Concise Linkable Ring Signatures and Forgery
Against Adversarial Keys

Brandon Goodell', Sarang Noether!, and Arthur Blue?

! Monero Research Lab, {surae,sarang}@getmonero.org
2 Independent researcher, randomrun@protonmail . com

Abstract. We demonstrate that a version of non-slanderability is a nat-
ural definition of unforgeability for linkable ring signatures. We present
a linkable ring signature construction with concise signatures and multi-
dimensional keys that is linkably anonymous if a variation of the de-
cisional Diffie-Hellman problem with random oracles is hard, linkable if
key aggregation is a one-way function, and non-slanderable if a one-more
variation of the discrete logarithm problem is hard. We remark on some
applications in signer-ambiguous confidential transaction models without
trusted setup.

1 Introduction

First introduced in [20] in the RSA setting and in [14] in the discrete logarithm
setting, ring signatures permit message signing on behalf of a set of public keys
rather than a single public key. Ring signatures see myriad applications ranging
from lightweight anonymous authentication in [25] to transaction protocols like
Monero in [16] and CryptoNote in [24]. A verifier is assured that the signer
knows the private key of at least one of these public keys, which are called ring
members. Ring signatures are anonymous or signer-ambiguous in the sense that
the verifier does not learn information from the signature about which key is the
signer. We stress that methods of practical analysis such as those of [15,19] can
exploit metadata in real-life applications of anonymous authentication protocols
to reduce anonymity.

Group signature constructions preceding [20, 14] require some degree of in-
teractivity, a fixed set of participants, a trusted group manager or other trusted
setup, or hardness assumptions not based on the discrete logarithm problem.
Since [20], ring signatures have enjoyed many improvements, extensions, and
modifications. For example, ring signatures are constructed in the bilinear pair-
ing setting in [26], key structures are generalized in [1], security definitions are
improved in [5], signature size is improved in [7,11], and traceability is intro-
duced in [8].

Linkable ring signature (LRS) constructions were first introduced in [14]; in
the context of transaction protocols, linkable ring signatures are the basis for
anonymous transaction authentication. Linkable ring signatures guarantee that
two signatures with the same ring on arbitrary messages can be publicly linked if

signed using the same key. An implementation is presented in [14] in the discrete
logarithm setting; that implementation functions for similar reasons as Schnorr
signatures in [21].

The signature linking tags in [14] are unsuitable for applications where signa-
tures must be linked key-by-key, not ring-by-ring (such as for “double-signing”
protection in a setting where users generate new keys over time and select ad
hoc ring members). Resistance to double-signing attempts is ensured using link-
ing tags as described in [24] (therein called key images). More recent work of
[16] extends the approach of [14] to enable an anonymous confidential trans-
action model with ad hoc ring member selection. In [16], transaction amounts
are replaced with Pedersen commitments to amounts together with range proofs.
Signatures are constructed from key vectors including differences of amount com-
mitments as one of the keys. However, the proofs in [16] are informal and not
based on rigorous security models.

Alternatives to ring signatures like more general zero-knowledge proving sys-
tems typically require a trusted party to honestly perform a setup process (as
in [9,4,10]) or lack practical efficiency for large circuits (as in [6]), meaning that
such systems may not be appropriate for distributed ledger applications. How-
ever, more recent approaches such as [12] show both improvements to the trust
requirement as well as improvements in efficiency.

Definitions of existential unforgeability for ring signature schemes from [5] are
generally inappropriate for LRS. These definitions ensure that forgeries appear to
be computed from uncorrupted challenge keys by restricting choices of anonymity
set members and oracle queries. We can do better with linkability.

The idea of existential unforgeability in usual digital signatures is to task
an algorithm to produce any valid, non-oracle signature on any message such
that the signature appears to be signed by an uncorrupted challenge key. The
clear analogue for LRS schemes is to task an algorithm to produce any valid,
non-oracle signature on any message such that the signature links to a challenge
signature computed from an uncorrupted challenge key. Contrast this intuition
with the definition of unforgeability for usual ring signatures with respect to
insider corruption from [5], which does not count a valid signature o with an
anonymity set @) as a forgery if any key in @) is corrupt or not a challenge key, or
a signing oracle has been queried with the same anonymity set () and message.
This leads to two problems.

The first problem is due to the disqualification of a purported forgery if there
are any adversarially-selected keys or corrupted challenge keys in the anonymity
set. Such a signature that links with an uncorrupted challenge key does not count
as a forgery. In ring signature schemes without linkability, this restriction seems
requisite to ensure that the signature appears to be signed by an uncorrupted
challenge key. In applications like signer-ambiguous transaction protocols that
use anonymity sets selected ad hoc, anonymity set members should be assumed
to be adversarially generated. Definitions of unforgeability should take this into
account.

The second problem is due to the signing oracle restriction in this definition.
An adversary could generate a valid, non-oracle signature re-using the same
message and anonymity set as some challenge signature generated by the oracle.
A verifier who has found more than one valid non-oracle signature on the same
message with the same anonymity set, under this definition, can only conclude
that at least one anonymity set member signed at least one of the signatures. This
allows a malicious Mallory-in-the-middle to collect outgoing honest signatures on
some honest messages and attempt to construct clone signatures on these honest
messages. A sender attempting to assert culpability over a signature could then
be in danger of being unable to reconstruct a signature sent to some receiver.

These problems seem to interfere with the spirit behind existential unforge-
ability with insider corruption from [5]: the signature is valid, not produced by
an oracle, appears to have been computed from an uncorrupted challenge key,
and yet is not considered a forgery.

1.1 Owur Contribution

We relax the notion of successful forgeries to require only linking with uncor-
rupted challenge keys, obtaining a notion of unforgeability for linkable ring sig-
natures that is equivalent to the definition of non-slanderability in [2]. Non-
slanderability allows for adversaries who can query a signature oracle with any
anonymity set, even adversarially-selected anonymity sets. This models an ex-
tremely persuasive adversary who can convince users to sign messages with
adversarially-selected anonymity sets. We show that non-slanderability implies
unforgeability with respect to insider corruption from [5].

We also present a Schnorr-like linkable ring signature scheme we call d-
CLSAG that exploits key aggregation techniques to improve signature size. We
describe an application for the d-CLSAG scheme in ring confidential transaction
protocols, allowing transactions consisting of d—1 distinct assets simultaneously.
We prove that d-CLSAG is linkable assuming collision resistance in key aggrega-
tion and linkably anonymous assuming a variant of the decisional Diffie-Hellman
game is hard. Recall that Schnorr-like signature schemes do not cleanly reduce
to the discrete logarithm assumption (c.f. [17]), generally are only secure up to
the (relatively flimsier) one-more hardness assumptions, and proof techniques
typically exploit programmable random oracles with forking lemmata, leading
to weak bounds. We use the general forking lemma to prove that d-CLSAG is
non-slanderable assuming a k-one-more variation of the discrete logarithm game
is hard.

2 Preliminaries

Let A be a security parameter and 1 < ¢,n, k € poly(A). Let G = (G) denote a
finite cyclic group over a finite field F,, for some prime p, with group generator G.
Let H* : {0,1}" — F, and H? : {0,1}" — G be two independent cryptographic
hash functions modeled as random oracles.

