mesa/src/intel/compiler/brw_fs_visitor.cpp

1191 lines
45 KiB
C++

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file brw_fs_visitor.cpp
*
* This file supports generating the FS LIR from the GLSL IR. The LIR
* makes it easier to do backend-specific optimizations than doing so
* in the GLSL IR or in the native code.
*/
#include "brw_fs.h"
#include "compiler/glsl_types.h"
using namespace brw;
/* Sample from the MCS surface attached to this multisample texture. */
fs_reg
fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
const fs_reg &texture,
const fs_reg &texture_handle)
{
const fs_reg dest = vgrf(glsl_type::uvec4_type);
fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
srcs[TEX_LOGICAL_SRC_SURFACE] = texture;
srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = texture_handle;
srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components);
srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
ARRAY_SIZE(srcs));
/* We only care about one or two regs of response, but the sampler always
* writes 4/8.
*/
inst->size_written = 4 * dest.component_size(inst->exec_size);
return dest;
}
/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
void
fs_visitor::emit_dummy_fs()
{
int reg_width = dispatch_width / 8;
/* Everyone's favorite color. */
const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
for (int i = 0; i < 4; i++) {
bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
brw_imm_f(color[i]));
}
fs_inst *write;
write = bld.emit(FS_OPCODE_FB_WRITE);
write->eot = true;
write->last_rt = true;
if (devinfo->ver >= 6) {
write->base_mrf = 2;
write->mlen = 4 * reg_width;
} else {
write->header_size = 2;
write->base_mrf = 0;
write->mlen = 2 + 4 * reg_width;
}
/* Tell the SF we don't have any inputs. Gfx4-5 require at least one
* varying to avoid GPU hangs, so set that.
*/
struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
wm_prog_data->num_varying_inputs = devinfo->ver < 6 ? 1 : 0;
memset(wm_prog_data->urb_setup, -1,
sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
brw_compute_urb_setup_index(wm_prog_data);
/* We don't have any uniforms. */
stage_prog_data->nr_params = 0;
stage_prog_data->curb_read_length = 0;
stage_prog_data->dispatch_grf_start_reg = 2;
wm_prog_data->dispatch_grf_start_reg_16 = 2;
wm_prog_data->dispatch_grf_start_reg_32 = 2;
grf_used = 1; /* Gfx4-5 don't allow zero GRF blocks */
calculate_cfg();
}
/* Input data is organized with first the per-primitive values, followed
* by per-vertex values. The per-vertex will have interpolation information
* associated, so use 4 components for each value.
*/
/* The register location here is relative to the start of the URB
* data. It will get adjusted to be a real location before
* generate_code() time.
*/
fs_reg
fs_visitor::interp_reg(int location, int channel)
{
assert(stage == MESA_SHADER_FRAGMENT);
assert(BITFIELD64_BIT(location) & ~nir->info.per_primitive_inputs);
const struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
assert(prog_data->urb_setup[location] >= 0);
unsigned nr = prog_data->urb_setup[location];
/* Adjust so we start counting from the first per_vertex input. */
assert(nr >= prog_data->num_per_primitive_inputs);
nr -= prog_data->num_per_primitive_inputs;
const unsigned per_vertex_start = prog_data->num_per_primitive_inputs;
const unsigned regnr = per_vertex_start + (nr * 4) + channel;
return fs_reg(ATTR, regnr, BRW_REGISTER_TYPE_F);
}
/* The register location here is relative to the start of the URB
* data. It will get adjusted to be a real location before
* generate_code() time.
*/
fs_reg
fs_visitor::per_primitive_reg(int location)
{
assert(stage == MESA_SHADER_FRAGMENT);
assert(BITFIELD64_BIT(location) & nir->info.per_primitive_inputs);
const struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
assert(prog_data->urb_setup[location] >= 0);
const unsigned regnr = prog_data->urb_setup[location];
assert(regnr < prog_data->num_per_primitive_inputs);
return fs_reg(ATTR, regnr, BRW_REGISTER_TYPE_F);
}
/** Emits the interpolation for the varying inputs. */
void
fs_visitor::emit_interpolation_setup_gfx4()
{
struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
fs_builder abld = bld.annotate("compute pixel centers");
this->pixel_x = vgrf(glsl_type::uint_type);
this->pixel_y = vgrf(glsl_type::uint_type);
this->pixel_x.type = BRW_REGISTER_TYPE_UW;
this->pixel_y.type = BRW_REGISTER_TYPE_UW;
abld.ADD(this->pixel_x,
fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
fs_reg(brw_imm_v(0x10101010)));
abld.ADD(this->pixel_y,
fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
fs_reg(brw_imm_v(0x11001100)));
abld = bld.annotate("compute pixel deltas from v0");
this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] =
vgrf(glsl_type::vec2_type);
const fs_reg &delta_xy = this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL];
const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
if (devinfo->has_pln) {
for (unsigned i = 0; i < dispatch_width / 8; i++) {
abld.quarter(i).ADD(quarter(offset(delta_xy, abld, 0), i),
quarter(this->pixel_x, i), xstart);
abld.quarter(i).ADD(quarter(offset(delta_xy, abld, 1), i),
quarter(this->pixel_y, i), ystart);
}
} else {
abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
}
this->pixel_z = fetch_payload_reg(bld, payload.source_depth_reg);
/* The SF program automatically handles doing the perspective correction or
* not based on wm_prog_data::interp_mode[] so we can use the same pixel
* offsets for both perspective and non-perspective.
