/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include "util/compress.h" #include "util/crc32.h" #include "util/u_debug.h" #include "util/disk_cache.h" #include "util/disk_cache_os.h" #if DETECT_OS_WINDOWS #include bool disk_cache_get_function_identifier(void *ptr, struct mesa_sha1 *ctx) { HMODULE mod = NULL; GetModuleHandleExW(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT, (LPCWSTR)ptr, &mod); if (!mod) return false; WCHAR filename[MAX_PATH]; DWORD filename_length = GetModuleFileNameW(mod, filename, ARRAY_SIZE(filename)); if (filename_length == 0 || filename_length == ARRAY_SIZE(filename)) return false; HANDLE mod_as_file = CreateFileW( filename, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (mod_as_file == INVALID_HANDLE_VALUE) return false; FILETIME time; bool ret = GetFileTime(mod_as_file, NULL, NULL, &time); if (ret) _mesa_sha1_update(ctx, &time, sizeof(time)); CloseHandle(mod_as_file); return ret; } #endif #ifdef ENABLE_SHADER_CACHE #if DETECT_OS_WINDOWS /* TODO: implement disk cache support on windows */ #else #include #include #include #include #include #include #include #include #include #include #include "utime.h" #include "util/blob.h" #include "util/crc32.h" #include "util/u_debug.h" #include "util/ralloc.h" #include "util/rand_xor.h" /* Create a directory named 'path' if it does not already exist. * * Returns: 0 if path already exists as a directory or if created. * -1 in all other cases. */ static int mkdir_if_needed(const char *path) { struct stat sb; /* If the path exists already, then our work is done if it's a * directory, but it's an error if it is not. */ if (stat(path, &sb) == 0) { if (S_ISDIR(sb.st_mode)) { return 0; } else { fprintf(stderr, "Cannot use %s for shader cache (not a directory)" "---disabling.\n", path); return -1; } } int ret = mkdir(path, 0700); if (ret == 0 || (ret == -1 && errno == EEXIST)) return 0; fprintf(stderr, "Failed to create %s for shader cache (%s)---disabling.\n", path, strerror(errno)); return -1; } /* Create a directory named 'path' if it does not already exist, * including parent directories if required. * * Returns: 0 if path already exists as a directory or if created. * -1 in all other cases. */ static int mkdir_with_parents_if_needed(const char *path) { char *p; const char *end; if (path[0] == '\0') return -1; p = strdup(path); end = p + strlen(p) + 1; /* end points to the \0 terminator */ for (char *q = p; q != end; q++) { if (*q == '/' || q == end - 1) { if (q == p) { /* Skip the first / of an absolute path. */ continue; } *q = '\0'; if (mkdir_if_needed(p) == -1) { free(p); return -1; } *q = '/'; } } free(p); return 0; } /* Concatenate an existing path and a new name to form a new path. If the new * path does not exist as a directory, create it then return the resulting * name of the new path (ralloc'ed off of 'ctx'). * * Returns NULL on any error, such as: * * does not exist or is not a directory * / exists but is not a directory * / cannot be created as a directory */ static char * concatenate_and_mkdir(void *ctx, const char *path, const char *name) { char *new_path; struct stat sb; if (stat(path, &sb) != 0 || ! S_ISDIR(sb.st_mode)) return NULL; new_path = ralloc_asprintf(ctx, "%s/%s", path, name); if (mkdir_if_needed(new_path) == 0) return new_path; else return NULL; } struct lru_file { struct list_head node; char *lru_name; size_t lru_file_size; time_t lru_atime; }; static void free_lru_file_list(struct list_head *lru_file_list) { struct lru_file *e, *next; LIST_FOR_EACH_ENTRY_SAFE(e, next, lru_file_list, node) { free(e->lru_name); free(e); } free(lru_file_list); } /* Given a directory path and predicate function, create a linked list of entrys * with the oldest access time in that directory for which the predicate * returns true. * * Returns: A