If there exists a function f that is negligible in some parameter A\, and there
exists A-dependent events A, B such that [P[A] — P[B]| < f(A), we denote this
P[A] = P[B]. An event A such that P[A] ~ 0 is said to be negligible in A (or to
occur with probability at most negligible in A). The complement of an event A
is denoted A. For the field F,,, we denote the non-zero elements Fj := F,, \ {0}.
For a finite set S, we define S* by interpreting .S as a list of letters that generate
the free monoid S*. For example, {0,1}" consists of all finite-length bitstrings.

For a set S, we define P(S) as the power set of S, i.e. the set of all subsets
of S.

We denote vectors with bold, i.e. for a sequence x; € F,, fori =0,...,n —1,
we denote the tuple (zq,...,2z,—1) with x. We denote the Hadamard product
between vectors with x oy = (z;v;);- We begin all indices at 0 to avoid all
ambiguity. We use the notation [n] to mean the set {0,...,n — 1}.

3 Definitions

3.1 Hardness Assumptions

We begin by noting that if { L Fg — Fp}j;ol are functions selected uniformly
at random, then the composite function u : F;'f — F, defined by mapping x —
>, ti(x)z; has uniformly distributed output and is a collision- and preimage-
resistant function. We use this property later when considering linkability and
linkable anonymity.

The following game is equivalent? to the usual x-one-more discrete logarithm
game under the random oracle model.

Definition 1 (k-One-More Linear Combination Discrete Logarithm).

Let k > 1. We say any PPT algorithm A that can succeed at the following
game in time at most t and with success probability at least € is a (¢, €, q)-solver
of the k-one-more discrete logarithm of linear combinations problem in G (where
k<q).

1. Challenger draws {ski}g;é C F, at random, computes pk; := sk; - G, sends
S = {pki}g:_ol to A.

2. A is granted access to a corruption oracle CO which takes as input a public key
pk; € S and produces as output the corresponding private key sk;. Corrupted
keys are recorded in a table C.

3. A outputs some w € Fy, a sequence of field elements {hj};zo C F,\ {0}, and

a subset of challenger keys {pkj* };:0 - {pki}?;ol, succeeding if and only if
w-G = Z;:o h; - pki and A queried CO no more than k times.

3 A usual k-one-more discrete logarithm solver can succeed at the game in Definition
1 with the same probability and some extra time by merely summing solutions. A
solver of the game in Definition 1 can use their discrete logarithm knowledge to solve
for an otherwise uncorrupted challenge key with the same probability and some extra
time.

We say that the discrete logarithms of linear combinations are computationally
hard to compute in G if any (t, €, q)-solver of this game has an advantage that is
€ negligible in q.

For an algorithm A that takes as input a random tape p, a sequence of random
oracle queries h and some input inp and produces (out,idz) < A(p,h,inp) as
output, the general forking algorithm works as follows.

(1) Pick a random tape p for A and two sequences of random oracle queries
h = {ho,hl, A } and h/ = {hlo, /1, .. }

(2) Execute (out,idx) < A(p, h,inp).

(3) Set j :=idx and glue the oracle queries h, h’ together

* !/ !/
h™ = {h07h17"')hid1717hidaj7 idw+17"'7}'

(4) Execute (out*,idz*) < A(p,h* inp).
5) If idx # idx* or hig, = h}, , output L and terminate. Otherwise, output
idx
(out, out’,idx).

This algorithm is precisely the algorithm F* in the following lemma.

Lemma 1 (General Forking Lemma). Let 1 < n € poly(\). Let 4 be any
PPT algorithm which takes as input some tuple x, = (x,h) where we let h =
(ho,h1,...,hq—1) be a sequence of oracle query responses (n-bit strings) and
returns as output y, either a distinguished failure symbol L or a pair (idx,y)
where idr € [q)? and y is some output. Let ¢, denote the probability that A does
not output L, (where this probability is taken over all random coins of A, the
distribution of x, and all choices h). Let F = F* be a forking algorithm for A.
The accepting probability of F satisfies ex > ¢, (%" — %)

We use the next game to relate the classic decisional Diffie-Hellman hardness
assumption to a random oracle construction that will be useful later when in-
troducing a definition of linkable anonymity. Detailed properties of this type of
construction relating to pseudorandomness and invertibility are formalized and
discussed further in [13].

Definition 2 (Random Oracle Decisional Diffie-Hellman). We say any
PPT algorithm A that can succeed at the following game in time at most t with
advantage least € > 0 over random chance is a (t,€,q)-solver of the random
oracle decisional Diffie-Hellman game.

— The challenger chooses a bit b € {0,1} uniformly at random.
— If b= 0, then the challenger chooses {r; g:_(} from F,, uniformly at random,
sets

S = {(Ri, R}, R} Y=g = {(r:G, HP (r;G), riHP (r:G)) oy,
and sends S to A.

— Ifinstead b = 1, then the challenger chooses {(r;, r;’)};?;ol Jrom F2 uniformly
at random, sets

Si= {(Ri7 Rgv R;/)}g:_(} = {(TiG, 'HP(TZ'G), T;,G)}g:_(}7

and sends S to A.
— A is granted access to the random oracle HP.
— A returns a bit b € {0,1}; we say A succeeds if and only if b/ = b.

We say that random oracle Diffie-Hellman group elements are hard to distinguish
from random in G if any (t, €, q)-solver of this game has negligible advantage e.

Remark 1. We assume that if the classic decisional Diffie-Hellman (DDH) game
is hard in G, then so is the RO-DDH game. Indeed, recall that DDH asks an ad-
versary to distinguish between distributions of tuples of the form (rG,r'G,rr'G)
and (rG,r'G,r"G). If DDH is hard in G, then distributions of tuples of these
forms are indistinguishable. Since HP is a random oracle whose output is in-
dependent of input, then distributions of tuples of the form (rG,HP(rG),r"G)
and (rG,r'G,r"G) are identical. Similarly, distributions of tuples of the form
(rG,HP(rG),rHP (rG)) and (rG,HP(rG),r"”G) are identical. Finally, random
self-reducibility of the classic DDH game means that solving one instance of the
problem has complexity no worse than solving a sequence of random instances
of the problem.

3.2 Linkable Ring Signatures

Definition 3. A linkable ring signature (LRS) scheme Il rs is a tuple of PPT
algorithms (SETUP, KEYGEN, SIGN, VERIFY, LINK) satisfying the following set of
constraints:

— SETUP takes as input a security parameter A and produces as output some
public setup parameters p.

— KEYGEN is a randomized; it takes as input (X, p) and outputs a private-public
keypair (sk, pk).

— SIGN is randomized; it takes as input (A, p) and a triple (m,Q, sk) and out-
puts a signature o or a failure symbol L. Here m is a message, Q) is an
anonymity set of public keys Q = {pko,pk1,...,pkn-1}, and sk is a private
key.

— VERIFY takes as input (X, p) and a triple (m, Q, o) and outputs a bitb. Here m
is a message, Q is an anonymity set of public keys Q = {pko,pki, ..., pkn—1},
and o is a signature.

— LINK takes as input (X, p), a pair of triples (m,Q, o), (m*, Q*,0*), and out-
puts a bit b. Here m,m™ are messages, Q,Q* are anonymity sets of public
keys, and o,c* are signatures.

