mesa/src/intel/perf/intel_perf.c

1430 lines
48 KiB
C

/*
* Copyright © 2018 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <dirent.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#ifndef HAVE_DIRENT_D_TYPE
#include <limits.h> // PATH_MAX
#endif
#include <drm-uapi/i915_drm.h>
#include "common/intel_gem.h"
#include "dev/intel_debug.h"
#include "dev/intel_device_info.h"
#include "perf/intel_perf.h"
#include "perf/intel_perf_regs.h"
#include "perf/intel_perf_mdapi.h"
#include "perf/intel_perf_metrics.h"
#include "perf/intel_perf_private.h"
#include "util/bitscan.h"
#include "util/macros.h"
#include "util/mesa-sha1.h"
#include "util/u_math.h"
#define FILE_DEBUG_FLAG DEBUG_PERFMON
static bool
is_dir_or_link(const struct dirent *entry, const char *parent_dir)
{
#ifdef HAVE_DIRENT_D_TYPE
return entry->d_type == DT_DIR || entry->d_type == DT_LNK;
#else
struct stat st;
char path[PATH_MAX + 1];
snprintf(path, sizeof(path), "%s/%s", parent_dir, entry->d_name);
lstat(path, &st);
return S_ISDIR(st.st_mode) || S_ISLNK(st.st_mode);
#endif
}
static bool
get_sysfs_dev_dir(struct intel_perf_config *perf, int fd)
{
struct stat sb;
int min, maj;
DIR *drmdir;
struct dirent *drm_entry;
int len;
perf->sysfs_dev_dir[0] = '\0';
if (INTEL_DEBUG(DEBUG_NO_OACONFIG))
return true;
if (fstat(fd, &sb)) {
DBG("Failed to stat DRM fd\n");
return false;
}
maj = major(sb.st_rdev);
min = minor(sb.st_rdev);
if (!S_ISCHR(sb.st_mode)) {
DBG("DRM fd is not a character device as expected\n");
return false;
}
len = snprintf(perf->sysfs_dev_dir,
sizeof(perf->sysfs_dev_dir),
"/sys/dev/char/%d:%d/device/drm", maj, min);
if (len < 0 || len >= sizeof(perf->sysfs_dev_dir)) {
DBG("Failed to concatenate sysfs path to drm device\n");
return false;
}
drmdir = opendir(perf->sysfs_dev_dir);
if (!drmdir) {
DBG("Failed to open %s: %m\n", perf->sysfs_dev_dir);
return false;
}
while ((drm_entry = readdir(drmdir))) {
if (is_dir_or_link(drm_entry, perf->sysfs_dev_dir) &&
strncmp(drm_entry->d_name, "card", 4) == 0)
{
len = snprintf(perf->sysfs_dev_dir,
sizeof(perf->sysfs_dev_dir),
"/sys/dev/char/%d:%d/device/drm/%s",
maj, min, drm_entry->d_name);
closedir(drmdir);
if (len < 0 || len >= sizeof(perf->sysfs_dev_dir))
return false;
else
return true;
}
}
closedir(drmdir);
DBG("Failed to find cardX directory under /sys/dev/char/%d:%d/device/drm\n",
maj, min);
return false;
}
static bool
read_file_uint64(const char *file, uint64_t *val)
{
char buf[32];
int fd, n;
fd = open(file, 0);
if (fd < 0)
return false;
while ((n = read(fd, buf, sizeof (buf) - 1)) < 0 &&
errno == EINTR);
close(fd);
if (n < 0)
return false;
buf[n] = '\0';
*val = strtoull(buf, NULL, 0);
return true;
}
static bool
read_sysfs_drm_device_file_uint64(struct intel_perf_config *perf,
const char *file,
uint64_t *value)
{
char buf[512];
int len;
len = snprintf(buf, sizeof(buf), "%s/%s", perf->sysfs_dev_dir, file);
if (len < 0 || len >= sizeof(buf)) {
DBG("Failed to concatenate sys filename to read u64 from\n");
return false;
}
return read_file_uint64(buf, value);
}
static void
register_oa_config(struct intel_perf_config *perf,
const struct intel_device_info *devinfo,
const struct intel_perf_query_info *query,
uint64_t config_id)
{
struct intel_perf_query_info *registered_query =
intel_perf_append_query_info(perf, 0);
*registered_query = *query;
registered_query->oa_metrics_set_id = config_id;
DBG("metric set registered: id = %" PRIu64", guid = %s\n",
registered_query->oa_metrics_set_id, query->guid);
}
static void
enumerate_sysfs_metrics(struct intel_perf_config *perf,
const struct intel_device_info *devinfo)
{
DIR *metricsdir = NULL;
struct dirent *metric_entry;
char buf[256];
int len;
len = snprintf(buf, sizeof(buf), "%s/metrics", perf->sysfs_dev_dir);
if (len < 0 || len >= sizeof(buf)) {
DBG("Failed to concatenate path to sysfs metrics/ directory\n");
return;
}
metricsdir = opendir(buf);
if (!metricsdir) {
DBG("Failed to open %s: %m\n", buf);
return;
}
while ((metric_entry = readdir(metricsdir))) {
struct hash_entry *entry;
if (!is_dir_or_link(metric_entry, buf) ||
metric_entry->d_name[0] == '.')