malloc'ed linkd list for the paths of chosen files, (or * NULL on any error). The caller should free the linked list via * free_lru_file_list() when finished. */ static struct list_head * choose_lru_file_matching(const char *dir_path, bool (*predicate)(const char *dir_path, const struct stat *, const char *, const size_t)) { DIR *dir; struct dirent *dir_ent; dir = opendir(dir_path); if (dir == NULL) return NULL; const int dir_fd = dirfd(dir); /* First count the number of files in the directory */ unsigned total_file_count = 0; while ((dir_ent = readdir(dir)) != NULL) { #ifdef HAVE_DIRENT_D_TYPE if (dir_ent->d_type == DT_REG) { /* If the entry is a regular file */ total_file_count++; } #else struct stat st; if (fstatat(dir_fd, dir_ent->d_name, &st, AT_SYMLINK_NOFOLLOW) == 0) { if (S_ISREG(st.st_mode)) { total_file_count++; } } #endif } /* Reset to the start of the directory */ rewinddir(dir); /* Collect 10% of files in this directory for removal. Note: This should work * out to only be around 0.04% of total cache items. */ unsigned lru_file_count = total_file_count > 10 ? total_file_count / 10 : 1; struct list_head *lru_file_list = malloc(sizeof(struct list_head)); list_inithead(lru_file_list); unsigned processed_files = 0; while (1) { dir_ent = readdir(dir); if (dir_ent == NULL) break; struct stat sb; if (fstatat(dir_fd, dir_ent->d_name, &sb, 0) == 0) { struct lru_file *entry = NULL; if (!list_is_empty(lru_file_list)) entry = list_first_entry(lru_file_list, struct lru_file, node); if (!entry|| sb.st_atime < entry->lru_atime) { size_t len = strlen(dir_ent->d_name); if (!predicate(dir_path, &sb, dir_ent->d_name, len)) continue; bool new_entry = false; if (processed_files < lru_file_count) { entry = calloc(1, sizeof(struct lru_file)); new_entry = true; } processed_files++; char *tmp = realloc(entry->lru_name, len + 1); if (tmp) { /* Find location to insert new lru item. We want to keep the * list ordering from most recently used to least recently used. * This allows us to just evict the head item from the list as * we process the directory and find older entrys. */ struct list_head *list_node = lru_file_list; struct lru_file *e; LIST_FOR_EACH_ENTRY(e, lru_file_list, node) { if (sb.st_atime < entry->lru_atime) { list_node = &e->node; break; } } if (new_entry) { list_addtail(&entry->node, list_node); } else { if (list_node != lru_file_list) { list_del(lru_file_list); list_addtail(lru_file_list, list_node); } } entry->lru_name = tmp; memcpy(entry->lru_name, dir_ent->d_name, len + 1); entry->lru_atime = sb.st_atime; entry->lru_file_size = sb.st_blocks * 512; } } } } if (list_is_empty(lru_file_list)) { closedir(dir); free(lru_file_list); return NULL; } /* Create the full path for the file list we found */ struct lru_file *e; LIST_FOR_EACH_ENTRY(e, lru_file_list, node) { char *filename = e->lru_name; if (asprintf(&e->lru_name, "%s/%s", dir_path, filename) < 0) e->lru_name = NULL; free(filename); } closedir(dir); return lru_file_list; } /* Is entry a regular file, and not having a name with a trailing * ".tmp" */ static bool is_regular_non_tmp_file(const char *path, const struct stat *sb, const char *d_name, const size_t len) { if (!S_ISREG(sb->st_mode)) return false; if (len >= 4 && strcmp(&d_name[len-4], ".tmp") == 0) return false; return true; } /* Returns the size of the deleted file, (or 0 on any error). */ static size_t unlink_lru_file_from_directory(const char *path) { struct list_head *lru_file_list = choose_lru_file_matching(path, is_regular_non_tmp_file); if (lru_file_list == NULL) return 0; assert(!list_is_empty(lru_file_list)); size_t total_unlinked_size = 0; struct lru_file *e; LIST_FOR_EACH_ENTRY(e, lru_file_list, node) { if (unlink(e->lru_name) == 0) total_unlinked_size += e->lru_file_size; } free_lru_file_list(lru_file_list); return