mesa/src/gallium/auxiliary/gallivm/lp_bld_pack.c

430 lines
12 KiB
C

/**************************************************************************
*
* Copyright 2009 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* Helper functions for packing/unpacking.
*
* Pack/unpacking is necessary for conversion between types of different
* bit width.
*
* They are also commonly used when an computation needs higher
* precision for the intermediate values. For example, if one needs the
* function:
*
* c = compute(a, b);
*
* to use more precision for intermediate results then one should implement it
* as:
*
* LLVMValueRef
* compute(LLVMBuilderRef builder struct lp_type type, LLVMValueRef a, LLVMValueRef b)
* {
* struct lp_type wide_type = lp_wider_type(type);
* LLVMValueRef al, ah, bl, bh, cl, ch, c;
*
* lp_build_unpack2(builder, type, wide_type, a, &al, &ah);
* lp_build_unpack2(builder, type, wide_type, b, &bl, &bh);
*
* cl = compute_half(al, bl);
* ch = compute_half(ah, bh);
*
* c = lp_build_pack2(bld->builder, wide_type, type, cl, ch);
*
* return c;
* }
*
* where compute_half() would do the computation for half the elements with
* twice the precision.
*
* @author Jose Fonseca <jfonseca@vmware.com>
*/
#include "util/u_debug.h"
#include "util/u_math.h"
#include "util/u_cpu_detect.h"
#include "lp_bld_type.h"
#include "lp_bld_const.h"
#include "lp_bld_intr.h"
#include "lp_bld_arit.h"
#include "lp_bld_pack.h"
/**
* Build shuffle vectors that match PUNPCKLxx and PUNPCKHxx instructions.
*/
static LLVMValueRef
lp_build_const_unpack_shuffle(unsigned n, unsigned lo_hi)
{
LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
unsigned i, j;
assert(n <= LP_MAX_VECTOR_LENGTH);
assert(lo_hi < 2);
/* TODO: cache results in a static table */
for(i = 0, j = lo_hi*n/2; i < n; i += 2, ++j) {
elems[i + 0] = LLVMConstInt(LLVMInt32Type(), 0 + j, 0);
elems[i + 1] = LLVMConstInt(LLVMInt32Type(), n + j, 0);
}
return LLVMConstVector(elems, n);
}
/**
* Build shuffle vectors that match PACKxx instructions.
*/
static LLVMValueRef
lp_build_const_pack_shuffle(unsigned n)
{
LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
unsigned i;
assert(n <= LP_MAX_VECTOR_LENGTH);
/* TODO: cache results in a static table */
for(i = 0; i < n; ++i)
elems[i] = LLVMConstInt(LLVMInt32Type(), 2*i, 0);
return LLVMConstVector(elems, n);
}
/**
* Interleave vector elements.
*
* Matches the PUNPCKLxx and PUNPCKHxx SSE instructions.
*/
LLVMValueRef
lp_build_interleave2(LLVMBuilderRef builder,
struct lp_type type,
LLVMValueRef a,
LLVMValueRef b,
unsigned lo_hi)
{
LLVMValueRef shuffle;
shuffle = lp_build_const_unpack_shuffle(type.length, lo_hi);
return LLVMBuildShuffleVector(builder, a, b, shuffle, "");
}
/**
* Double the bit width.
*
* This will only change the number of bits the values are represented, not the
* values themselves.
*/
void
lp_build_unpack2(LLVMBuilderRef builder,
struct lp_type src_type,
struct lp_type dst_type,
LLVMValueRef src,
LLVMValueRef *dst_lo,
LLVMValueRef *dst_hi)
{
LLVMValueRef msb;
LLVMTypeRef dst_vec_type;
assert(!src_type.floating);
assert(!dst_type.floating);
assert(dst_type.width == src_type.width * 2);
assert(dst_type.length * 2 == src_type.length);
if(dst_type.sign && src_type.sign) {
/* Replicate the sign bit in the most significant bits */
msb = LLVMBuildAShr(builder, src, lp_build_const_int_vec(src_type, src_type.width - 1), "");
}
else
/* Most significant bits always zero */
msb = lp_build_zero(src_type);
/* Interleave bits */
if(util_cpu_caps.little_endian) {
*dst_lo = lp_build_interleave2(builder, src_type, src, msb, 0);
*dst_hi = lp_build_interleave2(builder, src_type, src, msb, 1);
}
else {
*dst_lo = lp_build_interleave2(builder, src_type, msb, src, 0);
*dst_hi = lp_build_interleave2(builder, src_type, msb, src, 1);
}
/* Cast the result into the new type (twice as wide) */
dst_vec_type = lp_build_vec_type(dst_type);
*dst_lo = LLVMBuildBitCast(builder, *dst_lo, dst_vec_type, "");
*dst_hi = LLVMBuildBitCast(builder, *dst_hi, dst_vec_type, "");
}
/**
* Expand the bit width.
*
* This will only change the number of bits the values are represented, not the
* values themselves.
*/
void
lp_build_unpack(LLVMBuilderRef builder,
struct lp_type src_type,
struct lp_type dst_type,
LLVMValueRef src,
LLVMValueRef *dst, unsigned num_dsts)
{
unsigned num_tmps;
unsigned i;
/* Register width must remain constant */
assert(src_type.width * src_type.length == dst_type.width * dst_type.length);
/* We must not loose or gain channels. Only precision */
assert(src_type.length == dst_type.length * num_dsts);
num_tmps = 1;
dst[0] = src;
while(src_type.width < dst_type.width) {
struct lp_type tmp_type = src_type;
tmp_type.width *= 2;
tmp_type.length /= 2;
for(i = num_tmps; i--; ) {
lp_build_unpack2(builder, src_type, tmp_type, dst[i], &dst[2*i + 0], &dst[2*i + 1]);
}
src_type = tmp_type;
num_tmps *= 2;
}
assert(num_tmps == num_dsts);
}
/**
* Non-interleaved pack.