*/
this->delta_xy[BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL] =
this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL];
abld = bld.annotate("compute pos.w and 1/pos.w");
/* Compute wpos.w. It's always in our setup, since it's needed to
* interpolate the other attributes.
*/
this->wpos_w = vgrf(glsl_type::float_type);
abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
component(interp_reg(VARYING_SLOT_POS, 3), 0));
/* Compute the pixel 1/W value from wpos.w. */
this->pixel_w = vgrf(glsl_type::float_type);
abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
}
static unsigned
brw_rnd_mode_from_nir(unsigned mode, unsigned *mask)
{
unsigned brw_mode = 0;
*mask = 0;
if ((FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 |
FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 |
FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64) &
mode) {
brw_mode |= BRW_RND_MODE_RTZ << BRW_CR0_RND_MODE_SHIFT;
*mask |= BRW_CR0_RND_MODE_MASK;
}
if ((FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 |
FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32 |
FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64) &
mode) {
brw_mode |= BRW_RND_MODE_RTNE << BRW_CR0_RND_MODE_SHIFT;
*mask |= BRW_CR0_RND_MODE_MASK;
}
if (mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) {
brw_mode |= BRW_CR0_FP16_DENORM_PRESERVE;
*mask |= BRW_CR0_FP16_DENORM_PRESERVE;
}
if (mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) {
brw_mode |= BRW_CR0_FP32_DENORM_PRESERVE;
*mask |= BRW_CR0_FP32_DENORM_PRESERVE;
}
if (mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64) {
brw_mode |= BRW_CR0_FP64_DENORM_PRESERVE;
*mask |= BRW_CR0_FP64_DENORM_PRESERVE;
}
if (mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16)
*mask |= BRW_CR0_FP16_DENORM_PRESERVE;
if (mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32)
*mask |= BRW_CR0_FP32_DENORM_PRESERVE;
if (mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64)
*mask |= BRW_CR0_FP64_DENORM_PRESERVE;
if (mode == FLOAT_CONTROLS_DEFAULT_FLOAT_CONTROL_MODE)
*mask |= BRW_CR0_FP_MODE_MASK;
if (*mask != 0)
assert((*mask & brw_mode) == brw_mode);
return brw_mode;
}
void
fs_visitor::emit_shader_float_controls_execution_mode()
{
unsigned execution_mode = this->nir->info.float_controls_execution_mode;
if (execution_mode == FLOAT_CONTROLS_DEFAULT_FLOAT_CONTROL_MODE)
return;
fs_builder abld = bld.annotate("shader floats control execution mode");
unsigned mask, mode = brw_rnd_mode_from_nir(execution_mode, &mask);
if (mask == 0)
return;
abld.emit(SHADER_OPCODE_FLOAT_CONTROL_MODE, bld.null_reg_ud(),
brw_imm_d(mode), brw_imm_d(mask));
}
/** Emits the interpolation for the varying inputs. */
void
fs_visitor::emit_interpolation_setup_gfx6()
{
fs_builder abld = bld.annotate("compute pixel centers");
this->pixel_x = vgrf(glsl_type::float_type);
this->pixel_y = vgrf(glsl_type::float_type);
struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(prog_data);
fs_reg int_pixel_offset_x, int_pixel_offset_y; /* Used on Gen12HP+ */
fs_reg int_pixel_offset_xy; /* Used on Gen8+ */
fs_reg half_int_pixel_offset_x, half_int_pixel_offset_y;
if (!wm_prog_data->per_coarse_pixel_dispatch) {
/* The thread payload only delivers subspan locations (ss0, ss1,
* ss2, ...). Since subspans covers 2x2 pixels blocks, we need to
* generate 4 pixel coordinates out of each subspan location. We do this
* by replicating a subspan coordinate 4 times and adding an offset of 1
* in each direction from the initial top left (tl) location to generate
* top right (tr = +1 in x), bottom left (bl = +1 in y) and bottom right
* (br = +1 in x, +1 in y).
*
* The locations we build look like this in SIMD8 :
*
* ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
*
* The value 0x11001010 is a vector of 8 half byte vector. It adds
* following to generate the 4 pixels coordinates out of the subspan0:
*
* 0x
* 1 : ss0.y + 1 -> ss0.br.y
* 1 : ss0.y + 1 -> ss0.bl.y
* 0 : ss0.y + 0 -> ss0.tr.y
* 0 : ss0.y + 0 -> ss0.tl.y
* 1 : ss0.x + 1 -> ss0.br.x
* 0 : ss0.x + 0 -> ss0.bl.x
* 1 : ss0.x + 1 -> ss0.tr.x
* 0 : ss0.x + 0 -> ss0.tl.x
*
* By doing a SIMD16 add in a SIMD8 shader, we can generate the 8 pixels
* coordinates out of 2 subspans coordinates in a single ADD instruction
* (twice the operation above).