total_unlinked_size; } /* Is entry a directory with a two-character name, (and not the * special name of ".."). We also return false if the dir is empty. */ static bool is_two_character_sub_directory(const char *path, const struct stat *sb, const char *d_name, const size_t len) { if (!S_ISDIR(sb->st_mode)) return false; if (len != 2) return false; if (strcmp(d_name, "..") == 0) return false; char *subdir; if (asprintf(&subdir, "%s/%s", path, d_name) == -1) return false; DIR *dir = opendir(subdir); free(subdir); if (dir == NULL) return false; unsigned subdir_entries = 0; struct dirent *d; while ((d = readdir(dir)) != NULL) { if(++subdir_entries > 2) break; } closedir(dir); /* If dir only contains '.' and '..' it must be empty */ if (subdir_entries <= 2) return false; return true; } /* Create the directory that will be needed for the cache file for \key. * * Obviously, the implementation here must closely match * _get_cache_file above. */ static void make_cache_file_directory(struct disk_cache *cache, const cache_key key) { char *dir; char buf[41]; _mesa_sha1_format(buf, key); if (asprintf(&dir, "%s/%c%c", cache->path, buf[0], buf[1]) == -1) return; mkdir_if_needed(dir); free(dir); } static ssize_t read_all(int fd, void *buf, size_t count) { char *in = buf; ssize_t read_ret; size_t done; for (done = 0; done < count; done += read_ret) { read_ret = read(fd, in + done, count - done); if (read_ret == -1 || read_ret == 0) return -1; } return done; } static ssize_t write_all(int fd, const void *buf, size_t count) { const char *out = buf; ssize_t written; size_t done; for (done = 0; done < count; done += written) { written = write(fd, out + done, count - done); if (written == -1) return -1; } return done; } /* Evict least recently used cache item */ void disk_cache_evict_lru_item(struct disk_cache *cache) { char *dir_path; /* With a reasonably-sized, full cache, (and with keys generated * from a cryptographic hash), we can choose two random hex digits * and reasonably expect the directory to exist with a file in it. * Provides pseudo-LRU eviction to reduce checking all cache files. */ uint64_t rand64 = rand_xorshift128plus(cache->seed_xorshift128plus); if (asprintf(&dir_path, "%s/%02" PRIx64 , cache->path, rand64 & 0xff) < 0) return; size_t size = unlink_lru_file_from_directory(dir_path); free(dir_path); if (size) { p_atomic_add(&cache->size->value, - (uint64_t)size); return; } /* In the case where the random choice of directory didn't find * something, we choose the least recently accessed from the * existing directories. * * Really, the only reason this code exists is to allow the unit * tests to work, (which use an artificially-small cache to be able * to force a single cached item to be evicted). */ struct list_head *lru_file_list = choose_lru_file_matching(cache->path, is_two_character_sub_directory); if (lru_file_list == NULL) return; assert(!list_is_empty(lru_file_list)); struct lru_file *lru_file_dir = list_first_entry(lru_file_list, struct lru_file, node); size = unlink_lru_file_from_directory(lru_file_dir->lru_name); free_lru_file_list(lru_file_list); if (size) p_atomic_add(&cache->size->value, - (uint64_t)size); } void disk_cache_evict_item(struct disk_cache *cache, char *filename) { struct stat sb; if (stat(filename, &sb) == -1) { free(filename); return; } unlink(filename); free(filename); if (sb.st_blocks) p_atomic_add(&cache->size->value, - (uint64_t)sb.st_blocks * 512); } static void * parse_and_validate_cache_item(struct disk_cache *cache, void *cache_item, size_t cache_item_size, size_t *size) { uint8_t *uncompressed_data = NULL; struct blob_reader ci_blob_reader; blob_reader_init(&ci_blob_reader, cache_item, cache_item_size); size_t header_size = cache->driver_keys_blob_size; const void *keys_blob = blob_read_bytes(&ci_blob_reader, header_size); if (ci_blob_reader.overrun) goto fail; /* Check for extremely unlikely hash collisions */ if (memcmp(cache->driver_keys_blob, keys_blob, header_size) != 0) { assert(!"Mesa cache keys mismatch!"); goto fail; } uint32_t md_type = blob_read_uint32(&ci_blob_reader); if (ci_blob_reader.overrun) goto fail; if (md_type == CACHE_ITEM_TYPE_GLSL) { uint32_t num_keys = blob_read_uint32(&ci_blob_reader); if (ci_blob_reader.overrun) goto fail; /* The cache item metadata is currently just used for distributing * precompiled shaders, they are not used by Mesa so just skip them for * now. * TODO: pass the metadata back to the caller and do some basic * validation. */ const void UNUSED *metadata = blob_read_bytes(&ci_blob_reader, num_keys * sizeof(cache_key)); if (ci_blob_reader.overrun) goto fail; } /* Load the CRC that was created when the file was written. */ struct cache_entry_file_data *cf_data = (struct cache_entry_file_data *) blob_read_bytes(&ci_blob_reader, sizeof(struct cache_entry_file_data)); if (ci_blob_reader.overrun) goto fail; size_t cache_data_size = ci_blob_reader.end - ci_blob_reader.current; const uint8_t *data = (uint8_t *) blob_read_bytes(&ci_blob_reader, cache_data_size); /* Check the data for corruption */ if (cf_data->crc32 != util_hash_crc32(data, cache_data_size)) goto fail; /* Uncompress the cache data */ uncompressed_data = malloc(cf_data->uncompressed_size); if (!uncompressed_data) goto fail; if (cache->compression_disabled) { if (cf_data->uncompressed_size != cache_data_size) goto fail; memcpy(uncompressed_data, data, cache_data_size); } else { if (!util_compress_inflate(data, cache_data_size, uncompressed_data, cf_data->uncompressed_size)) goto fail; } if (size) *size = cf_data->uncompressed_size; return uncompressed_data; fail: if (uncompressed_data) free(uncompressed_data); return NULL; } void * disk_cache_load_item(struct disk_cache *cache, char *filename, size_t *size) { uint8_t *data = NULL; int fd = open(filename, O_RDONLY | O_CLOEXEC); if (fd == -1) goto fail; struct stat sb; if (fstat(fd, &sb) == -1) goto fail; data = malloc(sb.st_size); if (data == NULL) goto fail; /* Read entire file into memory */ int ret = read_all(fd, data, sb.st_size); if (ret == -1) goto fail; uint8_t *uncompressed_data = parse_and_validate_cache_item(cache, data, sb.st_size, size); if (!uncompressed_data) goto fail; free(data); free(filename); close(fd); return uncompressed_data; fail: if (data) free(data); if (filename) free(filename); if (fd != -1) close(fd); return NULL; } /* Return a filename within the cache's directory corresponding to 'key'. * * Returns NULL if out of memory. */ char * disk_cache_get_cache_filename(struct disk_cache *cache, const cache_key key) { char buf[41]; char *filename; if (cache->path_init_failed) return NULL; _mesa_sha1_format(buf, key); if (asprintf(&filename, "%s/%c%c/%s", cache->path, buf[0], buf[1], buf + 2) == -1) return NULL; return filename; } static bool create_cache_item_header_and_blob(struct disk_cache_put_job *dc_job, struct blob *cache_blob) { /* Compress the cache item data */ size_t max_buf = util_compress_max_compressed_len(dc_job->size); size_t compressed_size; void *compressed_data; if (dc_job->cache->compression_disabled) { compressed_size = dc_job->size; compressed_data = dc_job->data; } else { compressed_data = malloc(max_buf); if (compressed_data == NULL) return false; compressed_size = util_compress_deflate(dc_job->data, dc_job->size, compressed_data, max_buf); if (compressed_size == 0) goto fail; } /* Copy the driver_keys_blob, this can be used find information about the * mesa version that produced the entry or deal with hash collisions, * should that ever become a real problem. */ if (!blob_write_bytes(cache_blob, dc_job->cache->driver_keys_blob, dc_job->cache->driver_keys_blob_size)) goto