We say a triple of the form (m,Q,o) (that is to say, a triple suitable for use
as input in VERIFY and LINK) is a signature triple. We say Il gs is a d-LRS
if the dimension of private and public keys is d > 1 and anonymity sets can be
described as d x n matrices.

For use in a later concrete instantiation, we assume p may include (implicitly
or explicitly) descriptions of a private key space SK, a public key space PK,
a signature space SZG, a map ¢ : SK — PK, and a family of hash functions
(modeled as random oracles) H from which we can draw H°® and H?. For ex-
ample, with a finite cyclic group G over a finite field F,, for two hash functions
H*®:{0,1}" — F, and H? : {0,1}" — G, a Schnorr-like ring signature scheme
such as [14] would pack into p the descriptions SK = F;, PK = G, SIG = F,
and a generator G € G (which is sufficient to specify the one-way map ¢ : F, =G
defined by z — G). Note each algorithm in an LRS scheme takes (A, p) as in-
put; in the sequel we exclude these from notation for LRS schemes, taking their
use as implicit.

Note we do not allow a LRS scheme to be correct if the scheme allows
anonymity multisets Q.

Definition 4. Let b € {0,1}, sk,sk* € SK, let Q, Q* C PK be sets, let
m,m*,m’ be messages, let o,0*, 0’ € SIG be any purported signatures. Define
the following events.

— FE1(sk,pk) is the event that some (sk,pk) < KEYGEN.
— Ey(sk,Q) is the event that ¢(sk) € Q.

— E3(m,Q,0) is the event that VERIFY(m,Q,o) = 1.
— Ey(bym,m*,m',Q,Q*,Q,0,0%,0') is the event that

b= LINK((m,Q,0),(m* Q" ")) = LINK((m™*,Q*,c*), (m’,Q’, d")).
— Es(m,m*,Q,Q*, 0,0%,sk) is the event that

od(sk) € QN Q*, o « SIGN(m,Q, sk), and o™ < SIGN(m™*,Q", sk).

Es(m,m*,Q,Q*, 0,0, sk, sk*) is the event that
o+ SIGN(m,Q, sk), c* < SIGN(m*,Q*, sk™), and sk # sk*.

We say Il rs is correct if all of the following properties hold, where these proba-
bilities are computed over all random coins and over all choices of hash function.

(i) Valid keys map properly:
P [¢(sk) = pk | E1(sk,pk)] ~ 1
(ii) Signing fails with a key not contained in the ring:
P [SIGN(m,Q,sk) = L | Ex(sk,Q)] ~ 1
(iii) Verification succeeds with a valid signature:
P [VERIFY(m,Q, SIGN(m,Q, sk)) = 1| E2(sk,Q)] ~ 1
(iv) A wvalid signature links to itself:

P [LINK((’I’)’L, Q7U)7 (m7 Qa U)) =1 | E3(m7 Q7U)] ~1

(v) Linking is commutative:
PLivk((m, Q, o), (m*,Q%,c")) = LINk((m*,Q",0™), (m,Q,0))] = 1
(vi) Linking is transitive:
P[b = Lvk((m,Q,0),(m',Q’,0")) | Es(b,m,m*,m',Q,Q*, Q" ,0,0",0')] ~ 1
(vii) Reuse of a signing key implies linking:
P [LINK((m,Q,0), (m*,Q*,0*)) = 1| Es(m,m*,Q,Q*,0,0", sk)] ~ 1
(viii) Use of distinct signing keys implies no linking:

P [LINK((m, Q,0), (m*,Q%,0%)) =0 | Eg(m,m*,Q,Q"*,0,0", sk, sk™)] = 1

3.3 Linkability

We use two distinct, but related, definitions of linkability. The first is Definition
5 from [2], which we term ACST linkability (after the authors’ initials). This def-
inition allows signing oracle queries with any anonymity sets) consisting of at
least one challenge key (which can be simulated via backpatching). This defini-
tion also allows the challenger to succeed at the linkability game using signature
triples (m, @, o), (m*,Q*,0*) that have semi-corrupted anonymity sets @, Q*
(just so long as the keys in @ U Q* have not been tampered with too severely).
The second is Definition 8 from [3], we we term pigeonhole linkability after its
similarity to the pigeonhole principle. This definition allows the adversary total
control over key selection, declaring success when they produce more unlinked
ring signatures than total ring members. Such an adversary doesn’t need key
generation, corruption, or signature oracle access.

Definition 5 (ACST Linkability With an Adversarial Key). We say any
PPT algorithm A that can succeed at the following game in time at most t and
with success probability at least € is a (L, €, q)-solver of ACST linkability.

1. Challenger draws {(ski,pki)}g:—ol from KEYGEN and sends the challenge public
keys S = {pk;}'—; to A.
2. A is granted SO and CO access.
— CO takes as input a public key pk. If pk € S, CO outputs the corresponding
private key sk. Otherwise, CO outputs a failure symbol, L. Corrupted keys
are tracked in a table C.
— S0 operates as follows:
(i) Takes as input a message m, an anonymity set QQ = {pkg}?:_ol, and
an indez l. (Note that we do not specifically require @ C S here.)
(1t) If 0 > 1 or 1 > n orif pk; ¢ S, SO outputs a failure symbol L.
(iii) Otherwise, there exists some i such that pk; = pk; € S. SO retrieves
the private key sk; and outputs a valid signature triple (m,Q, o) such
that o < SIGN(m, Q, sk;).

3. A outputs a pair of signature triples, (m,Q, o), (m*, Q*,0*), succeeding if
and only if all of the following conditions are satisfied. (Note that we do not
specifically require Q@ C S or Q* C S here.)

(i) VERIFY(m,Q,o0) = VERIFY(m*,Q*,0*) =1
(i) LINK((m,Q, o), (m*,Q*,c*)) =0
(iii) o,0* are not output from any SO query.

(i) [(QUQTN(CUT) <1

We say that a scheme is ACST linkable if every PPT algorithm A that is a
(t,€,q)-solver ACST linkability game has a negligible acceptance probability €.

Definition 6 (¢g-Pigeonhole Linkability). We say any PPT algorithm A that
can succeed at outputting q public keys {pki}g:_ol and q+ 1 valid, unlinked signa-
ture triples {(m;, Q;,0;)}_, such that U;Q; C {pk:}IZy in time at most t and
probability at least € is a (t, €, q)-solver of pigeonhole linkability. We say that a
scheme is g-pigeonhole linkable if every PPT algorithm A that is a (t, €, q)-solver
of q-pigeonhole linkability has a negligible acceptance probability e. (Note that the
adversary is not granted signing or corruption oracle access here.)

These definitions are distinct. Pigeonhole linkability does not necessarily im-
ply ACST linkability. Indeed, a successful player of the game in Definition 5
may only succeed with sufficiently large rings, in which case that player may
only be used to succeed at the game of Definition 6 for a sufficiently large q.
Similarly, ACST linkability may not imply pigeonhole linkability. A player of
the game in Definition 6 that requires knowledge of many private keys may be
too corruption-hungry to succeed at Definition 5.

