#include #include #include #include #include "dxgi_adapter.h" #include "dxgi_output.h" #include "dxgi_swapchain.h" #include "../dxvk/dxvk_format.h" namespace dxvk { DxgiOutput::DxgiOutput( const Com& adapter, HMONITOR monitor) : m_adapter(adapter), m_monitor(monitor) { // Init output data if necessary if (FAILED(m_adapter->GetOutputData(m_monitor, nullptr))) { DXGI_VK_OUTPUT_DATA outputData; outputData.FrameStats = DXGI_FRAME_STATISTICS(); outputData.GammaCurve.Scale = { 1.0f, 1.0f, 1.0f }; outputData.GammaCurve.Offset = { 0.0f, 0.0f, 0.0f }; for (uint32_t i = 0; i < DXGI_VK_GAMMA_CP_COUNT; i++) { const float value = GammaControlPointLocation(i); outputData.GammaCurve.GammaCurve[i] = { value, value, value }; } outputData.GammaDirty = FALSE; m_adapter->SetOutputData(m_monitor, &outputData); } } DxgiOutput::~DxgiOutput() { } HRESULT STDMETHODCALLTYPE DxgiOutput::QueryInterface(REFIID riid, void** ppvObject) { *ppvObject = nullptr; if (riid == __uuidof(IUnknown) || riid == __uuidof(IDXGIObject) || riid == __uuidof(IDXGIOutput)) { *ppvObject = ref(this); return S_OK; } Logger::warn("DxgiOutput::QueryInterface: Unknown interface query"); Logger::warn(str::format(riid)); return E_NOINTERFACE; } HRESULT STDMETHODCALLTYPE DxgiOutput::GetParent(REFIID riid, void **ppParent) { return m_adapter->QueryInterface(riid, ppParent); } HRESULT STDMETHODCALLTYPE DxgiOutput::FindClosestMatchingMode( const DXGI_MODE_DESC *pModeToMatch, DXGI_MODE_DESC *pClosestMatch, IUnknown *pConcernedDevice) { if (pModeToMatch == nullptr || pClosestMatch == nullptr) return DXGI_ERROR_INVALID_CALL; if (pModeToMatch->Format == DXGI_FORMAT_UNKNOWN && pConcernedDevice == nullptr) return DXGI_ERROR_INVALID_CALL; // If no format was specified, fall back to a standard // SRGB format, which is supported on all devices. DXGI_FORMAT targetFormat = pModeToMatch->Format; if (targetFormat == DXGI_FORMAT_UNKNOWN) targetFormat = DXGI_FORMAT_R8G8B8A8_UNORM_SRGB; UINT targetRefreshRate = 0; if (pModeToMatch->RefreshRate.Denominator != 0 && pModeToMatch->RefreshRate.Numerator != 0) { targetRefreshRate = pModeToMatch->RefreshRate.Numerator / pModeToMatch->RefreshRate.Denominator; } // List all supported modes and filter // out those we don't actually need UINT modeCount = 0; GetDisplayModeList(targetFormat, DXGI_ENUM_MODES_SCALING, &modeCount, nullptr); if (modeCount == 0) { Logger::err("DXGI: FindClosestMatchingMode: No modes found"); return DXGI_ERROR_NOT_FOUND; } std::vector modes(modeCount); GetDisplayModeList(targetFormat, DXGI_ENUM_MODES_SCALING, &modeCount, modes.data()); for (auto it = modes.begin(); it != modes.end(); ) { bool skipMode = false; // Remove modes with a different refresh rate if (targetRefreshRate != 0) { UINT modeRefreshRate = it->RefreshRate.Numerator / it->RefreshRate.Denominator; skipMode |= modeRefreshRate != targetRefreshRate; } // Remove modes with incorrect scaling if (pModeToMatch->Scaling != DXGI_MODE_SCALING_UNSPECIFIED) skipMode |= it->Scaling != pModeToMatch->Scaling; it = skipMode ? modes.erase(it) : ++it; } // No matching modes found if (modes.size() == 0) return DXGI_ERROR_NOT_FOUND; // Select mode with minimal height+width difference UINT minDifference = std::numeric_limits::max(); for (auto& mode : modes) { UINT currDifference = std::abs(int(pModeToMatch->Width - mode.Width)) + std::abs(int(pModeToMatch->Height - mode.Height)); if (currDifference < minDifference) { minDifference = currDifference; *pClosestMatch = mode; } } return S_OK; } HRESULT STDMETHODCALLTYPE DxgiOutput::GetDesc(DXGI_OUTPUT_DESC *pDesc) { if (pDesc == nullptr) return DXGI_ERROR_INVALID_CALL; ::MONITORINFOEXW monInfo; monInfo.cbSize = sizeof(monInfo); if (!::GetMonitorInfoW(m_monitor, reinterpret_cast(&monInfo))) { Logger::err("DXGI: Failed to query monitor info"); return E_FAIL; } std::memcpy(pDesc->DeviceName, monInfo.szDevice, std::size(pDesc->DeviceName)); pDesc->DesktopCoordinates = monInfo.rcMonitor; pDesc->AttachedToDesktop = 1; pDesc->Rotation = DXGI_MODE_ROTATION_UNSPECIFIED; pDesc->Monitor = m_monitor; return S_OK; } HRESULT STDMETHODCALLTYPE DxgiOutput::GetDisplayModeList( DXGI_FORMAT EnumFormat, UINT Flags, UINT *pNumModes, DXGI_MODE_DESC *pDesc) { if (pNumModes == nullptr) return DXGI_ERROR_INVALID_CALL; // Query monitor info to get the device name ::MONITORINFOEXW monInfo; monInfo.cbSize = sizeof(monInfo); if (!::GetMonitorInfoW(m_monitor, reinterpret_cast(&monInfo))) { Logger::err("DXGI: Failed to query monitor info"); return E_FAIL; } // Walk over all modes that the display supports and // return those that match the requested format etc. DEVMODEW devMode; uint32_t srcModeId = 0; uint32_t dstModeId = 0; while (::EnumDisplaySettingsW(monInfo.szDevice, srcModeId++, &devMode)) { // Skip interlaced modes altogether if (devMode.dmDisplayFlags & DM_INTERLACED) continue; // Skip modes with incompatible formats if (devMode.dmBitsPerPel != GetFormatBpp(EnumFormat)) continue; // Write back display mode if (pDesc != nullptr) { if (dstModeId >= *pNumModes) return DXGI_ERROR_MORE_DATA; DXGI_MODE_DESC mode; mode.Width = devMode.dmPelsWidth; mode.Height = devMode.dmPelsHeight; mode.RefreshRate = { devMode.dmDisplayFrequency, 1 }; mode.Format = EnumFormat; mode.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_PROGRESSIVE; mode.Scaling = DXGI_MODE_SCALING_CENTERED; pDesc[dstModeId] = mode; } dstModeId += 1; } *pNumModes = dstModeId; return S_OK; } HRESULT STDMETHODCALLTYPE DxgiOutput::GetDisplaySurfaceData(IDXGISurface* pDestination) { Logger::err("DxgiOutput::GetDisplaySurfaceData: Not implemented"); return E_NOTIMPL; } HRESULT STDMETHODCALLTYPE DxgiOutput::GetFrameStatistics(DXGI_FRAME_STATISTICS* pStats) { DXGI_VK_OUTPUT_DATA outputData; if (FAILED(m_adapter->GetOutputData(m_monitor, &outputData))) { Logger::err("DXGI: Failed to query output data"); return E_FAIL; } *pStats = outputData.FrameStats; return S_OK; } HRESULT STDMETHODCALLTYPE DxgiOutput::GetGammaControl(DXGI_GAMMA_CONTROL* pArray) { DXGI_VK_OUTPUT_DATA outputData; if (FAILED(m_adapter->GetOutputData(m_monitor, &outputData))) { Logger::err("DXGI: Failed to query output data"); return E_FAIL; } *pArray = outputData.GammaCurve; return S_OK; } HRESULT STDMETHODCALLTYPE DxgiOutput::GetGammaControlCapabilities(DXGI_GAMMA_CONTROL_CAPABILITIES* pGammaCaps) { pGammaCaps->ScaleAndOffsetSupported = FALSE; pGammaCaps->MaxConvertedValue = 1.0f; pGammaCaps->MinConvertedValue = 0.0f; pGammaCaps->NumGammaControlPoints = DXGI_VK_GAMMA_CP_COUNT; for (uint32_t i = 0; i < pGammaCaps->NumGammaControlPoints; i++) pGammaCaps->ControlPointPositions[i] = GammaControlPointLocation(i); return S_OK; } void STDMETHODCALLTYPE DxgiOutput::ReleaseOwnership() { Logger::warn("DxgiOutput::ReleaseOwnership: Stub"); } HRESULT STDMETHODCALLTYPE DxgiOutput::SetDisplaySurface(IDXGISurface* pScanoutSurface) { Logger::err("DxgiOutput::SetDisplaySurface: Not implemented"); return E_NOTIMPL; } HRESULT STDMETHODCALLTYPE DxgiOutput::SetGammaControl(const DXGI_GAMMA_CONTROL* pArray) { DXGI_VK_OUTPUT_DATA outputData; if (FAILED(m_adapter->GetOutputData(m_monitor, &outputData))) { Logger::err("DXGI: Failed to query output data"); return E_FAIL; } outputData.GammaCurve = *pArray; outputData.GammaDirty = TRUE; if (FAILED(m_adapter->SetOutputData(m_monitor, &outputData))) { Logger::err("DXGI: Failed to update output data"); return E_FAIL; } return S_OK; } HRESULT STDMETHODCALLTYPE DxgiOutput::TakeOwnership( IUnknown *pDevice, BOOL Exclusive) { Logger::warn("DxgiOutput::TakeOwnership: Stub"); return S_OK; } HRESULT STDMETHODCALLTYPE DxgiOutput::WaitForVBlank() { Logger::warn("DxgiOutput::WaitForVBlank: Stub"); return S_OK; } uint32_t DxgiOutput::GetFormatBpp(DXGI_FORMAT Format) const { DXGI_VK_FORMAT_INFO formatInfo = m_adapter->LookupFormat(Format, DXGI_VK_FORMAT_MODE_ANY); return imageFormatInfo(formatInfo.Format)->elementSize * 8; } }