == s1) { Temp tmp = bld.tmp(s1), carry = bld.tmp(s1); bld.sop2(aco_opcode::s_sub_u32, Definition(tmp), bld.scc(Definition(carry)), src0, src1); bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand::c32(0), tmp, bld.scc(carry)); break; } else if (dst.regClass() == v2b) { Instruction* sub_instr; if (ctx->program->gfx_level >= GFX10) { sub_instr = bld.vop3(aco_opcode::v_sub_u16_e64, Definition(dst), src0, src1).instr; } else { aco_opcode op = aco_opcode::v_sub_u16; if (src1.type() == RegType::sgpr) { std::swap(src0, src1); op = aco_opcode::v_subrev_u16; } sub_instr = bld.vop2_e64(op, Definition(dst), src0, as_vgpr(ctx, src1)).instr; } sub_instr->valu().clamp = 1; break; } else if (dst.regClass() == v1) { usub32_sat(bld, Definition(dst), src0, as_vgpr(ctx, src1)); break; } assert(src0.size() == 2 && src1.size() == 2); Temp src00 = bld.tmp(src0.type(), 1); Temp src01 = bld.tmp(src0.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); Temp src10 = bld.tmp(src1.type(), 1); Temp src11 = bld.tmp(src1.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1); if (dst.regClass() == s2) { Temp carry0 = bld.tmp(s1); Temp carry1 = bld.tmp(s1); Temp no_sat0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry0)), src00, src10); Temp no_sat1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(Definition(carry1)), src01, src11, bld.scc(carry0)); Temp no_sat = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), no_sat0, no_sat1); bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand::c64(0ull), no_sat, bld.scc(carry1)); } else if (dst.regClass() == v2) { Temp no_sat0 = bld.tmp(v1); Temp dst0 = bld.tmp(v1); Temp dst1 = bld.tmp(v1); Temp carry0 = bld.vsub32(Definition(no_sat0), src00, src10, true).def(1).getTemp(); Temp carry1; if (ctx->program->gfx_level >= GFX8) { carry1 = bld.tmp(bld.lm); bld.vop2_e64(aco_opcode::v_subb_co_u32, Definition(dst1), Definition(carry1), as_vgpr(ctx, src01), as_vgpr(ctx, src11), carry0) ->valu() .clamp = 1; } else { Temp no_sat1 = bld.tmp(v1); carry1 = bld.vsub32(Definition(no_sat1), src01, src11, true, carry0).def(1).getTemp(); bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst1), no_sat1, Operand::c32(0u), carry1); } bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst0), no_sat0, Operand::c32(0u), carry1); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_isub_sat: { if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { Instruction* sub_instr = emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_sub_i16, dst); sub_instr->valu().clamp = 1; break; } Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); if (dst.regClass() == s1) { Temp cond = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src1, Operand::zero()); Temp bound = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(bld.def(s1, scc)), Operand::c32(INT32_MAX), cond); Temp overflow = bld.tmp(s1); Temp sub = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.scc(Definition(overflow)), src0, src1); bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), bound, sub, bld.scc(overflow)); break; } src1 = as_vgpr(ctx, src1); if (dst.regClass() == v2b) { Instruction* sub_instr = bld.vop3(aco_opcode::v_sub_i16, Definition(dst), src0, src1).instr; sub_instr->valu().clamp = 1; } else if (dst.regClass() == v1) { Instruction* sub_instr = bld.vop3(aco_opcode::v_sub_i32, Definition(dst), src0, src1).instr; sub_instr->valu().clamp = 1; } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_imul: { if (dst.bytes() <= 2 && ctx->program->gfx_level >= GFX10) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_mul_lo_u16_e64, dst); } else if (dst.bytes() <= 2 && ctx->program->gfx_level >= GFX8) { emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_lo_u16, dst, true); } else if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_mul_lo_u16, dst); } else if (dst.type() == RegType::vgpr) { uint32_t src0_ub = get_alu_src_ub(ctx, instr, 0); uint32_t src1_ub = get_alu_src_ub(ctx, instr, 1); if (src0_ub <= 0xffffff && src1_ub <= 0xffffff) { bool nuw_16bit = src0_ub <= 0xffff && src1_ub <= 0xffff && src0_ub * src1_ub <= 0xffff; emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_u32_u24, dst, true /* commutative */, false, false, nuw_16bit); } else if (nir_src_is_const(instr->src[0].src)) { bld.v_mul_imm(Definition(dst), get_alu_src(ctx, instr->src[1]), nir_src_as_uint(instr->src[0].src), false); } else if (nir_src_is_const(instr->src[1].src)) { bld.v_mul_imm(Definition(dst), get_alu_src(ctx, instr->src[0]), nir_src_as_uint(instr->src[1].src), false); } else { emit_vop3a_instruction(ctx, instr, aco_opcode::v_mul_lo_u32, dst); } } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_umul_high: { if (dst.regClass() == s1 && ctx->options->gfx_level >= GFX9) { emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_hi_u32, dst, false); } else if (dst.bytes() == 4) { uint32_t src0_ub = get_alu_src_ub(ctx, instr, 0); uint32_t src1_ub = get_alu_src_ub(ctx, instr, 1); Temp tmp = dst.regClass() == s1 ? bld.tmp(v1) : dst; if (src0_ub <= 0xffffff && src1_ub <= 0xffffff) { emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_hi_u32_u24, tmp, true); } else { emit_vop3a_instruction(ctx, instr, aco_opcode::v_mul_hi_u32, tmp); } if (dst.regClass() == s1) bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_imul_high: { if (dst.regClass() == v1) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_mul_hi_i32, dst); } else if (dst.regClass() == s1 && ctx->options->gfx_level >= GFX9) { emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_hi_i32, dst, false); } else if (dst.regClass() == s1) { Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]), as_vgpr(ctx, get_alu_src(ctx, instr->src[1]))); bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_fmul: { if (dst.regClass() == v2b) { emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, dst, true); } else if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_mul_f16, dst); } else if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true); } else if (dst.regClass() == v2) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_mul_f64, dst); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_fmulz: { if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_legacy_f32, dst, true); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_fadd: { if (dst.regClass() == v2b) { emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, dst, true); } else if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_add_f16, dst); } else if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true); } else if (dst.regClass() == v2) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_add_f64, dst); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_fsub: { if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { Instruction* add = emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_add_f16, dst); VALU_instruction& sub = add->valu(); sub.neg_lo[1] = true; sub.neg_hi[1] = true; break; } Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); if (dst.regClass() == v2b) { if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr) emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, dst, false); else emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, dst, true); } else if (dst.regClass() == v1) { if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr) emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false); else emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true); } else if (dst.regClass() == v2) { Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), as_vgpr(ctx, src0), as_vgpr(ctx, src1)); add->valu().neg[1] = true; } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_ffma: { if (dst.regClass() == v2b) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_fma_f16, dst, false, 3); } else if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { assert(instr->dest.dest.ssa.num_components == 2); Temp src0 = as_vgpr(ctx, get_alu_src_vop3p(ctx, instr->src[0])); Temp src1 = as_vgpr(ctx, get_alu_src_vop3p(ctx, instr->src[1])); Temp src2 = as_vgpr(ctx, get_alu_src_vop3p(ctx, instr->src[2])); /* swizzle to opsel: all swizzles are either 0 (x) or 1 (y) */ unsigned opsel_lo = 0, opsel_hi = 0; for (unsigned i = 0; i < 3; i++) { opsel_lo |= (instr->src[i].swizzle[0] & 1) << i; opsel_hi |= (instr->src[i].swizzle[1] & 1) << i; } bld.vop3p(aco_opcode::v_pk_fma_f16, Definition(dst), src0, src1, src2, opsel_lo, opsel_hi); } else if (dst.regClass() == v1) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_fma_f32, dst, ctx->block->fp_mode.must_flush_denorms32, 3); } else if (dst.regClass() == v2) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_fma_f64, dst, false, 3); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_ffmaz: { if (dst.regClass() == v1) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_fma_legacy_f32, dst, ctx->block->fp_mode.must_flush_denorms32, 3); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_fmax: { if (dst.regClass() == v2b) { // TODO: check fp_mode.must_flush_denorms16_64 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, dst, true); } else if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_max_f16, dst); } else if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32); } else if (dst.regClass() == v2) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_max_f64, dst, ctx->block->fp_mode.must_flush_denorms16_64); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_fmin: { if (dst.regClass() == v2b) { // TODO: check fp_mode.must_flush_denorms16_64 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, dst, true); } else if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_min_f16, dst, true); } else if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32); } else if (dst.regClass() == v2) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_min_f64, dst, ctx->block->fp_mode.must_flush_denorms16_64); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_sdot_4x8_iadd: { if (ctx->options->gfx_level >= GFX11) emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_i32_iu8, dst, false, 0x3); else emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_i32_i8, dst, false); break; } case nir_op_sdot_4x8_iadd_sat: { if (ctx->options->gfx_level >= GFX11) emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_i32_iu8, dst, true, 0x3); else emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_i32_i8, dst, true); break; } case nir_op_sudot_4x8_iadd: { emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_i32_iu8, dst, false, 0x1); break; } case nir_op_sudot_4x8_iadd_sat: { emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_i32_iu8, dst, true, 0x1); break; } case nir_op_udot_4x8_uadd: { emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_u32_u8, dst, false); break; } case nir_op_udot_4x8_uadd_sat: { emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_u32_u8, dst, true); break; } case nir_op_sdot_2x16_iadd: { emit_idot_instruction(ctx, instr, aco_opcode::v_dot2_i32_i16, dst, false); break; } case nir_op_sdot_2x16_iadd_sat: { emit_idot_instruction(ctx, instr, aco_opcode::v_dot2_i32_i16, dst, true); break; } case nir_op_udot_2x16_uadd: { emit_idot_instruction(ctx, instr, aco_opcode::v_dot2_u32_u16, dst, false); break; } case nir_op_udot_2x16_uadd_sat: { emit_idot_instruction(ctx, instr, aco_opcode::v_dot2_u32_u16, dst, true); break; } case nir_op_cube_face_coord_amd: { Temp in = get_alu_src(ctx, instr->src[0], 3); Temp src[3] = {emit_extract_vector(ctx, in, 0, v1), emit_extract_vector(ctx, in, 1, v1), emit_extract_vector(ctx, in, 2, v1)}; Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]); ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma); Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]); Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]); sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand::c32(0x3f000000u /*0.5*/), bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, ma)); tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand::c32(0x3f000000u /*0.5*/), bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, ma)); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc); break; } case nir_op_cube_face_index_amd: { Temp in = get_alu_src(ctx, instr->src[0], 3); Temp src[3] = {emit_extract_vector(ctx, in, 0, v1), emit_extract_vector(ctx, in, 1, v1), emit_extract_vector(ctx, in, 2, v1)}; bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]); break; } case nir_op_bcsel: { emit_bcsel(ctx, instr, dst); break; } case nir_op_frsq: { if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f16, dst); } else if (dst.regClass() == v1) { Temp src = get_alu_src(ctx, instr->src[0]); emit_rsq(ctx, bld, Definition(dst), src); } else if (dst.regClass() == v2) { /* Lowered at NIR level for precision reasons. */ emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_fneg: { if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { Temp src = get_alu_src_vop3p(ctx, instr->src[0]); Instruction* vop3p = bld.vop3p(aco_opcode::v_pk_mul_f16, Definition(dst), src, Operand::c16(0x3C00), instr->src[0].swizzle[0] & 1, instr->src[0].swizzle[1] & 1); vop3p->valu().neg_lo[0] = true; vop3p->valu().neg_hi[0] = true; break; } Temp src = get_alu_src(ctx, instr->src[0]); if (dst.regClass() == v2b) { bld.vop2(aco_opcode::v_mul_f16, Definition(dst), Operand::c16(0xbc00u), as_vgpr(ctx, src)); } else if (dst.regClass() == v1) { bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand::c32(0xbf800000u), as_vgpr(ctx, src)); } else if (dst.regClass() == v2) { if (ctx->block->fp_mode.must_flush_denorms16_64) src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand::c64(0x3FF0000000000000), as_vgpr(ctx, src)); Temp upper = bld.tmp(v1), lower = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src); upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand::c32(0x80000000u), upper); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_fabs: { if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { Temp src = get_alu_src_vop3p(ctx, instr->src[0]); Instruction* vop3p = bld.vop3p(aco_opcode::v_pk_max_f16, Definition(dst), src, src, instr->src[0].swizzle[0] & 1 ? 3 : 0, instr->src[0].swizzle[1] & 1 ? 3 : 0) .instr; vop3p->valu().neg_lo[1] = true; vop3p->valu().neg_hi[1] = true; break; } Temp src = get_alu_src(ctx, instr->src[0]); if (dst.regClass() == v2b) { Instruction* mul = bld.vop2_e64(aco_opcode::v_mul_f16, Definition(dst), Operand::c16(0x3c00), as_vgpr(ctx, src)) .instr; mul->valu().abs[1] = true; } else if (dst.regClass() == v1) { Instruction* mul = bld.vop2_e64(aco_opcode::v_mul_f32, Definition(dst), Operand::c32(0x3f800000u), as_vgpr(ctx, src)) .instr; mul->valu().abs[1] = true; } else if (dst.regClass() == v2) { if (ctx->block->fp_mode.must_flush_denorms16_64) src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand::c64(0x3FF0000000000000), as_vgpr(ctx, src)); Temp upper = bld.tmp(v1), lower = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src); upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0x7FFFFFFFu), upper); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_fsat: { if (dst.regClass() == v1 && instr->dest.dest.ssa.bit_size == 16) { Temp src = get_alu_src_vop3p(ctx, instr->src[0]); Instruction* vop3p = bld.vop3p(aco_opcode::v_pk_mul_f16, Definition(dst), src, Operand::c16(0x3C00), instr->src[0].swizzle[0] & 1, instr->src[0].swizzle[1] & 1); vop3p->valu().clamp = true; break; } Temp src = get_alu_src(ctx, instr->src[0]); if (dst.regClass() == v2b) { bld.vop3(aco_opcode::v_med3_f16, Definition(dst), Operand::c16(0u), Operand::c16(0x3c00), src); } else if (dst.regClass() == v1) { bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand::zero(), Operand::c32(0x3f800000u), src); /* apparently, it is not necessary to flush denorms if this instruction is used with these * operands */ // TODO: confirm that this holds under any circumstances } else if (dst.regClass() == v2) { Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand::zero()); add->valu().clamp = true; } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_flog2: { if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_log_f16, dst); } else if (dst.regClass() == v1) { Temp src = get_alu_src(ctx, instr->src[0]); emit_log2(ctx, bld, Definition(dst), src); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_frcp: { if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f16, dst); } else if (dst.regClass() == v1) { Temp src = get_alu_src(ctx, instr->src[0]); emit_rcp(ctx, bld, Definition(dst), src); } else if (dst.regClass() == v2) { /* Lowered at NIR level for precision reasons. */ emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_fexp2: { if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f16, dst); } else if (dst.regClass() == v1) { emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_fsqrt: { if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f16, dst); } else if (dst.regClass() == v1) { Temp src = get_alu_src(ctx, instr->src[0]); emit_sqrt(ctx, bld, Definition(dst), src); } else if (dst.regClass() == v2) { /* Lowered at NIR level for precision reasons. */ emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_ffract: { if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f16, dst); } else if (dst.regClass() == v1) { emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst); } else if (dst.regClass() == v2) { emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_ffloor: { if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f16, dst); } else if (dst.regClass() == v1) { emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst); } else if (dst.regClass() == v2) { Temp src = get_alu_src(ctx, instr->src[0]); emit_floor_f64(ctx, bld, Definition(dst), src); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_fceil: { if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f16, dst); } else if (dst.regClass() == v1) { emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst); } else if (dst.regClass() == v2) { if (ctx->options->gfx_level >= GFX7) { emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst); } else { /* GFX6 doesn't support V_CEIL_F64, lower it. */ /* trunc = trunc(src0) * if (src0 > 0.0 && src0 != trunc) * trunc += 1.0 */ Temp src0 = get_alu_src(ctx, instr->src[0]); Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0); Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand::zero()); Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.def(bld.lm), src0, trunc); Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), tmp0, tmp1); Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand::zero()), bld.copy(bld.def(v1), Operand::c32(0x3ff00000u)), cond); add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand::zero()), add); bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add); } } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_ftrunc: { if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f16, dst); } else if (dst.regClass() == v1) { emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst); } else if (dst.regClass() == v2) { Temp src = get_alu_src(ctx, instr->src[0]); emit_trunc_f64(ctx, bld, Definition(dst), src); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_fround_even: { if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f16, dst); } else if (dst.regClass() == v1) { emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst); } else if (dst.regClass() == v2) { if (ctx->options->gfx_level >= GFX7) { emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst); } else { /* GFX6 doesn't support V_RNDNE_F64, lower it. */ Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1); Temp src0 = get_alu_src(ctx, instr->src[0]); bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0); Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand::c32(-2u))); Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand::c32(0x43300000u)), as_vgpr(ctx, src0_hi)); Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand::zero(), bfi)); Instruction* sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand::zero(), bfi)); sub->valu().neg[1] = true; tmp = sub->definitions[0].getTemp(); Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand::c32(-1u), Operand::c32(0x432fffffu)); Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, v); vop3->valu().abs[0] = true; Temp cond = vop3->definitions[0].getTemp(); Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp); Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond); Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1); } } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_fsin_amd: case nir_op_fcos_amd: { Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0])); aco_ptr norm; if (dst.regClass() == v2b) { aco_opcode opcode = instr->op == nir_op_fsin_amd ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16; bld.vop1(opcode, Definition(dst), src); } else if (dst.regClass() == v1) { /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */ if (ctx->options->gfx_level < GFX9) src = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), src); aco_opcode opcode = instr->op == nir_op_fsin_amd ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32; bld.vop1(opcode, Definition(dst), src); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_ldexp: { if (dst.regClass() == v2b) { emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, dst, false); } else if (dst.regClass() == v1) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_ldexp_f32, dst); } else if (dst.regClass() == v2) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_ldexp_f64, dst); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_frexp_sig: { if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_frexp_mant_f16, dst); } else if (dst.regClass() == v1) { emit_vop1_instruction(ctx, instr, aco_opcode::v_frexp_mant_f32, dst); } else if (dst.regClass() == v2) { emit_vop1_instruction(ctx, instr, aco_opcode::v_frexp_mant_f64, dst); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_frexp_exp: { if (instr->src[0].src.ssa->bit_size == 16) { Temp src = get_alu_src(ctx, instr->src[0]); Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src); tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tmp, Operand::zero()); convert_int(ctx, bld, tmp, 8, 32, true, dst); } else if (instr->src[0].src.ssa->bit_size == 32) { emit_vop1_instruction(ctx, instr, aco_opcode::v_frexp_exp_i32_f32, dst); } else if (instr->src[0].src.ssa->bit_size == 64) { emit_vop1_instruction(ctx, instr, aco_opcode::v_frexp_exp_i32_f64, dst); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_fsign: { Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0])); if (dst.regClass() == v2b) { assert(ctx->program->gfx_level >= GFX9); /* replace negative zero with positive zero */ src = bld.vop2(aco_opcode::v_add_f16, bld.def(v2b), Operand::zero(), src); src = bld.vop3(aco_opcode::v_med3_i16, bld.def(v2b), Operand::c16(-1), src, Operand::c16(1u)); bld.vop1(aco_opcode::v_cvt_f16_i16, Definition(dst), src); } else if (dst.regClass() == v1) { src = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand::zero(), src); src = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand::c32(-1), src, Operand::c32(1u)); bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src); } else if (dst.regClass() == v2) { Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.def(bld.lm), Operand::zero(), src); Temp tmp = bld.copy(bld.def(v1), Operand::c32(0x3FF00000u)); Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond); cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.def(bld.lm), Operand::zero(), src); tmp = bld.copy(bld.def(v1), Operand::c32(0xBFF00000u)); upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand::zero(), upper); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_f2f16: case nir_op_f2f16_rtne: { Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size == 64) src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src); if (instr->op == nir_op_f2f16_rtne && ctx->block->fp_mode.round16_64 != fp_round_ne) /* We emit s_round_mode/s_setreg_imm32 in lower_to_hw_instr to * keep value numbering and the scheduler simpler. */ bld.vop1(aco_opcode::p_cvt_f16_f32_rtne, Definition(dst), src); else bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src); break; } case nir_op_f2f16_rtz: { Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size == 64) src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src); if (ctx->block->fp_mode.round16_64 == fp_round_tz) bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src); else if (ctx->program->gfx_level == GFX8 || ctx->program->gfx_level == GFX9) bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32_e64, Definition(dst), src, Operand::zero()); else bld.vop2(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src, as_vgpr(ctx, src)); break; } case nir_op_f2f32: { if (instr->src[0].src.ssa->bit_size == 16) { emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst); } else if (instr->src[0].src.ssa->bit_size == 64) { emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_f2f64: { Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size == 16) src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src); bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src); break; } case nir_op_i2f16: { assert(dst.regClass() == v2b); Temp src = get_alu_src(ctx, instr->src[0]); const unsigned input_size = instr->src[0].src.ssa->bit_size; if (input_size <= 16) { /* Expand integer to the size expected by the uint→float converter used below */ unsigned target_size = (ctx->program->gfx_level >= GFX8 ? 16 : 32); if (input_size != target_size) { src = convert_int(ctx, bld, src, input_size, target_size, true); } } else if (input_size == 64) { /* Truncate down to 32 bits; if any of the upper bits are relevant, * the value does not fall into the single-precision float range * anyway. SPIR-V does not mandate any specific behavior for such * large inputs. */ src = convert_int(ctx, bld, src, 64, 32, false); } if (ctx->program->gfx_level >= GFX8 && input_size <= 16) { bld.vop1(aco_opcode::v_cvt_f16_i16, Definition(dst), src); } else { /* Convert to f32 and then down to f16. This is needed to handle * inputs slightly outside the range [INT16_MIN, INT16_MAX], * which are representable via f16 but wouldn't be converted * correctly by v_cvt_f16_i16. * * This is also the fallback-path taken on GFX7 and earlier, which * do not support direct f16⟷i16 conversions. */ src = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), src); bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src); } break; } case nir_op_i2f32: { assert(dst.size() == 1); Temp src = get_alu_src(ctx, instr->src[0]); const unsigned input_size = instr->src[0].src.ssa->bit_size; if (input_size <= 32) { if (input_size <= 16) { /* Sign-extend to 32-bits */ src = convert_int(ctx, bld, src, input_size, 32, true); } bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src); } else { assert(input_size == 64); RegClass rc = RegClass(src.type(), 1); Temp lower = bld.tmp(rc), upper = bld.tmp(rc); bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src); lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower); upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper); upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand::c32(32u)); upper = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), lower, upper); bld.vop1(aco_opcode::v_cvt_f32_f64, Definition(dst), upper); } break; } case nir_op_i2f64: { if (instr->src[0].src.ssa->bit_size <= 32) { Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size <= 16) src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true); bld.vop1(aco_opcode::v_cvt_f64_i32, Definition(dst), src); } else if (instr->src[0].src.ssa->bit_size == 64) { Temp src = get_alu_src(ctx, instr->src[0]); RegClass rc = RegClass(src.type(), 1); Temp lower = bld.tmp(rc), upper = bld.tmp(rc); bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src); lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower); upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper); upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand::c32(32u)); bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_u2f16: { assert(dst.regClass() == v2b); Temp src = get_alu_src(ctx, instr->src[0]); const unsigned input_size = instr->src[0].src.ssa->bit_size; if (input_size <= 16) { /* Expand integer to the size expected by the uint→float converter used below */ unsigned target_size = (ctx->program->gfx_level >= GFX8 ? 16 : 32); if (input_size != target_size) { src = convert_int(ctx, bld, src, input_size, target_size, false); } } else if (input_size == 64) { /* Truncate down to 32 bits; if any of the upper bits are non-zero, * the value does not fall into the single-precision float range * anyway. SPIR-V does not mandate any specific behavior for such * large inputs. */ src = convert_int(ctx, bld, src, 64, 32, false); } if (ctx->program->gfx_level >= GFX8) { /* float16 has a range of [0, 65519]. Converting from larger * inputs is UB, so we just need to consider the lower 16 bits */ bld.vop1(aco_opcode::v_cvt_f16_u16, Definition(dst), src); } else { /* GFX7 and earlier do not support direct f16⟷u16 conversions */ src = bld.vop1(aco_opcode::v_cvt_f32_u32, bld.def(v1), src); bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src); } break; } case nir_op_u2f32: { assert(dst.size() == 1); Temp src = get_alu_src(ctx, instr->src[0]); const unsigned input_size = instr->src[0].src.ssa->bit_size; if (input_size == 8) { bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src); } else if (input_size <= 32) { if (input_size == 16) src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, false); bld.vop1(aco_opcode::v_cvt_f32_u32, Definition(dst), src); } else { assert(input_size == 64); RegClass rc = RegClass(src.type(), 1); Temp lower = bld.tmp(rc), upper = bld.tmp(rc); bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src); lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower); upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper); upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand::c32(32u)); upper = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), lower, upper); bld.vop1(aco_opcode::v_cvt_f32_f64, Definition(dst), upper); } break; } case nir_op_u2f64: { if (instr->src[0].src.ssa->bit_size <= 32) { Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size <= 16) src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, false); bld.vop1(aco_opcode::v_cvt_f64_u32, Definition(dst), src); } else if (instr->src[0].src.ssa->bit_size == 64) { Temp src = get_alu_src(ctx, instr->src[0]); RegClass rc = RegClass(src.type(), 1); Temp lower = bld.tmp(rc), upper = bld.tmp(rc); bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src); lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower); upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper); upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand::c32(32u)); bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_f2i8: case nir_op_f2i16: { if (instr->src[0].src.ssa->bit_size == 16) { if (ctx->program->gfx_level >= GFX8) { emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i16_f16, dst); } else { /* GFX7 and earlier do not support direct f16⟷i16 conversions */ Temp tmp = bld.tmp(v1); emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, tmp); tmp = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp); tmp = convert_int(ctx, bld, tmp, 32, instr->dest.dest.ssa.bit_size, false, (dst.type() == RegType::sgpr) ? Temp() : dst); if (dst.type() == RegType::sgpr) { bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp); } } } else if (instr->src[0].src.ssa->bit_size == 32) { emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst); } else { emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst); } break; } case nir_op_f2u8: case nir_op_f2u16: { if (instr->src[0].src.ssa->bit_size == 16) { if (ctx->program->gfx_level >= GFX8) { emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u16_f16, dst); } else { /* GFX7 and earlier do not support direct f16⟷u16 conversions */ Temp tmp = bld.tmp(v1); emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, tmp); tmp = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp); tmp = convert_int(ctx, bld, tmp, 32, instr->dest.dest.ssa.bit_size, false, (dst.type() == RegType::sgpr) ? Temp() : dst); if (dst.type() == RegType::sgpr) { bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp); } } } else if (instr->src[0].src.ssa->bit_size == 32) { emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst); } else { emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst); } break; } case nir_op_f2i32: { Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size == 16) { Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src); if (dst.type() == RegType::vgpr) { bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp); } else { bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp)); } } else if (instr->src[0].src.ssa->bit_size == 32) { emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst); } else if (instr->src[0].src.ssa->bit_size == 64) { emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_f2u32: { Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size == 16) { Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src); if (dst.type() == RegType::vgpr) { bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp); } else { bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp)); } } else if (instr->src[0].src.ssa->bit_size == 32) { emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst); } else if (instr->src[0].src.ssa->bit_size == 64) { emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_f2i64: { Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size == 16) src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src); if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) { Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src); exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand::zero(), exponent, Operand::c32(64u)); Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0x7fffffu), src); Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand::c32(31u), src); mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand::c32(0x800000u), mantissa); mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand::c32(7u), mantissa); mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand::zero(), mantissa); Temp new_exponent = bld.tmp(v1); Temp borrow = bld.vsub32(Definition(new_exponent), Operand::c32(63u), exponent, true).def(1).getTemp(); if (ctx->program->gfx_level >= GFX8) mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa); else mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent); Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand::c32(0xfffffffeu)); Temp lower = bld.tmp(v1), upper = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa); lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand::c32(0xffffffffu), borrow); upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow); lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower); upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper); Temp new_lower = bld.tmp(v1); borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp(); Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper); } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) { if (src.type() == RegType::vgpr) src = bld.as_uniform(src); Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand::c32(0x80017u)); exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand::c32(126u)); exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand::zero(), exponent); exponent = bld.sop2(aco_opcode::s_min_i32, bld.def(s1), bld.def(s1, scc), Operand::c32(64u), exponent); Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand::c32(0x7fffffu), src); Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand::c32(31u)); mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand::c32(0x800000u), mantissa); mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand::c32(7u)); mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand::zero(), mantissa); exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand::c32(63u), exponent); mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent); Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand::c32(0xffffffffu)); // exp >= 64 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand::c32(0xfffffffeu)); mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond); Temp lower = bld.tmp(s1), upper = bld.tmp(s1); bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa); lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower); upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper); Temp borrow = bld.tmp(s1); lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign); upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, bld.scc(borrow)); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); } else if (instr->src[0].src.ssa->bit_size == 64) { Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand::zero(), Operand::c32(0x3df00000u)); Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src); Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec); vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand::zero(), Operand::c32(0xc1f00000u)); Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul); Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc); Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma); Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor); if (dst.type() == RegType::sgpr) { lower = bld.as_uniform(lower); upper = bld.as_uniform(upper); } bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_f2u64: { Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size == 16) src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src); if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) { Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src); Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.def(bld.lm), Operand::c32(64u), exponent); exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand::zero(), exponent); Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0x7fffffu), src); mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand::c32(0x800000u), mantissa); Temp exponent_small = bld.vsub32(bld.def(v1), Operand::c32(24u), exponent); Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa); mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand::zero(), mantissa); Temp new_exponent = bld.tmp(v1); Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand::c32(24u), true).def(1).getTemp(); if (ctx->program->gfx_level >= GFX8) mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa); else mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent); Temp lower = bld.tmp(v1), upper = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa); lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small); upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand::zero(), cond_small); lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::c32(0xffffffffu), lower, exponent_in_range); upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::c32(0xffffffffu), upper, exponent_in_range); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) { if (src.type() == RegType::vgpr) src = bld.as_uniform(src); Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand::c32(0x80017u)); exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand::c32(126u)); exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand::zero(), exponent); Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand::c32(0x7fffffu), src); mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand::c32(0x800000u), mantissa); Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand::c32(24u), exponent); Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small); mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand::zero(), mantissa); Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand::c32(24u)); mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large); Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand::c32(64u), exponent); mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand::c32(0xffffffffu), cond); Temp lower = bld.tmp(s1), upper = bld.tmp(s1); bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa); Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand::c32(24u)); lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small); upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand::zero(), upper, cond_small); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); } else if (instr->src[0].src.ssa->bit_size == 64) { Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand::zero(), Operand::c32(0x3df00000u)); Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src); Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec); vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand::zero(), Operand::c32(0xc1f00000u)); Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul); Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc); Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma); Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor); if (dst.type() == RegType::sgpr) { lower = bld.as_uniform(lower); upper = bld.as_uniform(upper); } bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_b2f16: { Temp src = get_alu_src(ctx, instr->src[0]); assert(src.regClass() == bld.lm); if (dst.regClass() == s1) { src = bool_to_scalar_condition(ctx, src); bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand::c32(0x3c00u), src); } else if (dst.regClass() == v2b) { Temp one = bld.copy(bld.def(v1), Operand::c32(0x3c00u)); bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand::zero(), one, src); } else { unreachable("Wrong destination register class for nir_op_b2f16."); } break; } case nir_op_b2f32: { Temp src = get_alu_src(ctx, instr->src[0]); assert(src.regClass() == bld.lm); if (dst.regClass() == s1) { src = bool_to_scalar_condition(ctx, src); bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand::c32(0x3f800000u), src); } else if (dst.regClass() == v1) { bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand::zero(), Operand::c32(0x3f800000u), src); } else { unreachable("Wrong destination register class for nir_op_b2f32."); } break; } case nir_op_b2f64: { Temp src = get_alu_src(ctx, instr->src[0]); assert(src.regClass() == bld.lm); if (dst.regClass() == s2) { src = bool_to_scalar_condition(ctx, src); bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand::c32(0x3f800000u), Operand::zero(), bld.scc(src)); } else if (dst.regClass() == v2) { Temp one = bld.copy(bld.def(v1), Operand::c32(0x3FF00000u)); Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::zero(), one, src); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand::zero(), upper); } else { unreachable("Wrong destination register class for nir_op_b2f64."); } break; } case nir_op_i2i8: case nir_op_i2i16: case nir_op_i2i32: case nir_op_i2i64: { if (dst.type() == RegType::sgpr && instr->src[0].src.ssa->bit_size < 32) { /* no need to do the extract in get_alu_src() */ sgpr_extract_mode mode = instr->dest.dest.ssa.bit_size > instr->src[0].src.ssa->bit_size ? sgpr_extract_sext : sgpr_extract_undef; extract_8_16_bit_sgpr_element(ctx, dst, &instr->src[0], mode); } else { const unsigned input_bitsize = instr->src[0].src.ssa->bit_size; const unsigned output_bitsize = instr->dest.dest.ssa.bit_size; convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]), input_bitsize, output_bitsize, output_bitsize > input_bitsize, dst); } break; } case nir_op_u2u8: case nir_op_u2u16: case nir_op_u2u32: case nir_op_u2u64: { if (dst.type() == RegType::sgpr && instr->src[0].src.ssa->bit_size < 32) { /* no need to do the extract in get_alu_src() */ sgpr_extract_mode mode = instr->dest.dest.ssa.bit_size > instr->src[0].src.ssa->bit_size ? sgpr_extract_zext : sgpr_extract_undef; extract_8_16_bit_sgpr_element(ctx, dst, &instr->src[0], mode); } else { convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]), instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, false, dst); } break; } case nir_op_b2b32: case nir_op_b2i8: case nir_op_b2i16: case nir_op_b2i32: case nir_op_b2i64: { Temp src = get_alu_src(ctx, instr->src[0]); assert(src.regClass() == bld.lm); Temp tmp = dst.bytes() == 8 ? bld.tmp(RegClass::get(dst.type(), 4)) : dst; if (tmp.regClass() == s1) { bool_to_scalar_condition(ctx, src, tmp); } else if (tmp.type() == RegType::vgpr) { bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(tmp), Operand::zero(), Operand::c32(1u), src); } else { unreachable("Invalid register class for b2i32"); } if (tmp != dst) bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand::zero()); break; } case nir_op_b2b1: { Temp src = get_alu_src(ctx, instr->src[0]); assert(dst.regClass() == bld.lm); if (src.type() == RegType::vgpr) { assert(src.regClass() == v1 || src.regClass() == v2); assert(dst.regClass() == bld.lm); bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32, Definition(dst), Operand::zero(), src); } else { assert(src.regClass() == s1 || src.regClass() == s2); Temp tmp; if (src.regClass() == s2 && ctx->program->gfx_level <= GFX7) { tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand::zero(), src) .def(1) .getTemp(); } else { tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32, bld.scc(bld.def(s1)), Operand::zero(), src); } bool_to_vector_condition(ctx, tmp, dst); } break; } case nir_op_unpack_64_2x32: case nir_op_unpack_32_2x16: case nir_op_unpack_64_4x16: case nir_op_unpack_32_4x8: bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0])); emit_split_vector(ctx, dst, instr->op == nir_op_unpack_32_4x8 || instr->op == nir_op_unpack_64_4x16 ? 