For a scheme that is pigeonhole linkable, Definition 6 says nothing about an
adversary that can keep signing with one key multiple times to construct new
unlinked signatures, just so long as they continue to use different anonymity
sets.

For a scheme that is ACST linkable, a user providing honest signatures to
an adversary acts like a signature oracle, so the adversary could attempt to
construct a bad/cloned signature that links to some honest one (possibly with
adversarially selected ring members), only ever outputting a single signature.
Definition 5 says nothing about such an attacker. This attacker could stand
between Alice and Bob, provide cloned signatures to the Bob ostensibly signed by
Alice, fooling him. When Alice eventually contacts Bob without the adversary in
the middle, Alice would be unable to assert culpability over the cloned signatures.
Bob concludes that ¢* and o were signed by the same private key, despite that
the adversary does not know the private key that generated o.

However, Definition 6 implies Definition 5 under certain circumstances. For
one (of many) examples, if there exists a (¢, €, 1)-solver of the game in Definition
5 that produces two signature triples (m,Q, o), (m’,Q’,0¢") such that Q = @’
and |Q| =1, then A succeeds at Definition 6.

A more general look at the relationships between linkability definitions is be-
yond the scope of this work. Since neither definition is sufficient for our purposes
alone and these definitions are distinct in general, we use both.

10

3.4 Unforgeability and Non-Slanderability

The idea of existential unforgeability in usual digital signatures is to task an al-
gorithm to produce any valid, non-oracle signature on any message such that the
signature appears to be signed by an uncorrupted challenge key. The clear ana-
logue for LRS schemes is to task an algorithm to produce any valid, non-oracle
signature on any message such that the signature links to a challenge signature
computed from an uncorrupted challenge key. In fact, the implementation in
Section 4 compares linking tags as if they were verification keys; in this sense,
a forger is tasked to construct a valid signature with some verification keys to
which they do not know the corresponding private key. We consider this to be a
textbook forgery, and so we take these occurrences into account in our definition.
Unlike the definitions for unforgeability used in [2] and [3], linking is explicitly
taken into account and the adversary is permitted to use corrupted keys. We
later relate this definition to that of non-slanderability.

Definition 7 (Existential Unforgeability of Linkable Ring Signatures
Against Adversarially-Selected Keys and Insider Corruption). We say
any PPT algorithm A that can succeed at the following game in time at most t
and with probability at least € is a (t, €, q)-forger.

1. Challenger draws {(sk;, pki)}I—y from KEYGEN and sets S := {pﬁ;z}f;ol For
each 0 < i < q, the challenger uniformly samples secret) # Q; € P (S),
defines Q; = 657 U {pki}, retrieves the index l; such that pk; € Q; NS
has index l; in Q;, samples secret random messages {mi}?:_ol, and computes
secret challenge signatures o; < SIGN(m;, Q;, sk;). Challenger sends S to A.

2. Challenger grants SO and CO access to A:

— CO takes as input a challenge public key pk; € S and produces as output
the corresponding private key sk;, keeping a list of all corrupted public
keys in an internal table C'.

— S0 operates as follows:

(i) Takes as input a message m, an anonymity set Q, and an index .
(i) If the key at index | in Q is not a challenge public key from S, SO
outputs a failure symbol L.
(iii) Otherwise, SO retrieves the index i such that pk; € Q NS has index
l in Q, retrieves the corresponding private key sk;, and outputs a
signature o < SIGN(m, Q, sk;).

3. A outputs a message m, a Ting Q, a signature o, succeeding if and only if:

(i) VERIFY(m,Q,0) =1,

(ii) there does not exist a query made to SO whose output is o,

(iii) there exists i € [0,q) such that LINK((m,Q,0),(m;, Qi,0:)) =1 and

pk; e SNQ\C.

Moreover, we say that a linkable ring signature scheme is unforgeable if every
(t,€,q)-solver of this game has a negligible acceptance probability e.

11

Remark 2. Access to a corruption oracle in this unforgeability definition is one
reason security reduces (weakly) to the k-one-more discrete logarithm problem,
not the usual discrete logarithm problem: an algorithm executing a forgery algo-
rithm in a black box cannot simulate the corruption oracle for the forgery with-
out, itself, gaining corruption oracle access or without resorting to the generic
group model.

Remark 3. If Ais an algorithm that produces signatures from an LRS satisfying
Definition 7, then (except with negligible probability), the signatures aren’t forg-
eries, so some property 3(i)-3(iii) must be violated. If the signature is valid and
not from an oracle query, then 3(iii) fails. In particular, for an LRS scheme sat-
isfying Definition 7, if an algorithm produces a valid non-oracle triple (m, Q, o)
that links to a challenge key in @), then that challenge key has been corrupted.

Non-slanderability is introduced in [23]. This definition is refined twice in
[2], allowing Ato succeed whenever it publishes any signature that links with any
signature from a query A made to SO, excepting certain conditions. We modify the
definition from [2] to allow signing oracle queries with anonymity sets containing
adversarially selected members.

Definition 8 (Chosen-Target Non-Slanderability Against Adversarial
Keys and Insider Corruption). We say any PPT algorithm A that can succeed
at the following game in time at most t and with probability at least € is a (t, €, q)-
solver of non-slanderability against adversarially chosen keys.

1. Challenger draws {(ski,pki)}g:—ol from KEYGEN and sends the challenge public
keys S = {pk;}\—; to A.
2. A is granted SO and CO access just as in Definition 7.
3. A outputs a triple (m,Q, o), succeeding if and only if:
(i) VERIFY(m,Q,o0) =1, and
(ii) there does not exist a query made to SO whose output is o, and
(iii) there exists a query made to SO, say o* <+ SO(m*,Q*,1*), such that
(a) LINK((m,Q,0),(m*,Q*,0*)) =1, and
(b) pkj. € SNQ*NQ\C.

Moreover, we say that a linkable ring signature scheme is non-slanderable if
every (t, €, q)-solver of this game has a negligible acceptance probability e.

Theorem 1 (Non-Slanderability is Unforgeability). A correct LRS is un-
forgeable under Definition 7 if and only if it is non-slanderable under Definition
8.

Proof. Let A be a (t,€, q)-solver of the unforgeability game of Definition 7. We
show how to construct an algorithm B that executes A in a black box and is a
solver of the non-slanderability game of Definition 8. Observe that the signing
and corruption oracles are identical in both definitions, so such queries may be
seamlessly passed between players, as we describe below. Formally, B operates
in the following manner:

12

— B receives a set of public keys S = {pk‘i}?;ol from its challenger. It samples
messages and rings (in the manner of Definition 7) and generates a set of
tuples {(mi,Qi,Ji)}g;Ol by queries of the form S0(m;, Q;,1l;) — oy, where
each [; is the index of pk; in @;. It passes the public key set S to A

— B accepts S0 and CO oracle queries from A, passes them to its challenger, and
returns the results to A.

— A returns a tuple (m, @, o) satisfying the conditions in Definition 7.

— B outputs (m,Q, o).

Since A is a solver of the unforgeability game, then with advantage € there exists
an index i € [0, ¢) such that

LINK((’I’)’L, Qv U)v (mi7 Qi7 Ul)) =1

and pk; € SNQ\ C. Further, B obtained o; by an oracle query S0(m;, Q;,1;), so
by construction pk; € @Q; as well. Since B uses additional time ¢’ for its initial ¢
signing oracle queries and transcript lookup and has identical advantage ¢ as A
does, we have constructed a (t +t', €, ¢)-solver of the non-slanderability game of
Definition 8.