*/
int_pixel_offset_xy = fs_reg(brw_imm_v(0x11001010));
half_int_pixel_offset_x = fs_reg(brw_imm_uw(0));
half_int_pixel_offset_y = fs_reg(brw_imm_uw(0));
/* On Gfx12.5, because of regioning restrictions, the interpolation code
* is slightly different and works off X & Y only inputs. The ordering
* of the half bytes here is a bit odd, with each subspan replicated
* twice and every other element is discarded :
*
* ss0.tl ss0.tl ss0.tr ss0.tr ss0.bl ss0.bl ss0.br ss0.br
* X offset: 0 0 1 0 0 0 1 0
* Y offset: 0 0 0 0 1 0 1 0
*/
int_pixel_offset_x = fs_reg(brw_imm_v(0x01000100));
int_pixel_offset_y = fs_reg(brw_imm_v(0x01010000));
} else {
/* In coarse pixel dispatch we have to do the same ADD instruction that
* we do in normal per pixel dispatch, except this time we're not adding
* 1 in each direction, but instead the coarse pixel size.
*
* The coarse pixel size is delivered as 2 u8 in r1.0
*/
struct brw_reg r1_0 = retype(brw_vec1_reg(BRW_GENERAL_REGISTER_FILE, 1, 0), BRW_REGISTER_TYPE_UB);
const fs_builder dbld =
abld.exec_all().group(MIN2(16, dispatch_width) * 2, 0);
if (devinfo->verx10 >= 125) {
/* To build the array of half bytes we do and AND operation with the
* right mask in X.
*/
int_pixel_offset_x = dbld.vgrf(BRW_REGISTER_TYPE_UW);
dbld.AND(int_pixel_offset_x, byte_offset(r1_0, 0), brw_imm_v(0x0f000f00));
/* And the right mask in Y. */
int_pixel_offset_y = dbld.vgrf(BRW_REGISTER_TYPE_UW);
dbld.AND(int_pixel_offset_y, byte_offset(r1_0, 1), brw_imm_v(0x0f0f0000));
} else {
/* To build the array of half bytes we do and AND operation with the
* right mask in X.
*/
int_pixel_offset_x = dbld.vgrf(BRW_REGISTER_TYPE_UW);
dbld.AND(int_pixel_offset_x, byte_offset(r1_0, 0), brw_imm_v(0x0000f0f0));
/* And the right mask in Y. */
int_pixel_offset_y = dbld.vgrf(BRW_REGISTER_TYPE_UW);
dbld.AND(int_pixel_offset_y, byte_offset(r1_0, 1), brw_imm_v(0xff000000));
/* Finally OR the 2 registers. */
int_pixel_offset_xy = dbld.vgrf(BRW_REGISTER_TYPE_UW);
dbld.OR(int_pixel_offset_xy, int_pixel_offset_x, int_pixel_offset_y);
}
/* Also compute the half pixel size used to center pixels. */
half_int_pixel_offset_x = bld.vgrf(BRW_REGISTER_TYPE_UW);
half_int_pixel_offset_y = bld.vgrf(BRW_REGISTER_TYPE_UW);
bld.SHR(half_int_pixel_offset_x, suboffset(r1_0, 0), brw_imm_ud(1));
bld.SHR(half_int_pixel_offset_y, suboffset(r1_0, 1), brw_imm_ud(1));
}
for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i);
struct brw_reg gi_uw = retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UW);
if (devinfo->verx10 >= 125) {
const fs_builder dbld =
abld.exec_all().group(hbld.dispatch_width() * 2, 0);
const fs_reg int_pixel_x = dbld.vgrf(BRW_REGISTER_TYPE_UW);
const fs_reg int_pixel_y = dbld.vgrf(BRW_REGISTER_TYPE_UW);
dbld.ADD(int_pixel_x,
fs_reg(stride(suboffset(gi_uw, 4), 2, 8, 0)),
int_pixel_offset_x);
dbld.ADD(int_pixel_y,
fs_reg(stride(suboffset(gi_uw, 5), 2, 8, 0)),
int_pixel_offset_y);
if (wm_prog_data->per_coarse_pixel_dispatch) {
dbld.ADD(int_pixel_x, int_pixel_x,
horiz_stride(half_int_pixel_offset_x, 0));
dbld.ADD(int_pixel_y, int_pixel_y,
horiz_stride(half_int_pixel_offset_y, 0));
}
hbld.MOV(offset(pixel_x, hbld, i), horiz_stride(int_pixel_x, 2));
hbld.MOV(offset(pixel_y, hbld, i), horiz_stride(int_pixel_y, 2));
} else if (devinfo->ver >= 8 || dispatch_width == 8) {
/* The "Register Region Restrictions" page says for BDW (and newer,
* presumably):
*
* "When destination spans two registers, the source may be one or
* two registers. The destination elements must be evenly split
* between the two registers."
*
* Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16
* to compute our pixel centers.
*/
const fs_builder dbld =
abld.exec_all().group(hbld.dispatch_width() * 2, 0);
fs_reg int_pixel_xy = dbld.vgrf(BRW_REGISTER_TYPE_UW);
dbld.ADD(int_pixel_xy,
fs_reg(stride(suboffset(gi_uw, 4), 1, 4, 0)),
int_pixel_offset_xy);
hbld.emit(FS_OPCODE_PIXEL_X, offset(pixel_x, hbld, i), int_pixel_xy,
horiz_stride(half_int_pixel_offset_x, 0));
hbld.emit(FS_OPCODE_PIXEL_Y, offset(pixel_y, hbld, i), int_pixel_xy,
horiz_stride(half_int_pixel_offset_y, 0));
} else {
/* The "Register Region Restrictions" page says for SNB, IVB, HSW:
*
* "When destination spans two registers, the source MUST span
* two registers."