4 : 2); break; case nir_op_pack_64_2x32_split: { Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1); break; } case nir_op_unpack_64_2x32_split_x: bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0])); break; case nir_op_unpack_64_2x32_split_y: bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0])); break; case nir_op_unpack_32_2x16_split_x: if (dst.type() == RegType::vgpr) { bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0])); } else { bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0])); } break; case nir_op_unpack_32_2x16_split_y: if (dst.type() == RegType::vgpr) { bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0])); } else { bld.pseudo(aco_opcode::p_extract, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]), Operand::c32(1u), Operand::c32(16u), Operand::zero()); } break; case nir_op_pack_32_2x16_split: { Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); if (dst.regClass() == v1) { src0 = emit_extract_vector(ctx, src0, 0, v2b); src1 = emit_extract_vector(ctx, src1, 0, v2b); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1); } else { src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand::c32(0xFFFFu)); src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand::c32(16u)); bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1); } break; } case nir_op_pack_32_4x8: bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0], 4)); break; case nir_op_pack_half_2x16_rtz_split: case nir_op_pack_half_2x16_split: { if (dst.regClass() == v1) { if (ctx->program->gfx_level == GFX8 || ctx->program->gfx_level == GFX9) emit_vop3a_instruction(ctx, instr, aco_opcode::v_cvt_pkrtz_f16_f32_e64, dst); else emit_vop2_instruction(ctx, instr, aco_opcode::v_cvt_pkrtz_f16_f32, dst, false); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_pack_unorm_2x16: case nir_op_pack_snorm_2x16: { unsigned bit_size = instr->src[0].src.ssa->bit_size; /* Only support 16 and 32bit. */ assert(bit_size == 32 || bit_size == 16); RegClass src_rc = bit_size == 32 ? v1 : v2b; Temp src = get_alu_src(ctx, instr->src[0], 2); Temp src0 = emit_extract_vector(ctx, src, 0, src_rc); Temp src1 = emit_extract_vector(ctx, src, 1, src_rc); /* Work around for pre-GFX9 GPU which don't have fp16 pknorm instruction. */ if (bit_size == 16 && ctx->program->gfx_level < GFX9) { src0 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0); src1 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1); bit_size = 32; } aco_opcode opcode; if (bit_size == 32) { opcode = instr->op == nir_op_pack_unorm_2x16 ? aco_opcode::v_cvt_pknorm_u16_f32 : aco_opcode::v_cvt_pknorm_i16_f32; } else { opcode = instr->op == nir_op_pack_unorm_2x16 ? aco_opcode::v_cvt_pknorm_u16_f16 : aco_opcode::v_cvt_pknorm_i16_f16; } bld.vop3(opcode, Definition(dst), src0, src1); break; } case nir_op_pack_uint_2x16: case nir_op_pack_sint_2x16: { Temp src = get_alu_src(ctx, instr->src[0], 2); Temp src0 = emit_extract_vector(ctx, src, 0, v1); Temp src1 = emit_extract_vector(ctx, src, 1, v1); aco_opcode opcode = instr->op == nir_op_pack_uint_2x16 ? aco_opcode::v_cvt_pk_u16_u32 : aco_opcode::v_cvt_pk_i16_i32; bld.vop3(opcode, Definition(dst), src0, src1); break; } case nir_op_unpack_half_2x16_split_x_flush_to_zero: case nir_op_unpack_half_2x16_split_x: { Temp src = get_alu_src(ctx, instr->src[0]); if (src.regClass() == v1) src = bld.pseudo(aco_opcode::p_split_vector, bld.def(v2b), bld.def(v2b), src); if (dst.regClass() == v1) { assert(ctx->block->fp_mode.must_flush_denorms16_64 == (instr->op == nir_op_unpack_half_2x16_split_x_flush_to_zero)); bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), src); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_unpack_half_2x16_split_y_flush_to_zero: case nir_op_unpack_half_2x16_split_y: { Temp src = get_alu_src(ctx, instr->src[0]); if (src.regClass() == s1) src = bld.pseudo(aco_opcode::p_extract, bld.def(s1), bld.def(s1, scc), src, Operand::c32(1u), Operand::c32(16u), Operand::zero()); else src = bld.pseudo(aco_opcode::p_split_vector, bld.def(v2b), bld.def(v2b), src).def(1).getTemp(); if (dst.regClass() == v1) { assert(ctx->block->fp_mode.must_flush_denorms16_64 == (instr->op == nir_op_unpack_half_2x16_split_y_flush_to_zero)); bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), src); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_sad_u8x4: { assert(dst.regClass() == v1); emit_vop3a_instruction(ctx, instr, aco_opcode::v_sad_u8, dst, false, 3u, false); break; } case nir_op_fquantize2f16: { Temp src = get_alu_src(ctx, instr->src[0]); Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v2b), src); Temp f32, cmp_res; if (ctx->program->gfx_level >= GFX8) { Temp mask = bld.copy( bld.def(s1), Operand::c32(0x36Fu)); /* value is NOT negative/positive denormal value */ cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.def(bld.lm), f16, mask); f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16); } else { /* 0x38800000 is smallest half float value (2^-14) in 32-bit float, * so compare the result and flush to 0 if it's smaller. */ f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16); Temp smallest = bld.copy(bld.def(s1), Operand::c32(0x38800000u)); Instruction* tmp0 = bld.vopc_e64(aco_opcode::v_cmp_lt_f32, bld.def(bld.lm), f32, smallest); tmp0->valu().abs[0] = true; Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f32, bld.def(bld.lm), Operand::zero(), f32); cmp_res = bld.sop2(aco_opcode::s_nand_b64, bld.def(s2), bld.def(s1, scc), tmp0->definitions[0].getTemp(), tmp1); } if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32) { Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand::zero(), as_vgpr(ctx, src)); bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res); } else { bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand::zero(), f32, cmp_res); } break; } case nir_op_bfm: { Temp bits = get_alu_src(ctx, instr->src[0]); Temp offset = get_alu_src(ctx, instr->src[1]); if (dst.regClass() == s1) { bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset); } else if (dst.regClass() == v1) { bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_bitfield_select: { /* dst = (insert & bitmask) | (base & ~bitmask) */ if (dst.regClass() == s1) { Temp bitmask = get_alu_src(ctx, instr->src[0]); Temp insert = get_alu_src(ctx, instr->src[1]); Temp base = get_alu_src(ctx, instr->src[2]); aco_ptr sop2; nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src); nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src); Operand lhs; if (const_insert && const_bitmask) { lhs = Operand::c32(const_insert->u32 & const_bitmask->u32); } else { insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask); lhs = Operand(insert); } Operand rhs; nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src); if (const_base && const_bitmask) { rhs = Operand::c32(const_base->u32 & ~const_bitmask->u32); } else { base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask); rhs = Operand(base); } bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs); } else if (dst.regClass() == v1) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_bfi_b32, dst, false, 3); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_ubfe: case nir_op_ibfe: { if (dst.bytes() != 4) unreachable("Unsupported BFE bit size"); if (dst.type() == RegType::sgpr) { Temp base = get_alu_src(ctx, instr->src[0]); nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src); nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src); aco_opcode opcode = instr->op == nir_op_ubfe ? aco_opcode::s_bfe_u32 : aco_opcode::s_bfe_i32; if (const_offset && const_bits) { uint32_t extract = (const_bits->u32 << 16) | (const_offset->u32 & 0x1f); bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, Operand::c32(extract)); break; } Temp offset = get_alu_src(ctx, instr->src[1]); Temp bits = get_alu_src(ctx, instr->src[2]); if (ctx->program->gfx_level >= GFX9) { Temp extract = bld.sop2(aco_opcode::s_pack_ll_b32_b16, bld.def(s1), offset, bits); bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract); } else if (instr->op == nir_op_ubfe) { Temp mask = bld.sop2(aco_opcode::s_bfm_b32, bld.def(s1), bits, offset); Temp masked = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), base, mask); bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), masked, offset); } else { Operand bits_op = const_bits ? Operand::c32(const_bits->u32 << 16) : bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand::c32(16u)); Operand offset_op = const_offset ? Operand::c32(const_offset->u32 & 0x1fu) : bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand::c32(0x1fu)); Temp extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), bits_op, offset_op); bld.sop2(aco_opcode::s_bfe_i32, Definition(dst), bld.def(s1, scc), base, extract); } } else { aco_opcode opcode = instr->op == nir_op_ubfe ? aco_opcode::v_bfe_u32 : aco_opcode::v_bfe_i32; emit_vop3a_instruction(ctx, instr, opcode, dst, false, 3); } break; } case nir_op_extract_u8: case nir_op_extract_i8: case nir_op_extract_u16: case nir_op_extract_i16: { bool is_signed = instr->op == nir_op_extract_i16 || instr->op == nir_op_extract_i8; unsigned comp = instr->op == nir_op_extract_u8 || instr->op == nir_op_extract_i8 ? 4 : 2; uint32_t bits = comp == 4 ? 8 : 16; unsigned index = nir_src_as_uint(instr->src[1].src); if (bits >= instr->dest.dest.ssa.bit_size || index * bits >= instr->dest.dest.ssa.bit_size) { assert(index == 0); bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0])); } else if (dst.regClass() == s1 && instr->dest.dest.ssa.bit_size == 16) { Temp vec = get_ssa_temp(ctx, instr->src[0].src.ssa); unsigned swizzle = instr->src[0].swizzle[0]; if (vec.size() > 1) { vec = emit_extract_vector(ctx, vec, swizzle / 2, s1); swizzle = swizzle & 1; } index += swizzle * instr->dest.dest.ssa.bit_size / bits; bld.pseudo(aco_opcode::p_extract, Definition(dst), bld.def(s1, scc), Operand(vec), Operand::c32(index), Operand::c32(bits), Operand::c32(is_signed)); } else { Temp src = get_alu_src(ctx, instr->src[0]); Definition def(dst); if (dst.bytes() == 8) { src = emit_extract_vector(ctx, src, index / comp, RegClass(src.type(), 1)); index %= comp; def = bld.def(src.type(), 1); } assert(def.bytes() <= 4); if (def.regClass() == s1) { bld.pseudo(aco_opcode::p_extract, def, bld.def(s1, scc), Operand(src), Operand::c32(index), Operand::c32(bits), Operand::c32(is_signed)); } else { src = emit_extract_vector(ctx, src, 0, def.regClass()); bld.pseudo(aco_opcode::p_extract, def, Operand(src), Operand::c32(index), Operand::c32(bits), Operand::c32(is_signed)); } if (dst.size() == 2) bld.pseudo(aco_opcode::p_create_vector, Definition(dst), def.getTemp(), Operand::zero()); } break; } case nir_op_insert_u8: case nir_op_insert_u16: { unsigned comp = instr->op == nir_op_insert_u8 ? 4 : 2; uint32_t bits = comp == 4 ? 8 : 16; unsigned index = nir_src_as_uint(instr->src[1].src); if (bits >= instr->dest.dest.ssa.bit_size || index * bits >= instr->dest.dest.ssa.bit_size) { assert(index == 0); bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0])); } else { Temp src = get_alu_src(ctx, instr->src[0]); Definition def(dst); bool swap = false; if (dst.bytes() == 8) { src = emit_extract_vector(ctx, src, 0u, RegClass(src.type(), 1)); swap = index >= comp; index %= comp; def = bld.def(src.type(), 1); } if (def.regClass() == s1) { bld.pseudo(aco_opcode::p_insert, def, bld.def(s1, scc), Operand(src), Operand::c32(index), Operand::c32(bits)); } else { src = emit_extract_vector(ctx, src, 0, def.regClass()); bld.pseudo(aco_opcode::p_insert, def, Operand(src), Operand::c32(index), Operand::c32(bits)); } if (dst.size() == 2 && swap) bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand::zero(), def.getTemp()); else if (dst.size() == 2) bld.pseudo(aco_opcode::p_create_vector, Definition(dst), def.getTemp(), Operand::zero()); } break; } case nir_op_bit_count: { Temp src = get_alu_src(ctx, instr->src[0]); if (src.regClass() == s1) { bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src); } else if (src.regClass() == v1) { bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand::zero()); } else if (src.regClass() == v2) { bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), emit_extract_vector(ctx, src, 1, v1), bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), emit_extract_vector(ctx, src, 0, v1), Operand::zero())); } else if (src.regClass() == s2) { bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_op_flt: { emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64); break; } case nir_op_fge: { emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64); break; } case nir_op_feq: { emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64); break; } case nir_op_fneu: { emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64); break; } case nir_op_ilt: { emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32); break; } case nir_op_ige: { emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32); break; } case nir_op_ieq: { if (instr->src[0].src.ssa->bit_size == 1) emit_boolean_logic(ctx, instr, Builder::s_xnor, dst); else emit_comparison( ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32, ctx->program->gfx_level >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes); break; } case nir_op_ine: { if (instr->src[0].src.ssa->bit_size == 1) emit_boolean_logic(ctx, instr, Builder::s_xor, dst); else emit_comparison( ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32, ctx->program->gfx_level >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes); break; } case nir_op_ult: { emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32); break; } case nir_op_uge: { emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32); break; } case nir_op_fddx: case nir_op_fddy: case nir_op_fddx_fine: case nir_op_fddy_fine: case nir_op_fddx_coarse: case nir_op_fddy_coarse: { if (!nir_src_is_divergent(instr->src[0].src)) { /* Source is the same in all lanes, so the derivative is zero. * This also avoids emitting invalid IR. */ bld.copy(Definition(dst), Operand::zero()); break; } Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0])); uint16_t dpp_ctrl1, dpp_ctrl2; if (instr->op == nir_op_fddx_fine) { dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2); dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3); } else if (instr->op == nir_op_fddy_fine) { dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1); dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3); } else { dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0); if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse) dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1); else dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2); } Temp tmp; if (ctx->program->gfx_level >= GFX8) { Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1); tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2); } else { Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1); Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2); tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl); } emit_wqm(bld, tmp, dst, true); break; } default: isel_err(&instr->instr, "Unknown NIR ALU instr"); } } void visit_load_const(isel_context* ctx, nir_load_const_instr* instr) { Temp dst = get_ssa_temp(ctx, &instr->def); // TODO: we really want to have the resulting type as this would allow for 64bit literals // which get truncated the lsb if double and msb if int // for now, we only use s_mov_b64 with 64bit inline constants assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar."); assert(dst.type() == RegType::sgpr); Builder bld(ctx->program, ctx->block); if (instr->def.bit_size == 1) { assert(dst.regClass() == bld.lm); int val = instr->value[0].b ? -1 : 0; Operand op = bld.lm.size() == 1 ? Operand::c32(val) : Operand::c64(val); bld.copy(Definition(dst), op); } else if (instr->def.bit_size == 8) { bld.copy(Definition(dst), Operand::c32(instr->value[0].u8)); } else if (instr->def.bit_size == 16) { /* sign-extend to use s_movk_i32 instead of a literal */ bld.copy(Definition(dst), Operand::c32(instr->value[0].i16)); } else if (dst.size() == 1) { bld.copy(Definition(dst), Operand::c32(instr->value[0].u32)); } else { assert(dst.size() != 1); aco_ptr vec{create_instruction( aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)}; if (instr->def.bit_size == 64) for (unsigned i = 0; i < dst.size(); i++) vec->operands[i] = Operand::c32(instr->value[0].u64 >> i * 32); else { for (unsigned i = 0; i < dst.size(); i++) vec->operands[i] = Operand::c32(instr->value[i].u32); } vec->definitions[0] = Definition(dst); ctx->block->instructions.emplace_back(std::move(vec)); } } bool can_use_byte_align_for_global_load(unsigned num_components, unsigned component_size, unsigned align_, bool support_12_byte) { /* Only use byte-align for 8/16-bit loads if we won't have to increase it's size and won't have * to use unsupported load sizes. */ assert(util_is_power_of_two_nonzero(align_)); if (align_ < 4) { assert(component_size < 4); unsigned load_size = num_components * component_size; int new_size = align(load_size + (4 - align_), 4); return new_size == align(load_size, 4) && (new_size != 12 || support_12_byte); } return true; } struct LoadEmitInfo { Operand offset; Temp dst; unsigned num_components; unsigned component_size; Temp resource = Temp(0, s1); /* buffer resource or base 64-bit address */ Temp idx = Temp(0, v1); /* buffer index */ unsigned component_stride = 0; unsigned const_offset = 0; unsigned align_mul = 0; unsigned align_offset = 0; pipe_format format; bool glc = false; bool slc = false; bool split_by_component_stride = true; unsigned swizzle_component_size = 0; memory_sync_info sync; Temp soffset = Temp(0, s1); }; struct EmitLoadParameters { using Callback = Temp (*)(Builder& bld, const LoadEmitInfo& info, Temp offset, unsigned bytes_needed, unsigned align, unsigned const_offset, Temp dst_hint); Callback callback; bool byte_align_loads; bool supports_8bit_16bit_loads; unsigned max_const_offset_plus_one; }; void emit_load(isel_context* ctx, Builder& bld, const LoadEmitInfo& info, const EmitLoadParameters& params) { unsigned load_size = info.num_components * info.component_size; unsigned component_size = info.component_size; unsigned num_vals = 0; Temp* const vals = (Temp*)alloca(info.dst.bytes() * sizeof(Temp)); unsigned const_offset = info.const_offset; const unsigned align_mul = info.align_mul ? info.align_mul : component_size; unsigned align_offset = (info.align_offset + const_offset) % align_mul; unsigned bytes_read = 0; while (bytes_read < load_size) { unsigned bytes_needed = load_size - bytes_read; /* add buffer for unaligned loads */ int byte_align = 0; if (params.byte_align_loads) { byte_align = align_mul % 4 == 0 ? align_offset % 4 : -1; } if (byte_align) { if (bytes_needed > 2 || (bytes_needed == 2 && (align_mul % 2 || align_offset % 2)) || !params.supports_8bit_16bit_loads) { if (info.component_stride) { assert(params.supports_8bit_16bit_loads && "unimplemented"); bytes_needed = 2; byte_align = 0; } else { bytes_needed += byte_align == -1 ? 4 - info.align_mul : byte_align; bytes_needed = align(bytes_needed, 4); } } else { byte_align = 0; } } if (info.split_by_component_stride) { if (info.swizzle_component_size) bytes_needed = MIN2(bytes_needed, info.swizzle_component_size); if (info.component_stride) bytes_needed = MIN2(bytes_needed, info.component_size); } bool need_to_align_offset = byte_align && (align_mul % 4 || align_offset % 4); /* reduce constant offset */ Operand offset = info.offset; unsigned reduced_const_offset = const_offset; bool remove_const_offset_completely = need_to_align_offset; if (const_offset && (remove_const_offset_completely || const_offset >= params.max_const_offset_plus_one)) { unsigned to_add = const_offset; if (remove_const_offset_completely) { reduced_const_offset = 0; } else { to_add = const_offset / params.max_const_offset_plus_one * params.max_const_offset_plus_one; reduced_const_offset %= params.max_const_offset_plus_one; } Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp(); if (offset.isConstant()) { offset = Operand::c32(offset.constantValue() + to_add); } else if (offset.isUndefined()) { offset = Operand::c32(to_add); } else if (offset_tmp.regClass() == s1) { offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), offset_tmp, Operand::c32(to_add)); } else if (offset_tmp.regClass() == v1) { offset = bld.vadd32(bld.def(v1), offset_tmp, Operand::c32(to_add)); } else { Temp lo = bld.tmp(offset_tmp.type(), 1); Temp hi = bld.tmp(offset_tmp.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp); if (offset_tmp.regClass() == s2) { Temp carry = bld.tmp(s1); lo = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), lo, Operand::c32(to_add)); hi = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), hi, carry); offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), lo, hi); } else { Temp new_lo = bld.tmp(v1); Temp carry = bld.vadd32(Definition(new_lo), lo, Operand::c32(to_add), true).def(1).getTemp(); hi = bld.vadd32(bld.def(v1), hi, Operand::zero(), false, carry); offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_lo, hi); } } } /* align offset down if needed */ Operand aligned_offset = offset; unsigned align = align_offset ? 1 << (ffs(align_offset) - 1) : align_mul; if (need_to_align_offset) { align = 4; Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp(); if (offset.isConstant()) { aligned_offset = Operand::c32(offset.constantValue() & 0xfffffffcu); } else if (offset.isUndefined()) { aligned_offset = Operand::zero(); } else if (offset_tmp.regClass() == s1) { aligned_offset = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand::c32(0xfffffffcu), offset_tmp); } else if (offset_tmp.regClass() == s2) { aligned_offset = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand::c64(0xfffffffffffffffcllu), offset_tmp); } else if (offset_tmp.regClass() == v1) { aligned_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0xfffffffcu), offset_tmp); } else if (offset_tmp.regClass() == v2) { Temp hi = bld.tmp(v1), lo = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp); lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0xfffffffcu), lo); aligned_offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), lo, hi); } } Temp aligned_offset_tmp = aligned_offset.isTemp() ? aligned_offset.getTemp() : aligned_offset.isConstant() ? bld.copy(bld.def(s1), aligned_offset) : Temp(0, s1); Temp val = params.callback(bld, info, aligned_offset_tmp, bytes_needed, align, reduced_const_offset, byte_align ? Temp() : info.dst); /* the callback wrote directly to dst */ if (val == info.dst) { assert(num_vals == 0); emit_split_vector(ctx, info.dst, info.num_components); return; } /* shift result right if needed */ if (params.byte_align_loads && info.component_size < 4) { Operand byte_align_off = Operand::c32(byte_align); if (byte_align == -1) { if (offset.isConstant()) byte_align_off = Operand::c32(offset.constantValue() % 4u); else if (offset.isUndefined()) byte_align_off = Operand::zero(); else if (offset.size() == 2) byte_align_off = Operand(emit_extract_vector(ctx, offset.getTemp(), 0, RegClass(offset.getTemp().type(), 1))); else byte_align_off = offset; } assert(val.bytes() >= load_size && "unimplemented"); if (val.type() == RegType::sgpr) byte_align_scalar(ctx, val, byte_align_off, info.dst); else byte_align_vector(ctx, val, byte_align_off, info.dst, component_size); return; } /* add result to list and advance */ if (info.component_stride) { assert(val.bytes() % info.component_size == 0); unsigned num_loaded_components = val.bytes() / info.component_size; unsigned advance_bytes = info.component_stride * num_loaded_components; const_offset += advance_bytes; align_offset = (align_offset + advance_bytes) % align_mul; } else { const_offset += val.bytes(); align_offset = (align_offset + val.bytes()) % align_mul; } bytes_read += val.bytes(); vals[num_vals++] = val; } /* create array of components */ unsigned components_split = 0; std::array allocated_vec; bool has_vgprs = false; for (unsigned i = 0; i < num_vals;) { Temp* const tmp = (Temp*)alloca(num_vals * sizeof(Temp)); unsigned num_tmps = 0; unsigned tmp_size = 0; RegType reg_type = RegType::sgpr; while ((!tmp_size || (tmp_size % component_size)) && i < num_vals) { if (vals[i].type() == RegType::vgpr) reg_type = RegType::vgpr; tmp_size += vals[i].bytes(); tmp[num_tmps++] = vals[i++]; } if (num_tmps > 1) { aco_ptr vec{create_instruction( aco_opcode::p_create_vector, Format::PSEUDO, num_tmps, 1)}; for (unsigned j = 0; j < num_tmps; j++) vec->operands[j] = Operand(tmp[j]); tmp[0] = bld.tmp(RegClass::get(reg_type, tmp_size)); vec->definitions[0] = Definition(tmp[0]); bld.insert(std::move(vec)); } if (tmp[0].bytes() % component_size) { /* trim tmp[0] */ assert(i == num_vals); RegClass new_rc = RegClass::get(reg_type, tmp[0].bytes() / component_size * component_size); tmp[0] = bld.pseudo(aco_opcode::p_extract_vector, bld.def(new_rc), tmp[0], Operand::zero()); } RegClass elem_rc = RegClass::get(reg_type, component_size); unsigned start = components_split; if (tmp_size == elem_rc.bytes()) { allocated_vec[components_split++] = tmp[0]; } else { assert(tmp_size % elem_rc.bytes() == 0); aco_ptr split{create_instruction( aco_opcode::p_split_vector, Format::PSEUDO, 1, tmp_size / elem_rc.bytes())}; for (auto& def : split->definitions) { Temp component = bld.tmp(elem_rc); allocated_vec[components_split++] = component; def = Definition(component); } split->operands[0] = Operand(tmp[0]); bld.insert(std::move(split)); } /* try to p_as_uniform early so we can create more optimizable code and * also update allocated_vec */ for (unsigned j = start; j < components_split; j++) { if (allocated_vec[j].bytes() % 4 == 0 && info.dst.type() == RegType::sgpr) allocated_vec[j] = bld.as_uniform(allocated_vec[j]); has_vgprs |= allocated_vec[j].type() == RegType::vgpr; } } /* concatenate components and p_as_uniform() result if needed */ if (info.dst.type() == RegType::vgpr || !has_vgprs) ctx->allocated_vec.emplace(info.dst.id(), allocated_vec); int padding_bytes = MAX2((int)info.dst.bytes() - int(allocated_vec[0].bytes() * info.num_components), 0); aco_ptr vec{create_instruction( aco_opcode::p_create_vector, Format::PSEUDO, info.num_components + !!padding_bytes, 1)}; for (unsigned i = 0; i < info.num_components; i++) vec->operands[i] = Operand(allocated_vec[i]); if (padding_bytes) vec->operands[info.num_components] = Operand(RegClass::get(RegType::vgpr, padding_bytes)); if (info.dst.type() == RegType::sgpr && has_vgprs) { Temp tmp = bld.tmp(RegType::vgpr, info.dst.size()); vec->definitions[0] = Definition(tmp); bld.insert(std::move(vec)); bld.pseudo(aco_opcode::p_as_uniform, Definition(info.dst), tmp); } else { vec->definitions[0] = Definition(info.dst); bld.insert(std::move(vec)); } } Operand load_lds_size_m0(Builder& bld) { /* m0 does not need to be initialized on GFX9+ */ if (bld.program->gfx_level >= GFX9) return Operand(s1); return bld.m0((Temp)bld.copy(bld.def(s1, m0), Operand::c32(0xffffffffu))); } Temp lds_load_callback(Builder& bld, const LoadEmitInfo& info, Temp offset, unsigned bytes_needed, unsigned align, unsigned const_offset, Temp dst_hint) { offset = offset.regClass() == s1 ? bld.copy(bld.def(v1), offset) : offset; Operand m = load_lds_size_m0(bld); bool large_ds_read = bld.program->gfx_level >= GFX7; bool usable_read2 = bld.program->gfx_level >= GFX7; bool read2 = false; unsigned size = 0; aco_opcode op; if (bytes_needed >= 16 && align % 16 == 0 && large_ds_read) { size = 16; op = aco_opcode::ds_read_b128; } else if (bytes_needed >= 16 && align % 8 == 0 && const_offset % 8 == 0 && usable_read2) { size = 16; read2 = true; op = aco_opcode::ds_read2_b64; } else if (bytes_needed >= 12 && align % 16 == 0 && large_ds_read) { size = 12; op = aco_opcode::ds_read_b96; } else if (bytes_needed >= 8 && align % 8 == 0) { size = 8; op = aco_opcode::ds_read_b64; } else if (bytes_needed >= 8 && align % 4 == 0 && const_offset % 4 == 0 && usable_read2) { size = 8; read2 = true; op = aco_opcode::ds_read2_b32; } else if (bytes_needed >= 4 && align % 4 == 0) { size = 4; op = aco_opcode::ds_read_b32; } else if (bytes_needed >= 2 && align % 2 == 0) { size = 2; op = bld.program->gfx_level >= GFX9 ? aco_opcode::ds_read_u16_d16 : aco_opcode::ds_read_u16; } else { size = 1; op = bld.program->gfx_level >= GFX9 ? aco_opcode::ds_read_u8_d16 : aco_opcode::ds_read_u8; } unsigned const_offset_unit = read2 ? size / 2u : 1u; unsigned const_offset_range = read2 ? 255 * const_offset_unit : 65536; if (const_offset > (const_offset_range - const_offset_unit)) { unsigned excess = const_offset - (const_offset % const_offset_range); offset = bld.vadd32(bld.def(v1), offset, Operand::c32(excess)); const_offset -= excess; } const_offset /= const_offset_unit; RegClass rc = RegClass::get(RegType::vgpr, size); Temp val = rc == info.dst.regClass() && dst_hint.id() ? dst_hint : bld.tmp(rc); Instruction* instr; if (read2) instr = bld.ds(op, Definition(val), offset, m, const_offset, const_offset + 1); else instr = bld.ds(op, Definition(val), offset, m, const_offset); instr->ds().sync = info.sync; if (m.isUndefined()) instr->operands.pop_back(); return val; } const EmitLoadParameters lds_load_params{lds_load_callback, false, true, UINT32_MAX}; Temp smem_load_callback(Builder& bld, const LoadEmitInfo& info, Temp offset, unsigned bytes_needed, unsigned align, unsigned const_offset, Temp dst_hint) { assert(align >= 4u); bool buffer = info.resource.id() && info.resource.bytes() == 16; Temp addr = info.resource; if (!buffer && !addr.id()) { addr = offset; offset = Temp(); } bytes_needed = MIN2(bytes_needed, 64); unsigned needed_round_up = util_next_power_of_two(bytes_needed); unsigned needed_round_down = needed_round_up >> (needed_round_up != bytes_needed ? 1 : 0); /* Only round-up global loads if it's aligned so that it won't cross pages */ bytes_needed = buffer || align % needed_round_up == 0 ? needed_round_up : needed_round_down; aco_opcode op; if (bytes_needed <= 4) { op = buffer ? aco_opcode::s_buffer_load_dword : aco_opcode::s_load_dword; } else if (bytes_needed <= 8) { op = buffer ? aco_opcode::s_buffer_load_dwordx2 : aco_opcode::s_load_dwordx2; } else if (bytes_needed <= 16) { op = buffer ? aco_opcode::s_buffer_load_dwordx4 : aco_opcode::s_load_dwordx4; } else if (bytes_needed <= 32) { op = buffer ? aco_opcode::s_buffer_load_dwordx8 : aco_opcode::s_load_dwordx8; } else { assert(bytes_needed == 64); op = buffer ? aco_opcode::s_buffer_load_dwordx16 : aco_opcode::s_load_dwordx16; } aco_ptr load{create_instruction(op, Format::SMEM, 2, 1)}; if (buffer) { if (const_offset) offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand::c32(const_offset)); load->operands[0] = Operand(info.resource); load->operands[1] = Operand(offset); } else { load->operands[0] = Operand(addr); if (offset.id() && const_offset) load->operands[1] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand::c32(const_offset)); else if (offset.id()) load->operands[1] = Operand(offset); else load->operands[1] = Operand::c32(const_offset); } RegClass rc(RegType::sgpr, DIV_ROUND_UP(bytes_needed, 4u)); Temp val = dst_hint.id() && dst_hint.regClass() == rc ? dst_hint : bld.tmp(rc); load->definitions[0] = Definition(val); load->glc = info.glc; load->dlc = info.glc && (bld.program->gfx_level == GFX10 || bld.program->gfx_level == GFX10_3); load->sync = info.sync; bld.insert(std::move(load)); return val; } const EmitLoadParameters smem_load_params{smem_load_callback, true, false, 1024}; Temp mubuf_load_callback(Builder& bld, const LoadEmitInfo& info, Temp offset, unsigned bytes_needed, unsigned align_, unsigned const_offset, Temp dst_hint) { Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1); Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand::c32(0); if (info.soffset.id()) { if (soffset.isTemp()) vaddr = bld.copy(bld.def(v1), soffset); soffset = Operand(info.soffset); } if (soffset.isUndefined()) soffset = Operand::zero(); bool offen = !vaddr.isUndefined(); bool idxen = info.idx.id(); if (offen && idxen) vaddr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), info.idx, vaddr); else if (idxen) vaddr = Operand(info.idx); unsigned bytes_size = 0; aco_opcode op; if (bytes_needed == 1 || align_ % 2) { bytes_size = 1; op = aco_opcode::buffer_load_ubyte; } else if (bytes_needed == 2 || align_ % 4) { bytes_size = 2; op = aco_opcode::buffer_load_ushort; } else if (bytes_needed <= 4) { bytes_size = 4; op = aco_opcode::buffer_load_dword; } else if (bytes_needed <= 8) { bytes_size = 8; op = aco_opcode::buffer_load_dwordx2; } else if (bytes_needed <= 12 && bld.program->gfx_level > GFX6) { bytes_size = 12; op = aco_opcode::buffer_load_dwordx3; } else { bytes_size = 16; op = aco_opcode::buffer_load_dwordx4; } aco_ptr mubuf{create_instruction(op, Format::MUBUF, 3, 1)}; mubuf->operands[0] = Operand(info.resource); mubuf->operands[1] = vaddr; mubuf->operands[2] = soffset; mubuf->offen = offen; mubuf->idxen = idxen; mubuf->glc = info.glc; mubuf->dlc = info.glc && (bld.program->gfx_level == GFX10 || bld.program->gfx_level == GFX10_3); mubuf->slc = info.slc; mubuf->sync = info.sync; mubuf->offset = const_offset; mubuf->swizzled = info.swizzle_component_size != 0; RegClass rc = RegClass::get(RegType::vgpr, bytes_size); Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc); mubuf->definitions[0] = Definition(val); bld.insert(std::move(mubuf)); return val; } const EmitLoadParameters mubuf_load_params{mubuf_load_callback, true, true, 4096}; Temp scratch_load_callback(Builder& bld, const LoadEmitInfo& info, Temp offset, unsigned bytes_needed, unsigned align_, unsigned const_offset, Temp dst_hint) { unsigned bytes_size = 0; aco_opcode op; if (bytes_needed == 1 || align_ % 2u) { bytes_size = 1; op = aco_opcode::scratch_load_ubyte; } else if (bytes_needed == 2 || align_ % 4u) { bytes_size = 2; op = aco_opcode::scratch_load_ushort; } else if (bytes_needed <= 4) { bytes_size = 4; op = aco_opcode::scratch_load_dword; } else if (bytes_needed <= 8) { bytes_size = 8; op = aco_opcode::scratch_load_dwordx2; } else if (bytes_needed <= 12) { bytes_size = 12; op = aco_opcode::scratch_load_dwordx3; } else { bytes_size = 16; op = aco_opcode::scratch_load_dwordx4; } RegClass rc = RegClass::get(RegType::vgpr, bytes_size); Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc); aco_ptr flat{create_instruction(op, Format::SCRATCH, 2, 1)}; flat->operands[0] = offset.regClass() == s1 ? Operand(v1) : Operand(offset); flat->operands[1] = offset.regClass() == s1 ? Operand(offset) : Operand(s1); flat->sync = info.sync; flat->offset = const_offset; flat->definitions[0] = Definition(val); bld.insert(std::move(flat)); return val; } const EmitLoadParameters scratch_mubuf_load_params{mubuf_load_callback, false, true, 4096}; const EmitLoadParameters scratch_flat_load_params{scratch_load_callback, false, true, 2048}; Temp get_gfx6_global_rsrc(Builder& bld, Temp addr) { uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); if (addr.type() == RegType::vgpr) return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand::zero(), Operand::zero(), Operand::c32(-1u), Operand::c32(rsrc_conf)); return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand::c32(-1u), Operand::c32(rsrc_conf)); } Temp add64_32(Builder& bld, Temp src0, Temp src1) { Temp src00 = bld.tmp(src0.type(), 1); Temp src01 = bld.tmp(src0.