We now show the converse of the statement, and assume that A is a (¢, €, q)-
solver of the non-slanderability game of Definition 8. We will construct an algo-
rithm B that executes A in a black box and is a solver of the unforgeability game
of Definition 7.

— B receives a set of public keys S = {pki}g;ol from its challenger. It passes the
public key set S to A

— B accepts S0 and CO oracle queries from A, passes them to its challenger, and
returns the results to A.

— A returns a tuple (m, @, o) satisfying the conditions in Definition 8.

— B outputs (m,Q, o).

Since A is a solver of the non-slanderability game, then with advantage e there
exists a signing oracle query SO(m*, Q*,1*) — ¢* such that

LINK((m, Q,0),(m", Q",0")) =1

and pkf. € SNQ*NQ\ C. But since pkj. = pk; € S for some index i € [0, ¢),
the unforgeability challenger produced a valid signature o; on some message m;
and ring @Q); where pk; € @;. Hence it must be the case that

LINK((m*a Q*v U*)a (mia Q’ia Gi)) =1
and, by transitivity, it follows that
LINK((m7 Q7 U)? (mi7 Qi7 Ul)) =1

as well. We therefore have shown that B is a (¢, €, ¢)-solver of the unforgeability
game, which completes the proof.

13

3.5 Linkable Anonymity

We use a modification of the definition of linkable anonymity from [3]. The
definition we present here differs from [3] in that it does not grant the adversary
access to a subset of corrupted keys prior to giving it access to a signing oracle;
this is necessary for a later reduction to the hardness problem presented in
Definition 2.

Definition 9 (Chosen-Target Linkable Anonymity With Adversarial
Keys). We say any PPT algorithm A that can succeed at the following game in
time at most t and with advantage at least € is a (t,¢€,q)-solver of the linkable
anonymity game.

1. Challenger samples a secret random bit b € {0,1}, draws {(ski,pki)}g:_ol

from KEYGEN, and sends the challenge public keys S := {pki}g:_ol to A.

2. 4 outputs a pair of indices 0 < ig,%1 < q such that pk;,,pk;, € S, indicating
the target keys.
3. A is granted access to a signing oracle SO (which notably differs from the
signing oracle used in earlier definitions):
(i) Takes as input a message m, an anonymity set QQ, and a public key
pk e Q.

(ii) If {pki,,pki, } € Q or pk ¢ {pki,,pki, }, then SO outputs a valid signa-
ture o linked to pk.

(11i) Otherwise, pk = pk,; for a bit c. The bit ¢ = (1 — ¢)b + ¢(1 — b)
is computed and the oracle outputs o < Sign(m,Q,sk;). (That is,
d=cdb.)

4. A outputs a bit V', succeeding if b’ = b.

Moreover, we say that a scheme is linkably anonymous if every (t, €, q)-solver of
the linkable anonymity game has a negligible acceptance advantage € over 1/2.

4 Construction

In this section, we describe d-CLSAG, our implementation of a concise d-LRS
construction.

Definition 10 (d-CLSAG). The tuple (Setup, KeyGen, Sign, Verify, Link) as
follows is a d-LRS signature scheme.

— Setup — par. First, Setup selects a prime p, a group G with prime order
p, selects a group gemerator G € G uniformly at random, selects d cryp-
tographic hash functions Hg,...,H5_, (modeled as random oracles) with
codomain Fp, selects a cryptographic hash function HP with codomain G.
Then, Setup outputs the group parameter tuple and the hash functions,

par := (p, G d,QG, {H;}j;; ,HP) 4

4 Note that domain separation can be used here to take one H°® and construct each
H; by defining Hj(x) := H*(j || =).

14

— KeyGen — (sk,pk). When queried for a new key, KeyGen samples a fresh
secret key and computes the associated public key:
sk :(2’0, 21y ey Zd_l) < (F;)d
pk:=sko G = (Zy,Zy,...,Z4_1) € &*

where G = (G,...,G) € 6. KeyGen outputs (sk,pk). We say zo is the
linking key, the remaining keys {z; }j;; are the auziliary keys, and we denote
the linking key with x.

— Sign(m,Q, sk) = {Lsign, 0 }. Sign takes as input a message m € {0,1}", a
ring Q@ = (pky, ..., Pk,_1) for ring members pk; = (X;,Z;1,...,Zia-1) €
¢, and a secret key sk= (z,21,...,24-1) € (Fy)*. Sign does the following.

1. If Q € ¢**™ for some n, Sign outputs Lsign and terminates.

2. Otherwise, Sign parses® Q to obtain each pk;. If the public key associated
with the input sk is not a ring member in Q, then Sign outputs Lggn
and terminate.

3. Otherwise, Sign finds the signing index £ such that pk, = sko(G,...,G).
Sign samples oo € F, uniformly at random, samples {si}, ., € (Fp)nt
uniformly at random, and computes the group elements H; = HP(X;) for
each i. Sign computes the aggregation coefficients px and {,uj}dfl the

i=17
linking tag ¥, the auziliary group elements {D; ?;11, and the aggregated
public keys:
T :=zH, {D;}:={%;H}
px =HHQ | T I {D5}520) i =HIQ | T IH{D;}20)
d—1 d—1
Wi i=pux X; +ZNjZi,j pilJ 1=MXT+ZMJ@J‘
j=1 j=1

and the aggregated secret key wy := puxx + Z;l;ll wizj. Fori = €,0+
1,...,£ =1, (operating modulo n), Sign computes

Ly, =aG Ry =aH, cer1r =Ho(Q || m || Le || Re)
L; =8,G +c;W; R; =s;H; + ¢;20 Cit+1 :HS(Q H m || L; || Rl)

and lastly computes sy = a — cpwy.
4. Sign returns the signature o = (co, S0, 815 -+ Sn—1,%, {Dj};l;ll).
— Verify(m,Q,0) — {0,1}. Verify takes as input a message m, a matric
Q = (pky, ..., pk,_1), and a signature o.

1. If Q € 6™ for some n, or if o ¢ F;}l“ x G for some n', Verify
outputs 0 and terminates. Otherwise, if n' # n, Verify outputs 0 and
terminates.

® Note that this parsing always succeeds if Sign does not fail in the previous step.

15

2. Verify parsesS (pky, ..., pk,_1) < Q for keys pk; € % fori € [0,n—1],
and parses each public key (X;,Z;1,...,Z;q-1) < pk;. Verify also
parses (Coy S0y -3 8n—-1,%,D1,...,D4-1) 0. Verify computes each
H; = HP(X;), computes the aggregation coefficients, and computes ag-
gregated public keys:

px =HQ I TIH{D 2y =H5(Q I T {D53521)

d-1 d—1
Wi i=pux X; + ZNjZi,j W:=uxT+ Zuj@j
j=1 j=1
3. Verify sets ¢, :=co and, fori=1,2,...,n—1, computes the following.