fail; /* Write the cache item metadata. This data can be used to deal with * hash collisions, as well as providing useful information to 3rd party * tools reading the cache files. */ if (!blob_write_uint32(cache_blob, dc_job->cache_item_metadata.type)) goto fail; if (dc_job->cache_item_metadata.type == CACHE_ITEM_TYPE_GLSL) { if (!blob_write_uint32(cache_blob, dc_job->cache_item_metadata.num_keys)) goto fail; size_t metadata_keys_size = dc_job->cache_item_metadata.num_keys * sizeof(cache_key); if (!blob_write_bytes(cache_blob, dc_job->cache_item_metadata.keys[0], metadata_keys_size)) goto fail; } /* Create CRC of the compressed data. We will read this when restoring the * cache and use it to check for corruption. */ struct cache_entry_file_data cf_data; cf_data.crc32 = util_hash_crc32(compressed_data, compressed_size); cf_data.uncompressed_size = dc_job->size; if (!blob_write_bytes(cache_blob, &cf_data, sizeof(cf_data))) goto fail; /* Finally copy the compressed cache blob */ if (!blob_write_bytes(cache_blob, compressed_data, compressed_size)) goto fail; if (!dc_job->cache->compression_disabled) free(compressed_data); return true; fail: if (!dc_job->cache->compression_disabled) free(compressed_data); return false; } void disk_cache_write_item_to_disk(struct disk_cache_put_job *dc_job, char *filename) { int fd = -1, fd_final = -1; struct blob cache_blob; blob_init(&cache_blob); /* Write to a temporary file to allow for an atomic rename to the * final destination filename, (to prevent any readers from seeing * a partially written file). */ char *filename_tmp = NULL; if (asprintf(&filename_tmp, "%s.tmp", filename) == -1) goto done; fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644); /* Make the two-character subdirectory within the cache as needed. */ if (fd == -1) { if (errno != ENOENT) goto done; make_cache_file_directory(dc_job->cache, dc_job->key); fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644); if (fd == -1) goto done; } /* With the temporary file open, we take an exclusive flock on * it. If the flock fails, then another process still has the file * open with the flock held. So just let that file be responsible * for writing the file. */ #ifdef HAVE_FLOCK int err = flock(fd, LOCK_EX | LOCK_NB); #else struct flock lock = { .l_start = 0, .l_len = 0, /* entire file */ .l_type = F_WRLCK, .l_whence = SEEK_SET }; int err = fcntl(fd, F_SETLK, &lock); #endif if (err == -1) goto done; /* Now that we have the lock on the open temporary file, we can * check to see if the destination file already exists. If so, * another process won the race between when we saw that the file * didn't exist and now. In this case, we don't do anything more, * (to ensure the size accounting of the cache doesn't get off). */ fd_final = open(filename, O_RDONLY | O_CLOEXEC); if (fd_final != -1) { unlink(filename_tmp); goto done; } /* OK, we're now on the hook to write out a file that we know is * not in the cache, and is also not being written out to the cache * by some other process. */ if (!create_cache_item_header_and_blob(dc_job, &cache_blob)) { unlink(filename_tmp); goto done; } /* Now, finally, write out the contents to the temporary file, then * rename them atomically to the destination filename, and also * perform an atomic increment of the total cache size. */ int ret = write_all(fd, cache_blob.data, cache_blob.size); if (ret == -1) { unlink(filename_tmp); goto done; } ret = rename(filename_tmp, filename); if (ret == -1) { unlink(filename_tmp); goto done; } struct stat sb; if (stat(filename, &sb) == -1) { /* Something went wrong remove the file */ unlink(filename); goto done; } p_atomic_add(&dc_job->cache->size->value, sb.st_blocks * 512); done: if (fd_final != -1) close(fd_final); /* This