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); if (src0.type() == RegType::vgpr || src1.type() == RegType::vgpr) { Temp dst0 = bld.tmp(v1); Temp carry = bld.vadd32(Definition(dst0), src00, src1, true).def(1).getTemp(); Temp dst1 = bld.vadd32(bld.def(v1), src01, Operand::zero(), false, carry); return bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1); } else { Temp carry = bld.tmp(s1); Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src1); Temp dst1 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), src01, carry); return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), dst0, dst1); } } void lower_global_address(Builder& bld, uint32_t offset_in, Temp* address_inout, uint32_t* const_offset_inout, Temp* offset_inout) { Temp address = *address_inout; uint64_t const_offset = *const_offset_inout + offset_in; Temp offset = *offset_inout; uint64_t max_const_offset_plus_one = 1; /* GFX7/8/9: FLAT loads do not support constant offsets */ if (bld.program->gfx_level >= GFX9) max_const_offset_plus_one = bld.program->dev.scratch_global_offset_max; else if (bld.program->gfx_level == GFX6) max_const_offset_plus_one = 4096; /* MUBUF has a 12-bit unsigned offset field */ uint64_t excess_offset = const_offset - (const_offset % max_const_offset_plus_one); const_offset %= max_const_offset_plus_one; if (!offset.id()) { while (unlikely(excess_offset > UINT32_MAX)) { address = add64_32(bld, address, bld.copy(bld.def(s1), Operand::c32(UINT32_MAX))); excess_offset -= UINT32_MAX; } if (excess_offset) offset = bld.copy(bld.def(s1), Operand::c32(excess_offset)); } else { /* If we add to "offset", we would transform the indended * "address + u2u64(offset) + u2u64(const_offset)" into * "address + u2u64(offset + const_offset)", so add to the address. * This could be more efficient if excess_offset>UINT32_MAX by doing a full 64-bit addition, * but that should be really rare. */ while (excess_offset) { uint32_t src2 = MIN2(excess_offset, UINT32_MAX); address = add64_32(bld, address, bld.copy(bld.def(s1), Operand::c32(src2))); excess_offset -= src2; } } if (bld.program->gfx_level == GFX6) { /* GFX6 (MUBUF): (SGPR address, SGPR offset) or (VGPR address, SGPR offset) */ if (offset.type() != RegType::sgpr) { address = add64_32(bld, address, offset); offset = Temp(); } offset = offset.id() ? offset : bld.copy(bld.def(s1), Operand::zero()); } else if (bld.program->gfx_level <= GFX8) { /* GFX7,8 (FLAT): VGPR address */ if (offset.id()) { address = add64_32(bld, address, offset); offset = Temp(); } address = as_vgpr(bld, address); } else { /* GFX9+ (GLOBAL): (VGPR address), or (SGPR address and VGPR offset) */ if (address.type() == RegType::vgpr && offset.id()) { address = add64_32(bld, address, offset); offset = Temp(); } else if (address.type() == RegType::sgpr && offset.id()) { offset = as_vgpr(bld, offset); } if (address.type() == RegType::sgpr && !offset.id()) offset = bld.copy(bld.def(v1), bld.copy(bld.def(s1), Operand::zero())); } *address_inout = address; *const_offset_inout = const_offset; *offset_inout = offset; } Temp global_load_callback(Builder& bld, const LoadEmitInfo& info, Temp offset, unsigned bytes_needed, unsigned align_, unsigned const_offset, Temp dst_hint) { Temp addr = info.resource; if (!addr.id()) { addr = offset; offset = Temp(); } lower_global_address(bld, 0, &addr, &const_offset, &offset); unsigned bytes_size = 0; bool use_mubuf = bld.program->gfx_level == GFX6; bool global = bld.program->gfx_level >= GFX9; aco_opcode op; if (bytes_needed == 1 || align_ % 2u) { bytes_size = 1; op = use_mubuf ? aco_opcode::buffer_load_ubyte : global ? aco_opcode::global_load_ubyte : aco_opcode::flat_load_ubyte; } else if (bytes_needed == 2 || align_ % 4u) { bytes_size = 2; op = use_mubuf ? aco_opcode::buffer_load_ushort : global ? aco_opcode::global_load_ushort : aco_opcode::flat_load_ushort; } else if (bytes_needed <= 4) { bytes_size = 4; op = use_mubuf ? aco_opcode::buffer_load_dword : global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword; } else if (bytes_needed <= 8 || (bytes_needed <= 12 && use_mubuf)) { bytes_size = 8; op = use_mubuf ? aco_opcode::buffer_load_dwordx2 : global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2; } else if (bytes_needed <= 12 && !use_mubuf) { bytes_size = 12; op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3; } else { bytes_size = 16; op = use_mubuf ? aco_opcode::buffer_load_dwordx4 : global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4; } RegClass rc = RegClass::get(RegType::vgpr, bytes_size); Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc); if (use_mubuf) { aco_ptr mubuf{ create_instruction(op, Format::MUBUF, 3, 1)}; mubuf->operands[0] = Operand(get_gfx6_global_rsrc(bld, addr)); mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1); mubuf->operands[2] = Operand(offset); mubuf->glc = info.glc; mubuf->dlc = false; mubuf->offset = const_offset; mubuf->addr64 = addr.type() == RegType::vgpr; mubuf->disable_wqm = false; mubuf->sync = info.sync; mubuf->definitions[0] = Definition(val); bld.insert(std::move(mubuf)); } else { aco_ptr flat{ create_instruction(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)}; if (addr.regClass() == s2) { assert(global && offset.id() && offset.type() == RegType::vgpr); flat->operands[0] = Operand(offset); flat->operands[1] = Operand(addr); } else { assert(addr.type() == RegType::vgpr && !offset.id()); flat->operands[0] = Operand(addr); flat->operands[1] = Operand(s1); } flat->glc = info.glc; flat->dlc = info.glc && (bld.program->gfx_level == GFX10 || bld.program->gfx_level == GFX10_3); flat->sync = info.sync; assert(global || !const_offset); flat->offset = const_offset; flat->definitions[0] = Definition(val); bld.insert(std::move(flat)); } return val; } const EmitLoadParameters global_load_params{global_load_callback, true, true, UINT32_MAX}; Temp load_lds(isel_context* ctx, unsigned elem_size_bytes, unsigned num_components, Temp dst, Temp address, unsigned base_offset, unsigned align) { assert(util_is_power_of_two_nonzero(align)); Builder bld(ctx->program, ctx->block); LoadEmitInfo info = {Operand(as_vgpr(ctx, address)), dst, num_components, elem_size_bytes}; info.align_mul = align; info.align_offset = 0; info.sync = memory_sync_info(storage_shared); info.const_offset = base_offset; emit_load(ctx, bld, info, lds_load_params); return dst; } void split_store_data(isel_context* ctx, RegType dst_type, unsigned count, Temp* dst, unsigned* bytes, Temp src) { if (!count) return; Builder bld(ctx->program, ctx->block); /* count == 1 fast path */ if (count == 1) { if (dst_type == RegType::sgpr) dst[0] = bld.as_uniform(src); else dst[0] = as_vgpr(ctx, src); return; } /* elem_size_bytes is the greatest common divisor which is a power of 2 */ unsigned elem_size_bytes = 1u << (ffs(std::accumulate(bytes, bytes + count, 8, std::bit_or<>{})) - 1); ASSERTED bool is_subdword = elem_size_bytes < 4; assert(!is_subdword || dst_type == RegType::vgpr); for (unsigned i = 0; i < count; i++) dst[i] = bld.tmp(RegClass::get(dst_type, bytes[i])); std::vector temps; /* use allocated_vec if possible */ auto it = ctx->allocated_vec.find(src.id()); if (it != ctx->allocated_vec.end()) { if (!it->second[0].id()) goto split; unsigned elem_size = it->second[0].bytes(); assert(src.bytes() % elem_size == 0); for (unsigned i = 0; i < src.bytes() / elem_size; i++) { if (!it->second[i].id()) goto split; } if (elem_size_bytes % elem_size) goto split; temps.insert(temps.end(), it->second.begin(), it->second.begin() + src.bytes() / elem_size); elem_size_bytes = elem_size; } split: /* split src if necessary */ if (temps.empty()) { if (is_subdword && src.type() == RegType::sgpr) src = as_vgpr(ctx, src); if (dst_type == RegType::sgpr) src = bld.as_uniform(src); unsigned num_elems = src.bytes() / elem_size_bytes; aco_ptr split{create_instruction( aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elems)}; split->operands[0] = Operand(src); for (unsigned i = 0; i < num_elems; i++) { temps.emplace_back(bld.tmp(RegClass::get(dst_type, elem_size_bytes))); split->definitions[i] = Definition(temps.back()); } bld.insert(std::move(split)); } unsigned idx = 0; for (unsigned i = 0; i < count; i++) { unsigned op_count = dst[i].bytes() / elem_size_bytes; if (op_count == 1) { if (dst_type == RegType::sgpr) dst[i] = bld.as_uniform(temps[idx++]); else dst[i] = as_vgpr(ctx, temps[idx++]); continue; } aco_ptr vec{create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, op_count, 1)}; for (unsigned j = 0; j < op_count; j++) { Temp tmp = temps[idx++]; if (dst_type == RegType::sgpr) tmp = bld.as_uniform(tmp); vec->operands[j] = Operand(tmp); } vec->definitions[0] = Definition(dst[i]); bld.insert(std::move(vec)); } return; } bool scan_write_mask(uint32_t mask, uint32_t todo_mask, int* start, int* count) { unsigned start_elem = ffs(todo_mask) - 1; bool skip = !(mask & (1 << start_elem)); if (skip) mask = ~mask & todo_mask; mask &= todo_mask; u_bit_scan_consecutive_range(&mask, start, count); return !skip; } void advance_write_mask(uint32_t* todo_mask, int start, int count) { *todo_mask &= ~u_bit_consecutive(0, count) << start; } void store_lds(isel_context* ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask, Temp address, unsigned base_offset, unsigned align) { assert(util_is_power_of_two_nonzero(align)); assert(util_is_power_of_two_nonzero(elem_size_bytes) && elem_size_bytes <= 8); Builder bld(ctx->program, ctx->block); bool large_ds_write = ctx->options->gfx_level >= GFX7; bool usable_write2 = ctx->options->gfx_level >= GFX7; unsigned write_count = 0; Temp write_datas[32]; unsigned offsets[32]; unsigned bytes[32]; aco_opcode opcodes[32]; wrmask = util_widen_mask(wrmask, elem_size_bytes); const unsigned wrmask_bitcnt = util_bitcount(wrmask); uint32_t todo = u_bit_consecutive(0, data.bytes()); if (u_bit_consecutive(0, wrmask_bitcnt) == wrmask) todo = MIN2(todo, wrmask); while (todo) { int offset, byte; if (!scan_write_mask(wrmask, todo, &offset, &byte)) { offsets[write_count] = offset; bytes[write_count] = byte; opcodes[write_count] = aco_opcode::num_opcodes; write_count++; advance_write_mask(&todo, offset, byte); continue; } bool aligned2 = offset % 2 == 0 && align % 2 == 0; bool aligned4 = offset % 4 == 0 && align % 4 == 0; bool aligned8 = offset % 8 == 0 && align % 8 == 0; bool aligned16 = offset % 16 == 0 && align % 16 == 0; // TODO: use ds_write_b8_d16_hi/ds_write_b16_d16_hi if beneficial aco_opcode op = aco_opcode::num_opcodes; if (byte >= 16 && aligned16 && large_ds_write) { op = aco_opcode::ds_write_b128; byte = 16; } else if (byte >= 12 && aligned16 && large_ds_write) { op = aco_opcode::ds_write_b96; byte = 12; } else if (byte >= 8 && aligned8) { op = aco_opcode::ds_write_b64; byte = 8; } else if (byte >= 4 && aligned4) { op = aco_opcode::ds_write_b32; byte = 4; } else if (byte >= 2 && aligned2) { op = aco_opcode::ds_write_b16; byte = 2; } else if (byte >= 1) { op = aco_opcode::ds_write_b8; byte = 1; } else { assert(false); } offsets[write_count] = offset; bytes[write_count] = byte; opcodes[write_count] = op; write_count++; advance_write_mask(&todo, offset, byte); } Operand m = load_lds_size_m0(bld); split_store_data(ctx, RegType::vgpr, write_count, write_datas, bytes, data); for (unsigned i = 0; i < write_count; i++) { aco_opcode op = opcodes[i]; if (op == aco_opcode::num_opcodes) continue; Temp split_data = write_datas[i]; unsigned second = write_count; if (usable_write2 && (op == aco_opcode::ds_write_b32 || op == aco_opcode::ds_write_b64)) { for (second = i + 1; second < write_count; second++) { if (opcodes[second] == op && (offsets[second] - offsets[i]) % split_data.bytes() == 0) { op = split_data.bytes() == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64; opcodes[second] = aco_opcode::num_opcodes; break; } } } bool write2 = op == aco_opcode::ds_write2_b32 || op == aco_opcode::ds_write2_b64; unsigned write2_off = (offsets[second] - offsets[i]) / split_data.bytes(); unsigned inline_offset = base_offset + offsets[i]; unsigned max_offset = write2 ? (255 - write2_off) * split_data.bytes() : 65535; Temp address_offset = address; if (inline_offset > max_offset) { address_offset = bld.vadd32(bld.def(v1), Operand::c32(base_offset), address_offset); inline_offset = offsets[i]; } /* offsets[i] shouldn't be large enough for this to happen */ assert(inline_offset <= max_offset); Instruction* instr; if (write2) { Temp second_data = write_datas[second]; inline_offset /= split_data.bytes(); instr = bld.ds(op, address_offset, split_data, second_data, m, inline_offset, inline_offset + write2_off); } else { instr = bld.ds(op, address_offset, split_data, m, inline_offset); } instr->ds().sync = memory_sync_info(storage_shared); if (m.isUndefined()) instr->operands.pop_back(); } } aco_opcode get_buffer_store_op(unsigned bytes) { switch (bytes) { case 1: return aco_opcode::buffer_store_byte; case 2: return aco_opcode::buffer_store_short; case 4: return aco_opcode::buffer_store_dword; case 8: return aco_opcode::buffer_store_dwordx2; case 12: return aco_opcode::buffer_store_dwordx3; case 16: return aco_opcode::buffer_store_dwordx4; } unreachable("Unexpected store size"); return aco_opcode::num_opcodes; } void split_buffer_store(isel_context* ctx, nir_intrinsic_instr* instr, bool smem, RegType dst_type, Temp data, unsigned writemask, int swizzle_element_size, unsigned* write_count, Temp* write_datas, unsigned* offsets) { unsigned write_count_with_skips = 0; bool skips[16]; unsigned bytes[16]; /* determine how to split the data */ unsigned todo = u_bit_consecutive(0, data.bytes()); while (todo) { int offset, byte; skips[write_count_with_skips] = !scan_write_mask(writemask, todo, &offset, &byte); offsets[write_count_with_skips] = offset; if (skips[write_count_with_skips]) { bytes[write_count_with_skips] = byte; advance_write_mask(&todo, offset, byte); write_count_with_skips++; continue; } /* only supported sizes are 1, 2, 4, 8, 12 and 16 bytes and can't be * larger than swizzle_element_size */ byte = MIN2(byte, swizzle_element_size); if (byte % 4) byte = byte > 4 ? byte & ~0x3 : MIN2(byte, 2); /* SMEM and GFX6 VMEM can't emit 12-byte stores */ if ((ctx->program->gfx_level == GFX6 || smem) && byte == 12) byte = 8; /* dword or larger stores have to be dword-aligned */ unsigned align_mul = instr ? nir_intrinsic_align_mul(instr) : 4; unsigned align_offset = (instr ? nir_intrinsic_align_offset(instr) : 0) + offset; bool dword_aligned = align_offset % 4 == 0 && align_mul % 4 == 0; if (!dword_aligned) byte = MIN2(byte, (align_offset % 2 == 0 && align_mul % 2 == 0) ? 2 : 1); bytes[write_count_with_skips] = byte; advance_write_mask(&todo, offset, byte); write_count_with_skips++; } /* actually split data */ split_store_data(ctx, dst_type, write_count_with_skips, write_datas, bytes, data); /* remove skips */ for (unsigned i = 0; i < write_count_with_skips; i++) { if (skips[i]) continue; write_datas[*write_count] = write_datas[i]; offsets[*write_count] = offsets[i]; (*write_count)++; } } Temp create_vec_from_array(isel_context* ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes, unsigned split_cnt = 0u, Temp dst = Temp()) { Builder bld(ctx->program, ctx->block); unsigned dword_size = elem_size_bytes / 4; if (!dst.id()) dst = bld.tmp(RegClass(reg_type, cnt * dword_size)); std::array allocated_vec; aco_ptr instr{ create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)}; instr->definitions[0] = Definition(dst); for (unsigned i = 0; i < cnt; ++i) { if (arr[i].id()) { assert(arr[i].size() == dword_size); allocated_vec[i] = arr[i]; instr->operands[i] = Operand(arr[i]); } else { Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand::zero(dword_size == 2 ? 8 : 4)); allocated_vec[i] = zero; instr->operands[i] = Operand(zero); } } bld.insert(std::move(instr)); if (split_cnt) emit_split_vector(ctx, dst, split_cnt); else ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */ return dst; } inline unsigned resolve_excess_vmem_const_offset(Builder& bld, Temp& voffset, unsigned const_offset) { if (const_offset >= 4096) { unsigned excess_const_offset = const_offset / 4096u * 4096u; const_offset %= 4096u; if (!voffset.id()) voffset = bld.copy(bld.def(v1), Operand::c32(excess_const_offset)); else if (unlikely(voffset.regClass() == s1)) voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand::c32(excess_const_offset), Operand(voffset)); else if (likely(voffset.regClass() == v1)) voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand::c32(excess_const_offset)); else unreachable("Unsupported register class of voffset"); } return const_offset; } void emit_single_mubuf_store(isel_context* ctx, Temp descriptor, Temp voffset, Temp soffset, Temp idx, Temp vdata, unsigned const_offset, memory_sync_info sync, bool glc, bool slc, bool swizzled) { assert(vdata.id()); assert(vdata.size() != 3 || ctx->program->gfx_level != GFX6); assert(vdata.size() >= 1 && vdata.size() <= 4); Builder bld(ctx->program, ctx->block); aco_opcode op = get_buffer_store_op(vdata.bytes()); const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset); bool offen = voffset.id(); bool idxen = idx.id(); Operand soffset_op = soffset.id() ? Operand(soffset) : Operand::zero(); glc &= ctx->program->gfx_level < GFX11; Operand vaddr_op(v1); if (offen && idxen) vaddr_op = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), idx, voffset); else if (offen) vaddr_op = Operand(voffset); else if (idxen) vaddr_op = Operand(idx); Builder::Result r = bld.mubuf(op, Operand(descriptor), vaddr_op, soffset_op, Operand(vdata), const_offset, offen, swizzled, idxen, /* addr64 */ false, /* disable_wqm */ false, glc, /* dlc*/ false, slc); r->mubuf().sync = sync; } void store_vmem_mubuf(isel_context* ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset, Temp idx, unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask, bool swizzled, memory_sync_info sync, bool glc, bool slc) { Builder bld(ctx->program, ctx->block); assert(elem_size_bytes == 1 || elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8); assert(write_mask); write_mask = util_widen_mask(write_mask, elem_size_bytes); unsigned write_count = 0; Temp write_datas[32]; unsigned offsets[32]; split_buffer_store(ctx, NULL, false, RegType::vgpr, src, write_mask, swizzled && ctx->program->gfx_level <= GFX8 ? 4 : 16, &write_count, write_datas, offsets); for (unsigned i = 0; i < write_count; i++) { unsigned const_offset = offsets[i] + base_const_offset; emit_single_mubuf_store(ctx, descriptor, voffset, soffset, idx, write_datas[i], const_offset, sync, glc, slc, swizzled); } } Temp wave_id_in_threadgroup(isel_context* ctx) { Builder bld(ctx->program, ctx->block); return bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand::c32(24u | (4u << 16))); } Temp thread_id_in_threadgroup(isel_context* ctx) { /* tid_in_tg = wave_id * wave_size + tid_in_wave */ Builder bld(ctx->program, ctx->block); Temp tid_in_wave = emit_mbcnt(ctx, bld.tmp(v1)); if (ctx->program->workgroup_size <= ctx->program->wave_size) return tid_in_wave; Temp wave_id_in_tg = wave_id_in_threadgroup(ctx); Temp num_pre_threads = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), wave_id_in_tg, Operand::c32(ctx->program->wave_size == 64 ? 6u : 5u)); return bld.vadd32(bld.def(v1), Operand(num_pre_threads), Operand(tid_in_wave)); } bool store_output_to_temps(isel_context* ctx, nir_intrinsic_instr* instr) { unsigned write_mask = nir_intrinsic_write_mask(instr); unsigned component = nir_intrinsic_component(instr); unsigned idx = nir_intrinsic_base(instr) * 4u + component; nir_src offset = *nir_get_io_offset_src(instr); if (!nir_src_is_const(offset) || nir_src_as_uint(offset)) return false; Temp src = get_ssa_temp(ctx, instr->src[0].ssa); if (instr->src[0].ssa->bit_size == 64) write_mask = util_widen_mask(write_mask, 2); RegClass rc = instr->src[0].ssa->bit_size == 16 ? v2b : v1; for (unsigned i = 0; i < 8; ++i) { if (write_mask & (1 << i)) { ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u); ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, rc); } idx++; } if (ctx->stage == fragment_fs && ctx->program->info.ps.has_epilog) { unsigned index = nir_intrinsic_base(instr) - FRAG_RESULT_DATA0; if (nir_intrinsic_src_type(instr) == nir_type_float16) { ctx->output_color_types |= ACO_TYPE_FLOAT16 << (index * 2); } else if (nir_intrinsic_src_type(instr) == nir_type_int16) { ctx->output_color_types |= ACO_TYPE_INT16 << (index * 2); } else if (nir_intrinsic_src_type(instr) == nir_type_uint16) { ctx->output_color_types |= ACO_TYPE_UINT16 << (index * 2); } } return true; } bool load_input_from_temps(isel_context* ctx, nir_intrinsic_instr* instr, Temp dst) { /* Only TCS per-vertex inputs are supported by this function. * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations * is the same. */ if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq) return false; nir_src* off_src = nir_get_io_offset_src(instr); nir_src* vertex_index_src = nir_get_io_arrayed_index_src(instr); nir_instr* vertex_index_instr = vertex_index_src->ssa->parent_instr; bool can_use_temps = nir_src_is_const(*off_src) && vertex_index_instr->type == nir_instr_type_intrinsic && nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id; if (!can_use_temps) return false; unsigned idx = nir_intrinsic_base(instr) * 4u + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src); Temp* src = &ctx->inputs.temps[idx]; create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u, 0, dst); return true; } void visit_store_output(isel_context* ctx, nir_intrinsic_instr* instr) { /* LS pass output to TCS by temp if they have same in/out patch size. */ bool ls_need_output = ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX && ctx->tcs_in_out_eq; bool ps_need_output = ctx->stage == fragment_fs; if (ls_need_output || ps_need_output) { bool stored_to_temps = store_output_to_temps(ctx, instr); if (!stored_to_temps) { isel_err(instr->src[1].ssa->parent_instr, "Unimplemented output offset instruction"); abort(); } } else { unreachable("Shader stage not implemented"); } } bool in_exec_divergent_or_in_loop(isel_context* ctx) { return ctx->block->loop_nest_depth || ctx->cf_info.parent_if.is_divergent || ctx->cf_info.had_divergent_discard; } void emit_interp_instr_gfx11(isel_context* ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask) { Temp coord1 = emit_extract_vector(ctx, src, 0, v1); Temp coord2 = emit_extract_vector(ctx, src, 1, v1); Builder bld(ctx->program, ctx->block); if (in_exec_divergent_or_in_loop(ctx)) { Operand prim_mask_op = bld.m0(prim_mask); prim_mask_op.setLateKill(true); /* we don't want the bld.lm definition to use m0 */ Operand coord2_op(coord2); coord2_op.setLateKill(true); /* we re-use the destination reg in the middle */ bld.pseudo(aco_opcode::p_interp_gfx11, Definition(dst), Operand(v1.as_linear()), Operand::c32(idx), Operand::c32(component), coord1, coord2_op, prim_mask_op); return; } Temp p = bld.ldsdir(aco_opcode::lds_param_load, bld.def(v1), bld.m0(prim_mask), idx, component); Temp res; if (dst.regClass() == v2b) { Temp p10 = bld.vinterp_inreg(aco_opcode::v_interp_p10_f16_f32_inreg, bld.def(v1), p, coord1, p); res = bld.vinterp_inreg(aco_opcode::v_interp_p2_f16_f32_inreg, bld.def(v1), p, coord2, p10); } else { Temp p10 = bld.vinterp_inreg(aco_opcode::v_interp_p10_f32_inreg, bld.def(v1), p, coord1, p); res = bld.vinterp_inreg(aco_opcode::v_interp_p2_f32_inreg, bld.def(v1), p, coord2, p10); } /* lds_param_load must be done in WQM, and the result kept valid for helper lanes. */ if (dst.regClass() != v2b) emit_wqm(bld, res, dst, true); else emit_extract_vector(ctx, emit_wqm(bld, res, Temp(0, s1), true), 0, dst); } void emit_interp_instr(isel_context* ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask) { if (ctx->options->gfx_level >= GFX11) { emit_interp_instr_gfx11(ctx, idx, component, src, dst, prim_mask); return; } Temp coord1 = emit_extract_vector(ctx, src, 0, v1); Temp coord2 = emit_extract_vector(ctx, src, 1, v1); Builder bld(ctx->program, ctx->block); if (dst.regClass() == v2b) { if (ctx->program->dev.has_16bank_lds) { assert(ctx->options->gfx_level <= GFX8); Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand::c32(2u) /* P0 */, bld.m0(prim_mask), idx, component); interp_p1 = bld.vintrp(aco_opcode::v_interp_p1lv_f16, bld.def(v2b), coord1, bld.m0(prim_mask), interp_p1, idx, component); bld.vintrp(aco_opcode::v_interp_p2_legacy_f16, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component); } else { aco_opcode interp_p2_op = aco_opcode::v_interp_p2_f16; if (ctx->options->gfx_level == GFX8) interp_p2_op = aco_opcode::v_interp_p2_legacy_f16; Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1ll_f16, bld.def(v1), coord1, bld.m0(prim_mask), idx, component); bld.vintrp(interp_p2_op, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component); } } else { Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component); if (ctx->program->dev.has_16bank_lds) interp_p1->operands[0].setLateKill(true); bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component); } } void emit_interp_mov_instr(isel_context* ctx, unsigned idx, unsigned component, unsigned vertex_id, Temp dst, Temp prim_mask) { Builder bld(ctx->program, ctx->block); if (ctx->options->gfx_level >= GFX11) { uint16_t dpp_ctrl = dpp_quad_perm(vertex_id, vertex_id, vertex_id, vertex_id); if (in_exec_divergent_or_in_loop(ctx)) { Operand prim_mask_op = bld.m0(prim_mask); prim_mask_op.setLateKill(true); /* we don't want the bld.lm definition to use m0 */ bld.pseudo(aco_opcode::p_interp_gfx11, Definition(dst), Operand(v1.as_linear()), Operand::c32(idx), Operand::c32(component), Operand::c32(dpp_ctrl), prim_mask_op); } else { Temp p = bld.ldsdir(aco_opcode::lds_param_load, bld.def(v1), bld.m0(prim_mask), idx, component); Temp res = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p, dpp_ctrl); /* lds_param_load must be done in WQM, and the result kept valid for helper lanes. */ if (dst.regClass() != v2b) emit_wqm(bld, res, dst, true); else emit_extract_vector(ctx, emit_wqm(bld, res, Temp(0, s1), true), 0, dst); } } else { bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand::c32((vertex_id + 2) % 3), bld.m0(prim_mask), idx, component); } } void emit_load_frag_coord(isel_context* ctx, Temp dst, unsigned num_components) { Builder bld(ctx->program, ctx->block); aco_ptr vec(create_instruction( aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)); for (unsigned i = 0; i < num_components; i++) { if (ctx->args->frag_pos[i].used) vec->operands[i] = Operand(get_arg(ctx, ctx->args->frag_pos[i])); else vec->operands[i] = Operand(v1); } if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) { assert(num_components == 4); vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->frag_pos[3])); } for (Operand& op : vec->operands) op = op.isUndefined() ? Operand::zero() : op; vec->definitions[0] = Definition(dst); ctx->block->instructions.emplace_back(std::move(vec)); emit_split_vector(ctx, dst, num_components); return; } void emit_load_frag_shading_rate(isel_context* ctx, Temp dst) { Builder bld(ctx->program, ctx->block); Temp cond; /* VRS Rate X = Ancillary[2:3] * VRS Rate Y = Ancillary[4:5] */ Temp x_rate = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->ancillary), Operand::c32(2u), Operand::c32(2u)); Temp y_rate = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->ancillary), Operand::c32(4u), Operand::c32(2u)); /* xRate = xRate == 0x1 ? Horizontal2Pixels : None. */ cond = bld.vopc(aco_opcode::v_cmp_eq_i32, bld.def(bld.lm), Operand::c32(1u), Operand(x_rate)); x_rate = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand::zero()), bld.copy(bld.def(v1), Operand::c32(4u)), cond); /* yRate = yRate == 0x1 ? Vertical2Pixels : None. */ cond = bld.vopc(aco_opcode::v_cmp_eq_i32, bld.def(bld.lm), Operand::c32(1u), Operand(y_rate)); y_rate = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand::zero()), bld.copy(bld.def(v1), Operand::c32(1u)), cond); bld.vop2(aco_opcode::v_or_b32, Definition(dst), Operand(x_rate), Operand(y_rate)); } void visit_load_interpolated_input(isel_context* ctx, nir_intrinsic_instr* instr) { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Temp coords = get_ssa_temp(ctx, instr->src[0].ssa); unsigned idx = nir_intrinsic_base(instr); unsigned component = nir_intrinsic_component(instr); Temp prim_mask = get_arg(ctx, ctx->args->prim_mask); assert(nir_src_is_const(instr->src[1]) && !nir_src_as_uint(instr->src[1])); if (instr->dest.ssa.num_components == 1) { emit_interp_instr(ctx, idx, component, coords, dst, prim_mask); } else { aco_ptr vec(create_instruction( aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1)); for (unsigned i = 0; i < instr->dest.ssa.num_components; i++) { Temp tmp = ctx->program->allocateTmp(instr->dest.ssa.bit_size == 16 ? v2b : v1); emit_interp_instr(ctx, idx, component + i, coords, tmp, prim_mask); vec->operands[i] = Operand(tmp); } vec->definitions[0] = Definition(dst); ctx->block->instructions.emplace_back(std::move(vec)); } } Temp mtbuf_load_callback(Builder& bld, const LoadEmitInfo& info, Temp offset, unsigned bytes_needed, unsigned alignment, unsigned const_offset, Temp dst_hint) { Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1); Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand::c32(0); if (info.soffset.id()) { if (soffset.isTemp()) vaddr = bld.copy(bld.def(v1), soffset); soffset = Operand(info.soffset); } if (soffset.isUndefined()) soffset = Operand::zero(); const bool offen = !vaddr.isUndefined(); const bool idxen = info.idx.id(); if (offen && idxen) vaddr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), info.idx, vaddr); else if (idxen) vaddr = Operand(info.idx); /* Determine number of fetched components. * Note, ACO IR works with GFX6-8 nfmt + dfmt fields, these are later converted for GFX10+. */ const struct ac_vtx_format_info* vtx_info = ac_get_vtx_format_info(GFX8, CHIP_POLARIS10, info.format); /* The number of channels in the format determines the memory range. */ const unsigned max_components = vtx_info->num_channels; /* Calculate maximum number of components loaded according to alignment. */ unsigned max_fetched_components = bytes_needed / info.component_size; max_fetched_components = ac_get_safe_fetch_size(bld.program->gfx_level, vtx_info, const_offset, max_components, alignment, max_fetched_components); const unsigned fetch_fmt = vtx_info->hw_format[max_fetched_components - 1]; /* Adjust bytes needed in case we need to do a smaller load due to aligment. * If a larger format is selected, it's still OK to load a smaller amount from it. */ bytes_needed = MIN2(bytes_needed, max_fetched_components * info.component_size); unsigned bytes_size = 0; const unsigned bit_size = info.component_size * 8; aco_opcode op = aco_opcode::num_opcodes; if (bytes_needed == 2) { bytes_size = 2; op = aco_opcode::tbuffer_load_format_d16_x; } else if (bytes_needed <= 4) { bytes_size = 4; if (bit_size == 16) op = aco_opcode::tbuffer_load_format_d16_xy; else op = aco_opcode::tbuffer_load_format_x; } else if (bytes_needed <= 6) { bytes_size = 6; if (bit_size == 16) op = aco_opcode::tbuffer_load_format_d16_xyz; else op = aco_opcode::tbuffer_load_format_xy; } else if (bytes_needed <= 8) { bytes_size = 8; if (bit_size == 16) op = aco_opcode::tbuffer_load_format_d16_xyzw; else op = aco_opcode::tbuffer_load_format_xy; } else if (bytes_needed <= 12) { bytes_size = 12; op = aco_opcode::tbuffer_load_format_xyz; } else { bytes_size = 16; op = aco_opcode::tbuffer_load_format_xyzw; } /* Abort when suitable opcode wasn't found so we don't compile buggy shaders. */ if (op == aco_opcode::num_opcodes) { aco_err(bld.program, "unsupported bit size for typed buffer load"); abort(); } aco_ptr mtbuf{create_instruction(op, Format::MTBUF, 3, 1)}; mtbuf->operands[0] = Operand(info.resource); mtbuf->operands[1] = vaddr; mtbuf->operands[2] = soffset; mtbuf->offen = offen; mtbuf->idxen = idxen; mtbuf->glc = info.glc; mtbuf->dlc = info.glc && (bld.program->gfx_level == GFX10 || bld.program->gfx_level == GFX10_3); mtbuf->slc = info.slc; mtbuf->sync = info.sync; mtbuf->offset = const_offset; mtbuf->dfmt = fetch_fmt & 0xf; mtbuf->nfmt = fetch_fmt >> 4; RegClass rc = RegClass::get(RegType::vgpr, bytes_size); Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc); mtbuf->definitions[0] = Definition(val); bld.insert(std::move(mtbuf)); return val; } const EmitLoadParameters mtbuf_load_params{mtbuf_load_callback, false, true, 4096}; void visit_load_fs_input(isel_context* ctx, nir_intrinsic_instr* instr) { Builder bld(ctx->program, ctx->block); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); nir_src offset = *nir_get_io_offset_src(instr); if (!nir_src_is_const(offset) || nir_src_as_uint(offset)) isel_err(offset.ssa->parent_instr, "Unimplemented non-zero nir_intrinsic_load_input offset"); Temp prim_mask = get_arg(ctx, ctx->args->prim_mask); unsigned idx = nir_intrinsic_base(instr); unsigned component = nir_intrinsic_component(instr); unsigned vertex_id = 0; /* P0 */ if (instr->intrinsic == nir_intrinsic_load_input_vertex) vertex_id = nir_src_as_uint(instr->src[0]); if (instr->dest.ssa.num_components == 1 && instr->dest.ssa.bit_size != 64) { emit_interp_mov_instr(ctx, idx, component, vertex_id, dst, prim_mask); } else { unsigned num_components = instr->dest.ssa.num_components; if (instr->dest.ssa.bit_size == 64) num_components *= 2; aco_ptr vec{create_instruction( aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)}; for (unsigned i = 0; i < num_components; i++) { unsigned chan_component = (component + i) % 4; unsigned chan_idx = idx + (component + i) / 4; vec->operands[i] = Operand(bld.tmp(instr->dest.ssa.bit_size == 16 ? v2b : v1)); emit_interp_mov_instr(ctx, chan_idx, chan_component, vertex_id, vec->operands[i].getTemp(), prim_mask); } vec->definitions[0] = Definition(dst); bld.insert(std::move(vec)); } } void visit_load_tcs_per_vertex_input(isel_context* ctx, nir_intrinsic_instr* instr) { assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL); Builder bld(ctx->program, ctx->block); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); if (load_input_from_temps(ctx, instr, dst)) return; unreachable("LDS-based TCS input should have been lowered in NIR."); } void visit_load_per_vertex_input(isel_context* ctx, nir_intrinsic_instr* instr) { switch (ctx->shader->info.stage) { case MESA_SHADER_TESS_CTRL: visit_load_tcs_per_vertex_input(ctx, instr); break; default: unreachable("Unimplemented shader stage"); } } void visit_load_tess_coord(isel_context* ctx, nir_intrinsic_instr* instr) { assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL); Builder bld(ctx->program, ctx->block); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Operand tes_u(get_arg(ctx, ctx->args->tes_u)); Operand tes_v(get_arg(ctx, ctx->args->tes_v)); Operand tes_w = Operand::zero(); if (ctx->shader->info.tess._primitive_mode == TESS_PRIMITIVE_TRIANGLES) { Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v); tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand::c32(0x3f800000u /* 1.0f */), tmp); tes_w = Operand(tmp); } Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w); emit_split_vector(ctx, tess_coord, 3); } void load_buffer(isel_context* ctx, unsigned num_components, unsigned component_size, Temp dst, Temp rsrc, Temp offset, unsigned align_mul, unsigned align_offset, bool glc = false, bool allow_smem = true, memory_sync_info sync = memory_sync_info()) { Builder bld(ctx->program, ctx->block); bool use_smem = dst.type() != RegType::vgpr && (!glc || ctx->options->gfx_level >= GFX8) && allow_smem; if (use_smem) offset = bld.as_uniform(offset); else { /* GFX6-7 are affected by a hw bug that prevents address clamping to * work correctly when the SGPR offset is used. */ if (offset.type() == RegType::sgpr && ctx->options->gfx_level < GFX8) offset = as_vgpr(ctx, offset); } LoadEmitInfo info = {Operand(offset), dst, num_components, component_size, rsrc}; info.glc = glc; info.sync = sync; info.align_mul = align_mul; info.align_offset = align_offset; if (use_smem) emit_load(ctx, bld, info, smem_load_params); else emit_load(ctx, bld, info, mubuf_load_params); } void visit_load_ubo(isel_context* ctx, nir_intrinsic_instr* instr) { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Builder bld(ctx->program, ctx->block); Temp rsrc = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); unsigned size = instr->dest.ssa.bit_size / 8; load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr)); } void visit_load_push_constant(isel_context* ctx, nir_intrinsic_instr* instr) { Builder bld(ctx->program, ctx->block); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); unsigned offset = nir_intrinsic_base(instr); unsigned count = instr->dest.ssa.num_components; nir_const_value* index_cv = nir_src_as_const_value(instr->src[0]); if (instr->dest.ssa.bit_size == 64) count *= 2; if (index_cv && instr->dest.ssa.bit_size >= 32) { unsigned start = (offset + index_cv->u32) / 4u; uint64_t mask = BITFIELD64_MASK(count) << start; if ((ctx->args->inline_push_const_mask | mask) == ctx->args->inline_push_const_mask && start + count <= (sizeof(ctx->args->inline_push_const_mask) * 8u)) { std::array elems; aco_ptr vec{create_instruction( aco_opcode::p_create_vector, Format::PSEUDO, count, 1)}; unsigned arg_index = util_bitcount64(ctx->args->inline_push_const_mask & BITFIELD64_MASK(start)); for (unsigned i = 0; i < count; ++i) { elems[i] = get_arg(ctx, ctx->args->inline_push_consts[arg_index++]); vec->operands[i] = Operand{elems[i]}; } vec->definitions[0] = Definition(dst); ctx->block->instructions.emplace_back(std::move(vec)); ctx->allocated_vec.emplace(dst.id(), elems); return; } } Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); if (offset != 0) // TODO check if index != 0 as well index = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand::c32(offset), index); Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->push_constants)); Temp vec = dst; bool trim = false; bool aligned = true; if (instr->dest.ssa.bit_size == 8) { aligned = index_cv && (offset + index_cv->u32) % 4 == 0; bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4); if (!aligned) vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2); } else if (instr->dest.ssa.bit_size == 16) { aligned = index_cv && (offset + index_cv->u32) % 4 == 0; if (!aligned) vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1); } aco_opcode op; switch (vec.size()) { case 1: op = aco_opcode::s_load_dword; break; case 2: op = aco_opcode::s_load_dwordx2; break; case 3: vec = bld.tmp(s4); trim = true; FALLTHROUGH; case 4: op = aco_opcode::s_load_dwordx4; break; case 6: vec = bld.tmp(s8); trim = true; FALLTHROUGH; case 8: op = aco_opcode::s_load_dwordx8; break; default: unreachable("unimplemented or forbidden load_push_constant."); } bld.smem(op, Definition(vec), ptr, index)->smem().prevent_overflow = true; if (!aligned) { Operand byte_offset = index_cv ? Operand::c32((offset + index_cv->u32) % 4) : Operand(index); byte_align_scalar(ctx, vec, byte_offset, dst); return; } if (trim) { emit_split_vector(ctx, vec, 4); RegClass rc = dst.size() == 3 ? s1 : s2; bld.pseudo(aco_opcode::p_create_vector, Definition(dst), emit_extract_vector(ctx, vec, 0, rc), emit_extract_vector(ctx, vec, 1, rc), emit_extract_vector(ctx, vec, 2, rc)); } emit_split_vector(ctx, dst, instr->dest.ssa.num_components); } void visit_load_constant(isel_context* ctx, nir_intrinsic_instr* instr) { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Builder bld(ctx->program, ctx->block); uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); if (ctx->options->gfx_level >= GFX10) { desc_type |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(ctx->options->gfx_level < GFX11); } else { desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); } unsigned base = nir_intrinsic_base(instr); unsigned range = nir_intrinsic_range(instr); Temp offset = get_ssa_temp(ctx, instr->src[0].ssa); if (base && offset.type() == RegType::sgpr) offset = bld.nuw().sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand::c32(base)); else if (base && offset.type() == RegType::vgpr) offset = bld.vadd32(bld.def(v1), Operand::c32(base), offset); Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), bld.pseudo(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand::c32(ctx->constant_data_offset)), Operand::c32(MIN2(base + range, ctx->shader->constant_data_size)), Operand::c32(desc_type)); unsigned size = instr->dest.ssa.bit_size / 8; // TODO: get alignment information for subdword constants load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, size, 0); } /* Packs multiple Temps of different sizes in to a vector of v1 Temps. * The byte count of each input Temp must be a multiple of 2. */ static std::vector emit_pack_v1(isel_context* ctx, const std::vector& unpacked) { Builder bld(ctx->program, ctx->block); std::vector packed; Temp low = Temp(); for (Temp tmp : unpacked) { assert(tmp.bytes() % 2 == 0); unsigned byte_idx = 0; while (byte_idx < tmp.bytes()) { if (low != Temp()) { Temp high = emit_extract_vector(ctx, tmp, byte_idx / 2, v2b); Temp dword = bld.pseudo(aco_opcode::p_create_vector, bld.def(v1), low, high); low = Temp(); packed.push_back(dword); byte_idx += 2; } else if (byte_idx % 4 == 0 && (byte_idx + 4) <= tmp.bytes()) { packed.emplace_back(emit_extract_vector(ctx, tmp, byte_idx / 4, v1)); byte_idx += 4; } else { low = emit_extract_vector(ctx, tmp, byte_idx / 2, v2b); byte_idx += 2; } } } if (low != Temp()) { Temp dword = bld.pseudo(aco_opcode::p_create_vector, bld.def(v1), low, Operand(v2b)); packed.push_back(dword); } return packed; } static bool should_declare_array(isel_context* ctx, enum glsl_sampler_dim sampler_dim, bool is_array) { if (sampler_dim == GLSL_SAMPLER_DIM_BUF) return false; ac_image_dim dim = ac_get_sampler_dim(ctx->options->gfx_level, sampler_dim, is_array); return dim == ac_image_cube || dim == ac_image_1darray || dim == ac_image_2darray || dim == ac_image_2darraymsaa; } static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array) { switch (dim) { case GLSL_SAMPLER_DIM_BUF: return 1; case GLSL_SAMPLER_DIM_1D: return array ? 2 : 1; case GLSL_SAMPLER_DIM_2D: return array ? 3 : 2; case GLSL_SAMPLER_DIM_MS: return array ? 3 : 2; case GLSL_SAMPLER_DIM_3D: case GLSL_SAMPLER_DIM_CUBE: return 3; case GLSL_SAMPLER_DIM_RECT: case GLSL_SAMPLER_DIM_SUBPASS: return 2; case GLSL_SAMPLER_DIM_SUBPASS_MS: return 2; default: break; } return 0; } static MIMG_instruction* emit_mimg(Builder& bld, aco_opcode op, Definition dst, Temp rsrc, Operand samp, std::vector coords, unsigned wqm_mask = 0, Operand vdata = Operand(v1)) { /* Limit NSA instructions to 3 dwords on GFX10 to avoid stability issues. * On GFX11 the first 4 vaddr are single registers and the last contains the remaining * vector. */ size_t nsa_size = bld.program->gfx_level == GFX10 ? 5 : bld.program->gfx_level == GFX10_3 ? 13 : bld.program->gfx_level >= GFX11 ? 4 : 0; nsa_size = bld.program->gfx_level >= GFX11 || coords.size() <= nsa_size ? nsa_size : 0; for (unsigned i = 0; i < std::min(coords.size(), nsa_size); i++) { coords[i] = as_vgpr(bld, coords[i]); if (wqm_mask & (1u << i)) coords[i] = emit_wqm(bld, coords[i], bld.tmp(coords[i].regClass()), true); } if (nsa_size < coords.size()) { Temp coord = coords[nsa_size]; if (coords.size() - nsa_size > 1) { aco_ptr vec{create_instruction( aco_opcode::p_create_vector, Format::PSEUDO, coords.size() - nsa_size, 1)}; unsigned coord_size = 0; for (unsigned i = nsa_size; i < coords.size(); i++) { vec->operands[i - nsa_size] = Operand(coords[i]); coord_size += coords[i].size(); } coord = bld.tmp(RegType::vgpr, coord_size); vec->definitions[0] = Definition(coord); bld.insert(std::move(vec)); } else { coord = as_vgpr(bld, coord); } if (wqm_mask >> nsa_size) { /* We don't need the bias, sample index, compare value or offset to be * computed in WQM but if the p_create_vector copies the coordinates, then it * needs to be in WQM. */ coord = emit_wqm(bld, coord, bld.tmp(coord.regClass()), true); } coords[nsa_size] = coord; coords.resize(nsa_size + 1); } aco_ptr mimg{ create_instruction(op, Format::MIMG, 3 + coords.size(), dst.isTemp())}; if (dst.isTemp()) mimg->definitions[0] = dst; mimg->operands[0] = Operand(rsrc); mimg->operands[1] = samp; mimg->operands[2] = vdata; for (unsigned i = 0; i < coords.size(); i++) mimg->operands[3 + i] = Operand(coords[i]); MIMG_instruction* res = mimg.get(); bld.insert(std::move(mimg)); return res; } void visit_bvh64_intersect_ray_amd(isel_context* ctx, nir_intrinsic_instr* instr) { Builder bld(ctx->program, ctx->block); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Temp resource = get_ssa_temp(ctx, instr->src[0].ssa); Temp node = get_ssa_temp(ctx, instr->src[1].ssa); Temp tmax = get_ssa_temp(ctx, instr->src[2].ssa); Temp origin = get_ssa_temp(ctx, instr->src[3].ssa); Temp dir = get_ssa_temp(ctx, instr->src[4].ssa); Temp inv_dir = get_ssa_temp(ctx, instr->src[5].ssa); /* On GFX11 image_bvh64_intersect_ray has a special vaddr layout with NSA: * There are five smaller vector groups: * node_pointer, ray_extent, ray_origin, ray_dir, ray_inv_dir. * These directly match the NIR intrinsic sources. */ std::vector args = { node, tmax, origin, dir, inv_dir, }; if (bld.program->gfx_level == GFX10_3) { std::vector scalar_args; for (Temp tmp : args) { for (unsigned i = 0; i < tmp.size(); i++) scalar_args.push_back(emit_extract_vector(ctx, tmp, i, v1)); } args = std::move(scalar_args); } MIMG_instruction* mimg = emit_mimg(bld, aco_opcode::image_bvh64_intersect_ray, Definition(dst), resource, Operand(s4), args); mimg->dim = ac_image_1d; mimg->dmask = 0xf; mimg->unrm = true; mimg->r128 = true; emit_split_vector(ctx, dst, instr->dest.ssa.num_components); } static std::vector get_image_coords(isel_context* ctx, const nir_intrinsic_instr* instr) { Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa); bool a16 = instr->src[1].ssa->bit_size == 16; RegClass rc = a16 ? v2b : v1; enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr); bool is_array = nir_intrinsic_image_array(instr); ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS); assert(!add_frag_pos && "Input attachments should be lowered."); bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS); bool gfx9_1d = ctx->options->gfx_level == GFX9 && dim == GLSL_SAMPLER_DIM_1D; int count = image_type_to_components_count(dim, is_array); std::vector coords; Builder bld(ctx->program, ctx->block); if (gfx9_1d) { coords.emplace_back(emit_extract_vector(ctx, src0, 0, rc)); coords.emplace_back(bld.copy(bld.def(rc), Operand::zero(a16 ? 