continue;
DBG("metric set: %s\n", metric_entry->d_name);
entry = _mesa_hash_table_search(perf->oa_metrics_table,
metric_entry->d_name);
if (entry) {
uint64_t id;
if (!intel_perf_load_metric_id(perf, metric_entry->d_name, &id)) {
DBG("Failed to read metric set id from %s: %m", buf);
continue;
}
register_oa_config(perf, devinfo,
(const struct intel_perf_query_info *)entry->data, id);
} else
DBG("metric set not known by mesa (skipping)\n");
}
closedir(metricsdir);
}
static void
add_all_metrics(struct intel_perf_config *perf,
const struct intel_device_info *devinfo)
{
hash_table_foreach(perf->oa_metrics_table, entry) {
const struct intel_perf_query_info *query = entry->data;
register_oa_config(perf, devinfo, query, 0);
}
}
static bool
kernel_has_dynamic_config_support(struct intel_perf_config *perf, int fd)
{
uint64_t invalid_config_id = UINT64_MAX;
return intel_ioctl(fd, DRM_IOCTL_I915_PERF_REMOVE_CONFIG,
&invalid_config_id) < 0 && errno == ENOENT;
}
static bool
i915_query_perf_config_supported(struct intel_perf_config *perf, int fd)
{
int32_t length = 0;
return !intel_i915_query_flags(fd, DRM_I915_QUERY_PERF_CONFIG,
DRM_I915_QUERY_PERF_CONFIG_LIST,
NULL, &length);
}
static bool
i915_query_perf_config_data(struct intel_perf_config *perf,
int fd, const char *guid,
struct drm_i915_perf_oa_config *config)
{
char data[sizeof(struct drm_i915_query_perf_config) +
sizeof(struct drm_i915_perf_oa_config)] = {};
struct drm_i915_query_perf_config *query = (void *)data;
memcpy(query->uuid, guid, sizeof(query->uuid));
memcpy(query->data, config, sizeof(*config));
int32_t item_length = sizeof(data);
if (intel_i915_query_flags(fd, DRM_I915_QUERY_PERF_CONFIG,
DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID,
query, &item_length))
return false;
memcpy(config, query->data, sizeof(*config));
return true;
}
bool
intel_perf_load_metric_id(struct intel_perf_config *perf_cfg,
const char *guid,
uint64_t *metric_id)
{
char config_path[280];
snprintf(config_path, sizeof(config_path), "%s/metrics/%s/id",
perf_cfg->sysfs_dev_dir, guid);
/* Don't recreate already loaded configs. */
return read_file_uint64(config_path, metric_id);
}
static uint64_t
i915_add_config(struct intel_perf_config *perf, int fd,
const struct intel_perf_registers *config,
const char *guid)
{
struct drm_i915_perf_oa_config i915_config = { 0, };
memcpy(i915_config.uuid, guid, sizeof(i915_config.uuid));
i915_config.n_mux_regs = config->n_mux_regs;
i915_config.mux_regs_ptr = to_const_user_pointer(config->mux_regs);
i915_config.n_boolean_regs = config->n_b_counter_regs;
i915_config.boolean_regs_ptr = to_const_user_pointer(config->b_counter_regs);
i915_config.n_flex_regs = config->n_flex_regs;
i915_config.flex_regs_ptr = to_const_user_pointer(config->flex_regs);
int ret = intel_ioctl(fd, DRM_IOCTL_I915_PERF_ADD_CONFIG, &i915_config);
return ret > 0 ? ret : 0;
}
static void
init_oa_configs(struct intel_perf_config *perf, int fd,
const struct intel_device_info *devinfo)
{
hash_table_foreach(perf->oa_metrics_table, entry) {
const struct intel_perf_query_info *query = entry->data;
uint64_t config_id;
if (intel_perf_load_metric_id(perf, query->guid, &config_id)) {
DBG("metric set: %s (already loaded)\n", query->guid);
register_oa_config(perf, devinfo, query, config_id);
continue;
}
int ret = i915_add_config(perf, fd, &query->config, query->guid);
if (ret < 0) {
DBG("Failed to load \"%s\" (%s) metrics set in kernel: %s\n",
query->name, query->guid, strerror(errno));
continue;
}
register_oa_config(perf, devinfo, query, ret);
DBG("metric set: %s (added)\n", query->guid);
}
}
static void
compute_topology_builtins(struct intel_perf_config *perf)
{
const struct intel_device_info *devinfo = &perf->devinfo;
perf->sys_vars.slice_mask = devinfo->slice_masks;
perf->sys_vars.n_eu_slices = devinfo->num_slices;
perf->sys_vars.n_eu_slice0123 = 0;
for (int s = 0; s < MIN2(4, devinfo->max_slices); s++) {
if (!intel_device_info_slice_available(devinfo, s))
continue;
for (int ss = 0; ss < devinfo->max_subslices_per_slice; ss++) {
if (!intel_device_info_subslice_available(devinfo, s, ss))
continue;
for (int eu = 0; eu < devinfo->max_eus_per_subslice; eu++) {
if (intel_device_info_eu_available(devinfo, s, ss, eu))
perf->sys_vars.n_eu_slice0123++;
}
}
}
for (int i = 0; i < sizeof(devinfo->subslice_masks[i]); i++) {
perf->sys_vars.n_eu_sub_slices +=
util_bitcount(devinfo->subslice_masks[i]);
}
for (int i = 0; i < sizeof(devinfo->eu_masks); i++)
perf->sys_vars.n_eus += util_bitcount(devinfo->eu_masks[i]);
/* The subslice mask builtin contains bits for all slices. Prior to Gfx11
* it had groups of 3bits for each slice, on Gfx11 and above it's 8bits for
* each slice.
*
* Ideally equations would be updated to have a slice/subslice query
* function/operator.
