mesa/src/intel/common/intel_decoder.c

1241 lines
35 KiB
C

/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <stdio.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdarg.h>
#include <string.h>
#include <expat.h>
#include <inttypes.h>
#include <zlib.h>
#include <util/macros.h>
#include <util/ralloc.h>
#include "intel_decoder.h"
#include "isl/isl.h"
#include "genxml/genX_xml.h"
#define XML_BUFFER_SIZE 4096
#define MAX_VALUE_ITEMS 128
struct location {
const char *filename;
int line_number;
};
struct parser_context {
XML_Parser parser;
int foo;
struct location loc;
struct intel_group *group;
struct intel_enum *enoom;
int n_values, n_allocated_values;
struct intel_value **values;
struct intel_field *last_field;
struct intel_spec *spec;
};
const char *
intel_group_get_name(struct intel_group *group)
{
return group->name;
}
uint32_t
intel_group_get_opcode(struct intel_group *group)
{
return group->opcode;
}
struct intel_group *
intel_spec_find_struct(struct intel_spec *spec, const char *name)
{
struct hash_entry *entry = _mesa_hash_table_search(spec->structs,
name);
return entry ? entry->data : NULL;
}
struct intel_group *
intel_spec_find_register(struct intel_spec *spec, uint32_t offset)
{
struct hash_entry *entry =
_mesa_hash_table_search(spec->registers_by_offset,
(void *) (uintptr_t) offset);
return entry ? entry->data : NULL;
}
struct intel_group *
intel_spec_find_register_by_name(struct intel_spec *spec, const char *name)
{
struct hash_entry *entry =
_mesa_hash_table_search(spec->registers_by_name, name);
return entry ? entry->data : NULL;
}
struct intel_enum *
intel_spec_find_enum(struct intel_spec *spec, const char *name)
{
struct hash_entry *entry = _mesa_hash_table_search(spec->enums,
name);
return entry ? entry->data : NULL;
}
uint32_t
intel_spec_get_gen(struct intel_spec *spec)
{
return spec->gen;
}
static void __attribute__((noreturn))
fail(struct location *loc, const char *msg, ...)
{
va_list ap;
va_start(ap, msg);
fprintf(stderr, "%s:%d: error: ",
loc->filename, loc->line_number);
vfprintf(stderr, msg, ap);
fprintf(stderr, "\n");
va_end(ap);
exit(EXIT_FAILURE);
}
static void
get_array_offset_count(const char **atts, uint32_t *offset, uint32_t *count,
uint32_t *size, bool *variable)
{
for (int i = 0; atts[i]; i += 2) {
char *p;
if (strcmp(atts[i], "count") == 0) {
*count = strtoul(atts[i + 1], &p, 0);
if (*count == 0)
*variable = true;
} else if (strcmp(atts[i], "start") == 0) {
*offset = strtoul(atts[i + 1], &p, 0);
} else if (strcmp(atts[i], "size") == 0) {
*size = strtoul(atts[i + 1], &p, 0);
}
}
return;
}
static struct intel_group *
create_group(struct parser_context *ctx,
const char *name,
const char **atts,
struct intel_group *parent,
bool fixed_length)
{
struct intel_group *group;
group = rzalloc(ctx->spec, struct intel_group);
if (name)
group->name = ralloc_strdup(group, name);
group->spec = ctx->spec;
group->variable = false;
group->fixed_length = fixed_length;
group->dword_length_field = NULL;
group->dw_length = 0;
group->engine_mask = I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_RENDER) |
I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_VIDEO) |
I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_COPY);
group->bias = 1;
for (int i = 0; atts[i]; i += 2) {
char *p;
if (strcmp(atts[i], "length") == 0) {
group->dw_length = strtoul(atts[i + 1], &p, 0);
} else if (strcmp(atts[i], "bias") == 0) {
group->bias = strtoul(atts[i + 1], &p, 0);
} else if (strcmp(atts[i], "engine") == 0) {
void *mem_ctx = ralloc_context(NULL);
char *tmp = ralloc_strdup(mem_ctx, atts[i + 1]);
char *save_ptr;
char *tok = strtok_r(tmp, "|", &save_ptr);
group->engine_mask = 0;
while (tok != NULL) {
if (strcmp(tok, "render") == 0) {
group->engine_mask |= I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_RENDER);
} else if (strcmp(tok, "video") == 0) {
group->engine_mask |= I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_VIDEO);
} else if (strcmp(tok, "blitter") == 0) {
group->engine_mask |= I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_COPY);
} else {
fprintf(stderr, "unknown engine class defined for instruction \"%s\": %s\n", name, atts[i + 1]);
}
tok = strtok_r(NULL, "|", &save_ptr);
}
ralloc_free(mem_ctx);
}
}
if (parent) {
group->parent = parent;
get_array_offset_count(atts,
&group->array_offset,
&group->array_count,
&group->array_item_size,
&group->variable);
}
return group;
}
static struct intel_enum *
create_enum(struct parser_context *ctx, const char *name, const char **atts)
{
struct intel_enum *e;
e = rzalloc(ctx->spec, struct intel_enum);
if (name)
e->name = ralloc_strdup(e, name);
return e;
}
static void
get_register_offset(const char **atts, uint32_t *offset)
{
for (int i = 0; atts[i]; i += 2) {
char *p;
if (strcmp(atts[i], "num") == 0)
*offset = strtoul(atts[i + 1], &p, 0);
}
return;
}
static void
get_start_end_pos(int *start, int *end)
{
/* start value has to be mod with 32 as we need the relative
* start position in the first DWord. For the end position, add
* the length of the field to the start position to get the
* relative position in the 64 bit address.