2 : 4))); if (is_array) coords.emplace_back(emit_extract_vector(ctx, src0, 1, rc)); } else { for (int i = 0; i < count; i++) coords.emplace_back(emit_extract_vector(ctx, src0, i, rc)); } bool has_lod = false; Temp lod; if (instr->intrinsic == nir_intrinsic_bindless_image_load || instr->intrinsic == nir_intrinsic_bindless_image_sparse_load || instr->intrinsic == nir_intrinsic_bindless_image_store) { int lod_index = instr->intrinsic == nir_intrinsic_bindless_image_store ? 4 : 3; assert(instr->src[lod_index].ssa->bit_size == (a16 ? 16 : 32)); has_lod = !nir_src_is_const(instr->src[lod_index]) || nir_src_as_uint(instr->src[lod_index]) != 0; if (has_lod) lod = get_ssa_temp_tex(ctx, instr->src[lod_index].ssa, a16); } if (ctx->program->info.image_2d_view_of_3d && dim == GLSL_SAMPLER_DIM_2D && !is_array) { /* The hw can't bind a slice of a 3D image as a 2D image, because it * ignores BASE_ARRAY if the target is 3D. The workaround is to read * BASE_ARRAY and set it as the 3rd address operand for all 2D images. */ assert(ctx->options->gfx_level == GFX9); Temp rsrc = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); Temp rsrc_word5 = emit_extract_vector(ctx, rsrc, 5, v1); /* Extract the BASE_ARRAY field [0:12] from the descriptor. */ Temp first_layer = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), rsrc_word5, Operand::c32(0u), Operand::c32(13u)); if (has_lod) { /* If there's a lod parameter it matter if the image is 3d or 2d because * the hw reads either the fourth or third component as lod. So detect * 3d images and place the lod at the third component otherwise. * For non 3D descriptors we effectively add lod twice to coords, * but the hw will only read the first one, the second is ignored. */ Temp rsrc_word3 = emit_extract_vector(ctx, rsrc, 3, s1); Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), rsrc_word3, Operand::c32(28 | (4 << 16))); /* extract last 4 bits */ Temp is_3d = bld.vopc_e64(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), type, Operand::c32(V_008F1C_SQ_RSRC_IMG_3D)); first_layer = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), as_vgpr(ctx, lod), first_layer, is_3d); } if (a16) coords.emplace_back(emit_extract_vector(ctx, first_layer, 0, v2b)); else coords.emplace_back(first_layer); } if (is_ms) { assert(instr->src[2].ssa->bit_size == (a16 ? 16 : 32)); coords.emplace_back(get_ssa_temp_tex(ctx, instr->src[2].ssa, a16)); } if (has_lod) coords.emplace_back(lod); return emit_pack_v1(ctx, coords); } memory_sync_info get_memory_sync_info(nir_intrinsic_instr* instr, storage_class storage, unsigned semantics) { /* atomicrmw might not have NIR_INTRINSIC_ACCESS and there's nothing interesting there anyway */ if (semantics & semantic_atomicrmw) return memory_sync_info(storage, semantics); unsigned access = nir_intrinsic_access(instr); if (access & ACCESS_VOLATILE) semantics |= semantic_volatile; if (access & ACCESS_CAN_REORDER) semantics |= semantic_can_reorder | semantic_private; return memory_sync_info(storage, semantics); } Operand emit_tfe_init(Builder& bld, Temp dst) { Temp tmp = bld.tmp(dst.regClass()); aco_ptr vec{create_instruction( aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)}; for (unsigned i = 0; i < dst.size(); i++) vec->operands[i] = Operand::zero(); vec->definitions[0] = Definition(tmp); /* Since this is fixed to an instruction's definition register, any CSE will * just create copies. Copying costs about the same as zero-initialization, * but these copies can break up clauses. */ vec->definitions[0].setNoCSE(true); bld.insert(std::move(vec)); return Operand(tmp); } void visit_image_load(isel_context* ctx, nir_intrinsic_instr* instr) { Builder bld(ctx->program, ctx->block); const enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr); bool is_array = nir_intrinsic_image_array(instr); bool is_sparse = instr->intrinsic == nir_intrinsic_bindless_image_sparse_load; Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0); unsigned access = nir_intrinsic_access(instr); unsigned result_size = instr->dest.ssa.num_components - is_sparse; unsigned expand_mask = nir_ssa_def_components_read(&instr->dest.ssa) & u_bit_consecutive(0, result_size); expand_mask = MAX2(expand_mask, 1); /* this can be zero in the case of sparse image loads */ if (dim == GLSL_SAMPLER_DIM_BUF) expand_mask = (1u << util_last_bit(expand_mask)) - 1u; unsigned dmask = expand_mask; if (instr->dest.ssa.bit_size == 64) { expand_mask &= 0x9; /* only R64_UINT and R64_SINT supported. x is in xy of the result, w in zw */ dmask = ((expand_mask & 0x1) ? 0x3 : 0) | ((expand_mask & 0x8) ? 0xc : 0); } if (is_sparse) expand_mask |= 1 << result_size; bool d16 = instr->dest.ssa.bit_size == 16; assert(!d16 || !is_sparse); unsigned num_bytes = util_bitcount(dmask) * (d16 ? 2 : 4) + is_sparse * 4; Temp tmp; if (num_bytes == dst.bytes() && dst.type() == RegType::vgpr) tmp = dst; else tmp = bld.tmp(RegClass::get(RegType::vgpr, num_bytes)); Temp resource = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); if (dim == GLSL_SAMPLER_DIM_BUF) { Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1); aco_opcode opcode; if (!d16) { switch (util_bitcount(dmask)) { case 1: opcode = aco_opcode::buffer_load_format_x; break; case 2: opcode = aco_opcode::buffer_load_format_xy; break; case 3: opcode = aco_opcode::buffer_load_format_xyz; break; case 4: opcode = aco_opcode::buffer_load_format_xyzw; break; default: unreachable(">4 channel buffer image load"); } } else { switch (util_bitcount(dmask)) { case 1: opcode = aco_opcode::buffer_load_format_d16_x; break; case 2: opcode = aco_opcode::buffer_load_format_d16_xy; break; case 3: opcode = aco_opcode::buffer_load_format_d16_xyz; break; case 4: opcode = aco_opcode::buffer_load_format_d16_xyzw; break; default: unreachable(">4 channel buffer image load"); } } aco_ptr load{ create_instruction(opcode, Format::MUBUF, 3 + is_sparse, 1)}; load->operands[0] = Operand(resource); load->operands[1] = Operand(vindex); load->operands[2] = Operand::c32(0); load->definitions[0] = Definition(tmp); load->idxen = true; load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT); load->dlc = load->glc && (ctx->options->gfx_level == GFX10 || ctx->options->gfx_level == GFX10_3); load->sync = sync; load->tfe = is_sparse; if (load->tfe) load->operands[3] = emit_tfe_init(bld, tmp); ctx->block->instructions.emplace_back(std::move(load)); } else { std::vector coords = get_image_coords(ctx, instr); bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0; aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip; Operand vdata = is_sparse ? emit_tfe_init(bld, tmp) : Operand(v1); MIMG_instruction* load = emit_mimg(bld, opcode, Definition(tmp), resource, Operand(s4), coords, 0, vdata); load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0; load->dlc = load->glc && (ctx->options->gfx_level == GFX10 || ctx->options->gfx_level == GFX10_3); load->dim = ac_get_image_dim(ctx->options->gfx_level, dim, is_array); load->a16 = instr->src[1].ssa->bit_size == 16; load->d16 = d16; load->dmask = dmask; load->unrm = true; load->da = should_declare_array(ctx, dim, is_array); load->sync = sync; load->tfe = is_sparse; } if (is_sparse && instr->dest.ssa.bit_size == 64) { /* The result components are 64-bit but the sparse residency code is * 32-bit. So add a zero to the end so expand_vector() works correctly. */ tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, tmp.size() + 1), tmp, Operand::zero()); } expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, expand_mask, instr->dest.ssa.bit_size == 64); } void visit_image_store(isel_context* ctx, nir_intrinsic_instr* instr) { Builder bld(ctx->program, ctx->block); const enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr); bool is_array = nir_intrinsic_image_array(instr); Temp data = get_ssa_temp(ctx, instr->src[3].ssa); bool d16 = instr->src[3].ssa->bit_size == 16; /* only R64_UINT and R64_SINT supported */ if (instr->src[3].ssa->bit_size == 64 && data.bytes() > 8) data = emit_extract_vector(ctx, data, 0, RegClass(data.type(), 2)); data = as_vgpr(ctx, data); uint32_t num_components = d16 ? instr->src[3].ssa->num_components : data.size(); memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0); unsigned access = nir_intrinsic_access(instr); bool glc = ctx->options->gfx_level == GFX6 || ((access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE)) && ctx->program->gfx_level < GFX11); if (dim == GLSL_SAMPLER_DIM_BUF) { Temp rsrc = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1); aco_opcode opcode; if (!d16) { switch (num_components) { case 1: opcode = aco_opcode::buffer_store_format_x; break; case 2: opcode = aco_opcode::buffer_store_format_xy; break; case 3: opcode = aco_opcode::buffer_store_format_xyz; break; case 4: opcode = aco_opcode::buffer_store_format_xyzw; break; default: unreachable(">4 channel buffer image store"); } } else { switch (num_components) { case 1: opcode = aco_opcode::buffer_store_format_d16_x; break; case 2: opcode = aco_opcode::buffer_store_format_d16_xy; break; case 3: opcode = aco_opcode::buffer_store_format_d16_xyz; break; case 4: opcode = aco_opcode::buffer_store_format_d16_xyzw; break; default: unreachable(">4 channel buffer image store"); } } aco_ptr store{ create_instruction(opcode, Format::MUBUF, 4, 0)}; store->operands[0] = Operand(rsrc); store->operands[1] = Operand(vindex); store->operands[2] = Operand::c32(0); store->operands[3] = Operand(data); store->idxen = true; store->glc = glc; store->dlc = false; store->disable_wqm = true; store->sync = sync; ctx->program->needs_exact = true; ctx->block->instructions.emplace_back(std::move(store)); return; } assert(data.type() == RegType::vgpr); std::vector coords = get_image_coords(ctx, instr); Temp resource = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0; aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip; uint32_t dmask = BITFIELD_MASK(num_components); /* remove zero/undef elements from data, components which aren't in dmask * are zeroed anyway */ if (instr->src[3].ssa->bit_size == 32 || instr->src[3].ssa->bit_size == 16) { for (uint32_t i = 0; i < instr->num_components; i++) { nir_ssa_scalar comp = nir_ssa_scalar_resolved(instr->src[3].ssa, i); if ((nir_ssa_scalar_is_const(comp) && nir_ssa_scalar_as_uint(comp) == 0) || nir_ssa_scalar_is_undef(comp)) dmask &= ~BITFIELD_BIT(i); } /* dmask cannot be 0, at least one vgpr is always read */ if (dmask == 0) dmask = 1; if (dmask != BITFIELD_MASK(num_components)) { uint32_t dmask_count = util_bitcount(dmask); RegClass rc = d16 ? v2b : v1; if (dmask_count == 1) { data = emit_extract_vector(ctx, data, ffs(dmask) - 1, rc); } else { aco_ptr vec{create_instruction( aco_opcode::p_create_vector, Format::PSEUDO, dmask_count, 1)}; uint32_t index = 0; u_foreach_bit(bit, dmask) { vec->operands[index++] = Operand(emit_extract_vector(ctx, data, bit, rc)); } data = bld.tmp(RegClass::get(RegType::vgpr, dmask_count * rc.bytes())); vec->definitions[0] = Definition(data); bld.insert(std::move(vec)); } } } MIMG_instruction* store = emit_mimg(bld, opcode, Definition(), resource, Operand(s4), coords, 0, Operand(data)); store->glc = glc; store->dlc = false; store->dim = ac_get_image_dim(ctx->options->gfx_level, dim, is_array); store->a16 = instr->src[1].ssa->bit_size == 16; store->d16 = d16; store->dmask = dmask; store->unrm = true; store->da = should_declare_array(ctx, dim, is_array); store->disable_wqm = true; store->sync = sync; ctx->program->needs_exact = true; return; } void visit_image_atomic(isel_context* ctx, nir_intrinsic_instr* instr) { bool return_previous = !nir_ssa_def_is_unused(&instr->dest.ssa); const enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr); bool is_array = nir_intrinsic_image_array(instr); Builder bld(ctx->program, ctx->block); Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa)); bool cmpswap = instr->intrinsic == nir_intrinsic_bindless_image_atomic_comp_swap; bool is_64bit = data.bytes() == 8; assert((data.bytes() == 4 || data.bytes() == 8) && "only 32/64-bit image atomics implemented."); if (cmpswap) data = bld.pseudo(aco_opcode::p_create_vector, bld.def(is_64bit ? v4 : v2), get_ssa_temp(ctx, instr->src[4].ssa), data); aco_opcode buf_op, buf_op64, image_op; switch (instr->intrinsic) { case nir_intrinsic_bindless_image_atomic_add: buf_op = aco_opcode::buffer_atomic_add; buf_op64 = aco_opcode::buffer_atomic_add_x2; image_op = aco_opcode::image_atomic_add; break; case nir_intrinsic_bindless_image_atomic_umin: buf_op = aco_opcode::buffer_atomic_umin; buf_op64 = aco_opcode::buffer_atomic_umin_x2; image_op = aco_opcode::image_atomic_umin; break; case nir_intrinsic_bindless_image_atomic_imin: buf_op = aco_opcode::buffer_atomic_smin; buf_op64 = aco_opcode::buffer_atomic_smin_x2; image_op = aco_opcode::image_atomic_smin; break; case nir_intrinsic_bindless_image_atomic_umax: buf_op = aco_opcode::buffer_atomic_umax; buf_op64 = aco_opcode::buffer_atomic_umax_x2; image_op = aco_opcode::image_atomic_umax; break; case nir_intrinsic_bindless_image_atomic_imax: buf_op = aco_opcode::buffer_atomic_smax; buf_op64 = aco_opcode::buffer_atomic_smax_x2; image_op = aco_opcode::image_atomic_smax; break; case nir_intrinsic_bindless_image_atomic_and: buf_op = aco_opcode::buffer_atomic_and; buf_op64 = aco_opcode::buffer_atomic_and_x2; image_op = aco_opcode::image_atomic_and; break; case nir_intrinsic_bindless_image_atomic_or: buf_op = aco_opcode::buffer_atomic_or; buf_op64 = aco_opcode::buffer_atomic_or_x2; image_op = aco_opcode::image_atomic_or; break; case nir_intrinsic_bindless_image_atomic_xor: buf_op = aco_opcode::buffer_atomic_xor; buf_op64 = aco_opcode::buffer_atomic_xor_x2; image_op = aco_opcode::image_atomic_xor; break; case nir_intrinsic_bindless_image_atomic_exchange: buf_op = aco_opcode::buffer_atomic_swap; buf_op64 = aco_opcode::buffer_atomic_swap_x2; image_op = aco_opcode::image_atomic_swap; break; case nir_intrinsic_bindless_image_atomic_comp_swap: buf_op = aco_opcode::buffer_atomic_cmpswap; buf_op64 = aco_opcode::buffer_atomic_cmpswap_x2; image_op = aco_opcode::image_atomic_cmpswap; break; case nir_intrinsic_bindless_image_atomic_fadd: buf_op = aco_opcode::buffer_atomic_add_f32; buf_op64 = aco_opcode::num_opcodes; image_op = aco_opcode::num_opcodes; break; case nir_intrinsic_bindless_image_atomic_fmin: buf_op = aco_opcode::buffer_atomic_fmin; buf_op64 = aco_opcode::buffer_atomic_fmin_x2; image_op = aco_opcode::image_atomic_fmin; break; case nir_intrinsic_bindless_image_atomic_fmax: buf_op = aco_opcode::buffer_atomic_fmax; buf_op64 = aco_opcode::buffer_atomic_fmax_x2; image_op = aco_opcode::image_atomic_fmax; break; default: unreachable("visit_image_atomic should only be called with " "nir_intrinsic_bindless_image_atomic_* instructions."); } Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); memory_sync_info sync = get_memory_sync_info(instr, storage_image, semantic_atomicrmw); if (dim == GLSL_SAMPLER_DIM_BUF) { Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1); Temp resource = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); // assert(ctx->options->gfx_level < GFX9 && "GFX9 stride size workaround not yet // implemented."); aco_ptr mubuf{create_instruction( is_64bit ? buf_op64 : buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)}; mubuf->operands[0] = Operand(resource); mubuf->operands[1] = Operand(vindex); mubuf->operands[2] = Operand::c32(0); mubuf->operands[3] = Operand(data); Definition def = return_previous ? (cmpswap ? bld.def(data.regClass()) : Definition(dst)) : Definition(); if (return_previous) mubuf->definitions[0] = def; mubuf->offset = 0; mubuf->idxen = true; mubuf->glc = return_previous; mubuf->dlc = false; /* Not needed for atomics */ mubuf->disable_wqm = true; mubuf->sync = sync; ctx->program->needs_exact = true; ctx->block->instructions.emplace_back(std::move(mubuf)); if (return_previous && cmpswap) bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), def.getTemp(), Operand::zero()); return; } std::vector coords = get_image_coords(ctx, instr); Temp resource = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); Definition def = return_previous ? (cmpswap ? bld.def(data.regClass()) : Definition(dst)) : Definition(); MIMG_instruction* mimg = emit_mimg(bld, image_op, def, resource, Operand(s4), coords, 0, Operand(data)); mimg->glc = return_previous; mimg->dlc = false; /* Not needed for atomics */ mimg->dim = ac_get_image_dim(ctx->options->gfx_level, dim, is_array); mimg->dmask = (1 << data.size()) - 1; mimg->a16 = instr->src[1].ssa->bit_size == 16; mimg->unrm = true; mimg->da = should_declare_array(ctx, dim, is_array); mimg->disable_wqm = true; mimg->sync = sync; ctx->program->needs_exact = true; if (return_previous && cmpswap) bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), def.getTemp(), Operand::zero()); return; } void visit_load_ssbo(isel_context* ctx, nir_intrinsic_instr* instr) { Builder bld(ctx->program, ctx->block); unsigned num_components = instr->num_components; Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Temp rsrc = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); unsigned access = nir_intrinsic_access(instr); bool glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT); unsigned size = instr->dest.ssa.bit_size / 8; bool allow_smem = access & ACCESS_CAN_REORDER; load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr), glc, allow_smem, get_memory_sync_info(instr, storage_buffer, 0)); } void visit_store_ssbo(isel_context* ctx, nir_intrinsic_instr* instr) { Builder bld(ctx->program, ctx->block); Temp data = get_ssa_temp(ctx, instr->src[0].ssa); unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8; unsigned writemask = util_widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes); Temp offset = get_ssa_temp(ctx, instr->src[2].ssa); Temp rsrc = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa)); memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0); bool glc = (nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE)) && ctx->program->gfx_level < GFX11; unsigned write_count = 0; Temp write_datas[32]; unsigned offsets[32]; split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask, 16, &write_count, write_datas, offsets); /* GFX6-7 are affected by a hw bug that prevents address clamping to work * correctly when the SGPR offset is used. */ if (offset.type() == RegType::sgpr && ctx->options->gfx_level < GFX8) offset = as_vgpr(ctx, offset); for (unsigned i = 0; i < write_count; i++) { aco_opcode op = get_buffer_store_op(write_datas[i].bytes()); aco_ptr store{ create_instruction(op, Format::MUBUF, 4, 0)}; store->operands[0] = Operand(rsrc); store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1); store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand::c32(0); store->operands[3] = Operand(write_datas[i]); store->offset = offsets[i]; store->offen = (offset.type() == RegType::vgpr); store->glc = glc; store->dlc = false; store->disable_wqm = true; store->sync = sync; ctx->program->needs_exact = true; ctx->block->instructions.emplace_back(std::move(store)); } } void visit_atomic_ssbo(isel_context* ctx, nir_intrinsic_instr* instr) { Builder bld(ctx->program, ctx->block); bool return_previous = !nir_ssa_def_is_unused(&instr->dest.ssa); Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa)); bool cmpswap = instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap; if (cmpswap) data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2), get_ssa_temp(ctx, instr->src[3].ssa), data); Temp offset = get_ssa_temp(ctx, instr->src[1].ssa); Temp rsrc = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); aco_opcode op32, op64; switch (instr->intrinsic) { case nir_intrinsic_ssbo_atomic_add: op32 = aco_opcode::buffer_atomic_add; op64 = aco_opcode::buffer_atomic_add_x2; break; case nir_intrinsic_ssbo_atomic_imin: op32 = aco_opcode::buffer_atomic_smin; op64 = aco_opcode::buffer_atomic_smin_x2; break; case nir_intrinsic_ssbo_atomic_umin: op32 = aco_opcode::buffer_atomic_umin; op64 = aco_opcode::buffer_atomic_umin_x2; break; case nir_intrinsic_ssbo_atomic_imax: op32 = aco_opcode::buffer_atomic_smax; op64 = aco_opcode::buffer_atomic_smax_x2; break; case nir_intrinsic_ssbo_atomic_umax: op32 = aco_opcode::buffer_atomic_umax; op64 = aco_opcode::buffer_atomic_umax_x2; break; case nir_intrinsic_ssbo_atomic_and: op32 = aco_opcode::buffer_atomic_and; op64 = aco_opcode::buffer_atomic_and_x2; break; case nir_intrinsic_ssbo_atomic_or: op32 = aco_opcode::buffer_atomic_or; op64 = aco_opcode::buffer_atomic_or_x2; break; case nir_intrinsic_ssbo_atomic_xor: op32 = aco_opcode::buffer_atomic_xor; op64 = aco_opcode::buffer_atomic_xor_x2; break; case nir_intrinsic_ssbo_atomic_exchange: op32 = aco_opcode::buffer_atomic_swap; op64 = aco_opcode::buffer_atomic_swap_x2; break; case nir_intrinsic_ssbo_atomic_comp_swap: op32 = aco_opcode::buffer_atomic_cmpswap; op64 = aco_opcode::buffer_atomic_cmpswap_x2; break; case nir_intrinsic_ssbo_atomic_fadd: op32 = aco_opcode::buffer_atomic_add_f32; op64 = aco_opcode::num_opcodes; break; case nir_intrinsic_ssbo_atomic_fmin: op32 = aco_opcode::buffer_atomic_fmin; op64 = aco_opcode::buffer_atomic_fmin_x2; break; case nir_intrinsic_ssbo_atomic_fmax: op32 = aco_opcode::buffer_atomic_fmax; op64 = aco_opcode::buffer_atomic_fmax_x2; break; default: unreachable( "visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions."); } aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64; aco_ptr mubuf{ create_instruction(op, Format::MUBUF, 4, return_previous ? 1 : 0)}; mubuf->operands[0] = Operand(rsrc); mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1); mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand::c32(0); mubuf->operands[3] = Operand(data); Definition def = return_previous ? (cmpswap ? bld.def(data.regClass()) : Definition(dst)) : Definition(); if (return_previous) mubuf->definitions[0] = def; mubuf->offset = 0; mubuf->offen = (offset.type() == RegType::vgpr); mubuf->glc = return_previous; mubuf->dlc = false; /* Not needed for atomics */ mubuf->disable_wqm = true; mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw); ctx->program->needs_exact = true; ctx->block->instructions.emplace_back(std::move(mubuf)); if (return_previous && cmpswap) bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), def.getTemp(), Operand::zero()); } void parse_global(isel_context* ctx, nir_intrinsic_instr* intrin, Temp* address, uint32_t* const_offset, Temp* offset) { bool is_store = intrin->intrinsic == nir_intrinsic_store_global_amd; *address = get_ssa_temp(ctx, intrin->src[is_store ? 1 : 0].ssa); *const_offset = nir_intrinsic_base(intrin); unsigned num_src = nir_intrinsic_infos[intrin->intrinsic].num_srcs; nir_src offset_src = intrin->src[num_src - 1]; if (!nir_src_is_const(offset_src) || nir_src_as_uint(offset_src)) *offset = get_ssa_temp(ctx, offset_src.ssa); else *offset = Temp(); } void visit_load_global(isel_context* ctx, nir_intrinsic_instr* instr) { Builder bld(ctx->program, ctx->block); unsigned num_components = instr->num_components; unsigned component_size = instr->dest.ssa.bit_size / 8; Temp addr, offset; uint32_t const_offset; parse_global(ctx, instr, &addr, &const_offset, &offset); LoadEmitInfo info = {Operand(addr), get_ssa_temp(ctx, &instr->dest.ssa), num_components, component_size}; if (offset.id()) { info.resource = addr; info.offset = Operand(offset); } info.const_offset = const_offset; info.glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT); info.align_mul = nir_intrinsic_align_mul(instr); info.align_offset = nir_intrinsic_align_offset(instr); info.sync = get_memory_sync_info(instr, storage_buffer, 0); /* Don't expand global loads when they use MUBUF or SMEM. * Global loads don't have the bounds checking that buffer loads have that * makes this safe. */ unsigned align = nir_intrinsic_align(instr); bool byte_align_for_smem_mubuf = can_use_byte_align_for_global_load(num_components, component_size, align, false); /* VMEM stores don't update the SMEM cache and it's difficult to prove that * it's safe to use SMEM */ bool can_use_smem = (nir_intrinsic_access(instr) & ACCESS_NON_WRITEABLE) && byte_align_for_smem_mubuf; if (info.dst.type() == RegType::vgpr || (info.glc && ctx->options->gfx_level < GFX8) || !can_use_smem) { EmitLoadParameters params = global_load_params; params.byte_align_loads = ctx->options->gfx_level > GFX6 || byte_align_for_smem_mubuf; emit_load(ctx, bld, info, params); } else { if (info.resource.id()) info.resource = bld.as_uniform(info.resource); info.offset = Operand(bld.as_uniform(info.offset)); emit_load(ctx, bld, info, smem_load_params); } } void visit_store_global(isel_context* ctx, nir_intrinsic_instr* instr) { Builder bld(ctx->program, ctx->block); unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8; unsigned writemask = util_widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes); Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0); bool glc = (nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE)) && ctx->program->gfx_level < GFX11; unsigned write_count = 0; Temp write_datas[32]; unsigned offsets[32]; split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask, 16, &write_count, write_datas, offsets); Temp addr, offset; uint32_t const_offset; parse_global(ctx, instr, &addr, &const_offset, &offset); for (unsigned i = 0; i < write_count; i++) { Temp write_address = addr; uint32_t write_const_offset = const_offset; Temp write_offset = offset; lower_global_address(bld, offsets[i], &write_address, &write_const_offset, &write_offset); if (ctx->options->gfx_level >= GFX7) { bool global = ctx->options->gfx_level >= GFX9; aco_opcode op; switch (write_datas[i].bytes()) { case 1: op = global ? aco_opcode::global_store_byte : aco_opcode::flat_store_byte; break; case 2: op = global ? aco_opcode::global_store_short : aco_opcode::flat_store_short; break; case 4: op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword; break; case 8: op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2; break; case 12: op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3; break; case 16: op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4; break; default: unreachable("store_global not implemented for this size."); } aco_ptr flat{ create_instruction(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)}; if (write_address.regClass() == s2) { assert(global && write_offset.id() && write_offset.type() == RegType::vgpr); flat->operands[0] = Operand(write_offset); flat->operands[1] = Operand(write_address); } else { assert(write_address.type() == RegType::vgpr && !write_offset.id()); flat->operands[0] = Operand(write_address); flat->operands[1] = Operand(s1); } flat->operands[2] = Operand(write_datas[i]); flat->glc = glc; flat->dlc = false; assert(global || !write_const_offset); flat->offset = write_const_offset; flat->disable_wqm = true; flat->sync = sync; ctx->program->needs_exact = true; ctx->block->instructions.emplace_back(std::move(flat)); } else { assert(ctx->options->gfx_level == GFX6); aco_opcode op = get_buffer_store_op(write_datas[i].bytes()); Temp rsrc = get_gfx6_global_rsrc(bld, write_address); aco_ptr mubuf{ create_instruction(op, Format::MUBUF, 4, 0)}; mubuf->operands[0] = Operand(rsrc); mubuf->operands[1] = write_address.type() == RegType::vgpr ? Operand(write_address) : Operand(v1); mubuf->operands[2] = Operand(write_offset); mubuf->operands[3] = Operand(write_datas[i]); mubuf->glc = glc; mubuf->dlc = false; mubuf->offset = write_const_offset; mubuf->addr64 = write_address.type() == RegType::vgpr; mubuf->disable_wqm = true; mubuf->sync = sync; ctx->program->needs_exact = true; ctx->block->instructions.emplace_back(std::move(mubuf)); } } } void visit_global_atomic(isel_context* ctx, nir_intrinsic_instr* instr) { Builder bld(ctx->program, ctx->block); bool return_previous = !nir_ssa_def_is_unused(&instr->dest.ssa); Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa)); bool cmpswap = instr->intrinsic == nir_intrinsic_global_atomic_comp_swap_amd; if (cmpswap) data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2), get_ssa_temp(ctx, instr->src[2].ssa), data); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); aco_opcode op32, op64; Temp addr, offset; uint32_t const_offset; parse_global(ctx, instr, &addr, &const_offset, &offset); lower_global_address(bld, 0, &addr, &const_offset, &offset); if (ctx->options->gfx_level >= GFX7) { bool global = ctx->options->gfx_level >= GFX9; switch (instr->intrinsic) { case nir_intrinsic_global_atomic_add_amd: op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add; op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2; break; case nir_intrinsic_global_atomic_imin_amd: op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin; op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2; break; case nir_intrinsic_global_atomic_umin_amd: op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin; op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2; break; case nir_intrinsic_global_atomic_imax_amd: op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax; op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2; break; case nir_intrinsic_global_atomic_umax_amd: op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax; op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2; break; case nir_intrinsic_global_atomic_and_amd: op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and; op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2; break; case nir_intrinsic_global_atomic_or_amd: op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or; op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2; break; case nir_intrinsic_global_atomic_xor_amd: op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor; op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2; break; case nir_intrinsic_global_atomic_exchange_amd: op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap; op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2; break; case nir_intrinsic_global_atomic_comp_swap_amd: op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap; op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2; break; case nir_intrinsic_global_atomic_fadd_amd: op32 = global ? aco_opcode::global_atomic_add_f32 : aco_opcode::flat_atomic_add_f32; op64 = aco_opcode::num_opcodes; break; case nir_intrinsic_global_atomic_fmin_amd: op32 = global ? aco_opcode::global_atomic_fmin : aco_opcode::flat_atomic_fmin; op64 = global ? aco_opcode::global_atomic_fmin_x2 : aco_opcode::flat_atomic_fmin_x2; break; case nir_intrinsic_global_atomic_fmax_amd: op32 = global ? aco_opcode::global_atomic_fmax : aco_opcode::flat_atomic_fmax; op64 = global ? aco_opcode::global_atomic_fmax_x2 : aco_opcode::flat_atomic_fmax_x2; break; default: unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* " "instructions."); } aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64; aco_ptr flat{create_instruction( op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)}; if (addr.regClass() == s2) { assert(global && offset.id() && offset.type() == RegType::vgpr); flat->operands[0] = Operand(offset); flat->operands[1] = Operand(addr); } else { assert(addr.type() == RegType::vgpr && !offset.id()); flat->operands[0] = Operand(addr); flat->operands[1] = Operand(s1); } flat->operands[2] = Operand(data); if (return_previous) flat->definitions[0] = Definition(dst); flat->glc = return_previous; flat->dlc = false; /* Not needed for atomics */ assert(global || !const_offset); flat->offset = const_offset; flat->disable_wqm = true; flat->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw); ctx->program->needs_exact = true; ctx->block->instructions.emplace_back(std::move(flat)); } else { assert(ctx->options->gfx_level == GFX6); switch (instr->intrinsic) { case nir_intrinsic_global_atomic_add_amd: op32 = aco_opcode::buffer_atomic_add; op64 = aco_opcode::buffer_atomic_add_x2; break; case nir_intrinsic_global_atomic_imin_amd: op32 = aco_opcode::buffer_atomic_smin; op64 = aco_opcode::buffer_atomic_smin_x2; break; case nir_intrinsic_global_atomic_umin_amd: op32 = aco_opcode::buffer_atomic_umin; op64 = aco_opcode::buffer_atomic_umin_x2; break; case nir_intrinsic_global_atomic_imax_amd: op32 = aco_opcode::buffer_atomic_smax; op64 = aco_opcode::buffer_atomic_smax_x2; break; case nir_intrinsic_global_atomic_umax_amd: op32 = aco_opcode::buffer_atomic_umax; op64 = aco_opcode::buffer_atomic_umax_x2; break; case nir_intrinsic_global_atomic_and_amd: op32 = aco_opcode::buffer_atomic_and; op64 = aco_opcode::buffer_atomic_and_x2; break; case nir_intrinsic_global_atomic_or_amd: op32 = aco_opcode::buffer_atomic_or; op64 = aco_opcode::buffer_atomic_or_x2; break; case nir_intrinsic_global_atomic_xor_amd: op32 = aco_opcode::buffer_atomic_xor; op64 = aco_opcode::buffer_atomic_xor_x2; break; case nir_intrinsic_global_atomic_exchange_amd: op32 = aco_opcode::buffer_atomic_swap; op64 = aco_opcode::buffer_atomic_swap_x2; break; case nir_intrinsic_global_atomic_comp_swap_amd: op32 = aco_opcode::buffer_atomic_cmpswap; op64 = aco_opcode::buffer_atomic_cmpswap_x2; break; case nir_intrinsic_global_atomic_fmin_amd: op32 = aco_opcode::buffer_atomic_fmin; op64 = aco_opcode::buffer_atomic_fmin_x2; break; case nir_intrinsic_global_atomic_fmax_amd: op32 = aco_opcode::buffer_atomic_fmax; op64 = aco_opcode::buffer_atomic_fmax_x2; break; default: unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* " "instructions."); } Temp rsrc = get_gfx6_global_rsrc(bld, addr); aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64; aco_ptr mubuf{ create_instruction(op, Format::MUBUF, 4, return_previous ? 1 : 0)}; mubuf->operands[0] = Operand(rsrc); mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1); mubuf->operands[2] = Operand(offset); mubuf->operands[3] = Operand(data); Definition def = return_previous ? (cmpswap ? bld.def(data.regClass()) : Definition(dst)) : Definition(); if (return_previous) mubuf->definitions[0] = def; mubuf->glc = return_previous; mubuf->dlc = false; mubuf->offset = const_offset; mubuf->addr64 = addr.type() == RegType::vgpr; mubuf->disable_wqm = true; mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw); ctx->program->needs_exact = true; ctx->block->instructions.emplace_back(std::move(mubuf)); if (return_previous && cmpswap) bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), def.getTemp(), Operand::zero()); } } unsigned aco_storage_mode_from_nir_mem_mode(unsigned mem_mode) { unsigned storage = storage_none; if (mem_mode & nir_var_shader_out) storage |= storage_vmem_output; if ((mem_mode & nir_var_mem_ssbo) || (mem_mode & nir_var_mem_global)) storage |= storage_buffer; if (mem_mode & nir_var_mem_task_payload) storage |= storage_task_payload; if (mem_mode & nir_var_mem_shared) storage |= storage_shared; if (mem_mode & nir_var_image) storage |= storage_image; return storage; } void visit_load_buffer(isel_context* ctx, nir_intrinsic_instr* intrin) { Builder bld(ctx->program, ctx->block); /* Swizzled buffer addressing seems to be broken on GFX11 without the idxen bit. */ bool swizzled = nir_intrinsic_access(intrin) & ACCESS_IS_SWIZZLED_AMD; bool idxen = (swizzled && ctx->program->gfx_level >= GFX11) || !nir_src_is_const(intrin->src[3]) || nir_src_as_uint(intrin->src[3]); bool v_offset_zero = nir_src_is_const(intrin->src[1]) && !nir_src_as_uint(intrin->src[1]); bool s_offset_zero = nir_src_is_const(intrin->src[2]) && !nir_src_as_uint(intrin->src[2]); Temp dst = get_ssa_temp(ctx, &intrin->dest.ssa); Temp descriptor = bld.as_uniform(get_ssa_temp(ctx, intrin->src[0].ssa)); Temp v_offset = v_offset_zero ? Temp(0, v1) : as_vgpr(ctx, get_ssa_temp(ctx, intrin->src[1].ssa)); Temp s_offset = s_offset_zero ? Temp(0, s1) : bld.as_uniform(get_ssa_temp(ctx, intrin->src[2].ssa)); Temp idx = idxen ? as_vgpr(ctx, get_ssa_temp(ctx, intrin->src[3].ssa)) : Temp(); bool glc = nir_intrinsic_access(intrin) & ACCESS_COHERENT; bool slc = nir_intrinsic_access(intrin) & ACCESS_STREAM_CACHE_POLICY; unsigned const_offset = nir_intrinsic_base(intrin); unsigned elem_size_bytes = intrin->dest.ssa.bit_size / 8u; unsigned num_components = intrin->dest.ssa.num_components; nir_variable_mode mem_mode = nir_intrinsic_memory_modes(intrin); memory_sync_info sync(aco_storage_mode_from_nir_mem_mode(mem_mode)); LoadEmitInfo info = {Operand(v_offset), dst, num_components, elem_size_bytes, descriptor}; info.idx = idx; info.glc = glc; info.slc = slc; info.soffset = s_offset; info.const_offset = const_offset; info.sync = sync; if (intrin->intrinsic == nir_intrinsic_load_typed_buffer_amd) { const pipe_format format = nir_intrinsic_format(intrin); const struct ac_vtx_format_info* vtx_info = ac_get_vtx_format_info(ctx->program->gfx_level, ctx->program->family, format); const struct util_format_description* f = util_format_description(format); const unsigned align_mul = nir_intrinsic_align_mul(intrin); const unsigned align_offset = nir_intrinsic_align_offset(intrin); /* Avoid splitting: * - non-array formats because that would result in incorrect code * - when element size is same as component size (to reduce instruction count) */ const bool can_split = f->is_array && elem_size_bytes != vtx_info->chan_byte_size; info.align_mul = align_mul; info.align_offset = align_offset; info.format = format; info.component_stride = can_split ? vtx_info->chan_byte_size : 0; info.split_by_component_stride = false; emit_load(ctx, bld, info, mtbuf_load_params); } else { const unsigned swizzle_element_size = swizzled ? (ctx->program->gfx_level <= GFX8 ? 4 : 16) : 0; info.component_stride = swizzle_element_size; info.swizzle_component_size = swizzle_element_size ? 4 : 0; info.align_mul = MIN2(elem_size_bytes, 4); info.align_offset = 0; emit_load(ctx, bld, info, mubuf_load_params); } } void visit_store_buffer(isel_context* ctx, nir_intrinsic_instr* intrin) { Builder bld(ctx->program, ctx->block); /* Swizzled buffer addressing seems to be broken on GFX11 without the idxen bit. */ bool swizzled = nir_intrinsic_access(intrin) & ACCESS_IS_SWIZZLED_AMD; bool idxen = (swizzled && ctx->program->gfx_level >= GFX11) || !nir_src_is_const(intrin->src[4]) || nir_src_as_uint(intrin->src[4]); bool v_offset_zero = nir_src_is_const(intrin->src[2]) && !nir_src_as_uint(intrin->src[2]); bool s_offset_zero = nir_src_is_const(intrin->src[3]) && !nir_src_as_uint(intrin->src[3]); Temp store_src = get_ssa_temp(ctx, intrin->src[0].ssa); Temp descriptor = bld.as_uniform(get_ssa_temp(ctx, intrin->src[1].ssa)); Temp v_offset = v_offset_zero ? Temp(0, v1) : as_vgpr(ctx, get_ssa_temp(ctx, intrin->src[2].ssa)); Temp s_offset = s_offset_zero ? Temp(0, s1) : bld.as_uniform(get_ssa_temp(ctx, intrin->src[3].ssa)); Temp idx = idxen ? as_vgpr(ctx, get_ssa_temp(ctx, intrin->src[4].ssa)) : Temp(); bool glc = nir_intrinsic_access(intrin) & ACCESS_COHERENT; bool slc = nir_intrinsic_access(intrin) & ACCESS_STREAM_CACHE_POLICY; unsigned const_offset = nir_intrinsic_base(intrin); unsigned write_mask = nir_intrinsic_write_mask(intrin); unsigned elem_size_bytes = intrin->src[0].ssa->bit_size / 8u; nir_variable_mode mem_mode = nir_intrinsic_memory_modes(intrin); /* GS outputs are only written once. */ const bool written_once = mem_mode == nir_var_shader_out && ctx->shader->info.stage == MESA_SHADER_GEOMETRY; memory_sync_info sync(aco_storage_mode_from_nir_mem_mode(mem_mode), written_once ? semantic_can_reorder : semantic_none); store_vmem_mubuf(ctx, store_src, descriptor, v_offset, s_offset, idx, const_offset, elem_size_bytes, write_mask, swizzled, sync, glc, slc); } void visit_load_smem(isel_context* ctx, nir_intrinsic_instr* instr) { Builder bld(ctx->program, ctx->block); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Temp base = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); Temp offset = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa)); aco_opcode opcode = aco_opcode::s_load_dword; unsigned size = 1; assert(dst.bytes() <= 64); if (dst.bytes() > 32) { opcode = aco_opcode::s_load_dwordx16; size = 16; } else if (dst.bytes() > 16) { opcode = aco_opcode::s_load_dwordx8; size = 8; } else if (dst.bytes() > 8) { opcode = aco_opcode::s_load_dwordx4; size = 4; } else if (dst.bytes() > 4) { opcode = aco_opcode::s_load_dwordx2; size = 2; } if (dst.size() != size) { bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), bld.smem(opcode, bld.def(RegType::sgpr, size), base, offset), Operand::c32(0u)); } else { bld.smem(opcode, Definition(dst), base, offset); } emit_split_vector(ctx, dst, instr->dest.ssa.num_components); } sync_scope translate_nir_scope(nir_scope scope) { switch (scope) { case NIR_SCOPE_NONE: case NIR_SCOPE_INVOCATION: return scope_invocation; case NIR_SCOPE_SUBGROUP: return scope_subgroup; case NIR_SCOPE_WORKGROUP: return scope_workgroup; case NIR_SCOPE_QUEUE_FAMILY: return scope_queuefamily; case NIR_SCOPE_DEVICE: return scope_device; case NIR_SCOPE_SHADER_CALL: return scope_invocation; } unreachable("invalid scope"); } void emit_scoped_barrier(isel_context* ctx, nir_intrinsic_instr* instr) { Builder bld(ctx->program, ctx->block); unsigned storage_allowed = storage_buffer | storage_image; unsigned semantics = 0; sync_scope mem_scope = translate_nir_scope(nir_intrinsic_memory_scope(instr)); sync_scope exec_scope = translate_nir_scope(nir_intrinsic_execution_scope(instr)); /* We use shared storage for the following: * - compute shaders expose it in their API * - when tessellation is used, TCS and VS I/O is lowered to shared memory * - when GS is used on GFX9+, VS->GS and TES->GS I/O is lowered to shared memory * - additionally, when NGG is used on GFX10+, shared memory is used for certain features */ bool shared_storage_used = ctx->stage.hw == HWStage::CS || ctx->stage.hw == HWStage::LS || ctx->stage.hw == HWStage::HS || (ctx->stage.hw == HWStage::GS && ctx->program->gfx_level >= GFX9) || ctx->stage.hw == HWStage::NGG; if (shared_storage_used) storage_allowed |= storage_shared; /* Task payload: Task Shader output, Mesh Shader input */ if (ctx->stage.has(SWStage::MS) || ctx->stage.has(SWStage::TS)) storage_allowed |= storage_task_payload; /* Allow VMEM output for all stages that can have outputs. */ if ((ctx->stage.hw != HWStage::CS && ctx->stage.hw != HWStage::FS) || ctx->stage.has(SWStage::TS)) storage_allowed |= storage_vmem_output; /* Workgroup barriers can hang merged shaders that can potentially have 0 threads in either half. * They are allowed in CS, TCS, and in any NGG shader. */ ASSERTED bool workgroup_scope_allowed = ctx->stage.hw == HWStage::CS || ctx->stage.hw == HWStage::HS || ctx->stage.hw == HWStage::NGG; unsigned nir_storage = nir_intrinsic_memory_modes(instr); unsigned storage = aco_storage_mode_from_nir_mem_mode(nir_storage); storage &= storage_allowed; unsigned nir_semantics = nir_intrinsic_memory_semantics(instr); if (nir_semantics & NIR_MEMORY_ACQUIRE) semantics |= semantic_acquire | semantic_release; if (nir_semantics & NIR_MEMORY_RELEASE) semantics |= semantic_acquire | semantic_release; assert(!