*/
perf->sys_vars.subslice_mask = 0;
int bits_per_subslice = devinfo->ver >= 11 ? 8 : 3;
for (int s = 0; s < util_last_bit(devinfo->slice_masks); s++) {
for (int ss = 0; ss < (devinfo->subslice_slice_stride * 8); ss++) {
if (intel_device_info_subslice_available(devinfo, s, ss))
perf->sys_vars.subslice_mask |= 1ULL << (s * bits_per_subslice + ss);
}
}
}
static bool
init_oa_sys_vars(struct intel_perf_config *perf,
bool use_register_snapshots)
{
uint64_t min_freq_mhz = 0, max_freq_mhz = 0;
if (!INTEL_DEBUG(DEBUG_NO_OACONFIG)) {
if (!read_sysfs_drm_device_file_uint64(perf, "gt_min_freq_mhz", &min_freq_mhz))
return false;
if (!read_sysfs_drm_device_file_uint64(perf, "gt_max_freq_mhz", &max_freq_mhz))
return false;
} else {
min_freq_mhz = 300;
max_freq_mhz = 1000;
}
memset(&perf->sys_vars, 0, sizeof(perf->sys_vars));
perf->sys_vars.gt_min_freq = min_freq_mhz * 1000000;
perf->sys_vars.gt_max_freq = max_freq_mhz * 1000000;
perf->sys_vars.query_mode = use_register_snapshots;
compute_topology_builtins(perf);
return true;
}
typedef void (*perf_register_oa_queries_t)(struct intel_perf_config *);
static perf_register_oa_queries_t
get_register_queries_function(const struct intel_device_info *devinfo)
{
switch (devinfo->platform) {
case INTEL_PLATFORM_HSW:
return intel_oa_register_queries_hsw;
case INTEL_PLATFORM_CHV:
return intel_oa_register_queries_chv;
case INTEL_PLATFORM_BDW:
return intel_oa_register_queries_bdw;
case INTEL_PLATFORM_BXT:
return intel_oa_register_queries_bxt;
case INTEL_PLATFORM_SKL:
if (devinfo->gt == 2)
return intel_oa_register_queries_sklgt2;
if (devinfo->gt == 3)
return intel_oa_register_queries_sklgt3;
if (devinfo->gt == 4)
return intel_oa_register_queries_sklgt4;
return NULL;
case INTEL_PLATFORM_KBL:
if (devinfo->gt == 2)
return intel_oa_register_queries_kblgt2;
if (devinfo->gt == 3)
return intel_oa_register_queries_kblgt3;
return NULL;
case INTEL_PLATFORM_GLK:
return intel_oa_register_queries_glk;
case INTEL_PLATFORM_CFL:
if (devinfo->gt == 2)
return intel_oa_register_queries_cflgt2;
if (devinfo->gt == 3)
return intel_oa_register_queries_cflgt3;
return NULL;
case INTEL_PLATFORM_ICL:
return intel_oa_register_queries_icl;
case INTEL_PLATFORM_EHL:
return intel_oa_register_queries_ehl;
case INTEL_PLATFORM_TGL:
if (devinfo->gt == 1)
return intel_oa_register_queries_tglgt1;
if (devinfo->gt == 2)
return intel_oa_register_queries_tglgt2;
return NULL;
case INTEL_PLATFORM_RKL:
return intel_oa_register_queries_rkl;
case INTEL_PLATFORM_DG1:
return intel_oa_register_queries_dg1;
case INTEL_PLATFORM_ADL:
return intel_oa_register_queries_adl;
default:
return NULL;
}
}
static int
intel_perf_compare_counter_names(const void *v1, const void *v2)
{
const struct intel_perf_query_counter *c1 = v1;
const struct intel_perf_query_counter *c2 = v2;
return strcmp(c1->name, c2->name);
}
static void
sort_query(struct intel_perf_query_info *q)
{
qsort(q->counters, q->n_counters, sizeof(q->counters[0]),
intel_perf_compare_counter_names);
}
static void
load_pipeline_statistic_metrics(struct intel_perf_config *perf_cfg,
const struct intel_device_info *devinfo)
{
struct intel_perf_query_info *query =
intel_perf_append_query_info(perf_cfg, MAX_STAT_COUNTERS);
query->kind = INTEL_PERF_QUERY_TYPE_PIPELINE;
query->name = "Pipeline Statistics Registers";
intel_perf_query_add_basic_stat_reg(query, IA_VERTICES_COUNT,
"N vertices submitted");
intel_perf_query_add_basic_stat_reg(query, IA_PRIMITIVES_COUNT,
"N primitives submitted");
intel_perf_query_add_basic_stat_reg(query, VS_INVOCATION_COUNT,
"N vertex shader invocations");
if (devinfo->ver == 6) {
intel_perf_query_add_stat_reg(query, GFX6_SO_PRIM_STORAGE_NEEDED, 1, 1,
"SO_PRIM_STORAGE_NEEDED",
"N geometry shader stream-out primitives (total)");
intel_perf_query_add_stat_reg(query, GFX6_SO_NUM_PRIMS_WRITTEN, 1, 1,
"SO_NUM_PRIMS_WRITTEN",
"N geometry shader stream-out primitives (written)");
} else {
intel_perf_query_add_stat_reg(query, GFX7_SO_PRIM_STORAGE_NEEDED(0), 1, 1,
"SO_PRIM_STORAGE_NEEDED (Stream 0)",
"N stream-out (stream 0) primitives (total)");
intel_perf_query_add_stat_reg(query, GFX7_SO_PRIM_STORAGE_NEEDED(1), 1, 1,
"SO_PRIM_STORAGE_NEEDED (Stream 1)",
"N stream-out (stream 1) primitives (total)");
intel_perf_query_add_stat_reg(query, GFX7_SO_PRIM_STORAGE_NEEDED(2), 1, 1,
"SO_PRIM_STORAGE_NEEDED (Stream 2)",
"N stream-out (stream 2) primitives (total)");
intel_perf_query_add_stat_reg(query, GFX7_SO_PRIM_STORAGE_NEEDED(3), 1, 1,
"SO_PRIM_STORAGE_NEEDED (Stream 3)",
"N stream-out (stream 3) primitives (total)");
intel_perf_query_add_stat_reg(query, GFX7_SO_NUM_PRIMS_WRITTEN(0), 1, 1,
"SO_NUM_PRIMS_WRITTEN (Stream 0)",
"N stream-out (stream 0) primitives (written)");
intel_perf_query_add_stat_reg(query, GFX7_SO_NUM_PRIMS_WRITTEN(1), 1, 1,
"SO_NUM_PRIMS_WRITTEN (Stream 1)",
"N stream-out (stream 1) primitives (written)");
intel_perf_query_add_stat_reg(query, GFX7_SO_NUM_PRIMS_WRITTEN(2), 1, 1,
"SO_NUM_PRIMS_WRITTEN (Stream 2)",
"N stream-out (stream 2) primitives (written)");
intel_perf_query_add_stat_reg(query, GFX7_SO_NUM_PRIMS_WRITTEN(3), 1, 1,
"SO_NUM_PRIMS_WRITTEN (Stream 3)",
"N stream-out (stream 3) primitives (written)");
}
intel_perf_query_add_basic_stat_reg(query, HS_INVOCATION_COUNT,
"N TCS shader invocations");
intel_perf_query_add_basic_stat_reg(query, DS_INVOCATION_COUNT,
"N TES shader invocations");
intel_perf_query_add_basic_stat_reg(query, GS_INVOCATION_COUNT,
"N geometry shader invocations");
intel_perf_query_add_basic_stat_reg(query, GS_PRIMITIVES_COUNT,
"N geometry shader primitives emitted");
intel_perf_query_add_basic_stat_reg(query, CL_INVOCATION_COUNT,
"N primitives entering clipping");
intel_perf_query_add_basic_stat_reg(query, CL_PRIMITIVES_COUNT,
"N primitives leaving clipping");
if (devinfo->verx10 == 75 || devinfo->ver == 8) {
intel_perf_query_add_stat_reg(query, PS_INVOCATION_COUNT, 1, 4,
"N fragment shader invocations",
"N fragment shader invocations");
} else {
intel_perf_query_add_basic_stat_reg(query, PS_INVOCATION_COUNT,
"N fragment shader invocations");
}
intel_perf_query_add_basic_stat_reg(query, PS_DEPTH_COUNT,
"N z-pass fragments");
if (devinfo->ver >= 7) {
intel_perf_query_add_basic_stat_reg(query, CS_INVOCATION_COUNT,
"N compute shader invocations");
}
query->data_size = sizeof(uint64_t) * query->n_counters;
sort_query(query);
}
static int
i915_perf_version(int drm_fd)
{
int tmp;
drm_i915_getparam_t gp = {
.param = I915_PARAM_PERF_REVISION,
.value = &tmp,
};
int ret = intel_ioctl(drm_fd, DRM_IOCTL_I915_GETPARAM, &gp);
/* Return 0 if this getparam is not supported, the first version supported
* is 1.