*
* This will move values as
*
* lo = __ l0 __ l1 __ l2 __.. __ ln
* hi = __ h0 __ h1 __ h2 __.. __ hn
* res = l0 l1 l2 .. ln h0 h1 h2 .. hn
*
* This will only change the number of bits the values are represented, not the
* values themselves.
*
* It is assumed the values are already clamped into the destination type range.
* Values outside that range will produce undefined results. Use
* lp_build_packs2 instead.
*/
LLVMValueRef
lp_build_pack2(LLVMBuilderRef builder,
struct lp_type src_type,
struct lp_type dst_type,
LLVMValueRef lo,
LLVMValueRef hi)
{
#if HAVE_LLVM < 0x0207
LLVMTypeRef src_vec_type = lp_build_vec_type(src_type);
#endif
LLVMTypeRef dst_vec_type = lp_build_vec_type(dst_type);
LLVMValueRef shuffle;
LLVMValueRef res;
assert(!src_type.floating);
assert(!dst_type.floating);
assert(src_type.width == dst_type.width * 2);
assert(src_type.length * 2 == dst_type.length);
if(util_cpu_caps.has_sse2 && src_type.width * src_type.length == 128) {
switch(src_type.width) {
case 32:
if(dst_type.sign) {
#if HAVE_LLVM >= 0x0207
res = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packssdw.128", dst_vec_type, lo, hi);
#else
res = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packssdw.128", src_vec_type, lo, hi);
#endif
}
else {
if (util_cpu_caps.has_sse4_1) {
return lp_build_intrinsic_binary(builder, "llvm.x86.sse41.packusdw", dst_vec_type, lo, hi);
}
else {
assert(0);
return LLVMGetUndef(dst_vec_type);
}
}
break;
case 16:
if(dst_type.sign)
#if HAVE_LLVM >= 0x0207
res = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packsswb.128", dst_vec_type, lo, hi);
#else
res = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packsswb.128", src_vec_type, lo, hi);
#endif
else
#if HAVE_LLVM >= 0x0207
res = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packuswb.128", dst_vec_type, lo, hi);
#else
res = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packuswb.128", src_vec_type, lo, hi);
#endif
break;
default:
assert(0);
return LLVMGetUndef(dst_vec_type);
break;
}
res = LLVMBuildBitCast(builder, res, dst_vec_type, "");
return res;
}
lo = LLVMBuildBitCast(builder, lo, dst_vec_type, "");
hi = LLVMBuildBitCast(builder, hi, dst_vec_type, "");
shuffle = lp_build_const_pack_shuffle(dst_type.length);
res = LLVMBuildShuffleVector(builder, lo, hi, shuffle, "");
return res;
}
/**
* Non-interleaved pack and saturate.
*
* Same as lp_build_pack2 but will saturate values so that they fit into the
* destination type.
*/
LLVMValueRef
lp_build_packs2(LLVMBuilderRef builder,
struct lp_type src_type,
struct lp_type dst_type,
LLVMValueRef lo,
LLVMValueRef hi)
{
boolean clamp;
assert(!src_type.floating);
assert(!dst_type.floating);
assert(src_type.sign == dst_type.sign);
assert(src_type.width == dst_type.width * 2);
assert(src_type.length * 2 == dst_type.length);
clamp = TRUE;
/* All X86 SSE non-interleaved pack instructions take signed inputs and
* saturate them, so no need to clamp for those cases. */
if(util_cpu_caps.has_sse2 &&
src_type.width * src_type.length == 128 &&
src_type.sign)
clamp = FALSE;
if(clamp) {
struct lp_build_context bld;
unsigned dst_bits = dst_type.sign ? dst_type.width - 1 : dst_type.width;
LLVMValueRef dst_max = lp_build_const_int_vec(src_type, ((unsigned long long)1 << dst_bits) - 1);
lp_build_context_init(&bld, builder, src_type);
lo = lp_build_min(&bld, lo, dst_max);
hi = lp_build_min(&bld, hi, dst_max);
/* FIXME: What about lower bound? */
}
return lp_build_pack2(builder, src_type, dst_type, lo, hi);
}
/**
* Truncate the bit width.
*
* TODO: Handle saturation consistently.
*/
LLVMValueRef
lp_build_pack(LLVMBuilderRef builder,
struct lp_type src_type,
struct lp_type dst_type,
boolean clamped,
const LLVMValueRef *src, unsigned num_srcs)
{
LLVMValueRef (*pack2)(LLVMBuilderRef builder,
struct lp_type src_type,
struct lp_type dst_type,
LLVMValueRef lo,
LLVMValueRef hi);
LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH];
unsigned i;
/* Register width must remain constant */
assert(src_type.width * src_type.length == dst_type.width * dst_type.length);
/* We must not loose or gain channels. Only precision */
assert(src_type.length * num_srcs == dst_type.length);
if(clamped)
pack2 = &lp_build_pack2;
else
pack2 = &lp_build_packs2;
for(i = 0; i < num_srcs; ++i)
tmp[i] = src[i];
while(src_type.width > dst_type.width) {
struct lp_type tmp_type = src_type;
tmp_type.width /= 2;
tmp_type.length *= 2;
/* Take in consideration the sign changes only in the last step */
if(tmp_type.width == dst_type.width)
tmp_type.sign = dst_type.sign;
num_srcs /= 2;
for(i = 0; i < num_srcs; ++i)
tmp[i] = pack2(builder, src_type, tmp_type, tmp[2*i + 0], tmp[2*i + 1]);
src_type = tmp_type;
}
assert(num_srcs == 1);
return tmp[0];
}