*
* Since the GRF source of the ADD will only read a single register,
* we must do two separate ADDs in SIMD16.
*/
const fs_reg int_pixel_x = hbld.vgrf(BRW_REGISTER_TYPE_UW);
const fs_reg int_pixel_y = hbld.vgrf(BRW_REGISTER_TYPE_UW);
hbld.ADD(int_pixel_x,
fs_reg(stride(suboffset(gi_uw, 4), 2, 4, 0)),
fs_reg(brw_imm_v(0x10101010)));
hbld.ADD(int_pixel_y,
fs_reg(stride(suboffset(gi_uw, 5), 2, 4, 0)),
fs_reg(brw_imm_v(0x11001100)));
/* As of gfx6, we can no longer mix float and int sources. We have
* to turn the integer pixel centers into floats for their actual
* use.
*/
hbld.MOV(offset(pixel_x, hbld, i), int_pixel_x);
hbld.MOV(offset(pixel_y, hbld, i), int_pixel_y);
}
}
abld = bld.annotate("compute pos.z");
if (wm_prog_data->uses_depth_w_coefficients) {
assert(!wm_prog_data->uses_src_depth);
/* In coarse pixel mode, the HW doesn't interpolate Z coordinate
* properly. In the same way we have to add the coarse pixel size to
* pixels locations, here we recompute the Z value with 2 coefficients
* in X & Y axis.
*/
fs_reg coef_payload = fetch_payload_reg(abld, payload.depth_w_coef_reg, BRW_REGISTER_TYPE_F);
const fs_reg x_start = brw_vec1_grf(coef_payload.nr, 2);
const fs_reg y_start = brw_vec1_grf(coef_payload.nr, 6);
const fs_reg z_cx = brw_vec1_grf(coef_payload.nr, 1);
const fs_reg z_cy = brw_vec1_grf(coef_payload.nr, 0);
const fs_reg z_c0 = brw_vec1_grf(coef_payload.nr, 3);
const fs_reg float_pixel_x = abld.vgrf(BRW_REGISTER_TYPE_F);
const fs_reg float_pixel_y = abld.vgrf(BRW_REGISTER_TYPE_F);
abld.ADD(float_pixel_x, this->pixel_x, negate(x_start));
abld.ADD(float_pixel_y, this->pixel_y, negate(y_start));
/* r1.0 - 0:7 ActualCoarsePixelShadingSize.X */
const fs_reg u8_cps_width = fs_reg(retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UB));
/* r1.0 - 15:8 ActualCoarsePixelShadingSize.Y */
const fs_reg u8_cps_height = byte_offset(u8_cps_width, 1);
const fs_reg u32_cps_width = abld.vgrf(BRW_REGISTER_TYPE_UD);
const fs_reg u32_cps_height = abld.vgrf(BRW_REGISTER_TYPE_UD);
abld.MOV(u32_cps_width, u8_cps_width);
abld.MOV(u32_cps_height, u8_cps_height);
const fs_reg f_cps_width = abld.vgrf(BRW_REGISTER_TYPE_F);
const fs_reg f_cps_height = abld.vgrf(BRW_REGISTER_TYPE_F);
abld.MOV(f_cps_width, u32_cps_width);
abld.MOV(f_cps_height, u32_cps_height);
/* Center in the middle of the coarse pixel. */
abld.MAD(float_pixel_x, float_pixel_x, brw_imm_f(0.5f), f_cps_width);
abld.MAD(float_pixel_y, float_pixel_y, brw_imm_f(0.5f), f_cps_height);
this->pixel_z = abld.vgrf(BRW_REGISTER_TYPE_F);
abld.MAD(this->pixel_z, z_c0, z_cx, float_pixel_x);
abld.MAD(this->pixel_z, this->pixel_z, z_cy, float_pixel_y);
}
if (wm_prog_data->uses_src_depth) {
assert(!wm_prog_data->uses_depth_w_coefficients);
this->pixel_z = fetch_payload_reg(bld, payload.source_depth_reg);
}
if (wm_prog_data->uses_src_w) {
abld = bld.annotate("compute pos.w");
this->pixel_w = fetch_payload_reg(abld, payload.source_w_reg);
this->wpos_w = vgrf(glsl_type::float_type);
abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
}
for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
this->delta_xy[i] = fetch_barycentric_reg(
bld, payload.barycentric_coord_reg[i]);
}
uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes &
(1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID |
1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
if (devinfo->needs_unlit_centroid_workaround && centroid_modes) {
/* Get the pixel/sample mask into f0 so that we know which
* pixels are lit. Then, for each channel that is unlit,
* replace the centroid data with non-centroid data.