close finally releases the flock, (now that the final file * has been renamed into place and the size has been added). */ if (fd != -1) close(fd); free(filename_tmp); blob_finish(&cache_blob); } /* Determine path for cache based on the first defined name as follows: * * $MESA_SHADER_CACHE_DIR * $XDG_CACHE_HOME/mesa_shader_cache * $HOME/.cache/mesa_shader_cache * /.cache/mesa_shader_cache */ char * disk_cache_generate_cache_dir(void *mem_ctx, const char *gpu_name, const char *driver_id, enum disk_cache_type cache_type) { char *cache_dir_name = CACHE_DIR_NAME; if (cache_type == DISK_CACHE_SINGLE_FILE) cache_dir_name = CACHE_DIR_NAME_SF; else if (cache_type == DISK_CACHE_DATABASE) cache_dir_name = CACHE_DIR_NAME_DB; char *path = secure_getenv("MESA_SHADER_CACHE_DIR"); if (!path) { path = secure_getenv("MESA_GLSL_CACHE_DIR"); if (path) fprintf(stderr, "*** MESA_GLSL_CACHE_DIR is deprecated; " "use MESA_SHADER_CACHE_DIR instead ***\n"); } if (path) { if (mkdir_with_parents_if_needed(path) == -1) return NULL; path = concatenate_and_mkdir(mem_ctx, path, cache_dir_name); if (!path) return NULL; } if (path == NULL) { char *xdg_cache_home = secure_getenv("XDG_CACHE_HOME"); if (xdg_cache_home) { if (mkdir_if_needed(xdg_cache_home) == -1) return NULL; path = concatenate_and_mkdir(mem_ctx, xdg_cache_home, cache_dir_name); if (!path) return NULL; } } if (!path) { char *home = getenv("HOME"); if (home) { path = concatenate_and_mkdir(mem_ctx, home, ".cache"); if (!path) return NULL; path = concatenate_and_mkdir(mem_ctx, path, cache_dir_name); if (!path) return NULL; } } if (!path) { char *buf; size_t buf_size; struct passwd pwd, *result; buf_size = sysconf(_SC_GETPW_R_SIZE_MAX); if (buf_size == -1) buf_size = 512; /* Loop until buf_size is large enough to query the directory */ while (1) { buf = ralloc_size(mem_ctx, buf_size); getpwuid_r(getuid(), &pwd, buf, buf_size, &result); if (result) break; if (errno == ERANGE) { ralloc_free(buf); buf = NULL; buf_size *= 2; } else { return NULL; } } path = concatenate_and_mkdir(mem_ctx, pwd.pw_dir, ".cache"); if (!path) return NULL; path = concatenate_and_mkdir(mem_ctx, path, cache_dir_name); if (!path) return NULL; } if (cache_type == DISK_CACHE_SINGLE_FILE) { path = concatenate_and_mkdir(mem_ctx, path, driver_id); if (!path) return NULL; path = concatenate_and_mkdir(mem_ctx, path, gpu_name); if (!path) return NULL; } return path; } bool disk_cache_enabled() { /* Disk cache is not enabled for android, but android's EGL layer * uses EGL_ANDROID_blob_cache to manage the cache itself: */ if (DETECT_OS_ANDROID) return false; /* If running as a users other than the real user disable cache */ if (!__normal_user()) return false; /* At user request, disable shader cache entirely. */ #ifdef SHADER_CACHE_DISABLE_BY_DEFAULT bool disable_by_default = true; #else bool disable_by_default = false; #endif char *envvar_name = "MESA_SHADER_CACHE_DISABLE"; if (!getenv(envvar_name)) { envvar_name = "MESA_GLSL_CACHE_DISABLE"; if (getenv(envvar_name)) fprintf(stderr, "*** MESA_GLSL_CACHE_DISABLE is deprecated; " "use MESA_SHADER_CACHE_DISABLE instead ***\n"); } if (debug_get_bool_option(envvar_name, disable_by_default)) return false; return true; } void * disk_cache_load_item_foz(struct disk_cache *cache, const cache_key key, size_t *size) { size_t cache_tem_size = 0; void *cache_item = foz_read_entry(&cache->foz_db, key, &cache_tem_size); if (!cache_item) return NULL; uint8_t *uncompressed_data = parse_and_validate_cache_item(cache, cache_item, cache_tem_size, size); free(cache_item); return uncompressed_data; } bool disk_cache_write_item_to_disk_foz(struct disk_cache_put_job *dc_job) { struct blob cache_blob; blob_init(&cache_blob); if (!create_cache_item_header_and_blob(dc_job, &cache_blob)) return false; bool r = foz_write_entry(&dc_job->cache->foz_db, dc_job->key, cache_blob.data, cache_blob.size); blob_finish(&cache_blob); return r; } bool disk_cache_load_cache_index_foz(void *mem_ctx, struct disk_cache *cache) { /* Load cache index into a hash map (from fossilise files) */ return foz_prepare(&cache->foz_db, cache->path); } void disk_cache_touch_cache_user_marker(char *path) { char *marker_path = NULL; asprintf(&marker_path, "%s/marker", path); if (!marker_path) return; time_t now = time(NULL); struct stat attr; if (stat(marker_path, &attr) == -1) { int fd = open(marker_path, O_WRONLY | O_CREAT | O_CLOEXEC, 0644); if (fd != -1) { close(fd); } } else if (now - attr.st_mtime < 60 * 60 * 24 /* One day */) { (void)utime(marker_path, NULL); } free(marker_path); } bool disk_cache_mmap_cache_index(void *mem_ctx, struct disk_cache *cache, char *path) { int fd = -1; bool mapped = false; path = ralloc_asprintf(mem_ctx, "%s/index", cache->path); if (path == NULL) goto path_fail; fd = open(path, O_RDWR | O_CREAT | O_CLOEXEC, 0644); if (fd == -1) goto path_fail; struct stat sb; if (fstat(fd, &sb) == -1) goto path_fail; /* Force the index file to be the expected size. */ size_t size = sizeof(*cache->size) + CACHE_INDEX_MAX_KEYS * CACHE_KEY_SIZE; if (sb.st_size != size) { #if HAVE_POSIX_FALLOCATE /* posix_fallocate() ensures disk space is allocated otherwise it * fails if there is not enough space on the disk. */ if (posix_fallocate(fd, 0, size) != 0) goto path_fail; #else /* ftruncate() allocates disk space lazily. If the disk is full * and it is unable to allocate disk space when accessed via * mmap, it will crash with a SIGBUS. */ if (ftruncate(fd, size) == -1) goto path_fail; #endif } /* We map this shared so that other processes see updates that we * make. * * Note: We do use atomic addition to ensure that multiple * processes don't scramble the cache size recorded in the * index. But we don't use any locking to prevent multiple * processes from updating the same entry simultaneously. The idea * is that if either result lands entirely in the index, then * that's equivalent to a well-ordered write followed by an * eviction and a write. On the other hand, if the simultaneous * writes result in a corrupt entry, that's not really any * different than both entries being evicted, (since within the * guarantees of the cryptographic hash, a corrupt entry is * unlikely to ever match a real cache key). */ cache->index_mmap = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (cache->index_mmap == MAP_FAILED) goto path_fail; cache->index_mmap_size = size; cache->size = (p_atomic_uint64_t *) cache->index_mmap; cache->stored_keys = cache->index_mmap + sizeof(uint64_t); mapped = true; path_fail: if (fd != -1) close(fd); return mapped; } void disk_cache_destroy_mmap(struct disk_cache *cache) { munmap(cache->index_mmap, cache->index_mmap_size); } void * disk_cache_db_load_item(struct disk_cache *cache, const cache_key key, size_t *size) { size_t cache_tem_size = 0; void *cache_item = mesa_cache_db_multipart_read_entry(&cache->cache_db, key, &cache_tem_size); if (!cache_item) return NULL; uint8_t *uncompressed_data = parse_and_validate_cache_item(cache, cache_item, cache_tem_size, size); free(cache_item); return uncompressed_data; } bool disk_cache_db_write_item_to_disk(struct disk_cache_put_job *dc_job) { struct blob cache_blob; blob_init(&cache_blob); if (!create_cache_item_header_and_blob(dc_job, &cache_blob)) return false; bool r = mesa_cache_db_multipart_entry_write(&dc_job->cache->cache_db, dc_job->key, cache_blob.data, cache_blob.size); blob_finish(&cache_blob); return r; } bool disk_cache_db_load_cache_index(void *mem_ctx, struct disk_cache *cache) { return mesa_cache_db_multipart_open(&cache->cache_db, cache->path); } #endif #endif /* ENABLE_SHADER_CACHE */