(nir_semantics & (NIR_MEMORY_MAKE_AVAILABLE | NIR_MEMORY_MAKE_VISIBLE))); assert(exec_scope != scope_workgroup || workgroup_scope_allowed); bld.barrier(aco_opcode::p_barrier, memory_sync_info((storage_class)storage, (memory_semantics)semantics, mem_scope), exec_scope); } void visit_load_shared(isel_context* ctx, nir_intrinsic_instr* instr) { // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read() Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); Builder bld(ctx->program, ctx->block); unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8; unsigned num_components = instr->dest.ssa.num_components; unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes; load_lds(ctx, elem_size_bytes, num_components, dst, address, nir_intrinsic_base(instr), align); } void visit_store_shared(isel_context* ctx, nir_intrinsic_instr* instr) { unsigned writemask = nir_intrinsic_write_mask(instr); Temp data = get_ssa_temp(ctx, instr->src[0].ssa); Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa)); unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8; unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes; store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align); } void visit_shared_atomic(isel_context* ctx, nir_intrinsic_instr* instr) { unsigned offset = nir_intrinsic_base(instr); Builder bld(ctx->program, ctx->block); Operand m = load_lds_size_m0(bld); Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa)); Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); unsigned num_operands = 3; aco_opcode op32, op64, op32_rtn, op64_rtn; switch (instr->intrinsic) { case nir_intrinsic_shared_atomic_add: op32 = aco_opcode::ds_add_u32; op64 = aco_opcode::ds_add_u64; op32_rtn = aco_opcode::ds_add_rtn_u32; op64_rtn = aco_opcode::ds_add_rtn_u64; break; case nir_intrinsic_shared_atomic_imin: op32 = aco_opcode::ds_min_i32; op64 = aco_opcode::ds_min_i64; op32_rtn = aco_opcode::ds_min_rtn_i32; op64_rtn = aco_opcode::ds_min_rtn_i64; break; case nir_intrinsic_shared_atomic_umin: op32 = aco_opcode::ds_min_u32; op64 = aco_opcode::ds_min_u64; op32_rtn = aco_opcode::ds_min_rtn_u32; op64_rtn = aco_opcode::ds_min_rtn_u64; break; case nir_intrinsic_shared_atomic_imax: op32 = aco_opcode::ds_max_i32; op64 = aco_opcode::ds_max_i64; op32_rtn = aco_opcode::ds_max_rtn_i32; op64_rtn = aco_opcode::ds_max_rtn_i64; break; case nir_intrinsic_shared_atomic_umax: op32 = aco_opcode::ds_max_u32; op64 = aco_opcode::ds_max_u64; op32_rtn = aco_opcode::ds_max_rtn_u32; op64_rtn = aco_opcode::ds_max_rtn_u64; break; case nir_intrinsic_shared_atomic_and: op32 = aco_opcode::ds_and_b32; op64 = aco_opcode::ds_and_b64; op32_rtn = aco_opcode::ds_and_rtn_b32; op64_rtn = aco_opcode::ds_and_rtn_b64; break; case nir_intrinsic_shared_atomic_or: op32 = aco_opcode::ds_or_b32; op64 = aco_opcode::ds_or_b64; op32_rtn = aco_opcode::ds_or_rtn_b32; op64_rtn = aco_opcode::ds_or_rtn_b64; break; case nir_intrinsic_shared_atomic_xor: op32 = aco_opcode::ds_xor_b32; op64 = aco_opcode::ds_xor_b64; op32_rtn = aco_opcode::ds_xor_rtn_b32; op64_rtn = aco_opcode::ds_xor_rtn_b64; break; case nir_intrinsic_shared_atomic_exchange: op32 = aco_opcode::ds_write_b32; op64 = aco_opcode::ds_write_b64; op32_rtn = aco_opcode::ds_wrxchg_rtn_b32; op64_rtn = aco_opcode::ds_wrxchg_rtn_b64; break; case nir_intrinsic_shared_atomic_comp_swap: op32 = aco_opcode::ds_cmpst_b32; op64 = aco_opcode::ds_cmpst_b64; op32_rtn = aco_opcode::ds_cmpst_rtn_b32; op64_rtn = aco_opcode::ds_cmpst_rtn_b64; num_operands = 4; break; case nir_intrinsic_shared_atomic_fadd: op32 = aco_opcode::ds_add_f32; op32_rtn = aco_opcode::ds_add_rtn_f32; op64 = aco_opcode::num_opcodes; op64_rtn = aco_opcode::num_opcodes; break; case nir_intrinsic_shared_atomic_fmin: op32 = aco_opcode::ds_min_f32; op32_rtn = aco_opcode::ds_min_rtn_f32; op64 = aco_opcode::ds_min_f64; op64_rtn = aco_opcode::ds_min_rtn_f64; break; case nir_intrinsic_shared_atomic_fmax: op32 = aco_opcode::ds_max_f32; op32_rtn = aco_opcode::ds_max_rtn_f32; op64 = aco_opcode::ds_max_f64; op64_rtn = aco_opcode::ds_max_rtn_f64; break; default: unreachable("Unhandled shared atomic intrinsic"); } bool return_previous = !nir_ssa_def_is_unused(&instr->dest.ssa); aco_opcode op; if (data.size() == 1) { assert(instr->dest.ssa.bit_size == 32); op = return_previous ? op32_rtn : op32; } else { assert(instr->dest.ssa.bit_size == 64); op = return_previous ? op64_rtn : op64; } if (offset > 65535) { address = bld.vadd32(bld.def(v1), Operand::c32(offset), address); offset = 0; } aco_ptr ds; ds.reset( create_instruction(op, Format::DS, num_operands, return_previous ? 1 : 0)); ds->operands[0] = Operand(address); ds->operands[1] = Operand(data); if (num_operands == 4) { Temp data2 = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa)); ds->operands[2] = Operand(data2); if (bld.program->gfx_level >= GFX11) std::swap(ds->operands[1], ds->operands[2]); } ds->operands[num_operands - 1] = m; ds->offset0 = offset; if (return_previous) ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa)); ds->sync = memory_sync_info(storage_shared, semantic_atomicrmw); if (m.isUndefined()) ds->operands.pop_back(); ctx->block->instructions.emplace_back(std::move(ds)); } void visit_access_shared2_amd(isel_context* ctx, nir_intrinsic_instr* instr) { bool is_store = instr->intrinsic == nir_intrinsic_store_shared2_amd; Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[is_store].ssa)); Builder bld(ctx->program, ctx->block); assert(bld.program->gfx_level >= GFX7); bool is64bit = (is_store ? instr->src[0].ssa->bit_size : instr->dest.ssa.bit_size) == 64; uint8_t offset0 = nir_intrinsic_offset0(instr); uint8_t offset1 = nir_intrinsic_offset1(instr); bool st64 = nir_intrinsic_st64(instr); Operand m = load_lds_size_m0(bld); Instruction* ds; if (is_store) { aco_opcode op = st64 ? (is64bit ? aco_opcode::ds_write2st64_b64 : aco_opcode::ds_write2st64_b32) : (is64bit ? aco_opcode::ds_write2_b64 : aco_opcode::ds_write2_b32); Temp data = get_ssa_temp(ctx, instr->src[0].ssa); RegClass comp_rc = is64bit ? v2 : v1; Temp data0 = emit_extract_vector(ctx, data, 0, comp_rc); Temp data1 = emit_extract_vector(ctx, data, 1, comp_rc); ds = bld.ds(op, address, data0, data1, m, offset0, offset1); } else { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Definition tmp_dst(dst.type() == RegType::vgpr ? dst : bld.tmp(is64bit ? v4 : v2)); aco_opcode op = st64 ? (is64bit ? aco_opcode::ds_read2st64_b64 : aco_opcode::ds_read2st64_b32) : (is64bit ? aco_opcode::ds_read2_b64 : aco_opcode::ds_read2_b32); ds = bld.ds(op, tmp_dst, address, m, offset0, offset1); } ds->ds().sync = memory_sync_info(storage_shared); if (m.isUndefined()) ds->operands.pop_back(); if (!is_store) { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); if (dst.type() == RegType::sgpr) { emit_split_vector(ctx, ds->definitions[0].getTemp(), dst.size()); Temp comp[4]; /* Use scalar v_readfirstlane_b32 for better 32-bit copy propagation */ for (unsigned i = 0; i < dst.size(); i++) comp[i] = bld.as_uniform(emit_extract_vector(ctx, ds->definitions[0].getTemp(), i, v1)); if (is64bit) { Temp comp0 = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), comp[0], comp[1]); Temp comp1 = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), comp[2], comp[3]); ctx->allocated_vec[comp0.id()] = {comp[0], comp[1]}; ctx->allocated_vec[comp1.id()] = {comp[2], comp[3]}; bld.pseudo(aco_opcode::p_create_vector, Definition(dst), comp0, comp1); ctx->allocated_vec[dst.id()] = {comp0, comp1}; } else { bld.pseudo(aco_opcode::p_create_vector, Definition(dst), comp[0], comp[1]); } } emit_split_vector(ctx, dst, 2); } } Temp get_scratch_resource(isel_context* ctx) { Builder bld(ctx->program, ctx->block); Temp scratch_addr = ctx->program->private_segment_buffer; if (ctx->stage.hw != HWStage::CS) scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand::zero()); uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) | S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2); if (ctx->program->gfx_level >= GFX10) { rsrc_conf |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(ctx->program->gfx_level < GFX11); } else if (ctx->program->gfx_level <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */ rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); } /* older generations need element size = 4 bytes. element size removed in GFX9 */ if (ctx->program->gfx_level <= GFX8) rsrc_conf |= S_008F0C_ELEMENT_SIZE(1); return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand::c32(-1u), Operand::c32(rsrc_conf)); } void visit_load_scratch(isel_context* ctx, nir_intrinsic_instr* instr) { Builder bld(ctx->program, ctx->block); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); LoadEmitInfo info = {Operand(v1), dst, instr->dest.ssa.num_components, instr->dest.ssa.bit_size / 8u}; info.align_mul = nir_intrinsic_align_mul(instr); info.align_offset = nir_intrinsic_align_offset(instr); info.swizzle_component_size = ctx->program->gfx_level <= GFX8 ? 4 : 0; info.sync = memory_sync_info(storage_scratch, semantic_private); if (ctx->program->gfx_level >= GFX9) { if (nir_src_is_const(instr->src[0])) { uint32_t max = ctx->program->dev.scratch_global_offset_max + 1; info.offset = bld.copy(bld.def(s1), Operand::c32(ROUND_DOWN_TO(nir_src_as_uint(instr->src[0]), max))); info.const_offset = nir_src_as_uint(instr->src[0]) % max; } else { info.offset = Operand(get_ssa_temp(ctx, instr->src[0].ssa)); } EmitLoadParameters params = scratch_flat_load_params; params.max_const_offset_plus_one = ctx->program->dev.scratch_global_offset_max + 1; emit_load(ctx, bld, info, params); } else { info.resource = get_scratch_resource(ctx); info.offset = Operand(as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa))); info.soffset = ctx->program->scratch_offset; emit_load(ctx, bld, info, scratch_mubuf_load_params); } } void visit_store_scratch(isel_context* ctx, nir_intrinsic_instr* instr) { Builder bld(ctx->program, ctx->block); Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); Temp offset = get_ssa_temp(ctx, instr->src[1].ssa); unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8; unsigned writemask = util_widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes); unsigned write_count = 0; Temp write_datas[32]; unsigned offsets[32]; unsigned swizzle_component_size = ctx->program->gfx_level <= GFX8 ? 4 : 16; split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask, swizzle_component_size, &write_count, write_datas, offsets); if (ctx->program->gfx_level >= GFX9) { uint32_t max = ctx->program->dev.scratch_global_offset_max + 1; offset = nir_src_is_const(instr->src[1]) ? Temp(0, s1) : offset; uint32_t base_const_offset = nir_src_is_const(instr->src[1]) ? nir_src_as_uint(instr->src[1]) : 0; for (unsigned i = 0; i < write_count; i++) { aco_opcode op; switch (write_datas[i].bytes()) { case 1: op = aco_opcode::scratch_store_byte; break; case 2: op = aco_opcode::scratch_store_short; break; case 4: op = aco_opcode::scratch_store_dword; break; case 8: op = aco_opcode::scratch_store_dwordx2; break; case 12: op = aco_opcode::scratch_store_dwordx3; break; case 16: op = aco_opcode::scratch_store_dwordx4; break; default: unreachable("Unexpected store size"); } uint32_t const_offset = base_const_offset + offsets[i]; assert(const_offset < max || offset.id() == 0); Operand addr = offset.regClass() == s1 ? Operand(v1) : Operand(offset); Operand saddr = offset.regClass() == s1 ? Operand(offset) : Operand(s1); if (offset.id() == 0) saddr = bld.copy(bld.def(s1), Operand::c32(ROUND_DOWN_TO(const_offset, max))); bld.scratch(op, addr, saddr, write_datas[i], const_offset % max, memory_sync_info(storage_scratch, semantic_private)); } } else { Temp rsrc = get_scratch_resource(ctx); offset = as_vgpr(ctx, offset); for (unsigned i = 0; i < write_count; i++) { aco_opcode op = get_buffer_store_op(write_datas[i].bytes()); Instruction* mubuf = bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_datas[i], offsets[i], true, true); mubuf->mubuf().sync = memory_sync_info(storage_scratch, semantic_private); } } } Temp emit_boolean_reduce(isel_context* ctx, nir_op op, unsigned cluster_size, Temp src) { Builder bld(ctx->program, ctx->block); if (cluster_size == 1) { return src; } if (op == nir_op_iand && cluster_size == 4) { /* subgroupClusteredAnd(val, 4) -> ~wqm(~val & exec) */ Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src); tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, Operand(exec, bld.lm)); return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp)); } else if (op == nir_op_ior && cluster_size == 4) { /* subgroupClusteredOr(val, 4) -> wqm(val & exec) */ return bld.sop1( Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))); } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) { /* subgroupAnd(val) -> (~val & exec) == 0 */ Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src); tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, Operand(exec, bld.lm)) .def(1) .getTemp(); Temp cond = bool_to_vector_condition(ctx, emit_wqm(bld, tmp)); return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond); } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) { /* subgroupOr(val) -> (val & exec) != 0 */ Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)) .def(1) .getTemp(); return bool_to_vector_condition(ctx, tmp); } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) { /* subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1 */ Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)); tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp); tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand::c32(1u)) .def(1) .getTemp(); return bool_to_vector_condition(ctx, tmp); } else { /* subgroupClustered{And,Or,Xor}(val, n): * lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) (just v_mbcnt_lo on wave32) * cluster_offset = ~(n - 1) & lane_id cluster_mask = ((1 << n) - 1) * subgroupClusteredAnd(): * return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask * subgroupClusteredOr(): * return ((val & exec) >> cluster_offset) & cluster_mask != 0 * subgroupClusteredXor(): * return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0 */ Temp lane_id = emit_mbcnt(ctx, bld.tmp(v1)); Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(~uint32_t(cluster_size - 1)), lane_id); Temp tmp; if (op == nir_op_iand) tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)); else tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)); uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u; if (ctx->program->gfx_level <= GFX7) tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset); else if (ctx->program->wave_size == 64) tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp); else tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp); tmp = emit_extract_vector(ctx, tmp, 0, v1); if (cluster_mask != 0xffffffff) tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(cluster_mask), tmp); if (op == nir_op_iand) { return bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand::c32(cluster_mask), tmp); } else if (op == nir_op_ior) { return bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand::zero(), tmp); } else if (op == nir_op_ixor) { tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(1u), bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand::zero())); return bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand::zero(), tmp); } assert(false); return Temp(); } } Temp emit_boolean_exclusive_scan(isel_context* ctx, nir_op op, Temp src) { Builder bld(ctx->program, ctx->block); assert(src.regClass() == bld.lm); /* subgroupExclusiveAnd(val) -> mbcnt(~val & exec) == 0 * subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0 * subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0 */ if (op == nir_op_iand) src = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src); Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)); Temp mbcnt = emit_mbcnt(ctx, bld.tmp(v1), Operand(tmp)); if (op == nir_op_iand) return bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand::zero(), mbcnt); else if (op == nir_op_ior) return bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand::zero(), mbcnt); else if (op == nir_op_ixor) return bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand::zero(), bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(1u), mbcnt)); assert(false); return Temp(); } Temp emit_boolean_inclusive_scan(isel_context* ctx, nir_op op, Temp src) { Builder bld(ctx->program, ctx->block); /* subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val * subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val * subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val */ Temp tmp = emit_boolean_exclusive_scan(ctx, op, src); if (op == nir_op_iand) return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src); else if (op == nir_op_ior) return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src); else if (op == nir_op_ixor) return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src); assert(false); return Temp(); } ReduceOp get_reduce_op(nir_op op, unsigned bit_size) { switch (op) { #define CASEI(name) \ case nir_op_##name: \ return (bit_size == 32) ? name##32 \ : (bit_size == 16) ? name##16 \ : (bit_size == 8) ? name##8 \ : name##64; #define CASEF(name) \ case nir_op_##name: return (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : name##64; CASEI(iadd) CASEI(imul) CASEI(imin) CASEI(umin) CASEI(imax) CASEI(umax) CASEI(iand) CASEI(ior) CASEI(ixor) CASEF(fadd) CASEF(fmul) CASEF(fmin) CASEF(fmax) default: unreachable("unknown reduction op"); #undef CASEI #undef CASEF } } void emit_uniform_subgroup(isel_context* ctx, nir_intrinsic_instr* instr, Temp src) { Builder bld(ctx->program, ctx->block); Definition dst(get_ssa_temp(ctx, &instr->dest.ssa)); assert(dst.regClass().type() != RegType::vgpr); if (src.regClass().type() == RegType::vgpr) bld.pseudo(aco_opcode::p_as_uniform, dst, src); else bld.copy(dst, src); } void emit_addition_uniform_reduce(isel_context* ctx, nir_op op, Definition dst, nir_src src, Temp count) { Builder bld(ctx->program, ctx->block); Temp src_tmp = get_ssa_temp(ctx, src.ssa); if (op == nir_op_fadd) { src_tmp = as_vgpr(ctx, src_tmp); Temp tmp = dst.regClass() == s1 ? bld.tmp(RegClass::get(RegType::vgpr, src.ssa->bit_size / 8)) : dst.getTemp(); if (src.ssa->bit_size == 16) { count = bld.vop1(aco_opcode::v_cvt_f16_u16, bld.def(v2b), count); bld.vop2(aco_opcode::v_mul_f16, Definition(tmp), count, src_tmp); } else { assert(src.ssa->bit_size == 32); count = bld.vop1(aco_opcode::v_cvt_f32_u32, bld.def(v1), count); bld.vop2(aco_opcode::v_mul_f32, Definition(tmp), count, src_tmp); } if (tmp != dst.getTemp()) bld.pseudo(aco_opcode::p_as_uniform, dst, tmp); return; } if (dst.regClass() == s1) src_tmp = bld.as_uniform(src_tmp); if (op == nir_op_ixor && count.type() == RegType::sgpr) count = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), count, Operand::c32(1u)); else if (op == nir_op_ixor) count = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(1u), count); assert(dst.getTemp().type() == count.type()); if (nir_src_is_const(src)) { if (nir_src_as_uint(src) == 1 && dst.bytes() <= 2) bld.pseudo(aco_opcode::p_extract_vector, dst, count, Operand::zero()); else if (nir_src_as_uint(src) == 1) bld.copy(dst, count); else if (nir_src_as_uint(src) == 0) bld.copy(dst, Operand::zero(dst.bytes())); else if (count.type() == RegType::vgpr) bld.v_mul_imm(dst, count, nir_src_as_uint(src)); else bld.sop2(aco_opcode::s_mul_i32, dst, src_tmp, count); } else if (dst.bytes() <= 2 && ctx->program->gfx_level >= GFX10) { bld.vop3(aco_opcode::v_mul_lo_u16_e64, dst, src_tmp, count); } else if (dst.bytes() <= 2 && ctx->program->gfx_level >= GFX8) { bld.vop2(aco_opcode::v_mul_lo_u16, dst, src_tmp, count); } else if (dst.getTemp().type() == RegType::vgpr) { bld.vop3(aco_opcode::v_mul_lo_u32, dst, src_tmp, count); } else { bld.sop2(aco_opcode::s_mul_i32, dst, src_tmp, count); } } bool emit_uniform_reduce(isel_context* ctx, nir_intrinsic_instr* instr) { nir_op op = (nir_op)nir_intrinsic_reduction_op(instr); if (op == nir_op_imul || op == nir_op_fmul) return false; if (op == nir_op_iadd || op == nir_op_ixor || op == nir_op_fadd) { Builder bld(ctx->program, ctx->block); Definition dst(get_ssa_temp(ctx, &instr->dest.ssa)); unsigned bit_size = instr->src[0].ssa->bit_size; if (bit_size > 32) return false; Temp thread_count = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), Operand(exec, bld.lm)); emit_addition_uniform_reduce(ctx, op, dst, instr->src[0], thread_count); } else { emit_uniform_subgroup(ctx, instr, get_ssa_temp(ctx, instr->src[0].ssa)); } return true; } bool emit_uniform_scan(isel_context* ctx, nir_intrinsic_instr* instr) { Builder bld(ctx->program, ctx->block); Definition dst(get_ssa_temp(ctx, &instr->dest.ssa)); nir_op op = (nir_op)nir_intrinsic_reduction_op(instr); bool inc = instr->intrinsic == nir_intrinsic_inclusive_scan; if (op == nir_op_imul || op == nir_op_fmul) return false; if (op == nir_op_iadd || op == nir_op_ixor || op == nir_op_fadd) { if (instr->src[0].ssa->bit_size > 32) return false; Temp packed_tid; if (inc) packed_tid = emit_mbcnt(ctx, bld.tmp(v1), Operand(exec, bld.lm), Operand::c32(1u)); else packed_tid = emit_mbcnt(ctx, bld.tmp(v1), Operand(exec, bld.lm)); emit_addition_uniform_reduce(ctx, op, dst, instr->src[0], packed_tid); return true; } assert(op == nir_op_imin || op == nir_op_umin || op == nir_op_imax || op == nir_op_umax || op == nir_op_iand || op == nir_op_ior || op == nir_op_fmin || op == nir_op_fmax); if (inc) { emit_uniform_subgroup(ctx, instr, get_ssa_temp(ctx, instr->src[0].ssa)); return true; } /* Copy the source and write the reduction operation identity to the first lane. */ Temp lane = bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)); Temp src = get_ssa_temp(ctx, instr->src[0].ssa); ReduceOp reduce_op = get_reduce_op(op, instr->src[0].ssa->bit_size); if (dst.bytes() == 8) { Temp lo = bld.tmp(v1), hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src); uint32_t identity_lo = get_reduction_identity(reduce_op, 0); uint32_t identity_hi = get_reduction_identity(reduce_op, 1); lo = bld.writelane(bld.def(v1), bld.copy(bld.def(s1, m0), Operand::c32(identity_lo)), lane, lo); hi = bld.writelane(bld.def(v1), bld.copy(bld.def(s1, m0), Operand::c32(identity_hi)), lane, hi); bld.pseudo(aco_opcode::p_create_vector, dst, lo, hi); } else { uint32_t identity = get_reduction_identity(reduce_op, 0); bld.writelane(dst, bld.copy(bld.def(s1, m0), Operand::c32(identity)), lane, as_vgpr(ctx, src)); } return true; } Temp emit_reduction_instr(isel_context* ctx, aco_opcode aco_op, ReduceOp op, unsigned cluster_size, Definition dst, Temp src) { assert(src.bytes() <= 8); assert(src.type() == RegType::vgpr); Builder bld(ctx->program, ctx->block); unsigned num_defs = 0; Definition defs[5]; defs[num_defs++] = dst; defs[num_defs++] = bld.def(bld.lm); /* used internally to save/restore exec */ /* scalar identity temporary */ bool need_sitmp = (ctx->program->gfx_level <= GFX7 || ctx->program->gfx_level >= GFX10) && aco_op != aco_opcode::p_reduce; if (aco_op == aco_opcode::p_exclusive_scan) { need_sitmp |= (op == imin8 || op == imin16 || op == imin32 || op == imin64 || op == imax8 || op == imax16 || op == imax32 || op == imax64 || op == fmin16 || op == fmin32 || op == fmin64 || op == fmax16 || op == fmax32 || op == fmax64 || op == fmul16 || op == fmul64); } if (need_sitmp) defs[num_defs++] = bld.def(RegType::sgpr, dst.size()); /* scc clobber */ defs[num_defs++] = bld.def(s1, scc); /* vcc clobber */ bool clobber_vcc = false; if ((op == iadd32 || op == imul64) && ctx->program->gfx_level < GFX9) clobber_vcc = true; if ((op == iadd8 || op == iadd16) && ctx->program->gfx_level < GFX8) clobber_vcc = true; if (op == iadd64 || op == umin64 || op == umax64 || op == imin64 || op == imax64) clobber_vcc = true; if (clobber_vcc) defs[num_defs++] = bld.def(bld.lm, vcc); Pseudo_reduction_instruction* reduce = create_instruction( aco_op, Format::PSEUDO_REDUCTION, 3, num_defs); reduce->operands[0] = Operand(src); /* setup_reduce_temp will update these undef operands if needed */ reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear()); reduce->operands[2] = Operand(v1.as_linear()); std::copy(defs, defs + num_defs, reduce->definitions.begin()); reduce->reduce_op = op; reduce->cluster_size = cluster_size; bld.insert(std::move(reduce)); return dst.getTemp(); } void emit_interp_center(isel_context* ctx, Temp dst, Temp bary, Temp pos1, Temp pos2) { Builder bld(ctx->program, ctx->block); Temp p1 = emit_extract_vector(ctx, bary, 0, v1); Temp p2 = emit_extract_vector(ctx, bary, 1, v1); Temp ddx_1, ddx_2, ddy_1, ddy_2; uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0); uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1); uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2); /* Build DD X/Y */ if (ctx->program->gfx_level >= GFX8) { Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0); ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1); ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2); Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0); ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1); ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2); } else { Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0); ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1); ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1); ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2); ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_1); Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0); ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1); ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_2); ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2); ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2); } /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */ aco_opcode mad = ctx->program->gfx_level >= GFX10_3 ? aco_opcode::v_fma_f32 : aco_opcode::v_mad_f32; Temp tmp1 = bld.vop3(mad, bld.def(v1), ddx_1, pos1, p1); Temp tmp2 = bld.vop3(mad, bld.def(v1), ddx_2, pos1, p2); tmp1 = bld.vop3(mad, bld.def(v1), ddy_1, pos2, tmp1); tmp2 = bld.vop3(mad, bld.def(v1), ddy_2, pos2, tmp2); Temp wqm1 = bld.tmp(v1); emit_wqm(bld, tmp1, wqm1, true); Temp wqm2 = bld.tmp(v1); emit_wqm(bld, tmp2, wqm2, true); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2); return; } Temp merged_wave_info_to_mask(isel_context* ctx, unsigned i); Temp lanecount_to_mask(isel_context* ctx, Temp count); Temp get_interp_param(isel_context* ctx, nir_intrinsic_op intrin, enum glsl_interp_mode interp) { bool linear = interp == INTERP_MODE_NOPERSPECTIVE; if (intrin == nir_intrinsic_load_barycentric_pixel || intrin == nir_intrinsic_load_barycentric_at_sample || intrin == nir_intrinsic_load_barycentric_at_offset) { return get_arg(ctx, linear ? ctx->args->linear_center : ctx->args->persp_center); } else if (intrin == nir_intrinsic_load_barycentric_centroid) { return linear ? ctx->linear_centroid : ctx->persp_centroid; } else { assert(intrin == nir_intrinsic_load_barycentric_sample); return get_arg(ctx, linear ? ctx->args->linear_sample : ctx->args->persp_sample); } } void ds_ordered_count_offsets(isel_context *ctx, unsigned index_operand, unsigned wave_release, unsigned wave_done, unsigned *offset0, unsigned *offset1) { unsigned ordered_count_index = index_operand & 0x3f; unsigned count_dword = (index_operand >> 24) & 0xf; assert(ctx->options->gfx_level >= GFX10); assert(count_dword >= 1 && count_dword <= 4); *offset0 = ordered_count_index << 2; *offset1 = wave_release | (wave_done << 1) | ((count_dword - 1) << 6); if (ctx->options->gfx_level < GFX11) *offset1 |= 3 /* GS shader type */ << 2; } void visit_intrinsic(isel_context* ctx, nir_intrinsic_instr* instr) { Builder bld(ctx->program, ctx->block); switch (instr->intrinsic) { case nir_intrinsic_load_barycentric_sample: case nir_intrinsic_load_barycentric_pixel: case nir_intrinsic_load_barycentric_centroid: { glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr); Temp bary = get_interp_param(ctx, instr->intrinsic, mode); assert(bary.size() == 2); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.copy(Definition(dst), bary); emit_split_vector(ctx, dst, 2); break; } case nir_intrinsic_load_barycentric_model: { Temp model = get_arg(ctx, ctx->args->pull_model); assert(model.size() == 3); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.copy(Definition(dst), model); emit_split_vector(ctx, dst, 3); break; } case nir_intrinsic_load_barycentric_at_offset: { Temp offset = get_ssa_temp(ctx, instr->src[0].ssa); RegClass rc = RegClass(offset.type(), 1); Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc); bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset); Temp bary = get_interp_param(ctx, instr->intrinsic, (glsl_interp_mode)nir_intrinsic_interp_mode(instr)); emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), bary, pos1, pos2); break; } case nir_intrinsic_load_front_face: { bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand::zero(), get_arg(ctx, ctx->args->front_face)); break; } case nir_intrinsic_load_view_index: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->view_index))); break; } case nir_intrinsic_load_frag_coord: { emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4); break; } case nir_intrinsic_load_frag_shading_rate: emit_load_frag_shading_rate(ctx, get_ssa_temp(ctx, &instr->dest.ssa)); break; case nir_intrinsic_load_sample_pos: { Temp posx = get_arg(ctx, ctx->args->frag_pos[0]); Temp posy = get_arg(ctx, ctx->args->frag_pos[1]); bld.pseudo( aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand::zero(), posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand::zero()); break; } case nir_intrinsic_load_tess_coord: visit_load_tess_coord(ctx, instr); break; case nir_intrinsic_load_interpolated_input: visit_load_interpolated_input(ctx, instr); break; case nir_intrinsic_store_output: visit_store_output(ctx, instr); break; case nir_intrinsic_load_input: case nir_intrinsic_load_input_vertex: if (ctx->program->stage == fragment_fs) visit_load_fs_input(ctx, instr); else isel_err(&instr->instr, "Shader inputs should have been lowered in NIR."); break; case nir_intrinsic_load_per_vertex_input: visit_load_per_vertex_input(ctx, instr); break; case nir_intrinsic_load_ubo: visit_load_ubo(ctx, instr); break; case nir_intrinsic_load_push_constant: visit_load_push_constant(ctx, instr); break; case nir_intrinsic_load_constant: visit_load_constant(ctx, instr); break; case nir_intrinsic_load_shared: visit_load_shared(ctx, instr); break; case nir_intrinsic_store_shared: visit_store_shared(ctx, instr); break; case nir_intrinsic_shared_atomic_add: case nir_intrinsic_shared_atomic_imin: case nir_intrinsic_shared_atomic_umin: case nir_intrinsic_shared_atomic_imax: case nir_intrinsic_shared_atomic_umax: case nir_intrinsic_shared_atomic_and: case nir_intrinsic_shared_atomic_or: case nir_intrinsic_shared_atomic_xor: case nir_intrinsic_shared_atomic_exchange: case nir_intrinsic_shared_atomic_comp_swap: case nir_intrinsic_shared_atomic_fadd: case nir_intrinsic_shared_atomic_fmin: case nir_intrinsic_shared_atomic_fmax: visit_shared_atomic(ctx, instr); break; case nir_intrinsic_load_shared2_amd: case nir_intrinsic_store_shared2_amd: visit_access_shared2_amd(ctx, instr); break; case nir_intrinsic_bindless_image_load: case nir_intrinsic_bindless_image_sparse_load: visit_image_load(ctx, instr); break; case nir_intrinsic_bindless_image_store: visit_image_store(ctx, instr); break; case nir_intrinsic_bindless_image_atomic_add: case nir_intrinsic_bindless_image_atomic_umin: case nir_intrinsic_bindless_image_atomic_imin: case nir_intrinsic_bindless_image_atomic_umax: case nir_intrinsic_bindless_image_atomic_imax: case nir_intrinsic_bindless_image_atomic_and: case nir_intrinsic_bindless_image_atomic_or: case nir_intrinsic_bindless_image_atomic_xor: case nir_intrinsic_bindless_image_atomic_exchange: case nir_intrinsic_bindless_image_atomic_comp_swap: case nir_intrinsic_bindless_image_atomic_fadd: case nir_intrinsic_bindless_image_atomic_fmin: case nir_intrinsic_bindless_image_atomic_fmax: visit_image_atomic(ctx, instr); break; case nir_intrinsic_load_ssbo: visit_load_ssbo(ctx, instr); break; case nir_intrinsic_store_ssbo: visit_store_ssbo(ctx, instr); break; case nir_intrinsic_load_typed_buffer_amd: case nir_intrinsic_load_buffer_amd: visit_load_buffer(ctx, instr); break; case nir_intrinsic_store_buffer_amd: visit_store_buffer(ctx, instr); break; case nir_intrinsic_load_smem_amd: visit_load_smem(ctx, instr); break; case nir_intrinsic_load_global_amd: visit_load_global(ctx, instr); break; case nir_intrinsic_store_global_amd: visit_store_global(ctx, instr); break; case nir_intrinsic_global_atomic_add_amd: case nir_intrinsic_global_atomic_imin_amd: case nir_intrinsic_global_atomic_umin_amd: case nir_intrinsic_global_atomic_imax_amd: case nir_intrinsic_global_atomic_umax_amd: case nir_intrinsic_global_atomic_and_amd: case nir_intrinsic_global_atomic_or_amd: case nir_intrinsic_global_atomic_xor_amd: case nir_intrinsic_global_atomic_exchange_amd: case nir_intrinsic_global_atomic_comp_swap_amd: case nir_intrinsic_global_atomic_fadd_amd: case nir_intrinsic_global_atomic_fmin_amd: case nir_intrinsic_global_atomic_fmax_amd: visit_global_atomic(ctx, instr); break; case nir_intrinsic_ssbo_atomic_add: case nir_intrinsic_ssbo_atomic_imin: case nir_intrinsic_ssbo_atomic_umin: case nir_intrinsic_ssbo_atomic_imax: case nir_intrinsic_ssbo_atomic_umax: case nir_intrinsic_ssbo_atomic_and: case nir_intrinsic_ssbo_atomic_or: case nir_intrinsic_ssbo_atomic_xor: case nir_intrinsic_ssbo_atomic_exchange: case nir_intrinsic_ssbo_atomic_comp_swap: case nir_intrinsic_ssbo_atomic_fadd: case nir_intrinsic_ssbo_atomic_fmin: case nir_intrinsic_ssbo_atomic_fmax: visit_atomic_ssbo(ctx, instr); break; case nir_intrinsic_load_scratch: visit_load_scratch(ctx, instr); break; case nir_intrinsic_store_scratch: visit_store_scratch(ctx, instr); break; case nir_intrinsic_scoped_barrier: emit_scoped_barrier(ctx, instr); break; case nir_intrinsic_load_num_workgroups: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); if (ctx->options->load_grid_size_from_user_sgpr) { bld.copy(Definition(dst), get_arg(ctx, ctx->args->num_work_groups)); } else { Temp addr = get_arg(ctx, ctx->args->num_work_groups); assert(addr.regClass() == s2); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), addr, Operand::zero()), bld.smem(aco_opcode::s_load_dword, bld.def(s1), addr, Operand::c32(8))); } emit_split_vector(ctx, dst, 3); break; } case nir_intrinsic_load_ray_launch_size: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ray_launch_size))); emit_split_vector(ctx, dst, 3); break; } case nir_intrinsic_load_ray_launch_id: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ray_launch_id))); emit_split_vector(ctx, dst, 3); break; } case nir_intrinsic_load_ray_launch_size_addr_amd: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Temp addr = get_arg(ctx, ctx->args->ray_launch_size_addr); assert(addr.regClass() == s2); bld.copy(Definition(dst), Operand(addr)); break; } case nir_intrinsic_load_local_invocation_id: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); if (ctx->options->gfx_level >= GFX11) { Temp local_ids[3]; /* Thread IDs are packed in VGPR0, 10 bits per component. */ for (uint32_t i = 0; i < 3; i++) { local_ids[i] = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->local_invocation_ids), Operand::c32(i * 10u), Operand::c32(10u)); } bld.pseudo(aco_opcode::p_create_vector, Definition(dst), local_ids[0], local_ids[1], local_ids[2]); } else { bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->local_invocation_ids))); } emit_split_vector(ctx, dst, 3); break; } case nir_intrinsic_load_workgroup_id: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); if (ctx->stage.hw == HWStage::CS) { const struct ac_arg* ids = ctx->args->workgroup_ids; bld.pseudo(aco_opcode::p_create_vector, Definition(dst), ids[0].used ? Operand(get_arg(ctx, ids[0])) : Operand::zero(), ids[1].used ? Operand(get_arg(ctx, ids[1])) : Operand::zero(), ids[2].used ? Operand(get_arg(ctx, ids[2])) : Operand::zero()); emit_split_vector(ctx, dst, 3); } else { isel_err(&instr->instr, "Unsupported stage for load_workgroup_id"); } break; } case nir_intrinsic_load_local_invocation_index: { if (ctx->stage.hw == HWStage::LS || ctx->stage.hw == HWStage::HS) { if (ctx->options->gfx_level >= GFX11) { /* On GFX11, RelAutoIndex is WaveID * WaveSize + ThreadID. */ Temp wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->tcs_wave_id), Operand::c32(0u | (3u << 16))); Temp temp = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), wave_id, Operand::c32(ctx->program->wave_size)); emit_mbcnt(ctx, get_ssa_temp(ctx, &instr->dest.ssa), Operand(), Operand(temp)); } else { bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), get_arg(ctx, ctx->args->vs_rel_patch_id)); } break; } else if (ctx->stage.hw == HWStage::GS || ctx->stage.hw == HWStage::NGG) { bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), thread_id_in_threadgroup(ctx)); break; } else if (ctx->program->workgroup_size <= ctx->program->wave_size) { emit_mbcnt(ctx, get_ssa_temp(ctx, &instr->dest.ssa)); break; } Temp id = emit_mbcnt(ctx, bld.tmp(v1)); /* The tg_size bits [6:11] contain the subgroup id, * we need this multiplied by the wave size, and then OR the thread id to it. */ if (ctx->program->wave_size == 64) { /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just * feed that to v_or */ Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand::c32(0xfc0u), get_arg(ctx, ctx->args->tg_size)); bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id); } else { /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */ Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->tg_size), Operand::c32(0x6u | (0x6u << 16))); bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand::c32(0x5u), id); } break; } case nir_intrinsic_load_subgroup_id: { if (ctx->stage.hw == HWStage::CS) { bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), get_arg(ctx, ctx->args->tg_size), Operand::c32(0x6u | (0x6u << 16))); } else if (ctx->stage.hw == HWStage::NGG) { /* Get the id of the current wave within the threadgroup (workgroup) */ bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand::c32(24u | (4u << 16))); } else { bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand::zero()); } break; } case nir_intrinsic_load_subgroup_invocation: { emit_mbcnt(ctx, get_ssa_temp(ctx, &instr->dest.ssa)); break; } case nir_intrinsic_load_num_subgroups: { if (ctx->stage.hw == HWStage::CS) bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand::c32(0x3fu), get_arg(ctx, ctx->args->tg_size)); else if (ctx->stage.hw == HWStage::NGG) bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand::c32(28u | (4u << 16))); else bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand::c32(0x1u)); break; } case nir_intrinsic_ballot: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); if (instr->src[0].ssa->bit_size == 1) { assert(src.regClass() == bld.lm); } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) { src = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand::zero(), src); } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) { src = bld.vopc(aco_opcode::v_cmp_lg_u64, bld.def(bld.lm), Operand::zero(), src); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } /* Make sure that all inactive lanes return zero. * Value-numbering might remove the comparison above */ src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)); if (dst.size() != bld.lm.size()) { /* Wave32 with ballot size set to 64 */ src = bld.pseudo(aco_opcode::p_create_vector, bld.def(dst.regClass()), src, Operand::zero()); } emit_wqm(bld, src, dst); break; } case nir_intrinsic_shuffle: case nir_intrinsic_read_invocation: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); if (!nir_src_is_divergent(instr->src[0])) { emit_uniform_subgroup(ctx, instr, src); } else { Temp tid = get_ssa_temp(ctx, instr->src[1].ssa); if (instr->intrinsic == nir_intrinsic_read_invocation || !nir_src_is_divergent(instr->src[1])) tid = bld.as_uniform(tid); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); if (instr->dest.ssa.bit_size != 1) src = as_vgpr(ctx, src); if (src.regClass() == v1b || src.regClass() == v2b) { Temp tmp = bld.tmp(v1); tmp = emit_wqm(bld, emit_bpermute(ctx, bld, tid, src), tmp); if (dst.type() == RegType::vgpr) bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(src.regClass() == v1b ? v3b : v2b), tmp); else bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp); } else if (src.regClass() == v1) { emit_wqm(bld, emit_bpermute(ctx, bld, tid, src), dst); } else if (src.regClass() == v2) { Temp lo = bld.tmp(v1), hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src); lo = emit_wqm(bld, emit_bpermute(ctx, bld, tid, lo)); hi = emit_wqm(bld, emit_bpermute(ctx, bld, tid, hi)); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi); emit_split_vector(ctx, dst, 2); } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) { assert(src.regClass() == bld.lm); Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid); bool_to_vector_condition(ctx, emit_wqm(bld, tmp), dst); } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) { assert(src.regClass() == bld.lm); Temp tmp; if (ctx->program->gfx_level <= GFX7) tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid); else if (ctx->program->wave_size == 64) tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src); else tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src); tmp = emit_extract_vector(ctx, tmp, 0, v1); tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(1u), tmp); emit_wqm(bld, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand::zero(), tmp), dst); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } } break; } case nir_intrinsic_load_sample_id: { bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), get_arg(ctx, ctx->args->ancillary), Operand::c32(8u), Operand::c32(4u)); break; } case nir_intrinsic_read_first_invocation: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); if (src.regClass() == v1b || src.regClass() == v2b || src.regClass() == v1) { emit_wqm(bld, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src), dst); } else if (src.regClass() == v2) { Temp lo = bld.tmp(v1), hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src); lo = emit_wqm(bld, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo)); hi = emit_wqm(bld, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi)); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi); emit_split_vector(ctx, dst, 2); } else if (instr->dest.ssa.bit_size == 1) { assert(src.regClass() == bld.lm); Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm))); bool_to_vector_condition(ctx, emit_wqm(bld, tmp), dst); } else { bld.copy(Definition(dst), src); } break; } case nir_intrinsic_vote_all: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); assert(src.regClass() == bld.lm); assert(dst.regClass() == bld.lm); Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src); tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, Operand(exec, bld.lm)) .def(1) .getTemp(); Temp cond = bool_to_vector_condition(ctx, emit_wqm(bld, tmp)); bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond); break; } case nir_intrinsic_vote_any: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); assert(src.regClass() == bld.lm); assert(dst.regClass() == bld.lm); Temp tmp = bool_to_scalar_condition(ctx, src); bool_to_vector_condition(ctx, emit_wqm(bld, tmp), dst); break; } case nir_intrinsic_reduce: case nir_intrinsic_inclusive_scan: case nir_intrinsic_exclusive_scan: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); nir_op op = (nir_op)nir_intrinsic_reduction_op(instr); unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ? nir_intrinsic_cluster_size(instr) : 0; cluster_size = util_next_power_of_two( MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size)); if (!nir_src_is_divergent(instr->src[0]) && cluster_size == ctx->program->wave_size && instr->dest.ssa.bit_size != 1) { /* We use divergence analysis to assign the regclass, so check if it's * working as expected */ ASSERTED bool expected_divergent = instr->intrinsic == nir_intrinsic_exclusive_scan; if (instr->intrinsic == nir_intrinsic_inclusive_scan) expected_divergent = op == nir_op_iadd || op == nir_op_fadd || op == nir_op_ixor; assert(nir_dest_is_divergent(instr->dest) == expected_divergent); if (instr->intrinsic == nir_intrinsic_reduce) { if (emit_uniform_reduce(ctx, instr)) break; } else if (emit_uniform_scan(ctx, instr)) { break; } } if (instr->dest.ssa.bit_size == 1) { if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin) op = nir_op_iand; else if (op == nir_op_iadd) op = nir_op_ixor; else if (op == nir_op_umax || op == nir_op_imax) op = nir_op_ior; assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor); switch (instr->intrinsic) { case nir_intrinsic_reduce: emit_wqm(bld, emit_boolean_reduce(ctx, op, cluster_size, src), dst); break; case nir_intrinsic_exclusive_scan: emit_wqm(bld, emit_boolean_exclusive_scan(ctx, op, src), dst); break; case nir_intrinsic_inclusive_scan: emit_wqm(bld, emit_boolean_inclusive_scan(ctx, op, src), dst); break; default: assert(false); } } else if (cluster_size == 1) { bld.copy(Definition(dst), src); } else { unsigned bit_size = instr->src[0].ssa->bit_size; src = emit_extract_vector(ctx, src, 0, RegClass::get(RegType::vgpr, bit_size / 8)); ReduceOp reduce_op = get_reduce_op(op, bit_size); aco_opcode aco_op; switch (instr->intrinsic) { case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break; case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break; case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break; default: unreachable("unknown reduce intrinsic"); } Temp tmp_dst = emit_reduction_instr(ctx, aco_op, reduce_op, cluster_size, bld.def(dst.regClass()), src); emit_wqm(bld, tmp_dst, dst); } break; } case nir_intrinsic_quad_broadcast: case nir_intrinsic_quad_swap_horizontal: case nir_intrinsic_quad_swap_vertical: case nir_intrinsic_quad_swap_diagonal: case nir_intrinsic_quad_swizzle_amd: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); if (!nir_dest_is_divergent(instr->dest)) { emit_uniform_subgroup(ctx, instr, src); break; } /* Quad broadcast lane. */ unsigned lane = 0; /* Use VALU for the bool instructions that don't have a SALU-only special case. */ bool bool_use_valu = instr->dest.ssa.bit_size == 1; uint16_t dpp_ctrl = 0; switch (instr->intrinsic) { case nir_intrinsic_quad_swap_horizontal: dpp_ctrl = dpp_quad_perm(1, 0, 3, 2); break; case nir_intrinsic_quad_swap_vertical: dpp_ctrl = dpp_quad_perm(2, 3, 0, 1); break; case nir_intrinsic_quad_swap_diagonal: dpp_ctrl = dpp_quad_perm(3, 2, 1, 0); break; case nir_intrinsic_quad_swizzle_amd: dpp_ctrl = nir_intrinsic_swizzle_mask(instr); break; case nir_intrinsic_quad_broadcast: lane = nir_src_as_const_value(instr->src[1])->u32; dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane); bool_use_valu = false; break; default: break; } Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Temp tmp(dst); /* Setup source. */ if (bool_use_valu) src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::zero(), Operand::c32(-1), src); else if (instr->dest.ssa.bit_size != 1) src = as_vgpr(ctx, src); /* Setup temporary destination. */ if (bool_use_valu) tmp = bld.tmp(v1); else if (ctx->program->stage == fragment_fs) tmp = bld.tmp(dst.regClass()); if (instr->dest.ssa.bit_size == 1 && instr->intrinsic == nir_intrinsic_quad_broadcast) { /* Special case for quad broadcast using SALU only. */ assert(src.regClass() == bld.lm && tmp.regClass() == bld.lm); uint32_t half_mask = 0x11111111u << lane; Operand mask_tmp = bld.lm.bytes() == 4 ? Operand::c32(half_mask) : bld.pseudo(aco_opcode::p_create_vector, bld.def(bld.lm), Operand::c32(half_mask), Operand::c32(half_mask)); src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)); src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp, src); bld.sop1(Builder::s_wqm, Definition(tmp), src); } else if (instr->dest.ssa.bit_size <= 32 || bool_use_valu) { unsigned excess_bytes = bool_use_valu ? 0 : 4 - instr->dest.ssa.bit_size / 8; Definition def = excess_bytes ? bld.def(v1) : Definition(tmp); if (ctx->program->gfx_level >= GFX8) bld.vop1_dpp(aco_opcode::v_mov_b32, def, src, dpp_ctrl); else bld.ds(aco_opcode::ds_swizzle_b32, def, src, (1 << 15) | dpp_ctrl); if (excess_bytes) bld.pseudo(aco_opcode::p_split_vector, Definition(tmp), bld.def(RegClass::get(tmp.type(), excess_bytes)), def.getTemp()); } else if (instr->dest.ssa.bit_size == 64) { Temp lo = bld.tmp(v1), hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src); if (ctx->program->gfx_level >= GFX8) { lo = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl); hi = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl); } else { lo = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl); hi = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl); } bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lo, hi); emit_split_vector(ctx, tmp, 2); } else { isel_err(&instr->instr, "Unimplemented NIR quad group instruction bit size."); } if (tmp.id() != dst.id()) { if (bool_use_valu) tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand::zero(), tmp); /* Vulkan spec 9.25: Helper invocations must be active for quad group instructions. */ emit_wqm(bld, tmp, dst, true); } break; } case nir_intrinsic_masked_swizzle_amd: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); if (!nir_dest_is_divergent(instr->dest)) { emit_uniform_subgroup(ctx, instr, src); break; } Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); uint32_t mask = nir_intrinsic_swizzle_mask(instr); if (instr->dest.ssa.bit_size != 1) src = as_vgpr(ctx, src); if (instr->dest.ssa.bit_size == 1) { assert(src.regClass() == bld.lm); src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::zero(), Operand::c32(-1), src); src = emit_masked_swizzle(ctx, bld, src, mask); Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand::zero(), src); emit_wqm(bld, tmp, dst); } else if (dst.regClass() == v1b) { Temp tmp = emit_wqm(bld, emit_masked_swizzle(ctx, bld, src, mask)); emit_extract_vector(ctx, tmp, 0, dst); } else if (dst.regClass() == v2b) { Temp tmp = emit_wqm(bld, emit_masked_swizzle(ctx, bld, src, mask)); emit_extract_vector(ctx, tmp, 0, dst); } else if (dst.regClass() == v1) { emit_wqm(bld, emit_masked_swizzle(ctx, bld, src, mask), dst); } else if (dst.regClass() == v2) { Temp lo = bld.tmp(v1), hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src); lo = emit_wqm(bld, emit_masked_swizzle(ctx, bld, lo, mask)); hi = emit_wqm(bld, emit_masked_swizzle(ctx, bld, hi, mask)); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi); emit_split_vector(ctx, dst, 2); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_intrinsic_write_invocation_amd: { Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa)); Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa)); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); if (dst.regClass() == v1) { /* src2 is ignored for writelane. RA assigns the same reg for dst */ emit_wqm(bld, bld.writelane(bld.def(v1), val, lane, src), dst); } else if (dst.regClass() == v2) { Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1); Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1); bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src); bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val); Temp lo = emit_wqm(bld, bld.writelane(bld.def(v1), val_lo, lane, src_hi)); Temp hi = emit_wqm(bld, bld.writelane(bld.def(v1), val_hi, lane, src_hi)); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi); emit_split_vector(ctx, dst, 2); } else { isel_err(&instr->instr, "Unimplemented NIR instr bit size"); } break; } case nir_intrinsic_mbcnt_amd: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); Temp add_src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa)); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); /* Fit 64-bit mask for wave32 */ src = emit_extract_vector(ctx, src, 0, RegClass(src.type(), bld.lm.size())); Temp wqm_tmp = emit_mbcnt(ctx, bld.tmp(v1), Operand(src), Operand(add_src)); emit_wqm(bld, wqm_tmp, dst); break; } case nir_intrinsic_lane_permute_16_amd: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); assert(ctx->program->gfx_level >= GFX10); if (src.regClass() == s1) { bld.copy(Definition(dst), src); } else if (dst.regClass() == v1 && src.regClass() == v1) { bld.vop3(aco_opcode::v_permlane16_b32, Definition(dst), src, bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa)), bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa))); } else { isel_err(&instr->instr, "Unimplemented lane_permute_16_amd"); } break; } case nir_intrinsic_load_helper_invocation: case nir_intrinsic_is_helper_invocation: { /* load_helper() after demote() get lowered to is_helper(). * Otherwise, these two behave the same. */ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.pseudo(aco_opcode::p_is_helper, Definition(dst), Operand(exec, bld.lm)); ctx->block->kind |= block_kind_needs_lowering; ctx->program->needs_exact = true; break; } case nir_intrinsic_demote: bld.pseudo(aco_opcode::p_demote_to_helper, Operand::c32(-1u)); if (ctx->block->loop_nest_depth || ctx->cf_info.parent_if.is_divergent) ctx->cf_info.exec_potentially_empty_discard = true; ctx->block->kind |= block_kind_uses_discard; ctx->program->needs_exact = true; break; case nir_intrinsic_demote_if: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); assert(src.regClass() == bld.lm); Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)); bld.pseudo(aco_opcode::p_demote_to_helper, cond); if (ctx->block->loop_nest_depth || ctx->cf_info.parent_if.is_divergent) ctx->cf_info.exec_potentially_empty_discard = true; ctx->block->kind |= block_kind_uses_discard; ctx->program->needs_exact = true; break; } case nir_intrinsic_terminate: case nir_intrinsic_terminate_if: case nir_intrinsic_discard: case nir_intrinsic_discard_if: { Operand cond = Operand::c32(-1u); if (instr->intrinsic == nir_intrinsic_discard_if || instr->intrinsic == nir_intrinsic_terminate_if) { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); assert(src.regClass() == bld.lm); cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)); ctx->cf_info.had_divergent_discard |= nir_src_is_divergent(instr->src[0]); } bld.pseudo(aco_opcode::p_discard_if, cond); if (ctx->block->loop_nest_depth || ctx->cf_info.parent_if.is_divergent) ctx->cf_info.exec_potentially_empty_discard = true; ctx->cf_info.had_divergent_discard |= in_exec_divergent_or_in_loop(ctx); ctx->block->kind |= block_kind_uses_discard; ctx->program->needs_exact = true; break; } case nir_intrinsic_first_invocation: { emit_wqm(bld, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)), get_ssa_temp(ctx, &instr->dest.ssa)); break; } case nir_intrinsic_last_invocation: { Temp flbit = bld.sop1(Builder::s_flbit_i32, bld.def(s1), Operand(exec, bld.lm)); Temp last = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), Operand::c32(ctx->program->wave_size - 1u), flbit); emit_wqm(bld, last, get_ssa_temp(ctx, &instr->dest.ssa)); break; } case nir_intrinsic_elect: { /* p_elect is lowered in aco_insert_exec_mask. * Use exec as an operand so value numbering and the pre-RA optimizer won't recognize * two p_elect with different exec masks as the same. */ Temp elected = bld.pseudo(aco_opcode::p_elect, bld.def(bld.lm), Operand(exec, bld.lm)); emit_wqm(bld, elected, get_ssa_temp(ctx, &instr->dest.ssa)); ctx->block->kind |= block_kind_needs_lowering; break; } case nir_intrinsic_shader_clock: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); if (nir_intrinsic_memory_scope(instr) == NIR_SCOPE_SUBGROUP && ctx->options->gfx_level >= GFX10_3) { /* "((size - 1) << 11) | register" (SHADER_CYCLES is encoded as register 29) */ Temp clock = bld.sopk(aco_opcode::s_getreg_b32, bld.def(s1), ((20 - 1) << 11) | 29); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), clock, Operand::zero()); } else if (nir_intrinsic_memory_scope(instr) == NIR_SCOPE_DEVICE && ctx->options->gfx_level >= GFX11) { bld.sop1(aco_opcode::s_sendmsg_rtn_b64, Definition(dst), Operand::c32(sendmsg_rtn_get_realtime)); } else { aco_opcode opcode = nir_intrinsic_memory_scope(instr) == NIR_SCOPE_DEVICE ? aco_opcode::s_memrealtime : aco_opcode::s_memtime; bld.smem(opcode, Definition(dst), memory_sync_info(0, semantic_volatile)); } emit_split_vector(ctx, dst, 2); break; } case nir_intrinsic_load_vertex_id_zero_base: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.copy(Definition(dst), get_arg(ctx, ctx->args->vertex_id)); break; } case nir_intrinsic_load_first_vertex: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.copy(Definition(dst), get_arg(ctx, ctx->args->base_vertex)); break; } case nir_intrinsic_load_base_instance: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.copy(Definition(dst), get_arg(ctx, ctx->args->start_instance)); break; } case nir_intrinsic_load_instance_id: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.copy(Definition(dst), get_arg(ctx, ctx->args->instance_id)); break; } case nir_intrinsic_load_draw_id: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.copy(Definition(dst), get_arg(ctx, ctx->args->draw_id)); break; } case nir_intrinsic_load_invocation_id: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) { if (ctx->options->gfx_level >= GFX10) bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand::c32(127u), get_arg(ctx, ctx->args->gs_invocation_id)); else bld.copy(Definition(dst), get_arg(ctx, ctx->args->gs_invocation_id)); } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) { bld.vop3(aco_opcode::v_bfe_u32, Definition(dst), get_arg(ctx, ctx->args->tcs_rel_ids), Operand::c32(8u), Operand::c32(5u)); } else { unreachable("Unsupported stage for load_invocation_id"); } break; } case nir_intrinsic_load_primitive_id: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); switch (ctx->shader->info.stage) { case MESA_SHADER_GEOMETRY: bld.copy(Definition(dst), get_arg(ctx, ctx->args->gs_prim_id)); break; case MESA_SHADER_TESS_CTRL: bld.copy(Definition(dst), get_arg(ctx, ctx->args->tcs_patch_id)); break; case MESA_SHADER_TESS_EVAL: bld.copy(Definition(dst), get_arg(ctx, ctx->args->tes_patch_id)); break; default: if (ctx->stage.hw == HWStage::NGG && !ctx->stage.has(SWStage::GS)) { /* In case of NGG, the GS threads always have the primitive ID * even if there is no SW GS. */ bld.copy(Definition(dst), get_arg(ctx, ctx->args->gs_prim_id)); break; } else if (ctx->shader->info.stage == MESA_SHADER_VERTEX) { bld.copy(Definition(dst), get_arg(ctx, ctx->args->vs_prim_id)); break; } unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id"); } break; } case nir_intrinsic_emit_vertex_with_counter: { assert(ctx->stage.hw == HWStage::GS); unsigned stream = nir_intrinsic_stream_id(instr); bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream)); break; } case nir_intrinsic_end_primitive_with_counter: { if (ctx->stage.hw != HWStage::NGG) { unsigned stream = nir_intrinsic_stream_id(instr); bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream)); } break; } case nir_intrinsic_is_subgroup_invocation_lt_amd: { Temp src = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), lanecount_to_mask(ctx, src)); break; } case nir_intrinsic_alloc_vertices_and_primitives_amd: { assert(ctx->stage.hw == HWStage::NGG); Temp num_vertices = get_ssa_temp(ctx, instr->src[0].ssa); Temp num_primitives = get_ssa_temp(ctx, instr->src[1].ssa); /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */ Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), num_primitives, Operand::c32(12u)); tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, num_vertices); /* Request the SPI to allocate space for the primitives and vertices * that will be exported by the threadgroup. */ bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req); break; } case nir_intrinsic_gds_atomic_add_amd: { Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa); Temp gds_addr = get_ssa_temp(ctx, instr->src[1].ssa); Temp m0_val = get_ssa_temp(ctx, instr->src[2].ssa); Operand m = bld.m0((Temp)bld.copy(bld.def(s1, m0), bld.as_uniform(m0_val))); bld.ds(aco_opcode::ds_add_u32, as_vgpr(ctx, gds_addr), as_vgpr(ctx, store_val), m, 0u, 0u, true); break; } case nir_intrinsic_load_sbt_base_amd: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Temp addr = get_arg(ctx, ctx->args->sbt_descriptors); assert(addr.regClass() == s2); bld.copy(Definition(dst), Operand(addr)); break; } case nir_intrinsic_bvh64_intersect_ray_amd: visit_bvh64_intersect_ray_amd(ctx, instr); break; case nir_intrinsic_load_rt_dynamic_callable_stack_base_amd: bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), get_arg(ctx, ctx->args->rt_dynamic_callable_stack_base)); break; case nir_intrinsic_overwrite_vs_arguments_amd: { ctx->arg_temps[ctx->args->vertex_id.arg_index] = get_ssa_temp(ctx, instr->src[0].ssa); ctx->arg_temps[ctx->args->instance_id.arg_index] = get_ssa_temp(ctx, instr->src[1].ssa); break; } case nir_intrinsic_overwrite_tes_arguments_amd: { ctx->arg_temps[ctx->args->tes_u.arg_index] = get_ssa_temp(ctx, instr->src[0].ssa); ctx->arg_temps[ctx->args->tes_v.arg_index] = get_ssa_temp(ctx, instr->src[1].ssa); ctx->arg_temps[ctx->args->tes_rel_patch_id.arg_index] = get_ssa_temp(ctx, instr->src[3].ssa); ctx->arg_temps[ctx->args->tes_patch_id.arg_index] = get_ssa_temp(ctx, instr->src[2].ssa); break; } case nir_intrinsic_load_scalar_arg_amd: case nir_intrinsic_load_vector_arg_amd: { assert(nir_intrinsic_base(instr) < ctx->args->arg_count); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Temp src = ctx->arg_temps[nir_intrinsic_base(instr)]; assert(src.id()); assert(src.type() == (instr->intrinsic == nir_intrinsic_load_scalar_arg_amd ? RegType::sgpr : RegType::vgpr)); bld.copy(Definition(dst), src); emit_split_vector(ctx, dst, dst.size()); break; } case nir_intrinsic_ordered_xfb_counter_add_amd: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Temp ordered_id = get_ssa_temp(ctx, instr->src[0].ssa); Temp counter = get_ssa_temp(ctx, instr->src[1].ssa); Temp gds_base = bld.copy(bld.def(v1), Operand::c32(0u)); unsigned offset0, offset1; Instruction *ds_instr; Operand m; /* Lock a GDS mutex. */ ds_ordered_count_offsets(ctx, 1 << 24u, false, false, &offset0, &offset1); m = bld.m0(bld.as_uniform(ordered_id)); ds_instr = bld.ds(aco_opcode::ds_ordered_count, bld.def(v1), gds_base, m, offset0, offset1, true); ds_instr->ds().sync = memory_sync_info(storage_gds, semantic_volatile); aco_ptr vec{create_instruction( aco_opcode::p_create_vector, Format::PSEUDO, instr->num_components, 1)}; unsigned write_mask = nir_intrinsic_write_mask(instr); for (unsigned i = 0; i < instr->num_components; i++) { if (write_mask & (1 << i)) { Temp chan_counter = emit_extract_vector(ctx, counter, i, v1); m = bld.m0((Temp)bld.copy(bld.def(s1, m0), Operand::c32(0x100u))); ds_instr = bld.ds(aco_opcode::ds_add_rtn_u32, bld.def(v1), gds_base, chan_counter, m, i * 4, 0u, true); ds_instr->ds().sync = memory_sync_info(storage_gds, semantic_atomicrmw); vec->operands[i] = Operand(ds_instr->definitions[0].getTemp()); } else { vec->operands[i] = Operand::zero(); } } vec->definitions[0] = Definition(dst); ctx->block->instructions.emplace_back(std::move(vec)); /* Unlock a GDS mutex. */ ds_ordered_count_offsets(ctx, 1 << 24u, true, true, &offset0, &offset1); m = bld.m0(bld.as_uniform(ordered_id)); ds_instr = bld.ds(aco_opcode::ds_ordered_count, bld.def(v1), gds_base, m, offset0, offset1, true); ds_instr->ds().sync = memory_sync_info(storage_gds, semantic_volatile); emit_split_vector(ctx, dst, instr->num_components); break; } case nir_intrinsic_xfb_counter_sub_amd: /* TODO: implement this */ break; case nir_intrinsic_memory_barrier_buffer: { wait_imm wait; wait.lgkm = 0; wait.vm = 0; bld.sopp(aco_opcode::s_waitcnt, -1, wait.pack(bld.program->gfx_level)); bld.sopk(aco_opcode::s_waitcnt_vscnt, Definition(sgpr_null, s1), 0); break; } case nir_intrinsic_export_amd: { unsigned flags = nir_intrinsic_flags(instr); unsigned target = nir_intrinsic_base(instr); unsigned write_mask = nir_intrinsic_write_mask(instr); /* Mark vertex export block. */ if (target == V_008DFC_SQ_EXP_POS) ctx->block->kind |= block_kind_export_end; aco_ptr exp{ create_instruction(aco_opcode::exp, Format::EXP, 4, 0)}; exp->dest = target; exp->enabled_mask = write_mask; exp->compressed = flags & AC_EXP_FLAG_COMPRESSED; exp->valid_mask = flags & AC_EXP_FLAG_VALID_MASK; /* ACO may reorder position export instructions, then mark done for last * export instruction. So don't respect the nir AC_EXP_FLAG_DONE for position * exports here and leave it to ACO. */ if (target == V_008DFC_SQ_EXP_PRIM) exp->done = flags & AC_EXP_FLAG_DONE; else exp->done = false; Temp value = get_ssa_temp(ctx, instr->src[0].ssa); for (unsigned i = 0; i < 4; i++) { exp->operands[i] = write_mask & BITFIELD_BIT(i) ? Operand(emit_extract_vector(ctx, value, i, v1)) : Operand(v1); } ctx->block->instructions.emplace_back(std::move(exp)); break; } default: isel_err(&instr->instr, "Unimplemented intrinsic instr"); abort(); break; } } void build_cube_select(isel_context* ctx, Temp ma, Temp id, Temp deriv, Temp* out_ma, Temp* out_sc, Temp* out_tc) { Builder bld(ctx->program, ctx->block); Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1); Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1); Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1); Operand neg_one = Operand::c32(0xbf800000u); Operand one = Operand::c32(0x3f800000u); Operand two = Operand::c32(0x40000000u); Operand four = Operand::c32(0x40800000u); Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), Operand::zero(), ma); Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive); Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand::zero(), sgn_ma); Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), four, id); Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id); is_ma_y = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), is_ma_y, is_ma_z); Temp is_not_ma_x = bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), is_ma_z, is_ma_y); /* select sc */ Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x); Temp sgn = bld.vop2_e64( aco_opcode::v_cndmask_b32, bld.def(v1), bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z), one, is_ma_y); *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn); /* select tc */ tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y); sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y); *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn); /* select ma */ tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y), deriv_z, is_ma_z); tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0x7fffffffu), tmp); *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp); } void prepare_cube_coords(isel_context* ctx, std::vector& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array) { Builder bld(ctx->program, ctx->block); Temp ma, tc, sc, id; aco_opcode madak = ctx->program->gfx_level >= GFX10_3 ? aco_opcode::v_fmaak_f32 : aco_opcode::v_madak_f32; aco_opcode madmk = ctx->program->gfx_level >= GFX10_3 ? aco_opcode::v_fmamk_f32 : aco_opcode::v_madmk_f32; /* see comment in ac_prepare_cube_coords() */ if (is_array && ctx->options->gfx_level <= GFX8) coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand::zero(), coords[3]); ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]); aco_ptr vop3a{ create_instruction(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)}; vop3a->operands[0] = Operand(ma); vop3a->abs[0] = true; Temp invma = bld.tmp(v1); vop3a->definitions[0] = Definition(invma); ctx->block->instructions.emplace_back(std::move(vop3a)); sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]); if (!is_deriv) sc = bld.vop2(madak, bld.def(v1), sc, invma, Operand::c32(0x3fc00000u /*1.5*/)); tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]); if (!is_deriv) tc = bld.vop2(madak, bld.def(v1), tc, invma, Operand::c32(0x3fc00000u /*1.5*/)); id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]); if (is_deriv) { sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma); tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma); for (unsigned i = 0; i < 2; i++) { /* see comment in ac_prepare_cube_coords() */ Temp deriv_ma; Temp deriv_sc, deriv_tc; build_cube_select(ctx, ma, id, i ? *ddy : *ddx, &deriv_ma, &deriv_sc, &deriv_tc); deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma); Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma), bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc)); Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma), bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc)); *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y); } sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand::c32(0x3fc00000u /*1.5*/), sc); tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand::c32(0x3fc00000u /*1.5*/), tc); } if (is_array) { id = bld.vop2(madmk, bld.def(v1), coords[3], id, Operand::c32(0x41000000u /*8.0*/)); coords.erase(coords.begin() + 3); } coords[0] = sc; coords[1] = tc; coords[2] = id; } void get_const_vec(nir_ssa_def* vec, nir_const_value* cv[4]) { if (vec->parent_instr->type != nir_instr_type_alu) return; nir_alu_instr* vec_instr = nir_instr_as_alu(vec->parent_instr); if (vec_instr->op != nir_op_vec(vec->num_components)) return; for (unsigned i = 0; i < vec->num_components; i++) { cv[i] = vec_instr->src[i].swizzle[0] == 0 ? nir_src_as_const_value(vec_instr->src[i].src) : NULL; } } void visit_tex(isel_context* ctx, nir_tex_instr* instr) { assert(instr->op != nir_texop_samples_identical); Builder bld(ctx->program, ctx->block); bool has_bias = false, has_lod = false, level_zero = false, has_compare = false, has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false, has_clamped_lod = false; Temp resource, sampler, bias = Temp(), compare = Temp(), sample_index = Temp(), lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(), clamped_lod = Temp(), coord = Temp(); std::vector coords; std::vector derivs; nir_const_value* const_offset[4] = {NULL, NULL, NULL, NULL}; for (unsigned i = 0; i < instr->num_srcs; i++) { switch (instr->src[i].src_type) { case nir_tex_src_texture_handle: resource = bld.as_uniform(get_ssa_temp(ctx, instr->src[i].src.ssa)); break; case nir_tex_src_sampler_handle: sampler = bld.as_uniform(get_ssa_temp(ctx, instr->src[i].src.ssa)); break; default: break; } } bool tg4_integer_workarounds = ctx->options->gfx_level <= GFX8 && instr->op == nir_texop_tg4 && (instr->dest_type & (nir_type_int | nir_type_uint)); bool tg4_integer_cube_workaround = tg4_integer_workarounds && instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE; bool a16 = false, g16 = false; int coord_idx = nir_tex_instr_src_index(instr, nir_tex_src_coord); if (coord_idx > 0) a16 = instr->src[coord_idx].src.ssa->bit_size == 16; int ddx_idx = nir_tex_instr_src_index(instr, nir_tex_src_ddx); if (ddx_idx > 0) g16 = instr->src[ddx_idx].src.ssa->bit_size == 16; for (unsigned i = 0; i < instr->num_srcs; i++) { switch (instr->src[i].src_type) { case nir_tex_src_coord: { assert(instr->src[i].src.ssa->bit_size == (a16 ? 16 : 32)); coord = get_ssa_temp_tex(ctx, instr->src[i].src.ssa, a16); break; } case nir_tex_src_bias: assert(instr->src[i].src.ssa->bit_size == (a16 ? 16 : 32)); /* Doesn't need get_ssa_temp_tex because we pack it into its own dword anyway. */ bias = get_ssa_temp(ctx, instr->src[i].src.ssa); has_bias = true; break; case nir_tex_src_lod: { if (nir_src_is_const(instr->src[i].src) && nir_src_as_uint(instr->src[i].src) == 0) { level_zero = true; } else { assert(instr->src[i].src.ssa->bit_size == (a16 ? 16 : 32)); lod = get_ssa_temp_tex(ctx, instr->src[i].src.ssa, a16); has_lod = true; } break; } case nir_tex_src_min_lod: assert(instr->src[i].src.ssa->bit_size == (a16 ? 16 : 32)); clamped_lod = get_ssa_temp_tex(ctx, instr->src[i].src.ssa, a16); has_clamped_lod = true; break; case nir_tex_src_comparator: if (instr->is_shadow) { assert(instr->src[i].src.ssa->bit_size == 32); compare = get_ssa_temp(ctx, instr->src[i].src.ssa); has_compare = true; } break; case nir_tex_src_offset: assert(instr->src[i].src.ssa->bit_size == 32); offset = get_ssa_temp(ctx, instr->src[i].src.ssa); get_const_vec(instr->src[i].src.ssa, const_offset); has_offset = true; break; case nir_tex_src_ddx: assert(instr->src[i].src.ssa->bit_size == (g16 ? 16 : 32)); ddx = get_ssa_temp_tex(ctx, instr->src[i].src.ssa, g16); has_ddx = true; break; case nir_tex_src_ddy: assert(instr->src[i].src.ssa->bit_size == (g16 ? 16 : 32)); ddy = get_ssa_temp_tex(ctx, instr->src[i].src.ssa, g16); has_ddy = true; break; case nir_tex_src_ms_index: assert(instr->src[i].src.ssa->bit_size == (a16 ? 16 : 32)); sample_index = get_ssa_temp_tex(ctx, instr->src[i].src.ssa, a16); has_sample_index = true; break; case nir_tex_src_texture_offset: case nir_tex_src_sampler_offset: default: break; } } if (has_offset) { assert(instr->op != nir_texop_txf); aco_ptr tmp_instr; Temp acc, pack = Temp(); uint32_t pack_const = 0; for (unsigned i = 0; i < offset.size(); i++) { if (!const_offset[i]) continue; pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i); } if (offset.type() == RegType::sgpr) { for (unsigned i = 0; i < offset.size(); i++) { if (const_offset[i]) continue; acc = emit_extract_vector(ctx, offset, i, s1); acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand::c32(0x3Fu)); if (i) { acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand::c32(8u * i)); } if (pack == Temp()) { pack = acc; } else { pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc); } } if (pack_const && pack != Temp()) pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand::c32(pack_const), pack); } else { for (unsigned i = 0; i < offset.size(); i++) { if (const_offset[i]) continue; acc = emit_extract_vector(ctx, offset, i, v1); acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0x3Fu), acc); if (i) { acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand::c32(8u * i), acc); } if (pack == Temp()) { pack = acc; } else { pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc); } } if (pack_const && pack != Temp()) pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand::c32(pack_const), pack); } if (pack_const && pack == Temp()) offset = bld.copy(bld.def(v1), Operand::c32(pack_const)); else if (pack == Temp()) has_offset = false; else offset = pack; } unsigned wqm_coord_count = 0; std::vector unpacked_coord; if (ctx->options->gfx_level == GFX9 && instr->sampler_dim == GLSL_SAMPLER_DIM_1D && instr->coord_components) { RegClass rc = a16 ? v2b : v1; for (unsigned i = 0; i < coord.bytes() / rc.bytes(); i++) unpacked_coord.emplace_back(emit_extract_vector(ctx, coord, i, rc)); assert(unpacked_coord.size() > 0 && unpacked_coord.size() < 3); Operand coord2d; /* 0.5 for floating point coords, 0 for integer. */ if (a16) coord2d = instr->op == nir_texop_txf ? Operand::c16(0) : Operand::c16(0x3800); else coord2d = instr->op == nir_texop_txf ? Operand::c32(0) : Operand::c32(0x3f000000); unpacked_coord.insert(std::next(unpacked_coord.begin()), bld.copy(bld.def(rc), coord2d)); wqm_coord_count = a16 ? DIV_ROUND_UP(unpacked_coord.size(), 2) : unpacked_coord.size(); } else if (coord != Temp()) { unpacked_coord.push_back(coord); wqm_coord_count = DIV_ROUND_UP(coord.bytes(), 4); } if (has_sample_index) unpacked_coord.push_back(sample_index); if (has_lod) unpacked_coord.push_back(lod); if (has_clamped_lod) unpacked_coord.push_back(clamped_lod); coords = emit_pack_v1(ctx, unpacked_coord); assert(instr->sampler_dim != GLSL_SAMPLER_DIM_CUBE || !a16); if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components) prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod); /* pack derivatives */ if (has_ddx || has_ddy) { RegClass rc = g16 ? v2b : v1; assert(a16 == g16 || ctx->options->gfx_level >= GFX10); std::array ddxddy = {ddx, ddy}; for (Temp tmp : ddxddy) { if (tmp == Temp()) continue; std::vector unpacked = {tmp}; if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->gfx_level == GFX9) { assert(has_ddx && has_ddy); Temp zero = bld.copy(bld.def(rc), Operand::zero(rc.bytes())); unpacked.push_back(zero); } for (Temp derv : emit_pack_v1(ctx, unpacked)) derivs.push_back(derv); } has_derivs = true; } bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array); /* Build tex instruction */ unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa) & 0xf; if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) dmask = u_bit_consecutive(0, util_last_bit(dmask)); if (instr->is_sparse) dmask = MAX2(dmask, 1) | 0x10; unsigned dim = ctx->options->gfx_level >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF ? ac_get_sampler_dim(ctx->options->gfx_level, instr->sampler_dim, instr->is_array) : 0; bool d16 = instr->dest.ssa.bit_size == 16; Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Temp tmp_dst = dst; /* gather4 selects the component by dmask and always returns vec4 (vec5 if sparse) */ if (instr->op == nir_texop_tg4) { assert(instr->dest.ssa.num_components == (4 + instr->is_sparse)); if (instr->is_shadow) dmask = 1; else dmask = 1 << instr->component; if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr) tmp_dst = bld.tmp(instr->is_sparse ? v5 : (d16 ? v2 : v4)); } else if (instr->op == nir_texop_fragment_mask_fetch_amd) { tmp_dst = bld.tmp(v1); } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) { unsigned bytes = util_bitcount(dmask) * instr->dest.ssa.bit_size / 8; tmp_dst = bld.tmp(RegClass::get(RegType::vgpr, bytes)); } Temp tg4_compare_cube_wa64 = Temp(); if (tg4_integer_workarounds) { Temp tg4_lod = bld.copy(bld.def(v1), Operand::zero()); Temp size = bld.tmp(v2); MIMG_instruction* tex = emit_mimg(bld, aco_opcode::image_get_resinfo, Definition(size), resource, Operand(s4), std::vector{tg4_lod}); tex->dim = dim; tex->dmask = 0x3; tex->da = da; emit_split_vector(ctx, size, size.size()); Temp half_texel[2]; for (unsigned i = 0; i < 2; i++) { half_texel[i] = emit_extract_vector(ctx, size, i, v1); half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]); half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]); half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand::c32(0xbf000000 /*-0.5*/), half_texel[i]); } if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D && !instr->is_array) { /* In vulkan, whether the sampler uses unnormalized * coordinates or not is a dynamic property of the * sampler. Hence, to figure out whether or not we * need to divide by the texture size, we need to test * the sampler at runtime. This tests the bit set by * radv_init_sampler(). */ unsigned bit_idx = ffs(S_008F30_FORCE_UNNORMALIZED(1)) - 1; Temp not_needed = bld.sopc(aco_opcode::s_bitcmp0_b32, bld.def(s1, scc), sampler, Operand::c32(bit_idx)); not_needed = bool_to_vector_condition(ctx, not_needed); half_texel[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::c32(0xbf000000 /*-0.5*/), half_texel[0], not_needed); half_texel[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::c32(0xbf000000 /*-0.5*/), half_texel[1], not_needed); } Temp new_coords[2] = {bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]), bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])}; if (tg4_integer_cube_workaround) { /* see comment in ac_nir_to_llvm.c's lower_gather4_integer() */ Temp* const desc = (Temp*)alloca(resource.size() * sizeof(Temp)); aco_ptr split{create_instruction( aco_opcode::p_split_vector, Format::PSEUDO, 1, resource.size())}; split->operands[0] = Operand(resource); for (unsigned i = 0; i < resource.size(); i++) { desc[i] = bld.tmp(s1); split->definitions[i] = Definition(desc[i]); } ctx->block->instructions.emplace_back(std::move(split)); Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand::c32(20u | (6u << 16))); Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt, Operand::c32(V_008F14_IMG_DATA_FORMAT_8_8_8_8)); Temp nfmt; if (instr->dest_type & nir_type_uint) { nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand::c32(V_008F14_IMG_NUM_FORMAT_USCALED), Operand::c32(V_008F14_IMG_NUM_FORMAT_UINT), bld.scc(compare_cube_wa)); } else { nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand::c32(V_008F14_IMG_NUM_FORMAT_SSCALED), Operand::c32(V_008F14_IMG_NUM_FORMAT_SINT), bld.scc(compare_cube_wa)); } tg4_compare_cube_wa64 = bld.tmp(bld.lm); bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64); nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand::c32(26u)); desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1], Operand::c32(C_008F14_NUM_FORMAT)); desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt); aco_ptr vec{create_instruction( aco_opcode::p_create_vector, Format::PSEUDO, resource.size(), 1)}; for (unsigned i = 0; i < resource.size(); i++) vec->operands[i] = Operand(desc[i]); resource = bld.tmp(resource.regClass()); vec->definitions[0] = Definition(resource); ctx->block->instructions.emplace_back(std::move(vec)); new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), new_coords[0], coords[0], tg4_compare_cube_wa64); new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), new_coords[1], coords[1], tg4_compare_cube_wa64); } coords[0] = new_coords[0]; coords[1] = new_coords[1]; } if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) { // FIXME: if (ctx->abi->gfx9_stride_size_workaround) return // ac_build_buffer_load_format_gfx9_safe() assert(coords.size() == 1); aco_opcode op; if (d16) { switch (util_last_bit(dmask & 0xf)) { case 1: op = aco_opcode::buffer_load_format_d16_x; break; case 2: op = aco_opcode::buffer_load_format_d16_xy; break; case 3: op = aco_opcode::buffer_load_format_d16_xyz; break; case 4: op = aco_opcode::buffer_load_format_d16_xyzw; break; default: unreachable("Tex instruction loads more than 4 components."); } } else { switch (util_last_bit(dmask & 0xf)) { case 1: op = aco_opcode::buffer_load_format_x; break; case 2: op = aco_opcode::buffer_load_format_xy; break; case 3: op = aco_opcode::buffer_load_format_xyz; break; case 4: op = aco_opcode::buffer_load_format_xyzw; break; default: unreachable("Tex