*/
for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
bld.exec_all().group(1, 0)
.MOV(retype(brw_flag_reg(0, i), BRW_REGISTER_TYPE_UW),
retype(brw_vec1_grf(1 + i, 7), BRW_REGISTER_TYPE_UW));
}
for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
if (!(centroid_modes & (1 << i)))
continue;
const fs_reg centroid_delta_xy = delta_xy[i];
const fs_reg &pixel_delta_xy = delta_xy[i - 1];
delta_xy[i] = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
for (unsigned c = 0; c < 2; c++) {
for (unsigned q = 0; q < dispatch_width / 8; q++) {
set_predicate(BRW_PREDICATE_NORMAL,
bld.quarter(q).SEL(
quarter(offset(delta_xy[i], bld, c), q),
quarter(offset(centroid_delta_xy, bld, c), q),
quarter(offset(pixel_delta_xy, bld, c), q)));
}
}
}
}
}
static enum brw_conditional_mod
cond_for_alpha_func(enum compare_func func)
{
switch(func) {
case COMPARE_FUNC_GREATER:
return BRW_CONDITIONAL_G;
case COMPARE_FUNC_GEQUAL:
return BRW_CONDITIONAL_GE;
case COMPARE_FUNC_LESS:
return BRW_CONDITIONAL_L;
case COMPARE_FUNC_LEQUAL:
return BRW_CONDITIONAL_LE;
case COMPARE_FUNC_EQUAL:
return BRW_CONDITIONAL_EQ;
case COMPARE_FUNC_NOTEQUAL:
return BRW_CONDITIONAL_NEQ;
default:
unreachable("Not reached");
}
}
/**
* Alpha test support for when we compile it into the shader instead
* of using the normal fixed-function alpha test.
*/
void
fs_visitor::emit_alpha_test()
{
assert(stage == MESA_SHADER_FRAGMENT);
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
const fs_builder abld = bld.annotate("Alpha test");
fs_inst *cmp;
if (key->alpha_test_func == COMPARE_FUNC_ALWAYS)
return;
if (key->alpha_test_func == COMPARE_FUNC_NEVER) {
/* f0.1 = 0 */
fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
BRW_REGISTER_TYPE_UW));
cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
BRW_CONDITIONAL_NEQ);
} else {
/* RT0 alpha */
fs_reg color = offset(outputs[0], bld, 3);
/* f0.1 &= func(color, ref) */
cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
cond_for_alpha_func(key->alpha_test_func));
}
cmp->predicate = BRW_PREDICATE_NORMAL;
cmp->flag_subreg = 1;
}
fs_inst *
fs_visitor::emit_single_fb_write(const fs_builder &bld,
fs_reg color0, fs_reg color1,
fs_reg src0_alpha, unsigned components)
{
assert(stage == MESA_SHADER_FRAGMENT);
struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
/* Hand over gl_FragDepth or the payload depth. */
const fs_reg dst_depth = fetch_payload_reg(bld, payload.dest_depth_reg);
fs_reg src_depth, src_stencil;
if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
src_depth = frag_depth;
} else if (source_depth_to_render_target) {
/* If we got here, we're in one of those strange Gen4-5 cases where
* we're forced to pass the source depth, unmodified, to the FB write.
* In this case, we don't want to use pixel_z because we may not have
* set up interpolation. It's also perfectly safe because it only
* happens on old hardware (no coarse interpolation) and this is
* explicitly the pass-through case.
*/
assert(devinfo->ver <= 5);
src_depth = fetch_payload_reg(bld, payload.source_depth_reg);
}
if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
src_stencil = frag_stencil;
const fs_reg sources[] = {
color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
(prog_data->uses_omask ? sample_mask : fs_reg()),
brw_imm_ud(components)
};
assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
sources, ARRAY_SIZE(sources));
if (prog_data->uses_kill) {
write->predicate = BRW_PREDICATE_NORMAL;
write->flag_subreg = sample_mask_flag_subreg(this);
}
return write;
}
void
fs_visitor::emit_fb_writes()
{
assert(stage == MESA_SHADER_FRAGMENT);
struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
fs_inst *inst = NULL;
if (source_depth_to_render_target && devinfo->ver == 6) {
/* For outputting oDepth on gfx6, SIMD8 writes have to be used. This
* would require SIMD8 moves of each half to message regs, e.g. by using
* the SIMD lowering pass. Unfortunately this is more difficult than it
* sounds because the SIMD8 single-source message lacks channel selects
* for the second and third subspans.
*/
limit_dispatch_width(8, "Depth writes unsupported in SIMD16+ mode.\n");
}
if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
/* From the 'Render Target Write message' section of the docs:
* "Output Stencil is not supported with SIMD16 Render Target Write
* Messages."
*/
limit_dispatch_width(8, "gl_FragStencilRefARB unsupported "
"in SIMD16+ mode.\n");
}
/* ANV doesn't know about sample mask output during the wm key creation
* so we compute if we need replicate alpha and emit alpha to coverage
* workaround here.