*/
return ret < 0 ? 0 : tmp;
}
static void
i915_get_sseu(int drm_fd, struct drm_i915_gem_context_param_sseu *sseu)
{
struct drm_i915_gem_context_param arg = {
.param = I915_CONTEXT_PARAM_SSEU,
.size = sizeof(*sseu),
.value = to_user_pointer(sseu)
};
intel_ioctl(drm_fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &arg);
}
static inline int
compare_str_or_null(const char *s1, const char *s2)
{
if (s1 == NULL && s2 == NULL)
return 0;
if (s1 == NULL)
return -1;
if (s2 == NULL)
return 1;
return strcmp(s1, s2);
}
static int
compare_counter_categories_and_names(const void *_c1, const void *_c2)
{
const struct intel_perf_query_counter_info *c1 = (const struct intel_perf_query_counter_info *)_c1;
const struct intel_perf_query_counter_info *c2 = (const struct intel_perf_query_counter_info *)_c2;
/* pipeline counters don't have an assigned category */
int r = compare_str_or_null(c1->counter->category, c2->counter->category);
if (r)
return r;
return strcmp(c1->counter->name, c2->counter->name);
}
static void
build_unique_counter_list(struct intel_perf_config *perf)
{
assert(perf->n_queries < 64);
size_t max_counters = 0;
for (int q = 0; q < perf->n_queries; q++)
max_counters += perf->queries[q].n_counters;
/*
* Allocate big enough array to hold maximum possible number of counters.
* We can't alloc it small and realloc when needed because the hash table
* below contains pointers to this array.
*/
struct intel_perf_query_counter_info *counter_infos =
ralloc_array_size(perf, sizeof(counter_infos[0]), max_counters);
perf->n_counters = 0;
struct hash_table *counters_table =
_mesa_hash_table_create(perf,
_mesa_hash_string,
_mesa_key_string_equal);
struct hash_entry *entry;
for (int q = 0; q < perf->n_queries ; q++) {
struct intel_perf_query_info *query = &perf->queries[q];
for (int c = 0; c < query->n_counters; c++) {
struct intel_perf_query_counter *counter;
struct intel_perf_query_counter_info *counter_info;
counter = &query->counters[c];
entry = _mesa_hash_table_search(counters_table, counter->symbol_name);
if (entry) {
counter_info = entry->data;
counter_info->query_mask |= BITFIELD64_BIT(q);
continue;
}
assert(perf->n_counters < max_counters);
counter_info = &counter_infos[perf->n_counters++];
counter_info->counter = counter;
counter_info->query_mask = BITFIELD64_BIT(q);
counter_info->location.group_idx = q;
counter_info->location.counter_idx = c;
_mesa_hash_table_insert(counters_table, counter->symbol_name, counter_info);
}
}
_mesa_hash_table_destroy(counters_table, NULL);
/* Now we can realloc counter_infos array because hash table doesn't exist. */
perf->counter_infos = reralloc_array_size(perf, counter_infos,
sizeof(counter_infos[0]), perf->n_counters);
qsort(perf->counter_infos, perf->n_counters, sizeof(perf->counter_infos[0]),
compare_counter_categories_and_names);
}
static bool
oa_metrics_available(struct intel_perf_config *perf, int fd,
const struct intel_device_info *devinfo,
bool use_register_snapshots)
{
perf_register_oa_queries_t oa_register = get_register_queries_function(devinfo);
bool i915_perf_oa_available = false;
struct stat sb;
perf->devinfo = *devinfo;
perf->i915_query_supported = i915_query_perf_config_supported(perf, fd);
perf->i915_perf_version = i915_perf_version(fd);
/* TODO: We should query this from i915 */
if (intel_device_info_is_dg2(devinfo))
perf->oa_timestamp_shift = 1;
perf->oa_timestamp_mask =
0xffffffffffffffffull >> (32 + perf->oa_timestamp_shift);
/* Record the default SSEU configuration. */
i915_get_sseu(fd, &perf->sseu);
/* The existence of this sysctl parameter implies the kernel supports
* the i915 perf interface.
*/
if (stat("/proc/sys/dev/i915/perf_stream_paranoid", &sb) == 0) {
/* If _paranoid == 1 then on Gfx8+ we won't be able to access OA
* metrics unless running as root.