instruction loads more than 4 components."); } } aco_ptr mubuf{ create_instruction(op, Format::MUBUF, 3 + instr->is_sparse, 1)}; mubuf->operands[0] = Operand(resource); mubuf->operands[1] = Operand(coords[0]); mubuf->operands[2] = Operand::c32(0); mubuf->definitions[0] = Definition(tmp_dst); mubuf->idxen = true; mubuf->tfe = instr->is_sparse; if (mubuf->tfe) mubuf->operands[3] = emit_tfe_init(bld, tmp_dst); ctx->block->instructions.emplace_back(std::move(mubuf)); expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask); return; } /* gather MIMG address components */ std::vector args; unsigned wqm_mask = 0; if (has_offset) { wqm_mask |= u_bit_consecutive(args.size(), 1); args.emplace_back(offset); } if (has_bias) args.emplace_back(emit_pack_v1(ctx, {bias})[0]); if (has_compare) args.emplace_back(compare); if (has_derivs) args.insert(args.end(), derivs.begin(), derivs.end()); wqm_mask |= u_bit_consecutive(args.size(), wqm_coord_count); args.insert(args.end(), coords.begin(), coords.end()); if (instr->op == nir_texop_txf || instr->op == nir_texop_fragment_fetch_amd || instr->op == nir_texop_fragment_mask_fetch_amd || instr->op == nir_texop_txf_ms) { aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip; Operand vdata = instr->is_sparse ? emit_tfe_init(bld, tmp_dst) : Operand(v1); MIMG_instruction* tex = emit_mimg(bld, op, Definition(tmp_dst), resource, Operand(s4), args, 0, vdata); if (instr->op == nir_texop_fragment_mask_fetch_amd) tex->dim = da ? ac_image_2darray : ac_image_2d; else tex->dim = dim; tex->dmask = dmask & 0xf; tex->unrm = true; tex->da = da; tex->tfe = instr->is_sparse; tex->d16 = d16; tex->a16 = a16; if (instr->op == nir_texop_fragment_mask_fetch_amd) { /* Use 0x76543210 if the image doesn't have FMASK. */ assert(dmask == 1 && dst.bytes() == 4); assert(dst.id() != tmp_dst.id()); if (dst.regClass() == s1) { Temp is_not_null = bld.sopc(aco_opcode::s_cmp_lg_u32, bld.def(s1, scc), Operand::zero(), emit_extract_vector(ctx, resource, 1, s1)); bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), bld.as_uniform(tmp_dst), Operand::c32(0x76543210), bld.scc(is_not_null)); } else { Temp is_not_null = bld.tmp(bld.lm); bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(is_not_null), Operand::zero(), emit_extract_vector(ctx, resource, 1, s1)); bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), bld.copy(bld.def(v1), Operand::c32(0x76543210)), tmp_dst, is_not_null); } } else { expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask); } return; } bool separate_g16 = ctx->options->gfx_level >= GFX10 && g16; // TODO: would be better to do this by adding offsets, but needs the opcodes ordered. aco_opcode opcode = aco_opcode::image_sample; if (has_offset) { /* image_sample_*_o */ if (has_clamped_lod) { if (has_compare) { opcode = aco_opcode::image_sample_c_cl_o; if (separate_g16) opcode = aco_opcode::image_sample_c_d_cl_o_g16; else if (has_derivs) opcode = aco_opcode::image_sample_c_d_cl_o; if (has_bias) opcode = aco_opcode::image_sample_c_b_cl_o; } else { opcode = aco_opcode::image_sample_cl_o; if (separate_g16) opcode = aco_opcode::image_sample_d_cl_o_g16; else if (has_derivs) opcode = aco_opcode::image_sample_d_cl_o; if (has_bias) opcode = aco_opcode::image_sample_b_cl_o; } } else if (has_compare) { opcode = aco_opcode::image_sample_c_o; if (separate_g16) opcode = aco_opcode::image_sample_c_d_o_g16; else if (has_derivs) opcode = aco_opcode::image_sample_c_d_o; if (has_bias) opcode = aco_opcode::image_sample_c_b_o; if (level_zero) opcode = aco_opcode::image_sample_c_lz_o; if (has_lod) opcode = aco_opcode::image_sample_c_l_o; } else { opcode = aco_opcode::image_sample_o; if (separate_g16) opcode = aco_opcode::image_sample_d_o_g16; else if (has_derivs) opcode = aco_opcode::image_sample_d_o; if (has_bias) opcode = aco_opcode::image_sample_b_o; if (level_zero) opcode = aco_opcode::image_sample_lz_o; if (has_lod) opcode = aco_opcode::image_sample_l_o; } } else if (has_clamped_lod) { /* image_sample_*_cl */ if (has_compare) { opcode = aco_opcode::image_sample_c_cl; if (separate_g16) opcode = aco_opcode::image_sample_c_d_cl_g16; else if (has_derivs) opcode = aco_opcode::image_sample_c_d_cl; if (has_bias) opcode = aco_opcode::image_sample_c_b_cl; } else { opcode = aco_opcode::image_sample_cl; if (separate_g16) opcode = aco_opcode::image_sample_d_cl_g16; else if (has_derivs) opcode = aco_opcode::image_sample_d_cl; if (has_bias) opcode = aco_opcode::image_sample_b_cl; } } else { /* no offset */ if (has_compare) { opcode = aco_opcode::image_sample_c; if (separate_g16) opcode = aco_opcode::image_sample_c_d_g16; else if (has_derivs) opcode = aco_opcode::image_sample_c_d; if (has_bias) opcode = aco_opcode::image_sample_c_b; if (level_zero) opcode = aco_opcode::image_sample_c_lz; if (has_lod) opcode = aco_opcode::image_sample_c_l; } else { opcode = aco_opcode::image_sample; if (separate_g16) opcode = aco_opcode::image_sample_d_g16; else if (has_derivs) opcode = aco_opcode::image_sample_d; if (has_bias) opcode = aco_opcode::image_sample_b; if (level_zero) opcode = aco_opcode::image_sample_lz; if (has_lod) opcode = aco_opcode::image_sample_l; } } if (instr->op == nir_texop_tg4) { if (has_offset) { /* image_gather4_*_o */ if (has_compare) { opcode = aco_opcode::image_gather4_c_lz_o; if (has_lod) opcode = aco_opcode::image_gather4_c_l_o; if (has_bias) opcode = aco_opcode::image_gather4_c_b_o; } else { opcode = aco_opcode::image_gather4_lz_o; if (has_lod) opcode = aco_opcode::image_gather4_l_o; if (has_bias) opcode = aco_opcode::image_gather4_b_o; } } else { if (has_compare) { opcode = aco_opcode::image_gather4_c_lz; if (has_lod) opcode = aco_opcode::image_gather4_c_l; if (has_bias) opcode = aco_opcode::image_gather4_c_b; } else { opcode = aco_opcode::image_gather4_lz; if (has_lod) opcode = aco_opcode::image_gather4_l; if (has_bias) opcode = aco_opcode::image_gather4_b; } } } else if (instr->op == nir_texop_lod) { opcode = aco_opcode::image_get_lod; } bool implicit_derivs = bld.program->stage == fragment_fs && !has_derivs && !has_lod && !level_zero && instr->sampler_dim != GLSL_SAMPLER_DIM_MS && instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS; Operand vdata = instr->is_sparse ? emit_tfe_init(bld, tmp_dst) : Operand(v1); MIMG_instruction* tex = emit_mimg(bld, opcode, Definition(tmp_dst), resource, Operand(sampler), args, implicit_derivs ? wqm_mask : 0, vdata); tex->dim = dim; tex->dmask = dmask & 0xf; tex->da = da; tex->tfe = instr->is_sparse; tex->d16 = d16; tex->a16 = a16; if (tg4_integer_cube_workaround) { assert(tmp_dst.id() != dst.id()); assert(tmp_dst.size() == dst.size()); emit_split_vector(ctx, tmp_dst, tmp_dst.size()); Temp val[4]; for (unsigned i = 0; i < 4; i++) { val[i] = emit_extract_vector(ctx, tmp_dst, i, v1); Temp cvt_val; if (instr->dest_type & nir_type_uint) cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]); else cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]); val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64); } Temp tmp = dst.regClass() == tmp_dst.regClass() ? dst : bld.tmp(tmp_dst.regClass()); if (instr->is_sparse) tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), val[0], val[1], val[2], val[3], emit_extract_vector(ctx, tmp_dst, 4, v1)); else tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), val[0], val[1], val[2], val[3]); } unsigned mask = instr->op == nir_texop_tg4 ? (instr->is_sparse ? 0x1F : 0xF) : dmask; expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask); } Operand get_phi_operand(isel_context* ctx, nir_ssa_def* ssa, RegClass rc, bool logical) { Temp tmp = get_ssa_temp(ctx, ssa); if (ssa->parent_instr->type == nir_instr_type_ssa_undef) { return Operand(rc); } else if (logical && ssa->bit_size == 1 && ssa->parent_instr->type == nir_instr_type_load_const) { bool val = nir_instr_as_load_const(ssa->parent_instr)->value[0].b; return Operand::c32_or_c64(val ? -1 : 0, ctx->program->lane_mask == s2); } else { return Operand(tmp); } } void visit_phi(isel_context* ctx, nir_phi_instr* instr) { aco_ptr phi; Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask); bool logical = !dst.is_linear() || nir_dest_is_divergent(instr->dest); logical |= (ctx->block->kind & block_kind_merge) != 0; aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi; /* we want a sorted list of sources, since the predecessor list is also sorted */ std::map phi_src; nir_foreach_phi_src (src, instr) phi_src[src->pred->index] = src->src.ssa; std::vector& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds; unsigned num_operands = 0; Operand* const operands = (Operand*)alloca( (std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1) * sizeof(Operand)); unsigned num_defined = 0; unsigned cur_pred_idx = 0; for (std::pair src : phi_src) { if (cur_pred_idx < preds.size()) { /* handle missing preds (IF merges with discard/break) and extra preds * (loop exit with discard) */ unsigned block = ctx->cf_info.nir_to_aco[src.first]; unsigned skipped = 0; while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block) skipped++; if (cur_pred_idx + skipped < preds.size()) { for (unsigned i = 0; i < skipped; i++) operands[num_operands++] = Operand(dst.regClass()); cur_pred_idx += skipped; } else { continue; } } /* Handle missing predecessors at the end. This shouldn't happen with loop * headers and we can't ignore these sources for loop header phis. */ if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size()) continue; cur_pred_idx++; Operand op = get_phi_operand(ctx, src.second, dst.regClass(), logical); operands[num_operands++] = op; num_defined += !op.isUndefined(); } /* handle block_kind_continue_or_break at loop exit blocks */ while (cur_pred_idx++ < preds.size()) operands[num_operands++] = Operand(dst.regClass()); /* If the loop ends with a break, still add a linear continue edge in case * that break is divergent or continue_or_break is used. We'll either remove * this operand later in visit_loop() if it's not necessary or replace the * undef with something correct. */ if (!logical && ctx->block->kind & block_kind_loop_header) { nir_loop* loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent); nir_block* last = nir_loop_last_block(loop); if (last->successors[0] != instr->instr.block) operands[num_operands++] = Operand(RegClass()); } /* we can use a linear phi in some cases if one src is undef */ if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) { phi.reset(create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1)); Block* linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]]; Block* invert = &ctx->program->blocks[linear_else->linear_preds[0]]; assert(invert->kind & block_kind_invert); unsigned then_block = invert->linear_preds[0]; Block* insert_block = NULL; for (unsigned i = 0; i < num_operands; i++) { Operand op = operands[i]; if (op.isUndefined()) continue; insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block; phi->operands[0] = op; break; } assert(insert_block); /* should be handled by the "num_defined == 0" case above */ phi->operands[1] = Operand(dst.regClass()); phi->definitions[0] = Definition(dst); insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi)); return; } phi.reset(create_instruction(opcode, Format::PSEUDO, num_operands, 1)); for (unsigned i = 0; i < num_operands; i++) phi->operands[i] = operands[i]; phi->definitions[0] = Definition(dst); ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi)); } void visit_undef(isel_context* ctx, nir_ssa_undef_instr* instr) { Temp dst = get_ssa_temp(ctx, &instr->def); assert(dst.type() == RegType::sgpr); if (dst.size() == 1) { Builder(ctx->program, ctx->block).copy(Definition(dst), Operand::zero()); } else { aco_ptr vec{create_instruction( aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)}; for (unsigned i = 0; i < dst.size(); i++) vec->operands[i] = Operand::zero(); vec->definitions[0] = Definition(dst); ctx->block->instructions.emplace_back(std::move(vec)); } } void begin_loop(isel_context* ctx, loop_context* lc) { // TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true append_logical_end(ctx->block); ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform; Builder bld(ctx->program, ctx->block); bld.branch(aco_opcode::p_branch, bld.def(s2)); unsigned loop_preheader_idx = ctx->block->index; lc->loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level)); ctx->program->next_loop_depth++; Block* loop_header = ctx->program->create_and_insert_block(); loop_header->kind |= block_kind_loop_header; add_edge(loop_preheader_idx, loop_header); ctx->block = loop_header; append_logical_start(ctx->block); lc->header_idx_old = std::exchange(ctx->cf_info.parent_loop.header_idx, loop_header->index); lc->exit_old = std::exchange(ctx->cf_info.parent_loop.exit, &lc->loop_exit); lc->divergent_cont_old = std::exchange(ctx->cf_info.parent_loop.has_divergent_continue, false); lc->divergent_branch_old = std::exchange(ctx->cf_info.parent_loop.has_divergent_branch, false); lc->divergent_if_old = std::exchange(ctx->cf_info.parent_if.is_divergent, false); } void end_loop(isel_context* ctx, loop_context* lc) { // TODO: what if a loop ends with a unconditional or uniformly branched continue // and this branch is never taken? if (!ctx->cf_info.has_branch) { unsigned loop_header_idx = ctx->cf_info.parent_loop.header_idx; Builder bld(ctx->program, ctx->block); append_logical_end(ctx->block); if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) { /* Discards can result in code running with an empty exec mask. * This would result in divergent breaks not ever being taken. As a * workaround, break the loop when the loop mask is empty instead of * always continuing. */ ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform); unsigned block_idx = ctx->block->index; /* create helper blocks to avoid critical edges */ Block* break_block = ctx->program->create_and_insert_block(); break_block->kind = block_kind_uniform; bld.reset(break_block); bld.branch(aco_opcode::p_branch, bld.def(s2)); add_linear_edge(block_idx, break_block); add_linear_edge(break_block->index, &lc->loop_exit); Block* continue_block = ctx->program->create_and_insert_block(); continue_block->kind = block_kind_uniform; bld.reset(continue_block); bld.branch(aco_opcode::p_branch, bld.def(s2)); add_linear_edge(block_idx, continue_block); add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]); if (!ctx->cf_info.parent_loop.has_divergent_branch) add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]); ctx->block = &ctx->program->blocks[block_idx]; } else { ctx->block->kind |= (block_kind_continue | block_kind_uniform); if (!ctx->cf_info.parent_loop.has_divergent_branch) add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]); else add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]); } bld.reset(ctx->block); bld.branch(aco_opcode::p_branch, bld.def(s2)); } ctx->cf_info.has_branch = false; ctx->program->next_loop_depth--; // TODO: if the loop has not a single exit, we must add one °° /* emit loop successor block */ ctx->block = ctx->program->insert_block(std::move(lc->loop_exit)); append_logical_start(ctx->block); #if 0 // TODO: check if it is beneficial to not branch on continues /* trim linear phis in loop header */ for (auto&& instr : loop_entry->instructions) { if (instr->opcode == aco_opcode::p_linear_phi) { aco_ptr new_phi{create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)}; new_phi->definitions[0] = instr->definitions[0]; for (unsigned i = 0; i < new_phi->operands.size(); i++) new_phi->operands[i] = instr->operands[i]; /* check that the remaining operands are all the same */ for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++) assert(instr->operands[i].tempId() == instr->operands.back().tempId()); instr.swap(new_phi); } else if (instr->opcode == aco_opcode::p_phi) { continue; } else { break; } } #endif ctx->cf_info.parent_loop.header_idx = lc->header_idx_old; ctx->cf_info.parent_loop.exit = lc->exit_old; ctx->cf_info.parent_loop.has_divergent_continue = lc->divergent_cont_old; ctx->cf_info.parent_loop.has_divergent_branch = lc->divergent_branch_old; ctx->cf_info.parent_if.is_divergent = lc->divergent_if_old; if (!ctx->block->loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) ctx->cf_info.exec_potentially_empty_discard = false; } void emit_loop_jump(isel_context* ctx, bool is_break) { Builder bld(ctx->program, ctx->block); Block* logical_target; append_logical_end(ctx->block); unsigned idx = ctx->block->index; if (is_break) { logical_target = ctx->cf_info.parent_loop.exit; add_logical_edge(idx, logical_target); ctx->block->kind |= block_kind_break; if (!ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.parent_loop.has_divergent_continue) { /* uniform break - directly jump out of the loop */ ctx->block->kind |= block_kind_uniform; ctx->cf_info.has_branch = true; bld.branch(aco_opcode::p_branch, bld.def(s2)); add_linear_edge(idx, logical_target); return; } ctx->cf_info.parent_loop.has_divergent_branch = true; } else { logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx]; add_logical_edge(idx, logical_target); ctx->block->kind |= block_kind_continue; if (!ctx->cf_info.parent_if.is_divergent) { /* uniform continue - directly jump to the loop header */ ctx->block->kind |= block_kind_uniform; ctx->cf_info.has_branch = true; bld.branch(aco_opcode::p_branch, bld.def(s2)); add_linear_edge(idx, logical_target); return; } /* for potential uniform breaks after this continue, we must ensure that they are handled correctly */ ctx->cf_info.parent_loop.has_divergent_continue = true; ctx->cf_info.parent_loop.has_divergent_branch = true; } if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) { ctx->cf_info.exec_potentially_empty_break = true; ctx->cf_info.exec_potentially_empty_break_depth = ctx->block->loop_nest_depth; } /* remove critical edges from linear CFG */ bld.branch(aco_opcode::p_branch, bld.def(s2)); Block* break_block = ctx->program->create_and_insert_block(); break_block->kind |= block_kind_uniform; add_linear_edge(idx, break_block); /* the loop_header pointer might be invalidated by this point */ if (!is_break) logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx]; add_linear_edge(break_block->index, logical_target); bld.reset(break_block); bld.branch(aco_opcode::p_branch, bld.def(s2)); Block* continue_block = ctx->program->create_and_insert_block(); add_linear_edge(idx, continue_block); append_logical_start(continue_block); ctx->block = continue_block; } void emit_loop_break(isel_context* ctx) { emit_loop_jump(ctx, true); } void emit_loop_continue(isel_context* ctx) { emit_loop_jump(ctx, false); } void visit_jump(isel_context* ctx, nir_jump_instr* instr) { /* visit_block() would usually do this but divergent jumps updates ctx->block */ ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index; switch (instr->type) { case nir_jump_break: emit_loop_break(ctx); break; case nir_jump_continue: emit_loop_continue(ctx); break; default: isel_err(&instr->instr, "Unknown NIR jump instr"); abort(); } } void visit_block(isel_context* ctx, nir_block* block) { ctx->block->instructions.reserve(ctx->block->instructions.size() + exec_list_length(&block->instr_list) * 2); nir_foreach_instr (instr, block) { switch (instr->type) { case nir_instr_type_alu: visit_alu_instr(ctx, nir_instr_as_alu(instr)); break; case nir_instr_type_load_const: visit_load_const(ctx, nir_instr_as_load_const(instr)); break; case nir_instr_type_intrinsic: visit_intrinsic(ctx, nir_instr_as_intrinsic(instr)); break; case nir_instr_type_tex: visit_tex(ctx, nir_instr_as_tex(instr)); break; case nir_instr_type_phi: visit_phi(ctx, nir_instr_as_phi(instr)); break; case nir_instr_type_ssa_undef: visit_undef(ctx, nir_instr_as_ssa_undef(instr)); break; case nir_instr_type_deref: break; case nir_instr_type_jump: visit_jump(ctx, nir_instr_as_jump(instr)); break; default: isel_err(instr, "Unknown NIR instr type"); } } if (!ctx->cf_info.parent_loop.has_divergent_branch) ctx->cf_info.nir_to_aco[block->index] = ctx->block->index; } static Operand create_continue_phis(isel_context* ctx, unsigned first, unsigned last, aco_ptr& header_phi, Operand* vals) { vals[0] = Operand(header_phi->definitions[0].getTemp()); RegClass rc = vals[0].regClass(); unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth; unsigned next_pred = 1; for (unsigned idx = first + 1; idx <= last; idx++) { Block& block = ctx->program->blocks[idx]; if (block.loop_nest_depth != loop_nest_depth) { vals[idx - first] = vals[idx - 1 - first]; continue; } if ((block.kind & block_kind_continue) && block.index != last) { vals[idx - first] = header_phi->operands[next_pred]; next_pred++; continue; } bool all_same = true; for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++) all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first]; Operand val; if (all_same) { val = vals[block.linear_preds[0] - first]; } else { aco_ptr phi(create_instruction( aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1)); for (unsigned i = 0; i < block.linear_preds.size(); i++) phi->operands[i] = vals[block.linear_preds[i] - first]; val = Operand(ctx->program->allocateTmp(rc)); phi->definitions[0] = Definition(val.getTemp()); block.instructions.emplace(block.instructions.begin(), std::move(phi)); } vals[idx - first] = val; } return vals[last - first]; } static void begin_uniform_if_then(isel_context* ctx, if_context* ic, Temp cond); static void begin_uniform_if_else(isel_context* ctx, if_context* ic); static void end_uniform_if(isel_context* ctx, if_context* ic); static void visit_loop(isel_context* ctx, nir_loop* loop) { assert(!nir_loop_has_continue_construct(loop)); loop_context lc; begin_loop(ctx, &lc); bool unreachable = visit_cf_list(ctx, &loop->body); unsigned loop_header_idx = ctx->cf_info.parent_loop.header_idx; /* Fixup phis in loop header from unreachable blocks. * has_branch/has_divergent_branch also indicates if the loop ends with a * break/continue instruction, but we don't emit those if unreachable=true */ if (unreachable) { assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch); bool linear = ctx->cf_info.has_branch; bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch; for (aco_ptr& instr : ctx->program->blocks[loop_header_idx].instructions) { if ((logical && instr->opcode == aco_opcode::p_phi) || (linear && instr->opcode == aco_opcode::p_linear_phi)) { /* the last operand should be the one that needs to be removed */ instr->operands.pop_back(); } else if (!is_phi(instr)) { break; } } } /* Fixup linear phis in loop header from expecting a continue. Both this fixup * and the previous one shouldn't both happen at once because a break in the * merge block would get CSE'd */ if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) { unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1); Operand* const vals = (Operand*)alloca(num_vals * sizeof(Operand)); for (aco_ptr& instr : ctx->program->blocks[loop_header_idx].instructions) { if (instr->opcode == aco_opcode::p_linear_phi) { if (ctx->cf_info.has_branch) instr->operands.pop_back(); else instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals); } else if (!is_phi(instr)) { break; } } } /* NIR seems to allow this, and even though the loop exit has no predecessors, SSA defs from the * loop header are live. Handle this without complicating the ACO IR by creating a dummy break. */ if (nir_cf_node_cf_tree_next(&loop->cf_node)->predecessors->entries == 0) { Builder bld(ctx->program, ctx->block); Temp cond = bld.copy(bld.def(s1, scc), Operand::zero()); if_context ic; begin_uniform_if_then(ctx, &ic, cond); emit_loop_break(ctx); begin_uniform_if_else(ctx, &ic); end_uniform_if(ctx, &ic); } end_loop(ctx, &lc); } static void begin_divergent_if_then(isel_context* ctx, if_context* ic, Temp cond, nir_selection_control sel_ctrl = nir_selection_control_none) { ic->cond = cond; append_logical_end(ctx->block); ctx->block->kind |= block_kind_branch; /* branch to linear then block */ assert(cond.regClass() == ctx->program->lane_mask); aco_ptr branch; branch.reset(create_instruction(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 1)); branch->definitions[0] = Definition(ctx->program->allocateTmp(s2)); branch->operands[0] = Operand(cond); branch->selection_control_remove = sel_ctrl == nir_selection_control_flatten || sel_ctrl == nir_selection_control_divergent_always_taken; ctx->block->instructions.push_back(std::move(branch)); ic->BB_if_idx = ctx->block->index; ic->BB_invert = Block(); /* Invert blocks are intentionally not marked as top level because they * are not part of the logical cfg. */ ic->BB_invert.kind |= block_kind_invert; ic->BB_endif = Block(); ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level)); ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard; ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break; ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth; ic->divergent_old = ctx->cf_info.parent_if.is_divergent; ic->had_divergent_discard_old = ctx->cf_info.had_divergent_discard; ctx->cf_info.parent_if.is_divergent = true; /* divergent branches use cbranch_execz */ ctx->cf_info.exec_potentially_empty_discard = false; ctx->cf_info.exec_potentially_empty_break = false; ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX; /** emit logical then block */ ctx->program->next_divergent_if_logical_depth++; Block* BB_then_logical = ctx->program->create_and_insert_block(); add_edge(ic->BB_if_idx, BB_then_logical); ctx->block = BB_then_logical; append_logical_start(BB_then_logical); } static void begin_divergent_if_else(isel_context* ctx, if_context* ic, nir_selection_control sel_ctrl = nir_selection_control_none) { Block* BB_then_logical = ctx->block; append_logical_end(BB_then_logical); /* branch from logical then block to invert block */ aco_ptr branch; branch.reset(create_instruction(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1)); branch->definitions[0] = Definition(ctx->program->allocateTmp(s2)); BB_then_logical->instructions.emplace_back(std::move(branch)); add_linear_edge(BB_then_logical->index, &ic->BB_invert); if (!ctx->cf_info.parent_loop.has_divergent_branch) add_logical_edge(BB_then_logical->index, &ic->BB_endif); BB_then_logical->kind |= block_kind_uniform; assert(!ctx->cf_info.has_branch); ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch; ctx->cf_info.parent_loop.has_divergent_branch = false; ctx->program->next_divergent_if_logical_depth--; /** emit linear then block */ Block* BB_then_linear = ctx->program->create_and_insert_block(); BB_then_linear->kind |= block_kind_uniform; add_linear_edge(ic->BB_if_idx, BB_then_linear); /* branch from linear then block to invert block */ branch.reset(create_instruction(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1)); branch->definitions[0] = Definition(ctx->program->allocateTmp(s2)); BB_then_linear->instructions.emplace_back(std::move(branch)); add_linear_edge(BB_then_linear->index, &ic->BB_invert); /** emit invert merge block */ ctx->block = ctx->program->insert_block(std::move(ic->BB_invert)); ic->invert_idx = ctx->block->index; /* branch to linear else block (skip else) */ branch.reset(create_instruction(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1)); branch->definitions[0] = Definition(ctx->program->allocateTmp(s2)); branch->selection_control_remove = sel_ctrl == nir_selection_control_flatten || sel_ctrl == nir_selection_control_divergent_always_taken; ctx->block->instructions.push_back(std::move(branch)); ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard; ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break; ic->exec_potentially_empty_break_depth_old = std::min( ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth); /* divergent branches use cbranch_execz */ ctx->cf_info.exec_potentially_empty_discard = false; ctx->cf_info.exec_potentially_empty_break = false; ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX; ic->had_divergent_discard_then = ctx->cf_info.had_divergent_discard; ctx->cf_info.had_divergent_discard = ic->had_divergent_discard_old; /** emit logical else block */ ctx->program->next_divergent_if_logical_depth++; Block* BB_else_logical = ctx->program->create_and_insert_block(); add_logical_edge(ic->BB_if_idx, BB_else_logical); add_linear_edge(ic->invert_idx, BB_else_logical); ctx->block = BB_else_logical; append_logical_start(BB_else_logical); } static void end_divergent_if(isel_context* ctx, if_context* ic) { Block* BB_else_logical = ctx->block; append_logical_end(BB_else_logical); /* branch from logical else block to endif block */ aco_ptr branch; branch.reset(create_instruction(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1)); branch->definitions[0] = Definition(ctx->program->allocateTmp(s2)); BB_else_logical->instructions.emplace_back(std::move(branch)); add_linear_edge(BB_else_logical->index, &ic->BB_endif); if (!ctx->cf_info.parent_loop.has_divergent_branch) add_logical_edge(BB_else_logical->index, &ic->BB_endif); BB_else_logical->kind |= block_kind_uniform; ctx->program->next_divergent_if_logical_depth--; assert(!ctx->cf_info.has_branch); ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent; /** emit linear else block */ Block* BB_else_linear = ctx->program->create_and_insert_block(); BB_else_linear->kind |= block_kind_uniform; add_linear_edge(ic->invert_idx, BB_else_linear); /* branch from linear else block to endif block */ branch.reset(create_instruction(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1)); branch->definitions[0] = Definition(ctx->program->allocateTmp(s2)); BB_else_linear->instructions.emplace_back(std::move(branch)); add_linear_edge(BB_else_linear->index, &ic->BB_endif); /** emit endif merge block */ ctx->block = ctx->program->insert_block(std::move(ic->BB_endif)); append_logical_start(ctx->block); ctx->cf_info.parent_if.is_divergent = ic->divergent_old; ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old; ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old; ctx->cf_info.exec_potentially_empty_break_depth = std::min( ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth); if (ctx->block->loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth && !ctx->cf_info.parent_if.is_divergent) { ctx->cf_info.exec_potentially_empty_break = false; ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX; } /* uniform control flow never has an empty exec-mask */ if (!ctx->block->loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) { ctx->cf_info.exec_potentially_empty_discard = false; ctx->cf_info.exec_potentially_empty_break = false; ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX; } ctx->cf_info.had_divergent_discard |= ic->had_divergent_discard_then; } static void begin_uniform_if_then(isel_context* ctx, if_context* ic, Temp cond) { assert(cond.regClass() == s1); append_logical_end(ctx->block); ctx->block->kind |= block_kind_uniform; aco_ptr branch; aco_opcode branch_opcode = aco_opcode::p_cbranch_z; branch.reset( create_instruction(branch_opcode, Format::PSEUDO_BRANCH, 1, 1)); branch->definitions[0] = Definition(ctx->program->allocateTmp(s2)); branch->operands[0] = Operand(cond); branch->operands[0].setFixed(scc); ctx->block->instructions.emplace_back(std::move(branch)); ic->BB_if_idx = ctx->block->index; ic->BB_endif = Block(); ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level; ctx->cf_info.has_branch = false; ctx->cf_info.parent_loop.has_divergent_branch = false; ic->had_divergent_discard_old = ctx->cf_info.had_divergent_discard; /** emit then block */ ctx->program->next_uniform_if_depth++; Block* BB_then = ctx->program->create_and_insert_block(); add_edge(ic->BB_if_idx, BB_then); append_logical_start(BB_then); ctx->block = BB_then; } static void begin_uniform_if_else(isel_context* ctx, if_context* ic) { Block* BB_then = ctx->block; ic->uniform_has_then_branch = ctx->cf_info.has_branch; ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch; if (!ic->uniform_has_then_branch) { append_logical_end(BB_then); /* branch from then block to endif block */ aco_ptr branch; branch.reset(create_instruction(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1)); branch->definitions[0] = Definition(ctx->program->allocateTmp(s2)); BB_then->instructions.emplace_back(std::move(branch)); add_linear_edge(BB_then->index, &ic->BB_endif); if (!ic->then_branch_divergent) add_logical_edge(BB_then->index, &ic->BB_endif); BB_then->kind |= block_kind_uniform; } ctx->cf_info.has_branch = false; ctx->cf_info.parent_loop.has_divergent_branch = false; ic->had_divergent_discard_then = ctx->cf_info.had_divergent_discard; ctx->cf_info.had_divergent_discard = ic->had_divergent_discard_old; /** emit else block */ Block* BB_else = ctx->program->create_and_insert_block(); add_edge(ic->BB_if_idx, BB_else); append_logical_start(BB_else); ctx->block = BB_else; } static void end_uniform_if(isel_context* ctx, if_context* ic) { Block* BB_else = ctx->block; if (!ctx->cf_info.has_branch) { append_logical_end(BB_else); /* branch from then block to endif block */ aco_ptr branch; branch.reset(create_instruction(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1)); branch->definitions[0] = Definition(ctx->program->allocateTmp(s2)); BB_else->instructions.emplace_back(std::move(branch)); add_linear_edge(BB_else->index, &ic->BB_endif); if (!ctx->cf_info.parent_loop.has_divergent_branch) add_logical_edge(BB_else->index, &ic->BB_endif); BB_else->kind |= block_kind_uniform; } ctx->cf_info.has_branch &= ic->uniform_has_then_branch; ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent; ctx->cf_info.had_divergent_discard |= ic->had_divergent_discard_then; /** emit endif merge block */ ctx->program->next_uniform_if_depth--; if (!ctx->cf_info.has_branch) { ctx->block = ctx->program->insert_block(std::move(ic->BB_endif)); append_logical_start(ctx->block); } } static bool visit_if(isel_context* ctx, nir_if* if_stmt) { Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa); Builder bld(ctx->program, ctx->block); aco_ptr branch; if_context ic; if (!nir_src_is_divergent(if_stmt->condition)) { /* uniform condition */ /** * Uniform conditionals are represented in the following way*) : * * The linear and logical CFG: * BB_IF * / \ * BB_THEN (logical) BB_ELSE (logical) * \ / * BB_ENDIF * * *) Exceptions may be due to break and continue statements within loops * If a break/continue happens within uniform control flow, it branches * to the loop exit/entry block. Otherwise, it branches to the next * merge block. **/ assert(cond.regClass() == ctx->program->lane_mask); cond = bool_to_scalar_condition(ctx, cond); begin_uniform_if_then(ctx, &ic, cond); visit_cf_list(ctx, &if_stmt->then_list); begin_uniform_if_else(ctx, &ic); visit_cf_list(ctx, &if_stmt->else_list); end_uniform_if(ctx, &ic); } else { /* non-uniform condition */ /** * To maintain a logical and linear CFG without critical edges, * non-uniform conditionals are represented in the following way*) : * * The linear CFG: * BB_IF * / \ * BB_THEN (logical) BB_THEN (linear) * \ / * BB_INVERT (linear) * / \ * BB_ELSE (logical) BB_ELSE (linear) * \ / * BB_ENDIF * * The logical CFG: * BB_IF * / \ * BB_THEN (logical) BB_ELSE (logical) * \ / * BB_ENDIF * * *) Exceptions may be due to break and continue statements within loops **/ begin_divergent_if_then(ctx, &ic, cond, if_stmt->control); visit_cf_list(ctx, &if_stmt->then_list); begin_divergent_if_else(ctx, &ic, if_stmt->control); visit_cf_list(ctx, &if_stmt->else_list); end_divergent_if(ctx, &ic); } return !ctx->cf_info.has_branch && !ctx->block->logical_preds.empty(); } static bool visit_cf_list(isel_context* ctx, struct exec_list* list) { foreach_list_typed (nir_cf_node, node, node, list) { switch (node->type) { case nir_cf_node_block: visit_block(ctx, nir_cf_node_as_block(node)); break; case nir_cf_node_if: if (!visit_if(ctx, nir_cf_node_as_if(node))) return true; break; case nir_cf_node_loop: visit_loop(ctx, nir_cf_node_as_loop(node)); break; default: unreachable("unimplemented cf list type"); } } return false; } static bool export_fs_mrt_z(isel_context* ctx) { Builder bld(ctx->program, ctx->block); unsigned enabled_channels = 0; bool compr = false; Operand values[4]; for (unsigned i = 0; i < 4; ++i) { values[i] = Operand(v1); } bool writes_mrt0_alpha = ctx->program->info.ps.alpha_to_coverage_via_mrtz && (ctx->outputs.mask[FRAG_RESULT_DATA0] & 0x8); /* Both stencil and sample mask only need 16-bits. */ if (!ctx->program->info.ps.writes_z && !writes_mrt0_alpha && (ctx->program->info.ps.writes_stencil || ctx->program->info.ps.writes_sample_mask)) { compr = ctx->program->gfx_level < GFX11; /* COMPR flag */ if (ctx->program->info.ps.writes_stencil) { /* Stencil should be in X[23:16]. */ values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]); values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand::c32(16u), values[0]); enabled_channels |= ctx->program->gfx_level >= GFX11 ? 0x1 : 0x3; } if (ctx->program->info.ps.writes_sample_mask) { /* SampleMask should be in Y[15:0]. */ values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]); enabled_channels |= ctx->program->gfx_level >= GFX11 ? 0x2 : 0xc; } } else { if (ctx->program->info.ps.writes_z) { values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]); enabled_channels |= 0x1; } if (ctx->program->info.ps.writes_stencil) { values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]); enabled_channels |= 0x2; } if (ctx->program->info.ps.writes_sample_mask) { values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]); enabled_channels |= 0x4; } if (writes_mrt0_alpha) { assert(ctx->program->gfx_level >= GFX11); values[3] = Operand(ctx->outputs.temps[FRAG_RESULT_DATA0 * 4u + 3u]); enabled_channels |= 0x8; } } /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X * writemask component. */ if (ctx->options->gfx_level == GFX6 && ctx->options->family != CHIP_OLAND && ctx->options->family != CHIP_HAINAN) { enabled_channels |= 0x1; } bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3], enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr); return true; } struct mrt_color_export { int slot; unsigned write_mask; Operand values[4]; uint8_t col_format; /* Fields below are only used for PS epilogs. */ bool is_int8; bool is_int10; bool enable_mrt_output_nan_fixup; }; struct aco_export_mrt { Operand out[4]; unsigned enabled_channels; unsigned target; bool compr; }; static void export_mrt(isel_context* ctx, const struct aco_export_mrt* mrt) { Builder bld(ctx->program, ctx->block); bld.exp(aco_opcode::exp, mrt->out[0], mrt->out[1], mrt->out[2], mrt->out[3], mrt->enabled_channels, mrt->target, mrt->compr); ctx->program->has_color_exports = true; } static bool export_fs_mrt_color(isel_context* ctx, const struct mrt_color_export* out, struct aco_export_mrt* mrt) { Builder bld(ctx->program, ctx->block); Operand values[4]; for (unsigned i = 0; i < 4; ++i) { values[i] = out->values[i]; } unsigned target; unsigned enabled_channels = 0; aco_opcode compr_op = aco_opcode::num_opcodes; bool compr = false; bool is_16bit = values[0].regClass() == v2b; target = V_008DFC_SQ_EXP_MRT + out->slot; /* Replace NaN by zero (only 32-bit) to fix game bugs if requested. */ if (out->enable_mrt_output_nan_fixup && !is_16bit && (out->col_format == V_028714_SPI_SHADER_32_R || out->col_format == V_028714_SPI_SHADER_32_GR || out->col_format == V_028714_SPI_SHADER_32_AR || out->col_format == V_028714_SPI_SHADER_32_ABGR || out->col_format == V_028714_SPI_SHADER_FP16_ABGR)) { u_foreach_bit(i, out->write_mask) { Temp isnan = bld.vopc(aco_opcode::v_cmp_class_f32, bld.def(bld.lm), values[i], bld.copy(bld.def(v1), Operand::c32(3u))); values[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), values[i], bld.copy(bld.def(v1), Operand::zero()), isnan); } } switch (out->col_format) { case V_028714_SPI_SHADER_32_R: enabled_channels = 1; break; case V_028714_SPI_SHADER_32_GR: enabled_channels = 0x3; break; case V_028714_SPI_SHADER_32_AR: if (ctx->options->gfx_level >= GFX10) { /* Special case: on GFX10, the outputs are different for 32_AR */ enabled_channels = 0x3; values[1] = values[3]; values[3] = Operand(v1); } else { enabled_channels = 0x9; } break; case V_028714_SPI_SHADER_FP16_ABGR: for (int i = 0; i < 2; i++) { bool enabled = (out->write_mask >> (i * 2)) & 0x3; if (enabled) { enabled_channels |= 0x3 << (i * 2); if (is_16bit) { values[i] = bld.pseudo(aco_opcode::p_create_vector, bld.def(v1), values[i * 2].isUndefined() ? Operand(v2b) : values[i * 2], values[i * 2 + 1].isUndefined() ? Operand(v2b) : values[i * 2 + 1]); } else if (ctx->options->gfx_level == GFX8 || ctx->options->gfx_level == GFX9) { values[i] = bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32_e64, bld.def(v1), values[i * 2].isUndefined() ? Operand::zero() : values[i * 2], values[i * 2 + 1].isUndefined() ? Operand::zero() : values[i * 2 + 1]); } else { values[i] = bld.vop2(aco_opcode::v_cvt_pkrtz_f16_f32, bld.def(v1), values[i * 2].isUndefined() ? values[i * 2 + 1] : values[i * 2], values[i * 2 + 1].isUndefined() ? values[i * 2] : values[i * 2 + 1]); } } else { values[i] = Operand(v1); } } values[2] = Operand(v1); values[3] = Operand(v1); compr = true; break; case V_028714_SPI_SHADER_UNORM16_ABGR: if (is_16bit && ctx->options->gfx_level >= GFX9) { compr_op = aco_opcode::v_cvt_pknorm_u16_f16; } else { compr_op = aco_opcode::v_cvt_pknorm_u16_f32; } break; case V_028714_SPI_SHADER_SNORM16_ABGR: if (is_16bit && ctx->options->gfx_level >= GFX9) { compr_op = aco_opcode::v_cvt_pknorm_i16_f16; } else { compr_op = aco_opcode::v_cvt_pknorm_i16_f32; } break; case V_028714_SPI_SHADER_UINT16_ABGR: compr_op = aco_opcode::v_cvt_pk_u16_u32; if (out->is_int8 || out->is_int10) { /* clamp */ uint32_t max_rgb = out->is_int8 ? 255 : out->is_int10 ? 1023 : 0; u_foreach_bit(i, out->write_mask) { uint32_t max = i == 3 && out->is_int10 ? 3 : max_rgb; values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1), Operand::c32(max), values[i]); } } else if (is_16bit) { u_foreach_bit(i, out->write_mask) { Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, false); values[i] = Operand(tmp); } } break; case V_028714_SPI_SHADER_SINT16_ABGR: compr_op = aco_opcode::v_cvt_pk_i16_i32; if (out->is_int8 || out->is_int10) { /* clamp */ uint32_t max_rgb = out->is_int8 ? 