L; :=s;G+ W;, R;:=s;H; + 20, ¢ =Hi(Q||m|| L;|| R:)

4. If ¢}, = co, Verify outputs 1, and otherwise outputs 0.
— Link((m,Q,0),(m’,Q’,¢")) = {0,1}. Link takes as input two message-ring-

signature triples.

1. If verify(m,Q,o0) = 0 or Verify(m',Q’,0’) = 0, Link outputs 0 and
terminates.

2. Otherwise, Link parses’ the signatures to obtain the individual linking
tags (%, {Qj}j), (%, {QQ}J) +— o,0’. Link outputs 1 if 20 = 00’ and 0
otherwise.

This implementation has full-key-oriented linkability with linkability tags 20:
two signatures will link if they not only are signed using the same linking and
auxiliary keys, but also the same ring. We can replace the Link algorithm with
single-key-oriented linkability:

— Link ((m,Q,0),(m',Q’,0’)) — {0,1}. Link takes as input two message-ring-
signature triples.
1. If Verify(m,Q,0) = 0 or Verify(m/',Q’,0’) = 0, Link outputs 0 and
terminates.
2. Otherwise, Link parses® the signatures to obtain the individual linking
tags (%, {D;},), (¥, {@;}J) < 0,0’. Link outputs 1 if T = T’ and 0
otherwise.

5 Proofs of Security

The following lemma follows immediately from the random oracle model we use
for H?®.

5 This parsing is always successful if the previous step does not terminate Verify.

" As before with Verify, this parsing is always successful if the previous step does not
terminate Link.

8 As before with Verify, this parsing is always successful if the previous step does not
terminate Link.

16

Lemma 2. For any @) C PK, for any private key sk = (a:,{zj}j) € Q, the
map sk — pxx + Zj Wiz where px, p; are computed as in Definition 10 is a

collision-resistant function.

We prove d-CLSAG is unforgeable in Theorem 2 by showing that if some
PPT algorithm produces some valid, non-oracle triple (m, @, o) that links to an
anonymity set member in) (malicious or otherwise), then that algorithm can be
rewound to compute the discrete logarithm of that anonymity set member. This
theorem is standard for Schnorr-like signatures in the programmable random
oracle model.

Theorem 2 (Hardness of Discrete Logarithms of Linear Combinations
Implies Unforgeability). If a (t,€,q)-solver of the unforgeability exists for
the scheme of Definition 10 that makes k' corruption oracle queries, then there

exists a (2(t +to) +t1, € (5 - 2%) — , [4])-solver of the 2dk'-one-more discrete

logarithm of linear combinations problem in G for some negligible u and some
constants to,ty.

Proof. Assume A is a (t, €, g)-solver of the non-slanderability game of Definition
8. We wrap A in an algorithm B. The algorithm B executes A in a black box,
handling oracle queries for A. Then, B regurgitates the output of A together with
an index idz. This way, B is suitable for use in the forking lemma. We wrap F&
in a master algorithm M that is a (2(¢t + to) + t1, € (g - %) — i, | £])-solver of
the k-one-more discrete logarithm of linear combinations problem in G, where 7
is as defined in Lemma 1.

If A produces a successful forgery, each verification query of the form c;41 =
H5(m || @ || Re || L¢) occurs in the transcript between A and the random
oracle H*. Indeed, the signature triple produced by A passes verification, so
each challenge ¢4, whether made with oracle queries in the transcript or not,
must be matched by random oracle queries made by the verifier. The prover
cannot guess the output of such a query before making it except with negligible
probability. Hence, if A outputs a valid signature, all verification challenges are
computed by an actual oracle query. See [14] for a formal proof of this fact. Since
all verification challenges are found through genuine oracle queries, which are
well-ordered, there exists a first H® query made by A for computing verification
challenges, say ¢ = H*(m || @ || R* || L*). This was not necessarily the first
query made to H* overall, though; say it was the k' query. Although the ring
index for this query may not have been decided when this query was first issued
by A, by the end of the transcript the ring index has been decided.

We construct B in the following way. We grant B access to the same oracles
as A. Any oracle queries made by A are passed along by B to the oracles. The
responses are recorded and then passed back to A. The algorithm B works by
finding two indices to augment the output of A. First, B finds the H*® query
index k corresponding to the first verification challenge computed by A used in
verifying the purported foergery. Second, B inspects the transcript of A to find
the anonymity set index ¢ in the transcript such that ¢ = ¢/41 and R* = Ry and

17

L* = Ly. Now B outputs idx = (k,¢) along with whatever A outputs. Clearly, B
makes the same number of corruption oracle queries as A.

Note B succeeds whenever A does and runs in time at most ¢t just like A,
except for some additional time ty to search the transcript for idz. Since B is
suitable for use in the forking lemma, we can use F& to construct M.

The algorithm F® is granted oracle access to the same oracles as B except
H* and S0. The algorithm F® simulates SO queries made by B by simple back-
patching of H* and simulates the other queries made to H?® queries made by B
using the random tapes h, h* as described in Section 3.1. All other oracle queries
made by B are passed along by F® to the actual oracles and handed back to B.

Note that F® runs in time 2(¢t+to) and (with probability at least e (3 - 2%,))

outputs a pair of valid signature triples (m,Q, o), (m’,Q’,c’). The messages
and anonymity sets are selected before the fork point in the transcripts, so
m =m' and Q = Q’. Moreover, F® makes at most 2k’ corruption queries. The
challenges for the two transcripts are distinct since the forking algorithm outputs
the failure symbol L and terminates if the challenges for c¢,1; are the same in
each transcript.

cert — Hy(m || Q || Re || Le) = chos.

We wrap F® in an algorithm M that plays the x-one-more discrete logarithm
game of Definition 1 for k = 2 - d - /. The algorithm M has corruption oracle
access and runs F? in a black box, passing corruption oracle queries made by F&
along. The algorithm M finds the following system of equations in the transcripts
by inspecting the verification challenge queries

Ry =35/G+cp Xy = SIKG + CQXL

Ly=s/Hp+ c,20 = S%H@ + c}QH

This M has enough information to compute

sp— 8 Sp— 8
Wy = L@, = "Ly,
Cp — & Cp — C
and therefore the private key w = if:zé . Formally, M operates as follows.
7} 7
—~ yq—1
(1) M inputs the set of discrete logarithm challenge public keys S = {pki}
i=0

(2) M partitions the challenge keys into lists of d keys

pko =(Xo, 20,1, -, Zo,d—1) i= (]/;]%Ow-w;];d—l)
Pk =(X1, 211, -, Z1,a-1) == (Pkg, ..., Dkgq_1)

q
obtaining S := {pki}}:dg.
(3) M picks two random tapes h,h’ to simulate oracle query responses for F2.

18

(4) M executes F® in a black box, using S as input. Upon receiving a corruption
query from F® on some pk;, M makes a CO query on X; and each Z; ;, passing
sk; back to FB. Each corruption query made by F® consists of d corruption
queries made to CO by M.

(5) If F® fails, or if F® succeeds with all zero coefficients pux and p;, then
M samples a random w € F,, samples a random subset of challenge keys
{pk;}j C S, samples random coefficients {hj}j, outputs w, {pk;}j ,{hj}j,
and terminates.