*/
if (devinfo->platform == INTEL_PLATFORM_HSW)
i915_perf_oa_available = true;
else {
uint64_t paranoid = 1;
read_file_uint64("/proc/sys/dev/i915/perf_stream_paranoid", &paranoid);
if (paranoid == 0 || geteuid() == 0)
i915_perf_oa_available = true;
}
perf->platform_supported = oa_register != NULL;
}
return i915_perf_oa_available &&
oa_register &&
get_sysfs_dev_dir(perf, fd) &&
init_oa_sys_vars(perf, use_register_snapshots);
}
static void
load_oa_metrics(struct intel_perf_config *perf, int fd,
const struct intel_device_info *devinfo)
{
int existing_queries = perf->n_queries;
perf_register_oa_queries_t oa_register = get_register_queries_function(devinfo);
perf->oa_metrics_table =
_mesa_hash_table_create(perf, _mesa_hash_string,
_mesa_key_string_equal);
/* Index all the metric sets mesa knows about before looking to see what
* the kernel is advertising.
*/
oa_register(perf);
if (!INTEL_DEBUG(DEBUG_NO_OACONFIG)) {
if (kernel_has_dynamic_config_support(perf, fd))
init_oa_configs(perf, fd, devinfo);
else
enumerate_sysfs_metrics(perf, devinfo);
} else {
add_all_metrics(perf, devinfo);
}
/* sort counters in each individual group created by this function by name */
for (int i = existing_queries; i < perf->n_queries; ++i)
sort_query(&perf->queries[i]);
/* Select a fallback OA metric. Look for the TestOa metric or use the last
* one if no present (on HSW).
*/
for (int i = existing_queries; i < perf->n_queries; i++) {
if (perf->queries[i].symbol_name &&
strcmp(perf->queries[i].symbol_name, "TestOa") == 0) {
perf->fallback_raw_oa_metric = perf->queries[i].oa_metrics_set_id;
break;
}
}
if (perf->fallback_raw_oa_metric == 0 && perf->n_queries > 0)
perf->fallback_raw_oa_metric = perf->queries[perf->n_queries - 1].oa_metrics_set_id;
}
struct intel_perf_registers *
intel_perf_load_configuration(struct intel_perf_config *perf_cfg, int fd, const char *guid)
{
if (!perf_cfg->i915_query_supported)
return NULL;
struct drm_i915_perf_oa_config i915_config = { 0, };
if (!i915_query_perf_config_data(perf_cfg, fd, guid, &i915_config))
return NULL;
struct intel_perf_registers *config = rzalloc(NULL, struct intel_perf_registers);
config->n_flex_regs = i915_config.n_flex_regs;
config->flex_regs = rzalloc_array(config, struct intel_perf_query_register_prog, config->n_flex_regs);
config->n_mux_regs = i915_config.n_mux_regs;
config->mux_regs = rzalloc_array(config, struct intel_perf_query_register_prog, config->n_mux_regs);
config->n_b_counter_regs = i915_config.n_boolean_regs;
config->b_counter_regs = rzalloc_array(config, struct intel_perf_query_register_prog, config->n_b_counter_regs);
/*
* struct intel_perf_query_register_prog maps exactly to the tuple of
* (register offset, register value) returned by the i915.
*/
i915_config.flex_regs_ptr = to_const_user_pointer(config->flex_regs);
i915_config.mux_regs_ptr = to_const_user_pointer(config->mux_regs);
i915_config.boolean_regs_ptr = to_const_user_pointer(config->b_counter_regs);
if (!i915_query_perf_config_data(perf_cfg, fd, guid, &i915_config)) {
ralloc_free(config);
return NULL;
}
return config;
}
uint64_t
intel_perf_store_configuration(struct intel_perf_config *perf_cfg, int fd,
const struct intel_perf_registers *config,
const char *guid)
{
if (guid)
return i915_add_config(perf_cfg, fd, config, guid);
struct mesa_sha1 sha1_ctx;
_mesa_sha1_init(&sha1_ctx);
if (config->flex_regs) {
_mesa_sha1_update(&sha1_ctx, config->flex_regs,
sizeof(config->flex_regs[0]) *
config->n_flex_regs);
}
if (config->mux_regs) {
_mesa_sha1_update(&sha1_ctx, config->mux_regs,
sizeof(config->mux_regs[0]) *
config->n_mux_regs);
}
if (config->b_counter_regs) {
_mesa_sha1_update(&sha1_ctx, config->b_counter_regs,
sizeof(config->b_counter_regs[0]) *
config->n_b_counter_regs);
}
uint8_t hash[20];
_mesa_sha1_final(&sha1_ctx, hash);
char formatted_hash[41];
_mesa_sha1_format(formatted_hash, hash);
char generated_guid[37];
snprintf(generated_guid, sizeof(generated_guid),
"%.8s-%.4s-%.4s-%.4s-%.12s",
&formatted_hash[0], &formatted_hash[8],
&formatted_hash[8 + 4], &formatted_hash[8 + 4 + 4],
&formatted_hash[8 + 4 + 4 + 4]);
/* Check if already present. */
uint64_t id;
if (intel_perf_load_metric_id(perf_cfg, generated_guid, &id))
return id;
return i915_add_config(perf_cfg, fd, config, generated_guid);
}
static uint64_t
get_passes_mask(struct intel_perf_config *perf,
const uint32_t *counter_indices,
uint32_t counter_indices_count)
{
uint64_t queries_mask = 0;
assert(perf->n_queries < 64);
/* Compute the number of passes by going through all counters N times (with
* N the number of queries) to make sure we select the most constraining
* counters first and look at the more flexible ones (that could be
* obtained from multiple queries) later. That way we minimize the number
* of passes required.