*/
const bool replicate_alpha = key->alpha_test_replicate_alpha ||
(key->nr_color_regions > 1 && key->alpha_to_coverage &&
(sample_mask.file == BAD_FILE || devinfo->ver == 6));
for (int target = 0; target < key->nr_color_regions; target++) {
/* Skip over outputs that weren't written. */
if (this->outputs[target].file == BAD_FILE)
continue;
const fs_builder abld = bld.annotate(
ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
fs_reg src0_alpha;
if (devinfo->ver >= 6 && replicate_alpha && target != 0)
src0_alpha = offset(outputs[0], bld, 3);
inst = emit_single_fb_write(abld, this->outputs[target],
this->dual_src_output, src0_alpha, 4);
inst->target = target;
}
prog_data->dual_src_blend = (this->dual_src_output.file != BAD_FILE &&
this->outputs[0].file != BAD_FILE);
assert(!prog_data->dual_src_blend || key->nr_color_regions == 1);
if (inst == NULL) {
/* Even if there's no color buffers enabled, we still need to send
* alpha out the pipeline to our null renderbuffer to support
* alpha-testing, alpha-to-coverage, and so on.
*/
/* FINISHME: Factor out this frequently recurring pattern into a
* helper function.
*/
const fs_reg srcs[] = { reg_undef, reg_undef,
reg_undef, offset(this->outputs[0], bld, 3) };
const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
inst->target = 0;
}
inst->last_rt = true;
inst->eot = true;
if (devinfo->ver >= 11 && devinfo->ver <= 12 &&
prog_data->dual_src_blend) {
/* The dual-source RT write messages fail to release the thread
* dependency on ICL and TGL with SIMD32 dispatch, leading to hangs.
*
* XXX - Emit an extra single-source NULL RT-write marked LastRT in
* order to release the thread dependency without disabling
* SIMD32.
*
* The dual-source RT write messages may lead to hangs with SIMD16
* dispatch on ICL due some unknown reasons, see
* https://gitlab.freedesktop.org/mesa/mesa/-/issues/2183
*/
limit_dispatch_width(8, "Dual source blending unsupported "
"in SIMD16 and SIMD32 modes.\n");
}
}
void
fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
{
int slot, urb_offset, length;
int starting_urb_offset = 0;
const struct brw_vue_prog_data *vue_prog_data =
brw_vue_prog_data(this->prog_data);
const struct brw_vs_prog_key *vs_key =
(const struct brw_vs_prog_key *) this->key;
const GLbitfield64 psiz_mask =
VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ | VARYING_BIT_PRIMITIVE_SHADING_RATE;
const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
bool flush;
fs_reg sources[8];
fs_reg urb_handle;
if (stage == MESA_SHADER_TESS_EVAL)
urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
else
urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
int header_size = 1;
fs_reg per_slot_offsets;
if (stage == MESA_SHADER_GEOMETRY) {
const struct brw_gs_prog_data *gs_prog_data =
brw_gs_prog_data(this->prog_data);
/* We need to increment the Global Offset to skip over the control data
* header and the extra "Vertex Count" field (1 HWord) at the beginning
* of the VUE. We're counting in OWords, so the units are doubled.
*/
starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
if (gs_prog_data->static_vertex_count == -1)
starting_urb_offset += 2;
/* We also need to use per-slot offsets. The per-slot offset is the
* Vertex Count. SIMD8 mode processes 8 different primitives at a
* time; each may output a different number of vertices.
*/
header_size++;
/* The URB offset is in 128-bit units, so we need to multiply by 2 */
const int output_vertex_size_owords =
gs_prog_data->output_vertex_size_hwords * 2;
if (gs_vertex_count.file == IMM) {
per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
gs_vertex_count.ud);
} else {
per_slot_offsets = vgrf(glsl_type::uint_type);
bld.MUL(per_slot_offsets, gs_vertex_count,
brw_imm_ud(output_vertex_size_owords));
}
}
length = 0;
urb_offset = starting_urb_offset;
flush = false;
/* SSO shaders can have VUE slots allocated which are never actually
* written to, so ignore them when looking for the last (written) slot.
*/
int last_slot = vue_map->num_slots - 1;
while (last_slot > 0 &&
(vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD ||
outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) {
last_slot--;
}
bool urb_written = false;
for (slot = 0; slot < vue_map->num_slots; slot++) {
int varying = vue_map->slot_to_varying[slot];
switch (varying) {
case VARYING_SLOT_PSIZ: {
/* The point size varying slot is the vue header and is always in the
* vue map. But often none of the special varyings that live there
* are written and in that case we can skip writing to the vue
* header, provided the corresponding state properly clamps the
* values further down the pipeline. */
if ((vue_map->slots_valid & psiz_mask) == 0) {
assert(length == 0);
urb_offset++;
break;
}
fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
bld.MOV(zero, brw_imm_ud(0u));
if (vue_map->slots_valid & VARYING_BIT_PRIMITIVE_SHADING_RATE &&
this->outputs[VARYING_SLOT_PRIMITIVE_SHADING_RATE].file != BAD_FILE) {
sources[length++] = this->outputs[VARYING_SLOT_PRIMITIVE_SHADING_RATE];
} else if (devinfo->has_coarse_pixel_primitive_and_cb) {
uint32_t one_fp16 = 0x3C00;
fs_reg one_by_one_fp16(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
bld.MOV(one_by_one_fp16, brw_imm_ud((one_fp16 << 16) | one_fp16));
sources[length++] = one_by_one_fp16;
} else {
sources[length++] = zero;
}
if (vue_map->slots_valid & VARYING_BIT_LAYER)
sources[length++] = this->outputs[VARYING_SLOT_LAYER];
else
sources[length++] = zero;
if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
else
sources[length++] = zero;
if (vue_map->slots_valid & VARYING_BIT_PSIZ)
sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
else
sources[length++] = zero;
break;
}
case BRW_VARYING_SLOT_NDC:
case VARYING_SLOT_EDGE:
unreachable("unexpected scalar vs output");
break;
default:
/* gl_Position is always in the vue map, but isn't always written by
* the shader. Other varyings (clip distances) get added to the vue
* map but don't always get written. In those cases, the
* corresponding this->output[] slot will be invalid we and can skip
* the urb write for the varying. If we've already queued up a vue
* slot for writing we flush a mlen 5 urb write, otherwise we just
* advance the urb_offset.