(6) Otherwise, M obtains two signature triples with the same message and ring,
(m,Q,0),(m,Q,d’) at at least one non-zero aggregation coefficient. M com-
putes the challenge discrete logarithm w = (¢, — ¢;)~!(s; — s}). M outputs

w, {,uX, {uj}j}, and {Xg, {Z&j}j}.

Denote with t; the time it takes for M to inspect the transcript, perform
field operations, and process corruption queries for F®. Then the algorithm M
runs in time at most 2(t + ¢o) + 1.

To complete the proof, consider the overall success probability and timing of
M. Since A is a (t, €, ¢)-solver of the unforgeability game and these are successful
signatures, there must be at least one query made to SO corresponding to an
uncorrupted challenge key linking to these signatures. In particular, w - G =
Wi = uxXe+ 32, 1 Ze,; for some (X¢,{Zs;};) € Q. The algorithm M succeeds
at the discrete logarithms of linear combinations game whenever F2 succeeds
at forking B and at least one coefficient p1x and p; is non-zero; we denote the
probability of obtaining any zero coefficients as u. We note that p is negligible
under the random oracle model. Thus, M runs in time at most 2(¢ 4+ to) + ¢1, has

success probability exceeding € (2 — %) — U

The proof of Theorem 2 demonstrates that the validity of a triple implies that
the aggregated private key w is the discrete logarithm of the aggregated linking
tag 2 with respect to Hy and is also the discrete logarithm of the aggregated
key W, with respect to G. In this way, the linking tag of a valid signature must
be the linking tag corresponding to at least one ring member, except possibly
with negligible probability.

Corollary 1 (No Alien Linking Tags). If there exists a PPT algorithm A
that produces a valid signature triple (m, Q, o) with the scheme in Definition 10,
then there exists a ring member in @Q whose aggregated key W, has the same
discrete logarithm w with respect to G as 20 has with respect to Hy, and this w
is known to A (except possibly with negligible probability).

Theorem 3. The scheme in Definition 10 is linkable under Definition 5 and
Definition 6.

Proof. We show that valid, non-oracle signature triples from the scheme in Def-
inition 10 satisfying the corrupted key conditions in the game of Definition 5

19

always link. Hence, any algorithm fails at that game except with negligible prob-
ability.

Assume that A, while playing the game of ACST linkability from Definition
5, produces a pair of valid, non-oracle signature triples (m, Q, o), (m*,Q*,o*)
such that at most one key in QU Q* is corrupted or outside of S. This algorithm
can be forked and rewound as above to compute the aggregated private key used
in computing each signature, say w,w*. At most one key in Q U Q* is corrupted
or outside of S. Since A has knowledge of w, then w is corrupted or outside of
S, and likewise w* is corrupted or outside of S. Since at most one key in Q U Q*
can be corrupted or outside of S, we conclude w = w*.

Since key aggregation is preimage-resistant by its construction using hash
functions and wG is the aggregated public key for some public key (X, {Z ; }]) €
Q N Q*, w must be aggregated from a private key (z¢, {2 ; }]) using the aggre-
gation function. In both the case of single-key-oriented linkability and full-key-
oriented linkability, the linkability tags are therefore exactly equal. Hence, with
probability 1, the pair of triples (m, Q, o), (m*, Q*,c*) are linked, and A fails at
ACST linkability except with negligible probability.

Similarly, an algorithm that outputs ¢+ 1 unlinked signatures can be rewound
to compute 2(g+1) signatures from which g+1 aggregated keys can be computed.
Moreover, if these signatures are unlinked, then the g 4+ 1 aggregated keys are
distinct, violating g-pigeonhole linkability.

Theorem 4. If there exists a (t,€,q)-solver of the linkable anonymity game of
Definition 9 under the construction of Definition 10, then there exists a (t +
t',€/2,q)-solver of the RO-DDH game of Definition 2 for some t'.

Proof. Let A be such a solver of the linkable anonymity game. We will construct
an algorithm B that executes A in a black box and is a solver of the RO-DDH
game, acting as the challenger for A; the algorithm will pass on HP random
oracle queries to its own challenger, flip coins for H§ and {#;} random oracle
queries, and simulate signing oracle queries by backpatching. We assume that B
keeps internal tables to maintain consistency between the random oracle queries
needed to simulate signing oracle queries.
The algorithm B operates as follows:

— B receives a set of tuples {(R;, R}, RY)}?") from its challenger, and chooses a
bit ¥' € {0,1} uniformly at random. Note that B does not know if its tuples
are RO-DDH triples or not, as its challenger chose a secret bit b € {0,1}
uniformly at random to determine this.

— For all i € [0,q), B defines X; := R; and records the H? oracle mapping
HP(X;) = R;. It chooses {z; ; }?;% from F,, uniformly at random, and builds
a set of public keys S := {(X;, 2:.1G, ..., zi,d,lG)}Zg;Ol. B provides the set S
to A.

— A returns indices 0 < ig,4; < g to B.

— B receives signing oracle queries of the form S0(m, Q, pk), where 0 < £ < ¢
is the index of pk € @, pk € S, and |Q| = n. There are two cases, which

20

determine how B simulates the oracle response, flipping coins for ‘H§ and
{#3} oracle queries:

o If it is the case that {pk;,, pki, } ¢ Q or pk & {pk;,, pk:, }, then B proceeds
with its signing oracle simulation using the key pk.

e Otherwise, there exists a bit ¢ € {0,1} such that pk = pk;_. In this case,
B sets ¢ := ¢ ® b’ and proceeds with its signing oracle simulation using
the key pk; ,. This is, if " = 0, then B simulates a signature using the
requested key from the player-provided index set. If instead b’ = 1, then
B simulates a signature using the other key.

In either case, B parses the public key set @) provided by A. For any key
pki = (X}, Z]1,...,Z] 1) € @\ S, it makes oracle queries to its challenger
to obtain HP(X/). Then B simulates the signature:

e Define a map 7 : [0,n) — [0,¢) U{L} that maps indices of elements of Q
to the corresponding elements of S (or returns the distinguished failure
symbol L for indices not mapping to elements of S), and let 0 < ¢ < n
be the index of pk € Q.

e Choose ¢y, {s;}]=; € F, uniformly at random.

e Since pk € S by construction, m(¢) # L. Set T := RZ(@) and {Dj};l;ll
such that each D := z(p) ;HP (Xr(p))-

e Define the following:

px — Ho(Q, T, {D;})

i — H;(Q, %, {D;}) for j € (0,d)

gp. e S XX + 325 12wy (m(0) # L)
' px X+ >0 125 (m(i) = 1)

W .= ,LLX{I-FZ,LL]'@]'
J

e Foreachi=/¢/¢+1,...,n—1,0,...,£—1 (that is, indexing modulo n),
define the following:

L; = 5;,G + ¢;20;
R — siHP (Xr(y) + W (w(i) # 1)
U sHP(XD) W (n(i) = 1)
Ci+1 — HS(vavLia Rl)

e B returns to A the tuple (co, {s:},%,{D,}).
— A returns a bit b* to B.
— If b* =¥/, then B returns 0 to its challenger. Otherwise, it returns 1.

It is the case that B wins the RO-DDH game precisely when it correctly
guesses the bit b chosen by its challenger. Hence P[B wins] = 1P[B — 0|b =
0]+ 3P[B — 1|b = 1].