*/
for (uint32_t q = 0; q < perf->n_queries; q++) {
for (uint32_t i = 0; i < counter_indices_count; i++) {
assert(counter_indices[i] < perf->n_counters);
uint32_t idx = counter_indices[i];
if (util_bitcount64(perf->counter_infos[idx].query_mask) != (q + 1))
continue;
if (queries_mask & perf->counter_infos[idx].query_mask)
continue;
queries_mask |= BITFIELD64_BIT(ffsll(perf->counter_infos[idx].query_mask) - 1);
}
}
return queries_mask;
}
uint32_t
intel_perf_get_n_passes(struct intel_perf_config *perf,
const uint32_t *counter_indices,
uint32_t counter_indices_count,
struct intel_perf_query_info **pass_queries)
{
uint64_t queries_mask = get_passes_mask(perf, counter_indices, counter_indices_count);
if (pass_queries) {
uint32_t pass = 0;
for (uint32_t q = 0; q < perf->n_queries; q++) {
if ((1ULL << q) & queries_mask)
pass_queries[pass++] = &perf->queries[q];
}
}
return util_bitcount64(queries_mask);
}
void
intel_perf_get_counters_passes(struct intel_perf_config *perf,
const uint32_t *counter_indices,
uint32_t counter_indices_count,
struct intel_perf_counter_pass *counter_pass)
{
uint64_t queries_mask = get_passes_mask(perf, counter_indices, counter_indices_count);
ASSERTED uint32_t n_passes = util_bitcount64(queries_mask);
for (uint32_t i = 0; i < counter_indices_count; i++) {
assert(counter_indices[i] < perf->n_counters);
uint32_t idx = counter_indices[i];
counter_pass[i].counter = perf->counter_infos[idx].counter;
uint32_t query_idx = ffsll(perf->counter_infos[idx].query_mask & queries_mask) - 1;
counter_pass[i].query = &perf->queries[query_idx];
uint32_t clear_bits = 63 - query_idx;
counter_pass[i].pass = util_bitcount64((queries_mask << clear_bits) >> clear_bits) - 1;
assert(counter_pass[i].pass < n_passes);
}
}
/* Accumulate 32bits OA counters */
static inline void
accumulate_uint32(const uint32_t *report0,
const uint32_t *report1,
uint64_t *accumulator)
{
*accumulator += (uint32_t)(*report1 - *report0);
}
/* Accumulate 40bits OA counters */
static inline void
accumulate_uint40(int a_index,
const uint32_t *report0,
const uint32_t *report1,
uint64_t *accumulator)
{
const uint8_t *high_bytes0 = (uint8_t *)(report0 + 40);
const uint8_t *high_bytes1 = (uint8_t *)(report1 + 40);
uint64_t high0 = (uint64_t)(high_bytes0[a_index]) << 32;
uint64_t high1 = (uint64_t)(high_bytes1[a_index]) << 32;
uint64_t value0 = report0[a_index + 4] | high0;
uint64_t value1 = report1[a_index + 4] | high1;
uint64_t delta;
if (value0 > value1)
delta = (1ULL << 40) + value1 - value0;
else
delta = value1 - value0;
*accumulator += delta;
}
static void
gfx8_read_report_clock_ratios(const uint32_t *report,
uint64_t *slice_freq_hz,
uint64_t *unslice_freq_hz)
{
/* The lower 16bits of the RPT_ID field of the OA reports contains a
* snapshot of the bits coming from the RP_FREQ_NORMAL register and is
* divided this way :
*
* RPT_ID[31:25]: RP_FREQ_NORMAL[20:14] (low squashed_slice_clock_frequency)
* RPT_ID[10:9]: RP_FREQ_NORMAL[22:21] (high squashed_slice_clock_frequency)
* RPT_ID[8:0]: RP_FREQ_NORMAL[31:23] (squashed_unslice_clock_frequency)
*
* RP_FREQ_NORMAL[31:23]: Software Unslice Ratio Request
* Multiple of 33.33MHz 2xclk (16 MHz 1xclk)
*
* RP_FREQ_NORMAL[22:14]: Software Slice Ratio Request
* Multiple of 33.33MHz 2xclk (16 MHz 1xclk)
*/
uint32_t unslice_freq = report[0] & 0x1ff;
uint32_t slice_freq_low = (report[0] >> 25) & 0x7f;
uint32_t slice_freq_high = (report[0] >> 9) & 0x3;
uint32_t slice_freq = slice_freq_low | (slice_freq_high << 7);
*slice_freq_hz = slice_freq * 16666667ULL;
*unslice_freq_hz = unslice_freq * 16666667ULL;
}
void
intel_perf_query_result_read_frequencies(struct intel_perf_query_result *result,
const struct intel_device_info *devinfo,
const uint32_t *start,
const uint32_t *end)
{
/* Slice/Unslice frequency is only available in the OA reports when the
* "Disable OA reports due to clock ratio change" field in
* OA_DEBUG_REGISTER is set to 1. This is how the kernel programs this
* global register (see drivers/gpu/drm/i915/i915_perf.c)
*
* Documentation says this should be available on Gfx9+ but experimentation
* shows that Gfx8 reports similar values, so we enable it there too.