*/
if (varying == BRW_VARYING_SLOT_PAD ||
this->outputs[varying].file == BAD_FILE) {
if (length > 0)
flush = true;
else
urb_offset++;
break;
}
if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
(varying == VARYING_SLOT_COL0 ||
varying == VARYING_SLOT_COL1 ||
varying == VARYING_SLOT_BFC0 ||
varying == VARYING_SLOT_BFC1)) {
/* We need to clamp these guys, so do a saturating MOV into a
* temp register and use that for the payload.
*/
for (int i = 0; i < 4; i++) {
fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
fs_reg src = offset(this->outputs[varying], bld, i);
set_saturate(true, bld.MOV(reg, src));
sources[length++] = reg;
}
} else {
int slot_offset = 0;
/* When using Primitive Replication, there may be multiple slots
* assigned to POS.
*/
if (varying == VARYING_SLOT_POS)
slot_offset = slot - vue_map->varying_to_slot[VARYING_SLOT_POS];
for (unsigned i = 0; i < 4; i++) {
sources[length++] = offset(this->outputs[varying], bld,
i + (slot_offset * 4));
}
}
break;
}
const fs_builder abld = bld.annotate("URB write");
/* If we've queued up 8 registers of payload (2 VUE slots), if this is
* the last slot or if we need to flush (see BAD_FILE varying case
* above), emit a URB write send now to flush out the data.
*/
if (length == 8 || (length > 0 && slot == last_slot))
flush = true;
if (flush) {
fs_reg srcs[URB_LOGICAL_NUM_SRCS];
srcs[URB_LOGICAL_SRC_HANDLE] = urb_handle;
srcs[URB_LOGICAL_SRC_PER_SLOT_OFFSETS] = per_slot_offsets;
srcs[URB_LOGICAL_SRC_DATA] = fs_reg(VGRF, alloc.allocate(length),
BRW_REGISTER_TYPE_F);
abld.LOAD_PAYLOAD(srcs[URB_LOGICAL_SRC_DATA], sources, length, 0);
fs_inst *inst = abld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
srcs, ARRAY_SIZE(srcs));
/* For ICL Wa_1805992985 one needs additional write in the end. */
if (devinfo->ver == 11 && stage == MESA_SHADER_TESS_EVAL)
inst->eot = false;
else
inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY;
inst->mlen = length + header_size;
inst->offset = urb_offset;
urb_offset = starting_urb_offset + slot + 1;
length = 0;
flush = false;
urb_written = true;
}
}
/* If we don't have any valid slots to write, just do a minimal urb write
* send to terminate the shader. This includes 1 slot of undefined data,
* because it's invalid to write 0 data:
*
* From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
* Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
* Write Data Payload:
*
* "The write data payload can be between 1 and 8 message phases long."
*/
if (!urb_written) {
/* For GS, just turn EmitVertex() into a no-op. We don't want it to
* end the thread, and emit_gs_thread_end() already emits a SEND with
* EOT at the end of the program for us.
*/
if (stage == MESA_SHADER_GEOMETRY)
return;
fs_reg uniform_urb_handle = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
bld.exec_all().MOV(uniform_urb_handle, urb_handle);
fs_reg srcs[URB_LOGICAL_NUM_SRCS];
srcs[URB_LOGICAL_SRC_HANDLE] = uniform_urb_handle;
srcs[URB_LOGICAL_SRC_DATA] = payload;
fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
srcs, ARRAY_SIZE(srcs));
inst->eot = true;
inst->mlen = 2;
inst->offset = 1;
return;
}
/* ICL Wa_1805992985:
*
* ICLLP GPU hangs on one of tessellation vkcts tests with DS not done. The
* send cycle, which is a urb write with an eot must be 4 phases long and
* all 8 lanes must valid.
*/
if (devinfo->ver == 11 && stage == MESA_SHADER_TESS_EVAL) {
fs_reg uniform_urb_handle = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
fs_reg uniform_mask = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
fs_reg payload = fs_reg(VGRF, alloc.allocate(4), BRW_REGISTER_TYPE_UD);
/* Workaround requires all 8 channels (lanes) to be valid. This is
* understood to mean they all need to be alive. First trick is to find
* a live channel and copy its urb handle for all the other channels to
* make sure all handles are valid.
*/
bld.exec_all().MOV(uniform_urb_handle, bld.emit_uniformize(urb_handle));
/* Second trick is to use masked URB write where one can tell the HW to
* actually write data only for selected channels even though all are
* active.
* Third trick is to take advantage of the must-be-zero (MBZ) area in
* the very beginning of the URB.
*
* One masks data to be written only for the first channel and uses
* offset zero explicitly to land data to the MBZ area avoiding trashing
* any other part of the URB.