127 : out->is_int10 ? 511 : 0; uint32_t min_rgb = out->is_int8 ? -128 : out->is_int10 ? -512 : 0; u_foreach_bit(i, out->write_mask) { uint32_t max = i == 3 && out->is_int10 ? 1 : max_rgb; uint32_t min = i == 3 && out->is_int10 ? -2u : min_rgb; values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1), Operand::c32(max), values[i]); values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand::c32(min), values[i]); } } else if (is_16bit) { u_foreach_bit(i, out->write_mask) { Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, true); values[i] = Operand(tmp); } } break; case V_028714_SPI_SHADER_32_ABGR: enabled_channels = 0xF; break; case V_028714_SPI_SHADER_ZERO: default: return false; } if (compr_op != aco_opcode::num_opcodes) { for (int i = 0; i < 2; i++) { /* check if at least one of the values to be compressed is enabled */ bool enabled = (out->write_mask >> (i * 2)) & 0x3; if (enabled) { enabled_channels |= 0x3 << (i * 2); values[i] = bld.vop3( compr_op, bld.def(v1), values[i * 2].isUndefined() ? Operand::zero() : values[i * 2], values[i * 2 + 1].isUndefined() ? Operand::zero() : values[i * 2 + 1]); } else { values[i] = Operand(v1); } } values[2] = Operand(v1); values[3] = Operand(v1); compr = true; } else if (!compr) { for (int i = 0; i < 4; i++) values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1); } if (ctx->program->gfx_level >= GFX11) { /* GFX11 doesn't use COMPR for exports, but the channel mask should be * 0x3 instead. */ enabled_channels = compr ? 0x3 : enabled_channels; compr = false; } for (unsigned i = 0; i < 4; i++) mrt->out[i] = values[i]; mrt->target = target; mrt->enabled_channels = enabled_channels; mrt->compr = compr; return true; } static void create_fs_null_export(isel_context* ctx) { /* FS must always have exports. * So when there are none, we need to add a null export. */ Builder bld(ctx->program, ctx->block); /* GFX11 doesn't support NULL exports, and MRT0 should be exported instead. */ unsigned dest = ctx->options->gfx_level >= GFX11 ? V_008DFC_SQ_EXP_MRT : V_008DFC_SQ_EXP_NULL; bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1), /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, /* vm */ true); ctx->program->has_color_exports = true; } static void create_fs_jump_to_epilog(isel_context* ctx) { Builder bld(ctx->program, ctx->block); std::vector color_exports; PhysReg exports_start(256); /* VGPR 0 */ for (unsigned slot = FRAG_RESULT_DATA0; slot < FRAG_RESULT_DATA7 + 1; ++slot) { unsigned color_index = slot - FRAG_RESULT_DATA0; unsigned color_type = (ctx->output_color_types >> (color_index * 2)) & 0x3; unsigned write_mask = ctx->outputs.mask[slot]; if (!write_mask) continue; PhysReg color_start(exports_start.reg() + color_index * 4); for (unsigned i = 0; i < 4; i++) { if (!(write_mask & BITFIELD_BIT(i))) { color_exports.emplace_back(Operand(v1)); continue; } PhysReg chan_reg = color_start.advance(i * 4u); Operand chan(ctx->outputs.temps[slot * 4u + i]); if (color_type == ACO_TYPE_FLOAT16) { chan = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), chan); } else if (color_type == ACO_TYPE_INT16 || color_type == ACO_TYPE_UINT16) { bool sign_ext = color_type == ACO_TYPE_INT16; Temp tmp = convert_int(ctx, bld, chan.getTemp(), 16, 32, sign_ext); chan = Operand(tmp); } chan.setFixed(chan_reg); color_exports.emplace_back(chan); } } Temp continue_pc = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->program->info.ps.epilog.pc)); aco_ptr jump{create_instruction( aco_opcode::p_jump_to_epilog, Format::PSEUDO, 1 + color_exports.size(), 0)}; jump->operands[0] = Operand(continue_pc); for (unsigned i = 0; i < color_exports.size(); i++) { jump->operands[i + 1] = color_exports[i]; } ctx->block->instructions.emplace_back(std::move(jump)); } static void create_fs_dual_src_export_gfx11(isel_context* ctx, const struct aco_export_mrt* mrt0, const struct aco_export_mrt* mrt1) { Builder bld(ctx->program, ctx->block); aco_ptr exp{create_instruction( aco_opcode::p_dual_src_export_gfx11, Format::PSEUDO, 8, 6)}; for (unsigned i = 0; i < 4; i++) { exp->operands[i] = mrt0 ? mrt0->out[i] : Operand(v1); exp->operands[i].setLateKill(true); exp->operands[i + 4] = mrt1 ? mrt1->out[i] : Operand(v1); exp->operands[i + 4].setLateKill(true); } RegClass type = RegClass(RegType::vgpr, util_bitcount(mrt0->enabled_channels)); exp->definitions[0] = bld.def(type); /* mrt0 */ exp->definitions[1] = bld.def(type); /* mrt1 */ exp->definitions[2] = bld.def(v1); exp->definitions[3] = bld.def(bld.lm); exp->definitions[4] = bld.def(bld.lm, vcc); exp->definitions[5] = bld.def(s1, scc); ctx->block->instructions.emplace_back(std::move(exp)); ctx->program->has_color_exports = true; } static void create_fs_exports(isel_context* ctx) { Builder bld(ctx->program, ctx->block); bool exported = false; /* Export depth, stencil and sample mask. */ if (ctx->outputs.mask[FRAG_RESULT_DEPTH] || ctx->outputs.mask[FRAG_RESULT_STENCIL] || ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK]) exported |= export_fs_mrt_z(ctx); if (ctx->program->info.ps.has_epilog) { create_fs_jump_to_epilog(ctx); /* FS epilogs always have at least one color/null export. */ ctx->program->has_color_exports = true; } else { struct aco_export_mrt mrts[8]; unsigned compacted_mrt_index = 0; /* MRT compaction doesn't work with dual-source blending. Dual-source blending seems to * require MRT0 to be written. Just copy MRT1 into MRT0. Skipping MRT1 exports seems to be * fine. */ if (ctx->program->info.ps.epilog.mrt0_is_dual_src && !ctx->outputs.mask[FRAG_RESULT_DATA0] && ctx->outputs.mask[FRAG_RESULT_DATA1]) { u_foreach_bit (j, ctx->outputs.mask[FRAG_RESULT_DATA1]) { ctx->outputs.temps[FRAG_RESULT_DATA0 * 4u + j] = ctx->outputs.temps[FRAG_RESULT_DATA1 * 4u + j]; } ctx->outputs.mask[FRAG_RESULT_DATA0] = ctx->outputs.mask[FRAG_RESULT_DATA1]; } /* Export all color render targets. */ for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i) { unsigned idx = i - FRAG_RESULT_DATA0; mrts[idx].enabled_channels = 0; if (!ctx->outputs.mask[i]) continue; struct mrt_color_export out = {0}; out.slot = compacted_mrt_index; out.write_mask = ctx->outputs.mask[i]; out.col_format = (ctx->program->info.ps.epilog.spi_shader_col_format >> (4 * idx)) & 0xf; out.is_int8 = (ctx->program->info.ps.epilog.color_is_int8 >> idx) & 1; out.is_int10 = (ctx->program->info.ps.epilog.color_is_int10 >> idx) & 1; out.enable_mrt_output_nan_fixup = (ctx->options->enable_mrt_output_nan_fixup >> idx) & 1; for (unsigned c = 0; c < 4; ++c) { if (out.write_mask & (1 << c)) { out.values[c] = Operand(ctx->outputs.temps[i * 4u + c]); } else { out.values[c] = Operand(v1); } } if (export_fs_mrt_color(ctx, &out, &mrts[compacted_mrt_index])) { compacted_mrt_index++; exported = true; } } if (exported) { if (ctx->options->gfx_level >= GFX11 && ctx->program->info.ps.epilog.mrt0_is_dual_src) { struct aco_export_mrt* mrt0 = mrts[0].enabled_channels ? &mrts[0] : NULL; struct aco_export_mrt* mrt1 = mrts[1].enabled_channels ? &mrts[1] : NULL; create_fs_dual_src_export_gfx11(ctx, mrt0, mrt1); } else { for (unsigned i = 0; i < compacted_mrt_index; i++) { export_mrt(ctx, &mrts[i]); } } } else { create_fs_null_export(ctx); } } ctx->block->kind |= block_kind_export_end; } Pseudo_instruction* add_startpgm(struct isel_context* ctx) { unsigned def_count = 0; for (unsigned i = 0; i < ctx->args->arg_count; i++) { if (ctx->args->args[i].skip) continue; unsigned align = MIN2(4, util_next_power_of_two(ctx->args->args[i].size)); if (ctx->args->args[i].file == AC_ARG_SGPR && ctx->args->args[i].offset % align) def_count += ctx->args->args[i].size; else def_count++; } Pseudo_instruction* startpgm = create_instruction(aco_opcode::p_startpgm, Format::PSEUDO, 0, def_count); ctx->block->instructions.emplace_back(startpgm); for (unsigned i = 0, arg = 0; i < ctx->args->arg_count; i++) { if (ctx->args->args[i].skip) continue; enum ac_arg_regfile file = ctx->args->args[i].file; unsigned size = ctx->args->args[i].size; unsigned reg = ctx->args->args[i].offset; RegClass type = RegClass(file == AC_ARG_SGPR ? RegType::sgpr : RegType::vgpr, size); if (file == AC_ARG_SGPR && reg % MIN2(4, util_next_power_of_two(size))) { Temp elems[16]; for (unsigned j = 0; j < size; j++) { elems[j] = ctx->program->allocateTmp(s1); startpgm->definitions[arg++] = Definition(elems[j].id(), PhysReg{reg + j}, s1); } ctx->arg_temps[i] = create_vec_from_array(ctx, elems, size, RegType::sgpr, 4); } else { Temp dst = ctx->program->allocateTmp(type); Definition def(dst); def.setFixed(PhysReg{file == AC_ARG_SGPR ? reg : reg + 256}); ctx->arg_temps[i] = dst; startpgm->definitions[arg++] = def; if (ctx->args->args[i].pending_vmem) { assert(file == AC_ARG_VGPR); ctx->program->args_pending_vmem.push_back(def); } } } if (ctx->program->gfx_level < GFX9) { /* Stash these in the program so that they can be accessed later when * handling spilling. */ ctx->program->private_segment_buffer = get_arg(ctx, ctx->args->ring_offsets); ctx->program->scratch_offset = get_arg(ctx, ctx->args->scratch_offset); } else if (ctx->program->gfx_level <= GFX10_3 && ctx->program->stage != raytracing_cs) { /* Manually initialize scratch. For RT stages scratch initialization is done in the prolog. */ Operand scratch_offset = Operand(get_arg(ctx, ctx->args->scratch_offset)); scratch_offset.setLateKill(true); Builder bld(ctx->program, ctx->block); bld.pseudo(aco_opcode::p_init_scratch, bld.def(s2), bld.def(s1, scc), get_arg(ctx, ctx->args->ring_offsets), scratch_offset); } return startpgm; } void fix_ls_vgpr_init_bug(isel_context* ctx, Pseudo_instruction* startpgm) { assert(ctx->shader->info.stage == MESA_SHADER_VERTEX); Builder bld(ctx->program, ctx->block); constexpr unsigned hs_idx = 1u; Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand::c32((8u << 16) | (hs_idx * 8u))); Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp()); /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */ Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), get_arg(ctx, ctx->args->vertex_id), get_arg(ctx, ctx->args->instance_id), ls_has_nonzero_hs_threads); Temp vs_rel_patch_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), get_arg(ctx, ctx->args->tcs_rel_ids), get_arg(ctx, ctx->args->vs_rel_patch_id), ls_has_nonzero_hs_threads); Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), get_arg(ctx, ctx->args->tcs_patch_id), get_arg(ctx, ctx->args->vertex_id), ls_has_nonzero_hs_threads); ctx->arg_temps[ctx->args->instance_id.arg_index] = instance_id; ctx->arg_temps[ctx->args->vs_rel_patch_id.arg_index] = vs_rel_patch_id; ctx->arg_temps[ctx->args->vertex_id.arg_index] = vertex_id; } void split_arguments(isel_context* ctx, Pseudo_instruction* startpgm) { /* Split all arguments except for the first (ring_offsets) and the last * (exec) so that the dead channels don't stay live throughout the program. */ for (int i = 1; i < startpgm->definitions.size(); i++) { if (startpgm->definitions[i].regClass().size() > 1) { emit_split_vector(ctx, startpgm->definitions[i].getTemp(), startpgm->definitions[i].regClass().size()); } } } void handle_bc_optimize(isel_context* ctx) { /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */ Builder bld(ctx->program, ctx->block); uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena; bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena); bool uses_persp_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena); bool uses_linear_centroid = G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena); if (uses_persp_centroid) ctx->persp_centroid = get_arg(ctx, ctx->args->persp_centroid); if (uses_linear_centroid) ctx->linear_centroid = get_arg(ctx, ctx->args->linear_centroid); if (uses_center && (uses_persp_centroid || uses_linear_centroid)) { Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.def(bld.lm), get_arg(ctx, ctx->args->prim_mask), Operand::zero()); if (uses_persp_centroid) { Temp new_coord[2]; for (unsigned i = 0; i < 2; i++) { Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->persp_centroid), i, v1); Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->persp_center), i, v1); new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), persp_centroid, persp_center, sel); } ctx->persp_centroid = bld.tmp(v2); bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid), Operand(new_coord[0]), Operand(new_coord[1])); emit_split_vector(ctx, ctx->persp_centroid, 2); } if (uses_linear_centroid) { Temp new_coord[2]; for (unsigned i = 0; i < 2; i++) { Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->linear_centroid), i, v1); Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->linear_center), i, v1); new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), linear_centroid, linear_center, sel); } ctx->linear_centroid = bld.tmp(v2); bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid), Operand(new_coord[0]), Operand(new_coord[1])); emit_split_vector(ctx, ctx->linear_centroid, 2); } } } void setup_fp_mode(isel_context* ctx, nir_shader* shader) { Program* program = ctx->program; unsigned float_controls = shader->info.float_controls_execution_mode; program->next_fp_mode.preserve_signed_zero_inf_nan32 = float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32; program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 | FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64); program->next_fp_mode.must_flush_denorms32 = float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32; program->next_fp_mode.must_flush_denorms16_64 = float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 | FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64); program->next_fp_mode.care_about_round32 = float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32); program->next_fp_mode.care_about_round16_64 = float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64); /* default to preserving fp16 and fp64 denorms, since it's free for fp64 and * the precision seems needed for Wolfenstein: Youngblood to render correctly */ if (program->next_fp_mode.must_flush_denorms16_64) program->next_fp_mode.denorm16_64 = 0; else program->next_fp_mode.denorm16_64 = fp_denorm_keep; /* preserving fp32 denorms is expensive, so only do it if asked */ if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) program->next_fp_mode.denorm32 = fp_denorm_keep; else program->next_fp_mode.denorm32 = 0; if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) program->next_fp_mode.round32 = fp_round_tz; else program->next_fp_mode.round32 = fp_round_ne; if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64)) program->next_fp_mode.round16_64 = fp_round_tz; else program->next_fp_mode.round16_64 = fp_round_ne; ctx->block->fp_mode = program->next_fp_mode; } void cleanup_cfg(Program* program) { /* create linear_succs/logical_succs */ for (Block& BB : program->blocks) { for (unsigned idx : BB.linear_preds) program->blocks[idx].linear_succs.emplace_back(BB.index); for (unsigned idx : BB.logical_preds) program->blocks[idx].logical_succs.emplace_back(BB.index); } } Temp lanecount_to_mask(isel_context* ctx, Temp count) { assert(count.regClass() == s1); Builder bld(ctx->program, ctx->block); Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand::zero()); Temp cond; if (ctx->program->wave_size == 64) { /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */ Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand::c32(6u /* log2(64) */)); cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand::c32(-1u), mask, bld.scc(active_64)); } else { /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of * the register */ cond = emit_extract_vector(ctx, mask, 0, bld.lm); } return cond; } Temp merged_wave_info_to_mask(isel_context* ctx, unsigned i) { Builder bld(ctx->program, ctx->block); /* lanecount_to_mask() only cares about s0.u[6:0] so we don't need either s_bfe nor s_and here */ Temp count = i == 0 ? get_arg(ctx, ctx->args->merged_wave_info) : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand::c32(i * 8u)); return lanecount_to_mask(ctx, count); } } /* end namespace */ void select_program(Program* program, unsigned shader_count, struct nir_shader* const* shaders, ac_shader_config* config, const struct aco_compiler_options* options, const struct aco_shader_info* info, const struct ac_shader_args* args) { isel_context ctx = setup_isel_context(program, shader_count, shaders, config, options, info, args, false); if_context ic_merged_wave_info; bool ngg_gs = ctx.stage.hw == HWStage::NGG && ctx.stage.has(SWStage::GS); for (unsigned i = 0; i < shader_count; i++) { nir_shader* nir = shaders[i]; init_context(&ctx, nir); setup_fp_mode(&ctx, nir); if (!i) { /* needs to be after init_context() for FS */ Pseudo_instruction* startpgm = add_startpgm(&ctx); append_logical_start(ctx.block); if (unlikely(ctx.options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs)) fix_ls_vgpr_init_bug(&ctx, startpgm); split_arguments(&ctx, startpgm); if (!info->vs.has_prolog && (program->stage.has(SWStage::VS) || program->stage.has(SWStage::TES))) { Builder(ctx.program, ctx.block).sopp(aco_opcode::s_setprio, -1u, 0x3u); } } /* In a merged VS+TCS HS, the VS implementation can be completely empty. */ nir_function_impl* func = nir_shader_get_entrypoint(nir); bool empty_shader = nir_cf_list_is_empty_block(&func->body) && ((nir->info.stage == MESA_SHADER_VERTEX && (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) || (nir->info.stage == MESA_SHADER_TESS_EVAL && ctx.stage == tess_eval_geometry_gs)); bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : (shader_count >= 2 && !empty_shader && !(ngg_gs && i == 1)); bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : (check_merged_wave_info && !(ngg_gs && i == 1)); if (program->gfx_level == GFX10 && program->stage.hw == HWStage::NGG && program->stage.num_sw_stages() == 1) { /* Workaround for Navi1x HW bug to ensure that all NGG waves launch before * s_sendmsg(GS_ALLOC_REQ). */ Builder(ctx.program, ctx.block).sopp(aco_opcode::s_barrier, -1u, 0u); } if (check_merged_wave_info) { Temp cond = merged_wave_info_to_mask(&ctx, i); begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond); } if (i) { Builder bld(ctx.program, ctx.block); /* Skip s_barrier from TCS when VS outputs are not stored in the LDS. */ bool tcs_skip_barrier = ctx.stage == vertex_tess_control_hs && ctx.tcs_temp_only_inputs == nir->info.inputs_read; if (!ngg_gs && !tcs_skip_barrier) { sync_scope scope = ctx.stage == vertex_tess_control_hs && ctx.program->info.tcs.tess_input_vertices == nir->info.tess.tcs_vertices_out && program->wave_size % ctx.program->info.tcs.tess_input_vertices == 0 ? scope_subgroup : scope_workgroup; bld.barrier(aco_opcode::p_barrier, memory_sync_info(storage_shared, semantic_acqrel, scope), scope); } if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) { ctx.gs_wave_id = bld.pseudo(aco_opcode::p_extract, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand::c32(2u), Operand::c32(8u), Operand::zero()); } } else if (ctx.stage == geometry_gs) ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id); if (ctx.stage == fragment_fs) handle_bc_optimize(&ctx); visit_cf_list(&ctx, &func->body); if (nir->info.stage == MESA_SHADER_GEOMETRY && !ngg_gs) { Builder bld(ctx.program, ctx.block); bld.barrier(aco_opcode::p_barrier, memory_sync_info(storage_vmem_output, semantic_release, scope_device)); bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0)); } if (ctx.stage == fragment_fs) { create_fs_exports(&ctx); } if (endif_merged_wave_info) { begin_divergent_if_else(&ctx, &ic_merged_wave_info); end_divergent_if(&ctx, &ic_merged_wave_info); } if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) { /* Outputs of the previous stage are inputs to the next stage */ ctx.inputs = ctx.outputs; ctx.outputs = shader_io_state(); } cleanup_context(&ctx); } program->config->float_mode = program->blocks[0].fp_mode.val; append_logical_end(ctx.block); ctx.block->kind |= block_kind_uniform; Builder bld(ctx.program, ctx.block); bld.sopp(aco_opcode::s_endpgm); cleanup_cfg(program); } void select_trap_handler_shader(Program* program, struct nir_shader* shader, ac_shader_config* config, const struct aco_compiler_options* options, const struct aco_shader_info* info, const struct ac_shader_args* args) { assert(options->gfx_level == GFX8); init_program(program, compute_cs, info, options->gfx_level, options->family, options->wgp_mode, config); isel_context ctx = {}; ctx.program = program; ctx.args = args; ctx.options = options; ctx.stage = program->stage; ctx.block = ctx.program->create_and_insert_block(); ctx.block->kind = block_kind_top_level; program->workgroup_size = 1; /* XXX */ add_startpgm(&ctx); append_logical_start(ctx.block); Builder bld(ctx.program, ctx.block); /* Load the buffer descriptor from TMA. */ bld.smem(aco_opcode::s_load_dwordx4, Definition(PhysReg{ttmp4}, s4), Operand(PhysReg{tma}, s2), Operand::zero()); /* Store TTMP0-TTMP1. */ bld.smem(aco_opcode::s_buffer_store_dwordx2, Operand(PhysReg{ttmp4}, s4), Operand::zero(), Operand(PhysReg{ttmp0}, s2), memory_sync_info(), true); uint32_t hw_regs_idx[] = { 2, /* HW_REG_STATUS */ 3, /* HW_REG_TRAP_STS */ 4, /* HW_REG_HW_ID */ 7, /* HW_REG_IB_STS */ }; /* Store some hardware registers. */ for (unsigned i = 0; i < ARRAY_SIZE(hw_regs_idx); i++) { /* "((size - 1) << 11) | register" */ bld.sopk(aco_opcode::s_getreg_b32, Definition(PhysReg{ttmp8}, s1), ((20 - 1) << 11) | hw_regs_idx[i]); bld.smem(aco_opcode::s_buffer_store_dword, Operand(PhysReg{ttmp4}, s4), Operand::c32(8u + i * 4), Operand(PhysReg{ttmp8}, s1), memory_sync_info(), true); } program->config->float_mode = program->blocks[0].fp_mode.val; append_logical_end(ctx.block); ctx.block->kind |= block_kind_uniform; bld.sopp(aco_opcode::s_endpgm); cleanup_cfg(program); } PhysReg get_arg_reg(const struct ac_shader_args* args, struct ac_arg arg) { assert(arg.used); enum ac_arg_regfile file = args->args[arg.arg_index].file; unsigned reg = args->args[arg.arg_index].offset; return PhysReg(file == AC_ARG_SGPR ? reg : reg + 256); } Operand get_arg_fixed(const struct ac_shader_args* args, struct ac_arg arg) { enum ac_arg_regfile file = args->args[arg.arg_index].file; unsigned size = args->args[arg.arg_index].size; RegClass rc = RegClass(file == AC_ARG_SGPR ? RegType::sgpr : RegType::vgpr, size); return Operand(get_arg_reg(args, arg), rc); } unsigned load_vb_descs(Builder& bld, PhysReg dest, Operand base, unsigned start, unsigned max) { unsigned count = MIN2((bld.program->dev.sgpr_limit - dest.reg()) / 4u, max); unsigned num_loads = (count / 4u) + util_bitcount(count & 0x3); if (bld.program->gfx_level >= GFX10 && num_loads > 1) bld.sopp(aco_opcode::s_clause, -1, num_loads - 1); for (unsigned i = 0; i < count;) { unsigned size = 1u << util_logbase2(MIN2(count - i, 4)); if (size == 4) bld.smem(aco_opcode::s_load_dwordx16, Definition(dest, s16), base, Operand::c32((start + i) * 16u)); else if (size == 2) bld.smem(aco_opcode::s_load_dwordx8, Definition(dest, s8), base, Operand::c32((start + i) * 16u)); else bld.smem(aco_opcode::s_load_dwordx4, Definition(dest, s4), base, Operand::c32((start + i) * 16u)); dest = dest.advance(size * 16u); i += size; } return count; } Operand calc_nontrivial_instance_id(Builder& bld, const struct ac_shader_args* args, const struct aco_vs_prolog_info* pinfo, unsigned index, Operand instance_id, Operand start_instance, PhysReg tmp_sgpr, PhysReg tmp_vgpr0, PhysReg tmp_vgpr1) { bld.smem(aco_opcode::s_load_dwordx2, Definition(tmp_sgpr, s2), get_arg_fixed(args, pinfo->inputs), Operand::c32(8u + index * 8u)); wait_imm lgkm_imm; lgkm_imm.lgkm = 0; bld.sopp(aco_opcode::s_waitcnt, -1, lgkm_imm.pack(bld.program->gfx_level)); Definition fetch_index_def(tmp_vgpr0, v1); Operand fetch_index(tmp_vgpr0, v1); Operand div_info(tmp_sgpr, s1); if (bld.program->gfx_level >= GFX8 && bld.program->gfx_level < GFX11) { /* use SDWA */ if (bld.program->gfx_level < GFX9) { bld.vop1(aco_opcode::v_mov_b32, Definition(tmp_vgpr1, v1), div_info); div_info = Operand(tmp_vgpr1, v1); } bld.vop2(aco_opcode::v_lshrrev_b32, fetch_index_def, div_info, instance_id); Instruction* instr; if (bld.program->gfx_level >= GFX9) instr = bld.vop2_sdwa(aco_opcode::v_add_u32, fetch_index_def, div_info, fetch_index).instr; else instr = bld.vop2_sdwa(aco_opcode::v_add_co_u32, fetch_index_def, Definition(vcc, bld.lm), div_info, fetch_index) .instr; instr->sdwa().sel[0] = SubdwordSel::ubyte1; bld.vop3(aco_opcode::v_mul_hi_u32, fetch_index_def, Operand(tmp_sgpr.advance(4), s1), fetch_index); instr = bld.vop2_sdwa(aco_opcode::v_lshrrev_b32, fetch_index_def, div_info, fetch_index).instr; instr->sdwa().sel[0] = SubdwordSel::ubyte2; } else { Operand tmp_op(tmp_vgpr1, v1); Definition tmp_def(tmp_vgpr1, v1); bld.vop2(aco_opcode::v_lshrrev_b32, fetch_index_def, div_info, instance_id); bld.vop3(aco_opcode::v_bfe_u32, tmp_def, div_info, Operand::c32(8u), Operand::c32(8u)); bld.vadd32(fetch_index_def, tmp_op, fetch_index, false, Operand(s2), true); bld.vop3(aco_opcode::v_mul_hi_u32, fetch_index_def, fetch_index, Operand(tmp_sgpr.advance(4), s1)); bld.vop3(aco_opcode::v_bfe_u32, tmp_def, div_info, Operand::c32(16u), Operand::c32(8u)); bld.vop2(aco_opcode::v_lshrrev_b32, fetch_index_def, tmp_op, fetch_index); } bld.vadd32(fetch_index_def, start_instance, fetch_index, false, Operand(s2), true); return fetch_index; } void select_rt_prolog(Program* program, ac_shader_config* config, const struct aco_compiler_options* options, const struct aco_shader_info* info, const struct ac_shader_args* in_args, const struct ac_shader_args* out_args) { init_program(program, compute_cs, info, options->gfx_level, options->family, options->wgp_mode, config); Block* block = program->create_and_insert_block(); block->kind = block_kind_top_level; program->workgroup_size = info->workgroup_size; program->wave_size = info->workgroup_size; calc_min_waves(program); Builder bld(program, block); block->instructions.reserve(32); unsigned num_sgprs = MAX2(in_args->num_sgprs_used, out_args->num_sgprs_used); unsigned num_vgprs = MAX2(in_args->num_vgprs_used, out_args->num_vgprs_used); /* Inputs: * Ring offsets: s[0-1] * Indirect descriptor sets: s[2] * Push constants pointer: s[3] * SBT descriptors: s[4-5] * Ray launch size address: s[6-7] * Traversal shader address: s[8-9] * Dynamic callable stack base: s[10] * Workgroup IDs (xyz): s[11], s[12], s[13] * Scratch offset: s[14] * Local invocation IDs: v[0-2] */ PhysReg in_ring_offsets = get_arg_reg(in_args, in_args->ring_offsets); PhysReg in_launch_size_addr = get_arg_reg(in_args, in_args->ray_launch_size_addr); PhysReg in_shader_addr = get_arg_reg(in_args, in_args->rt_traversal_shader_addr); PhysReg in_stack_base = get_arg_reg(in_args, in_args->rt_dynamic_callable_stack_base); PhysReg in_wg_id_x = get_arg_reg(in_args, in_args->workgroup_ids[0]); PhysReg in_wg_id_y = get_arg_reg(in_args, in_args->workgroup_ids[1]); PhysReg in_wg_id_z = get_arg_reg(in_args, in_args->workgroup_ids[2]); PhysReg in_scratch_offset; if (options->gfx_level < GFX11) in_scratch_offset = get_arg_reg(in_args, in_args->scratch_offset); PhysReg in_local_ids[2] = { get_arg_reg(in_args, in_args->local_invocation_ids), get_arg_reg(in_args, in_args->local_invocation_ids).advance(4), }; /* Outputs: * Callee shader PC: s[0-1] * Indirect descriptor sets: s[2] * Push constants pointer: s[3] * SBT descriptors: s[4-5] * Ray launch sizes (xyz): s[6], s[7], s[8] * Scratch offset (rt_shader_pc); PhysReg out_launch_size_x = get_arg_reg(out_args, out_args->ray_launch_size); PhysReg out_launch_size_z = out_launch_size_x.advance(8); PhysReg out_launch_ids[3]; for (unsigned i = 0; i < 3; i++) out_launch_ids[i] = get_arg_reg(out_args, out_args->ray_launch_id).advance(i * 4); PhysReg out_stack_ptr = get_arg_reg(out_args, out_args->rt_dynamic_callable_stack_base); /* Temporaries: */ num_sgprs = align(num_sgprs, 2) + 2; PhysReg tmp_ring_offsets = PhysReg{num_sgprs - 2}; /* Confirm some assumptions about register aliasing */ assert(in_ring_offsets == out_shader_pc); assert(get_arg_reg(in_args, in_args->push_constants) == get_arg_reg(out_args, out_args->push_constants)); assert(get_arg_reg(in_args, in_args->sbt_descriptors) == get_arg_reg(out_args, out_args->sbt_descriptors)); assert(in_launch_size_addr == out_launch_size_x); assert(in_shader_addr == out_launch_size_z); assert(in_local_ids[0] == out_launch_ids[0]); /* init scratch */ if (options->gfx_level < GFX9) { /* copy ring offsets to temporary location*/ bld.sop1(aco_opcode::s_mov_b64, Definition(tmp_ring_offsets, s2), Operand(in_ring_offsets, s2)); } else if (options->gfx_level < GFX11) { hw_init_scratch(bld, Definition(in_ring_offsets, s1), Operand(in_ring_offsets, s2), Operand(in_scratch_offset, s1)); } /* set stack ptr */ bld.vop1(aco_opcode::v_mov_b32, Definition(out_stack_ptr, v1), Operand(in_stack_base, s1)); /* load RT shader address */ /* TODO: load this from the SBT, will be possible with separate shader compilation */ bld.sop1(aco_opcode::s_mov_b64, Definition(out_shader_pc, s2), Operand(in_shader_addr, s2)); /* load ray launch sizes */ bld.smem(aco_opcode::s_load_dword, Definition(out_launch_size_z, s1), Operand(in_launch_size_addr, s2), Operand::c32(8u)); bld.smem(aco_opcode::s_load_dwordx2, Definition(out_launch_size_x, s2), Operand(in_launch_size_addr, s2), Operand::c32(0u)); /* calculate ray launch ids */ if (options->gfx_level >= GFX11) { /* Thread IDs are packed in VGPR0, 10 bits per component. */ bld.vop3(aco_opcode::v_bfe_u32, Definition(in_local_ids[1], v1), Operand(in_local_ids[0], v1), Operand::c32(10u), Operand::c32(3u)); bld.vop2(aco_opcode::v_and_b32, Definition(in_local_ids[0], v1), Operand::c32(0x7), Operand(in_local_ids[0], v1)); } /* Do this backwards to reduce some RAW hazards on GFX11+ */ bld.vop1(aco_opcode::v_mov_b32, Definition(out_launch_ids[2], v1), Operand(in_wg_id_z, s1)); bld.vop3(aco_opcode::v_mad_u32_u24, Definition(out_launch_ids[1], v1), Operand(in_wg_id_y, s1), Operand::c32(program->workgroup_size == 32 ? 4 : 8), Operand(in_local_ids[1], v1)); bld.vop3(aco_opcode::v_mad_u32_u24, Definition(out_launch_ids[0], v1), Operand(in_wg_id_x, s1), Operand::c32(8), Operand(in_local_ids[0], v1)); if (options->gfx_level < GFX9) { /* write scratch/ring offsets to outputs, if needed */ bld.sop1(aco_opcode::s_mov_b32, Definition(get_arg_reg(out_args, out_args->scratch_offset), s1), Operand(in_scratch_offset, s1)); bld.sop1(aco_opcode::s_mov_b64, Definition(get_arg_reg(out_args, out_args->ring_offsets), s2), Operand(tmp_ring_offsets, s2)); } /* jump to raygen */ bld.sop1(aco_opcode::s_setpc_b64, Operand(out_shader_pc, s2)); program->config->float_mode = program->blocks[0].fp_mode.val; program->config->num_vgprs = get_vgpr_alloc(program, num_vgprs); program->config->num_sgprs = get_sgpr_alloc(program, num_sgprs); } void select_vs_prolog(Program* program, const struct aco_vs_prolog_info* pinfo, ac_shader_config* config, const struct aco_compiler_options* options, const struct aco_shader_info* info, const struct ac_shader_args* args) { assert(pinfo->num_attributes > 0); /* This should be enough for any shader/stage. */ unsigned max_user_sgprs = options->gfx_level >= GFX9 ? 32 : 16; init_program(program, compute_cs, info, options->gfx_level, options->family, options->wgp_mode, config); program->dev.vgpr_limit = 256; Block* block = program->create_and_insert_block(); block->kind = block_kind_top_level; program->workgroup_size = 64; calc_min_waves(program); Builder bld(program, block); block->instructions.reserve(16 + pinfo->num_attributes * 4); bld.sopp(aco_opcode::s_setprio, -1u, 0x3u); uint32_t attrib_mask = BITFIELD_MASK(pinfo->num_attributes); bool has_nontrivial_divisors = pinfo->state.nontrivial_divisors & attrib_mask; wait_imm lgkm_imm; lgkm_imm.lgkm = 0; /* choose sgprs */ PhysReg vertex_buffers(align(max_user_sgprs + 14, 2)); PhysReg prolog_input = vertex_buffers.advance(8); PhysReg desc( align((has_nontrivial_divisors ? prolog_input : vertex_buffers).advance(8).reg(), 4)); Operand start_instance = get_arg_fixed(args, args->start_instance); Operand instance_id = get_arg_fixed(args, args->instance_id); PhysReg attributes_start(256 + args->num_vgprs_used); /* choose vgprs that won't be used for anything else until the last attribute load */ PhysReg vertex_index(attributes_start.reg() + pinfo->num_attributes * 4 - 1); PhysReg instance_index(attributes_start.reg() + pinfo->num_attributes * 4 - 2); PhysReg start_instance_vgpr(attributes_start.reg() + pinfo->num_attributes * 4 - 3); PhysReg nontrivial_tmp_vgpr0(attributes_start.reg() + pinfo->num_attributes * 4 - 4); PhysReg nontrivial_tmp_vgpr1(attributes_start.reg() + pinfo->num_attributes * 4); bld.sop1(aco_opcode::s_mov_b32, Definition(vertex_buffers, s1), get_arg_fixed(args, args->vertex_buffers)); if (options->address32_hi >= 0xffff8000 || options->address32_hi <= 0x7fff) { bld.sopk(aco_opcode::s_movk_i32, Definition(vertex_buffers.advance(4), s1), options->address32_hi & 0xFFFF); } else { bld.sop1(aco_opcode::s_mov_b32, Definition(vertex_buffers.advance(4), s1), Operand::c32((unsigned)options->address32_hi)); } /* calculate vgpr requirements */ unsigned num_vgprs = attributes_start.reg() - 256; num_vgprs += pinfo->num_attributes * 4; if (has_nontrivial_divisors && program->gfx_level <= GFX8) num_vgprs++; /* make space for nontrivial_tmp_vgpr1 */ unsigned num_sgprs = 0; const struct ac_vtx_format_info* vtx_info_table = ac_get_vtx_format_info_table(GFX8, CHIP_POLARIS10); for (unsigned loc = 0; loc < pinfo->num_attributes;) { unsigned num_descs = load_vb_descs(bld, desc, Operand(vertex_buffers, s2), loc, pinfo->num_attributes - loc); num_sgprs = MAX2(num_sgprs, desc.advance(num_descs * 16u).reg()); if (loc == 0) { /* perform setup while we load the descriptors */ if (pinfo->is_ngg || pinfo->next_stage != MESA_SHADER_VERTEX) { Operand count = get_arg_fixed(args, args->merged_wave_info); bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), count, Operand::c32(0u)); if (program->wave_size == 64) { bld.sopc(aco_opcode::s_bitcmp1_b32, Definition(scc, s1), count, Operand::c32(6u /* log2(64) */)); bld.sop2(aco_opcode::s_cselect_b64, Definition(exec, s2), Operand::c64(UINT64_MAX), Operand(exec, s2), Operand(scc, s1)); } } bool needs_instance_index = false; bool needs_start_instance = false; u_foreach_bit (i, pinfo->state.instance_rate_inputs & attrib_mask) { needs_instance_index |= pinfo->state.divisors[i] == 1; needs_start_instance |= pinfo->state.divisors[i] == 0; } bool needs_vertex_index = ~pinfo->state.instance_rate_inputs & attrib_mask; if (needs_vertex_index) bld.vadd32(Definition(vertex_index, v1), get_arg_fixed(args, args->base_vertex), get_arg_fixed(args, args->vertex_id), false, Operand(s2), true); if (needs_instance_index) bld.vadd32(Definition(instance_index, v1), start_instance, instance_id, false, Operand(s2), true); if (needs_start_instance) bld.vop1(aco_opcode::v_mov_b32, Definition(start_instance_vgpr, v1), start_instance); } bld.sopp(aco_opcode::s_waitcnt, -1, lgkm_imm.pack(program->gfx_level)); for (unsigned i = 0; i < num_descs;) { PhysReg dest(attributes_start.reg() + loc * 4u); /* calculate index */ Operand fetch_index = Operand(vertex_index, v1); if (pinfo->state.instance_rate_inputs & (1u << loc)) { uint32_t divisor = pinfo->state.divisors[loc]; if (divisor) { fetch_index = instance_id; if (pinfo->state.nontrivial_divisors & (1u << loc)) { unsigned index = util_bitcount(pinfo->state.nontrivial_divisors & BITFIELD_MASK(loc)); fetch_index = calc_nontrivial_instance_id( bld, args, pinfo, index, instance_id, start_instance, prolog_input, nontrivial_tmp_vgpr0, nontrivial_tmp_vgpr1); } else { fetch_index = Operand(instance_index, v1); } } else { fetch_index = Operand(start_instance_vgpr, v1); } } /* perform load */ PhysReg cur_desc = desc.advance(i * 16); if ((pinfo->misaligned_mask & (1u << loc))) { const struct ac_vtx_format_info* vtx_info = &vtx_info_table[pinfo->state.formats[loc]]; assert(vtx_info->has_hw_format & 0x1); unsigned dfmt = vtx_info->hw_format[0] & 0xf; unsigned nfmt = vtx_info->hw_format[0] >> 4; for (unsigned j = 0; j < vtx_info->num_channels; j++) { bool post_shuffle = pinfo->state.post_shuffle & (1u << loc); unsigned offset = vtx_info->chan_byte_size * (post_shuffle && j < 3 ? 2 - j : j); /* Use MUBUF to workaround hangs for byte-aligned dword loads. The Vulkan spec * doesn't require this to work, but some GL CTS tests over Zink do this anyway. * MTBUF can hang, but MUBUF doesn't (probably gives garbage, but GL CTS doesn't * care). */ if (dfmt == V_008F0C_BUF_DATA_FORMAT_32) bld.mubuf(aco_opcode::buffer_load_dword, Definition(dest.advance(j * 4u), v1), Operand(cur_desc, s4), fetch_index, Operand::c32(0u), offset, false, false, true); else if (vtx_info->chan_byte_size == 8) bld.mtbuf(aco_opcode::tbuffer_load_format_xy, Definition(dest.advance(j * 8u), v2), Operand(cur_desc, s4), fetch_index, Operand::c32(0u), dfmt, nfmt, offset, false, true); else bld.mtbuf(aco_opcode::tbuffer_load_format_x, Definition(dest.advance(j * 4u), v1), Operand(cur_desc, s4), fetch_index, Operand::c32(0u), dfmt, nfmt, offset, false, true); } uint32_t one = nfmt == V_008F0C_BUF_NUM_FORMAT_UINT || nfmt == V_008F0C_BUF_NUM_FORMAT_SINT ? 1u : 0x3f800000u; /* 22.1.1. Attribute Location and Component Assignment of Vulkan 1.3 specification: * For 64-bit data types, no default attribute values are provided. Input variables must * not use more components than provided by the attribute. */ for (unsigned j = vtx_info->num_channels; vtx_info->chan_byte_size != 8 && j < 4; j++) { bld.vop1(aco_opcode::v_mov_b32, Definition(dest.advance(j * 4u), v1), Operand::c32(j == 3 ? one : 0u)); } unsigned slots = vtx_info->chan_byte_size == 8 && vtx_info->num_channels > 2 ? 2 : 1; loc += slots; i += slots; } else { bld.mubuf(aco_opcode::buffer_load_format_xyzw, Definition(dest, v4), Operand(cur_desc, s4), fetch_index, Operand::c32(0u), 0u, false, false, true); loc++; i++; } } } if (pinfo->state.alpha_adjust_lo | pinfo->state.alpha_adjust_hi) { wait_imm vm_imm; vm_imm.vm = 0; bld.sopp(aco_opcode::s_waitcnt, -1, vm_imm.pack(program->gfx_level)); } /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW. * so we may need to fix it up. */ u_foreach_bit (loc, (pinfo->state.alpha_adjust_lo | pinfo->state.alpha_adjust_hi)) { PhysReg alpha(attributes_start.reg() + loc * 4u + 3); unsigned alpha_adjust = (pinfo->state.alpha_adjust_lo >> loc) & 0x1; alpha_adjust |= ((pinfo->state.alpha_adjust_hi >> loc) & 0x1) << 1; if (alpha_adjust == AC_ALPHA_ADJUST_SSCALED) bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(alpha, v1), Operand(alpha, v1)); /* For the integer-like cases, do a natural sign extension. * * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0 * and happen to contain 0, 1, 2, 3 as the two LSBs of the * exponent. */ unsigned offset = alpha_adjust == AC_ALPHA_ADJUST_SNORM ? 23u : 0u; bld.vop3(aco_opcode::v_bfe_i32, Definition(alpha, v1), Operand(alpha, v1), Operand::c32(offset), Operand::c32(2u)); /* Convert back to the right type. */ if (alpha_adjust == AC_ALPHA_ADJUST_SNORM) { bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(alpha, v1), Operand(alpha, v1)); bld.vop2(aco_opcode::v_max_f32, Definition(alpha, v1), Operand::c32(0xbf800000u), Operand(alpha, v1)); } else if (alpha_adjust == AC_ALPHA_ADJUST_SSCALED) { bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(alpha, v1), Operand(alpha, v1)); } } block->kind |= block_kind_uniform; /* continue on to the main shader */ Operand continue_pc = get_arg_fixed(args, pinfo->inputs); if (has_nontrivial_divisors) { bld.smem(aco_opcode::s_load_dwordx2, Definition(prolog_input, s2), get_arg_fixed(args, pinfo->inputs), Operand::c32(0u)); bld.sopp(aco_opcode::s_waitcnt, -1, lgkm_imm.pack(program->gfx_level)); continue_pc = Operand(prolog_input, s2); } bld.sop1(aco_opcode::s_setpc_b64, continue_pc); program->config->float_mode = program->blocks[0].fp_mode.val; /* addition on GFX6-8 requires a carry-out (we use VCC) */ program->needs_vcc = program->gfx_level <= GFX8; program->config->num_vgprs = std::min(get_vgpr_alloc(program, num_vgprs), 256); program->config->num_sgprs = get_sgpr_alloc(program, num_sgprs); } void select_ps_epilog(Program* program, const struct aco_ps_epilog_info* einfo, ac_shader_config* config, const struct aco_compiler_options* options, const struct aco_shader_info* info, const struct ac_shader_args* args) { isel_context ctx = setup_isel_context(program, 0, NULL, config, options, info, args, true); ctx.block->fp_mode = program->next_fp_mode; add_startpgm(&ctx); append_logical_start(ctx.block); Builder bld(ctx.program, ctx.block); /* Export all color render targets */ struct aco_export_mrt mrts[8]; uint8_t exported_mrts = 0; for (unsigned i = 0; i < 8; i++) { unsigned col_format = (einfo->spi_shader_col_format >> (i * 4)) & 0xf; if (col_format == V_028714_SPI_SHADER_ZERO) continue; struct mrt_color_export out; out.slot = i; out.write_mask = 0xf; out.col_format = col_format; out.is_int8 = (einfo->color_is_int8 >> i) & 1; out.is_int10 = (einfo->color_is_int10 >> i) & 1; out.enable_mrt_output_nan_fixup = (options->enable_mrt_output_nan_fixup >> i) & 1; Temp inputs = get_arg(&ctx, einfo->inputs[i]); emit_split_vector(&ctx, inputs, 4); for (unsigned c = 0; c < 4; ++c) { out.values[c] = Operand(emit_extract_vector(&ctx, inputs, c, v1)); } if (export_fs_mrt_color(&ctx, &out, &mrts[i])) { exported_mrts |= 1 << i; } } if (exported_mrts) { if (ctx.options->gfx_level >= GFX11 && einfo->mrt0_is_dual_src) { struct aco_export_mrt* mrt0 = (exported_mrts & BITFIELD_BIT(0)) ? &mrts[0] : NULL; struct aco_export_mrt* mrt1 = (exported_mrts & BITFIELD_BIT(1)) ? &mrts[1] : NULL; create_fs_dual_src_export_gfx11(&ctx, mrt0, mrt1); } else { u_foreach_bit (i, exported_mrts) { export_mrt(&ctx, &mrts[i]); } } } else { create_fs_null_export(&ctx); } program->config->float_mode = program->blocks[0].fp_mode.val; append_logical_end(ctx.block); ctx.block->kind |= block_kind_export_end; bld.reset(ctx.block); bld.sopp(aco_opcode::s_endpgm); cleanup_cfg(program); } } // namespace aco