*/
if (devinfo->ver < 8)
return;
gfx8_read_report_clock_ratios(start,
&result->slice_frequency[0],
&result->unslice_frequency[0]);
gfx8_read_report_clock_ratios(end,
&result->slice_frequency[1],
&result->unslice_frequency[1]);
}
static inline bool
can_use_mi_rpc_bc_counters(const struct intel_device_info *devinfo)
{
return devinfo->ver <= 11;
}
uint64_t
intel_perf_report_timestamp(const struct intel_perf_query_info *query,
const uint32_t *report)
{
return report[1] >> query->perf->oa_timestamp_shift;
}
void
intel_perf_query_result_accumulate(struct intel_perf_query_result *result,
const struct intel_perf_query_info *query,
const uint32_t *start,
const uint32_t *end)
{
int i;
if (result->hw_id == INTEL_PERF_INVALID_CTX_ID &&
start[2] != INTEL_PERF_INVALID_CTX_ID)
result->hw_id = start[2];
if (result->reports_accumulated == 0)
result->begin_timestamp = intel_perf_report_timestamp(query, start);
result->end_timestamp = intel_perf_report_timestamp(query, end);
result->reports_accumulated++;
switch (query->oa_format) {
case I915_OA_FORMAT_A32u40_A4u32_B8_C8:
result->accumulator[query->gpu_time_offset] =
intel_perf_report_timestamp(query, end) -
intel_perf_report_timestamp(query, start);
accumulate_uint32(start + 3, end + 3,
result->accumulator + query->gpu_clock_offset); /* clock */
/* 32x 40bit A counters... */
for (i = 0; i < 32; i++) {
accumulate_uint40(i, start, end,
result->accumulator + query->a_offset + i);
}
/* 4x 32bit A counters... */
for (i = 0; i < 4; i++) {
accumulate_uint32(start + 36 + i, end + 36 + i,
result->accumulator + query->a_offset + 32 + i);
}
if (can_use_mi_rpc_bc_counters(&query->perf->devinfo)) {
/* 8x 32bit B counters */
for (i = 0; i < 8; i++) {
accumulate_uint32(start + 48 + i, end + 48 + i,
result->accumulator + query->b_offset + i);
}
/* 8x 32bit C counters... */
for (i = 0; i < 8; i++) {
accumulate_uint32(start + 56 + i, end + 56 + i,
result->accumulator + query->c_offset + i);
}
}
break;
case I915_OA_FORMAT_A45_B8_C8:
result->accumulator[query->gpu_time_offset] =
intel_perf_report_timestamp(query, end) -
intel_perf_report_timestamp(query, start);
for (i = 0; i < 61; i++) {
accumulate_uint32(start + 3 + i, end + 3 + i,
result->accumulator + query->a_offset + i);
}
break;
default:
unreachable("Can't accumulate OA counters in unknown format");
}
}
#define GET_FIELD(word, field) (((word) & field ## _MASK) >> field ## _SHIFT)
void
intel_perf_query_result_read_gt_frequency(struct intel_perf_query_result *result,
const struct intel_device_info *devinfo,
const uint32_t start,
const uint32_t end)
{
switch (devinfo->ver) {
case 7:
case 8:
result->gt_frequency[0] = GET_FIELD(start, GFX7_RPSTAT1_CURR_GT_FREQ) * 50ULL;
result->gt_frequency[1] = GET_FIELD(end, GFX7_RPSTAT1_CURR_GT_FREQ) * 50ULL;
break;
case 9:
case 11:
case 12:
result->gt_frequency[0] = GET_FIELD(start, GFX9_RPSTAT0_CURR_GT_FREQ) * 50ULL / 3ULL;
result->gt_frequency[1] = GET_FIELD(end, GFX9_RPSTAT0_CURR_GT_FREQ) * 50ULL / 3ULL;
break;
default:
unreachable("unexpected gen");
}
/* Put the numbers into Hz. */
result->gt_frequency[0] *= 1000000ULL;
result->gt_frequency[1] *= 1000000ULL;
}
void
intel_perf_query_result_read_perfcnts(struct intel_perf_query_result *result,
const struct intel_perf_query_info *query,
const uint64_t *start,
const uint64_t *end)
{
for (uint32_t i = 0; i < 2; i++) {
uint64_t v0 = start[i] & PERF_CNT_VALUE_MASK;
uint64_t v1 = end[i] & PERF_CNT_VALUE_MASK;
result->accumulator[query->perfcnt_offset + i] = v0 > v1 ?
(PERF_CNT_VALUE_MASK + 1 + v1 - v0) :
(v1 - v0);
}
}
static uint32_t
query_accumulator_offset(const struct intel_perf_query_info *query,
enum intel_perf_query_field_type type,
uint8_t index)
{
switch (type) {
case INTEL_PERF_QUERY_FIELD_TYPE_SRM_PERFCNT:
return query->perfcnt_offset + index;
case INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_A:
return query->a_offset + index;
case INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_B:
return query->b_offset + index;
case INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_C:
return query->c_offset + index;
default:
unreachable("Invalid register type");
return 0;
}
}
void
intel_perf_query_result_accumulate_fields(struct intel_perf_query_result *result,
const struct intel_perf_query_info *query,
const void *start,
const void *end,
bool no_oa_accumulate)
{
const struct intel_perf_query_field_layout *layout = &query->perf->query_layout;
const struct intel_device_info *devinfo = &query->perf->devinfo;
for (uint32_t r = 0; r < layout->n_fields; r++) {
const struct intel_perf_query_field *field = &layout->fields[r];
if (field->type == INTEL_PERF_QUERY_FIELD_TYPE_MI_RPC) {
intel_perf_query_result_read_frequencies(result, devinfo,
start + field->location,
end + field->location);
/* no_oa_accumulate=true is used when doing GL perf queries, we
* manually parse the OA reports from the OA buffer and subtract
* unrelated deltas, so don't accumulate the begin/end reports here.
*/
if (!no_oa_accumulate) {
intel_perf_query_result_accumulate(result, query,
start + field->location,
end + field->location);
}
} else {
uint64_t v0, v1;
if (field->size == 4) {
v0 = *(const uint32_t *)(start + field->location);
v1 = *(const uint32_t *)(end + field->location);
} else {
assert(field->size == 8);
v0 = *(const uint64_t *)(start + field->location);
v1 = *(const uint64_t *)(end + field->location);
}
if (field->mask) {
v0 = field->mask & v0;
v1 = field->mask & v1;
}
/* RPSTAT is a bit of a special case because its begin/end values
* represent frequencies. We store it in a separate location.