*
* Since the WA says that the write needs to be 4 phases long one uses
* 4 slots data. All are explicitly zeros in order to to keep the MBZ
* area written as zeros.
*/
bld.exec_all().MOV(uniform_mask, brw_imm_ud(0x10000u));
bld.exec_all().MOV(offset(payload, bld, 0), brw_imm_ud(0u));
bld.exec_all().MOV(offset(payload, bld, 1), brw_imm_ud(0u));
bld.exec_all().MOV(offset(payload, bld, 2), brw_imm_ud(0u));
bld.exec_all().MOV(offset(payload, bld, 3), brw_imm_ud(0u));
fs_reg srcs[URB_LOGICAL_NUM_SRCS];
srcs[URB_LOGICAL_SRC_HANDLE] = uniform_urb_handle;
srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = uniform_mask;
srcs[URB_LOGICAL_SRC_DATA] = payload;
fs_inst *inst = bld.exec_all().emit(SHADER_OPCODE_URB_WRITE_LOGICAL,
reg_undef, srcs, ARRAY_SIZE(srcs));
inst->eot = true;
inst->mlen = 6;
inst->offset = 0;
}
}
void
fs_visitor::emit_cs_terminate()
{
assert(devinfo->ver >= 7);
/* We can't directly send from g0, since sends with EOT have to use
* g112-127. So, copy it to a virtual register, The register allocator will
* make sure it uses the appropriate register range.
*/
struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
bld.group(8, 0).exec_all().MOV(payload, g0);
/* Send a message to the thread spawner to terminate the thread. */
fs_inst *inst = bld.exec_all()
.emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
inst->eot = true;
}
void
fs_visitor::emit_barrier()
{
/* We are getting the barrier ID from the compute shader header */
assert(gl_shader_stage_uses_workgroup(stage));
fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
/* Clear the message payload */
bld.exec_all().group(8, 0).MOV(payload, brw_imm_ud(0u));
if (devinfo->verx10 >= 125) {
/* mov r0.2[31:24] into m0.2[31:24] and m0.2[23:16] */
fs_reg m0_10ub = component(retype(payload, BRW_REGISTER_TYPE_UB), 10);
fs_reg r0_11ub =
stride(suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UB), 11),
0, 1, 0);
bld.exec_all().group(2, 0).MOV(m0_10ub, r0_11ub);
} else {
assert(gl_shader_stage_is_compute(stage));
uint32_t barrier_id_mask;
switch (devinfo->ver) {
case 7:
case 8:
barrier_id_mask = 0x0f000000u; break;
case 9:
barrier_id_mask = 0x8f000000u; break;
case 11:
case 12:
barrier_id_mask = 0x7f000000u; break;
default:
unreachable("barrier is only available on gen >= 7");
}
/* Copy the barrier id from r0.2 to the message payload reg.2 */
fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
bld.exec_all().group(1, 0).AND(component(payload, 2), r0_2,
brw_imm_ud(barrier_id_mask));
}
/* Emit a gateway "barrier" message using the payload we set up, followed
* by a wait instruction.
*/
bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
}
fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
void *mem_ctx,
const brw_base_prog_key *key,
struct brw_stage_prog_data *prog_data,
const nir_shader *shader,
unsigned dispatch_width,
bool debug_enabled)
: backend_shader(compiler, log_data, mem_ctx, shader, prog_data,
debug_enabled),
key(key), gs_compile(NULL), prog_data(prog_data),
live_analysis(this), regpressure_analysis(this),
performance_analysis(this),
dispatch_width(dispatch_width),
bld(fs_builder(this, dispatch_width).at_end())
{
init();
}
fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
void *mem_ctx,
struct brw_gs_compile *c,
struct brw_gs_prog_data *prog_data,
const nir_shader *shader,
bool debug_enabled)
: backend_shader(compiler, log_data, mem_ctx, shader,
&prog_data->base.base, debug_enabled),
key(&c->key.base), gs_compile(c),
prog_data(&prog_data->base.base),
live_analysis(this), regpressure_analysis(this),
performance_analysis(this),
dispatch_width(8),
bld(fs_builder(this, dispatch_width).at_end())
{
init();
}
void
fs_visitor::init()
{
if (key)
this->key_tex = &key->tex;
else
this->key_tex = NULL;
this->max_dispatch_width = 32;
this->prog_data = this->stage_prog_data;
this->failed = false;
this->fail_msg = NULL;
this->nir_locals = NULL;
this->nir_ssa_values = NULL;
this->nir_system_values = NULL;
memset(&this->payload, 0, sizeof(this->payload));
this->source_depth_to_render_target = false;
this->runtime_check_aads_emit = false;
this->first_non_payload_grf = 0;
this->max_grf = devinfo->ver >= 7 ? GFX7_MRF_HACK_START : BRW_MAX_GRF;
this->uniforms = 0;
this->last_scratch = 0;
this->push_constant_loc = NULL;
this->shader_stats.scheduler_mode = NULL;
this->shader_stats.promoted_constants = 0,
this->shader_stats.spill_count = 0,
this->shader_stats.fill_count = 0,
this->grf_used = 0;
this->spilled_any_registers = false;
}
fs_visitor::~fs_visitor()
{
}