If b = 1, then the RO-DDH challenger provided random points {R}} that B
used in its simulated signatures, so A can do no better than random chance at

21

determining b’. Since B — 1 exactly when A loses the linkable anonymity game,
we have P[B — 1[b = 1] = 3.

On the other hand, if b = 0, then the RO-DDH challenger provided structured
tuples that B used in its simulated signatures, and A wins the linkable anonymity
game with non-negligible advantage € over random chance. Since B — 0 exactly
when A wins the linkable anonymity game, we have P[B — 0/b = 0] = 1 + €.

This means B wins the RO-DDH game with probability P[B wins] = 1+£ and
has non-negligible advantage §. Further, B finishes with an added time ¢’ used
in simulating oracle queries and performing lookups. Hence, B is a (t+t',€/2, q)-

solver of the RO-DDH game.

6 Efficiency

Consider the space and time efficiency of Definition 10. We disregard any addi-
tional information typically broadcast alongside the signature, such as represen-
tations of the ring members.

A d-CLSAG signature with a ring size of n contains n + 1 field elements and
d group elements; signature size is ks(n+ 1) + kpd where kg describes the size of
field elements and k, describes the size of group elements.

To examine the verification time complexity, let ¢; and ¢, be the time com-
plexity of evaluating the hash-to-field functions #*® and of evaluating the hash-
to-group function H?, respectively. Let ¢ be the time complexity to evaluate a
linear combination of ¢ terms; using specialized algorithms for multiscalar multi-
plication [22, 18], such a linear combination can be evaluated much more quickly
than a simple term-by-term computation. We note that it is also possible to
cache multiples of group elements that are reused within verification for faster
linear combination evaluation, but we do not differentiate this here. Using these,
the time complexity of d-CLSAG verification is (n + d)t, + nt, + 2nt(d+1).

To compare to the efficiency of an MLSAG implementation from [16], observe
that 2-CLSAG has equivalent functionality to an MLSAG signature (which is a
2-LRS). An MLSAG signature used in this way produces 2n + 1 field elements
and 1 group element.

We produced a test implementation in C++ using the prime-order subgroup
of ed25519 and tested signing and verification for MLSAG and 2-CLSAG on a
2.1 GHz Opteron processor. Table 1 shows the results for different ring sizes.
In particular, we note that for smaller anonymity sizes, 2-CLSAG is uniformly
faster than MLSAG. However, at very large ring sizes, MLSAG is faster due to
additional computations involved in computing aggregation coefficients and key
prefixing. Despite this eventual inefficiency, we note that the linear space re-
quirements generally preclude the use of very large ring sizes in practice, making
2-CLSAG an efficient improvement over MLSAG in both space and time.

22

Verify Sign
Anonymity set| MLSAG CLSAG|MLSAG CLSAG
2124 2.0 2.3 2.7
4|4.7 4.0 4.6 4.6
819.5 7.8 9.4 8.5

16{18.9 15.9 18.9 16.5
32|37.8 32.3 37.8 33.0
64|75.4 67.5 75.9 68.3
128(150 147 151 148
256|301 344 303 346

Table 1. Signing and verification times (ms) for MLSAG and 2-CLSAG

References

1.

10.

11.

12.

Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: International Conference on the Theory and Application of Cryptology and
Information Security. pp. 415-432. Springer (2002)

Au, M.H., Chow, S.S., Susilo, W., Tsang, P.P.: Short linkable ring signatures re-
visited. In: European Public Key Infrastructure Workshop. pp. 101-115. Springer
(2006)

Backes, M., Déttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures:
Logarithmic-size, no setup—from standard assumptions. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 281—
311. Springer (2019)

Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: 23rd {USENIX} Security Sympo-
sium ({USENIX} Security 14). pp. 781-796 (2014)

Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. In: Theory of Cryptography Conference. pp.
60-79. Springer (2006)

Biinz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy (SP). pp. 315-334. IEEE (2018)

Fujisaki, E.: Sub-linear size traceable ring signatures without random oracles. In:
Cryptographers’ Track at the RSA Conference. pp. 393-415. Springer (2011)
Fujisaki, E., Suzuki, K.: Traceable ring signature. In: International Workshop on
Public Key Cryptography. pp. 181-200. Springer (2007)

Groth, J.: On the size of pairing-based non-interactive arguments. In: Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
pp. 305-326. Springer (2016)

Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKSs. In: Annual
International Cryptology Conference. pp. 698-728. Springer (2018)

Gu, K., Wu, N.: Constant size traceable ring signature scheme without random
oracles. IACR Cryptology ePrint Archive 2018, 288 (2018)

Hoffmann, M., Kloof}; M., Rupp, A.: Efficient zero-knowledge arguments in the dis-
crete log setting, revisited. In: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. pp. 2093-2110 (2019)

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

23

Lai, R.W.F., Ronge, V., Ruffing, T., Schréder, D., Thyagarajan, S.A.K.,
Wang, J.: Omniring: Scaling private payments without trusted setup. In: Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security. p. 31-48. CCS ’19, Association for Computing Machin-
ery, New York, NY, USA (2019). https://doi.org/10.1145/3319535.3345655,
https://doi.org/10.1145/3319535.3345655

Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for ad hoc groups. In: Australasian Conference on Information Security and
Privacy. pp. 325-335. Springer (2004)

Moser, M., Soska, K., Heilman, E., Lee, K., Heffan, H., Srivastava, S., Hogan, K.,
Hennessey, J., Miller, A.,; Narayanan, A., et al.: An empirical analysis of trace-
ability in the Monero blockchain. Proceedings on Privacy Enhancing Technologies
2018(3), 143-163 (2018)

Noether, S., Mackenzie, A., et al.: Ring confidential transactions. Ledger 1, 1-18
(2016)

Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent
to discrete log. In: International Conference on the Theory and Application of
Cryptology and Information Security. pp. 1-20. Springer (2005)

Pippenger, N.: On the evaluation of powers and monomials. STAM Journal on
Computing 9(2), 230-250 (1980)

Quesnelle, J.: On the linkability of Zcash transactions. arXiv preprint
arXiv:1712.01210 (2017)

Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: International
Conference on the Theory and Application of Cryptology and Information Security.
pp. 552-565. Springer (2001)

Schnorr, C.P.: Efficient signature generation by smart cards. Journal of cryptology
4(3), 161-174 (1991)

Straus, E.G.: Addition chains of vectors (problem 5125). American Mathematical
Monthly 70(806-808), 16 (1964)

Tsang, P.P., Wei, V.K., Chan, T.K., Au, M.H., Liu, J.K., Wong, D.S.: Separable
linkable threshold ring signatures. In: International Conference on Cryptology in
India. pp. 384-398. Springer (2004)

Van Saberhagen, N.: CryptoNote v 2.0 (2013)

Yang, X., Wu, W., Liu, J.K., Chen, X.: Lightweight anonymous authentication for
ad hoc group: A ring signature approach. In: International Conference on Provable
Security. pp. 215-226. Springer (2015)

Zhang, F., Kim, K.: ID-based blind signature and ring signature from pairings.
In: International Conference on the Theory and Application of Cryptology and
Information Security. pp. 533-547. Springer (2002)