*/
if (field->type == INTEL_PERF_QUERY_FIELD_TYPE_SRM_RPSTAT)
intel_perf_query_result_read_gt_frequency(result, devinfo, v0, v1);
else
result->accumulator[query_accumulator_offset(query, field->type, field->index)] = v1 - v0;
}
}
}
void
intel_perf_query_result_clear(struct intel_perf_query_result *result)
{
memset(result, 0, sizeof(*result));
result->hw_id = INTEL_PERF_INVALID_CTX_ID;
}
void
intel_perf_query_result_print_fields(const struct intel_perf_query_info *query,
const void *data)
{
const struct intel_perf_query_field_layout *layout = &query->perf->query_layout;
for (uint32_t r = 0; r < layout->n_fields; r++) {
const struct intel_perf_query_field *field = &layout->fields[r];
const uint32_t *value32 = data + field->location;
switch (field->type) {
case INTEL_PERF_QUERY_FIELD_TYPE_MI_RPC:
fprintf(stderr, "MI_RPC:\n");
fprintf(stderr, " TS: 0x%08x\n", *(value32 + 1));
fprintf(stderr, " CLK: 0x%08x\n", *(value32 + 3));
break;
case INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_A:
fprintf(stderr, "A%u: 0x%08x\n", field->index, *value32);
break;
case INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_B:
fprintf(stderr, "B%u: 0x%08x\n", field->index, *value32);
break;
case INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_C:
fprintf(stderr, "C%u: 0x%08x\n", field->index, *value32);
break;
default:
break;
}
}
}
static int
intel_perf_compare_query_names(const void *v1, const void *v2)
{
const struct intel_perf_query_info *q1 = v1;
const struct intel_perf_query_info *q2 = v2;
return strcmp(q1->name, q2->name);
}
static inline struct intel_perf_query_field *
add_query_register(struct intel_perf_query_field_layout *layout,
enum intel_perf_query_field_type type,
uint16_t offset,
uint16_t size,
uint8_t index)
{
/* Align MI_RPC to 64bytes (HW requirement) & 64bit registers to 8bytes
* (shows up nicely in the debugger).
*/
if (type == INTEL_PERF_QUERY_FIELD_TYPE_MI_RPC)
layout->size = align(layout->size, 64);
else if (size % 8 == 0)
layout->size = align(layout->size, 8);
layout->fields[layout->n_fields++] = (struct intel_perf_query_field) {
.mmio_offset = offset,
.location = layout->size,
.type = type,
.index = index,
.size = size,
};
layout->size += size;
return &layout->fields[layout->n_fields - 1];
}
static void
intel_perf_init_query_fields(struct intel_perf_config *perf_cfg,
const struct intel_device_info *devinfo,
bool use_register_snapshots)
{
struct intel_perf_query_field_layout *layout = &perf_cfg->query_layout;
layout->n_fields = 0;
/* MI_RPC requires a 64byte alignment. */
layout->alignment = 64;
layout->fields = rzalloc_array(perf_cfg, struct intel_perf_query_field, 5 + 16);
add_query_register(layout, INTEL_PERF_QUERY_FIELD_TYPE_MI_RPC,
0, 256, 0);
if (use_register_snapshots) {
if (devinfo->ver <= 11) {
struct intel_perf_query_field *field =
add_query_register(layout,
INTEL_PERF_QUERY_FIELD_TYPE_SRM_PERFCNT,
PERF_CNT_1_DW0, 8, 0);
field->mask = PERF_CNT_VALUE_MASK;
field = add_query_register(layout,
INTEL_PERF_QUERY_FIELD_TYPE_SRM_PERFCNT,
PERF_CNT_2_DW0, 8, 1);
field->mask = PERF_CNT_VALUE_MASK;
}
if (devinfo->ver == 8 && devinfo->platform != INTEL_PLATFORM_CHV) {
add_query_register(layout,
INTEL_PERF_QUERY_FIELD_TYPE_SRM_RPSTAT,
GFX7_RPSTAT1, 4, 0);
}
if (devinfo->ver >= 9) {
add_query_register(layout,
INTEL_PERF_QUERY_FIELD_TYPE_SRM_RPSTAT,
GFX9_RPSTAT0, 4, 0);
}
if (!can_use_mi_rpc_bc_counters(devinfo)) {
if (devinfo->ver >= 8 && devinfo->ver <= 11) {
for (uint32_t i = 0; i < GFX8_N_OA_PERF_B32; i++) {
add_query_register(layout, INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_B,
GFX8_OA_PERF_B32(i), 4, i);
}
for (uint32_t i = 0; i < GFX8_N_OA_PERF_C32; i++) {
add_query_register(layout, INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_C,
GFX8_OA_PERF_C32(i), 4, i);
}
} else if (devinfo->verx10 == 120) {
for (uint32_t i = 0; i < GFX12_N_OAG_PERF_B32; i++) {
add_query_register(layout, INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_B,
GFX12_OAG_PERF_B32(i), 4, i);
}
for (uint32_t i = 0; i < GFX12_N_OAG_PERF_C32; i++) {
add_query_register(layout, INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_C,
GFX12_OAG_PERF_C32(i), 4, i);
}
} else if (devinfo->verx10 == 125) {
add_query_register(layout, INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_A,
GFX125_OAG_PERF_A36, 4, 36);
add_query_register(layout, INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_A,
GFX125_OAG_PERF_A37, 4, 37);
for (uint32_t i = 0; i < GFX12_N_OAG_PERF_B32; i++) {
add_query_register(layout, INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_B,
GFX12_OAG_PERF_B32(i), 4, i);
}
for (uint32_t i = 0; i < GFX12_N_OAG_PERF_C32; i++) {
add_query_register(layout, INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_C,
GFX12_OAG_PERF_C32(i), 4, i);
}
}
}
}
/* Align the whole package to 64bytes so that 2 snapshots can be put
* together without extract alignment for the user.
*/
layout->size = align(layout->size, 64);
}
void
intel_perf_init_metrics(struct intel_perf_config *perf_cfg,
const struct intel_device_info *devinfo,
int drm_fd,
bool include_pipeline_statistics,
bool use_register_snapshots)
{
intel_perf_init_query_fields(perf_cfg, devinfo, use_register_snapshots);
if (include_pipeline_statistics) {
load_pipeline_statistic_metrics(perf_cfg, devinfo);
intel_perf_register_mdapi_statistic_query(perf_cfg, devinfo);
}
bool oa_metrics = oa_metrics_available(perf_cfg, drm_fd, devinfo,
use_register_snapshots);
if (oa_metrics)
load_oa_metrics(perf_cfg, drm_fd, devinfo);
/* sort query groups by name */
qsort(perf_cfg->queries, perf_cfg->n_queries,
sizeof(perf_cfg->queries[0]), intel_perf_compare_query_names);
build_unique_counter_list(perf_cfg);
if (oa_metrics)
intel_perf_register_mdapi_oa_query(perf_cfg, devinfo);
}