*/
if (*end - *start > 32) {
int len = *end - *start;
*start = *start % 32;
*end = *start + len;
} else {
*start = *start % 32;
*end = *end % 32;
}
return;
}
static inline uint64_t
mask(int start, int end)
{
uint64_t v;
v = ~0ULL >> (63 - end + start);
return v << start;
}
static inline uint64_t
field_value(uint64_t value, int start, int end)
{
get_start_end_pos(&start, &end);
return (value & mask(start, end)) >> (start);
}
static struct intel_type
string_to_type(struct parser_context *ctx, const char *s)
{
int i, f;
struct intel_group *g;
struct intel_enum *e;
if (strcmp(s, "int") == 0)
return (struct intel_type) { .kind = INTEL_TYPE_INT };
else if (strcmp(s, "uint") == 0)
return (struct intel_type) { .kind = INTEL_TYPE_UINT };
else if (strcmp(s, "bool") == 0)
return (struct intel_type) { .kind = INTEL_TYPE_BOOL };
else if (strcmp(s, "float") == 0)
return (struct intel_type) { .kind = INTEL_TYPE_FLOAT };
else if (strcmp(s, "address") == 0)
return (struct intel_type) { .kind = INTEL_TYPE_ADDRESS };
else if (strcmp(s, "offset") == 0)
return (struct intel_type) { .kind = INTEL_TYPE_OFFSET };
else if (sscanf(s, "u%d.%d", &i, &f) == 2)
return (struct intel_type) { .kind = INTEL_TYPE_UFIXED, .i = i, .f = f };
else if (sscanf(s, "s%d.%d", &i, &f) == 2)
return (struct intel_type) { .kind = INTEL_TYPE_SFIXED, .i = i, .f = f };
else if (g = intel_spec_find_struct(ctx->spec, s), g != NULL)
return (struct intel_type) { .kind = INTEL_TYPE_STRUCT, .intel_struct = g };
else if (e = intel_spec_find_enum(ctx->spec, s), e != NULL)
return (struct intel_type) { .kind = INTEL_TYPE_ENUM, .intel_enum = e };
else if (strcmp(s, "mbo") == 0)
return (struct intel_type) { .kind = INTEL_TYPE_MBO };
else if (strcmp(s, "mbz") == 0)
return (struct intel_type) { .kind = INTEL_TYPE_MBZ };
else
fail(&ctx->loc, "invalid type: %s", s);
}
static struct intel_field *
create_field(struct parser_context *ctx, const char **atts)
{
struct intel_field *field;
field = rzalloc(ctx->group, struct intel_field);
field->parent = ctx->group;
for (int i = 0; atts[i]; i += 2) {
char *p;
if (strcmp(atts[i], "name") == 0) {
field->name = ralloc_strdup(field, atts[i + 1]);
if (strcmp(field->name, "DWord Length") == 0) {
field->parent->dword_length_field = field;
}
} else if (strcmp(atts[i], "start") == 0) {
field->start = strtoul(atts[i + 1], &p, 0);
} else if (strcmp(atts[i], "end") == 0) {
field->end = strtoul(atts[i + 1], &p, 0);
} else if (strcmp(atts[i], "type") == 0) {
field->type = string_to_type(ctx, atts[i + 1]);
} else if (strcmp(atts[i], "default") == 0 &&
field->start >= 16 && field->end <= 31) {
field->has_default = true;
field->default_value = strtoul(atts[i + 1], &p, 0);
}
}
return field;
}
static struct intel_field *
create_array_field(struct parser_context *ctx, struct intel_group *array)
{
struct intel_field *field;
field = rzalloc(ctx->group, struct intel_field);
field->parent = ctx->group;
field->array = array;
field->start = field->array->array_offset;
return field;
}
static struct intel_value *
create_value(struct parser_context *ctx, const char **atts)
{
struct intel_value *value = rzalloc(ctx->values, struct intel_value);
for (int i = 0; atts[i]; i += 2) {
if (strcmp(atts[i], "name") == 0)
value->name = ralloc_strdup(value, atts[i + 1]);
else if (strcmp(atts[i], "value") == 0)
value->value = strtoul(atts[i + 1], NULL, 0);
}
return value;
}
static struct intel_field *
create_and_append_field(struct parser_context *ctx,
const char **atts,
struct intel_group *array)
{
struct intel_field *field = array ?
create_array_field(ctx, array) : create_field(ctx, atts);
struct intel_field *prev = NULL, *list = ctx->group->fields;
while (list && field->start > list->start) {
prev = list;
list = list->next;
}
field->next = list;
if (prev == NULL)
ctx->group->fields = field;
else
prev->next = field;
return field;
}
static void
start_element(void *data, const char *element_name, const char **atts)
{
struct parser_context *ctx = data;
const char *name = NULL;
const char *gen = NULL;
ctx->loc.line_number = XML_GetCurrentLineNumber(ctx->parser);
for (int i = 0; atts[i]; i += 2) {
if (strcmp(atts[i], "name") == 0)
name = atts[i + 1];
else if (strcmp(atts[i], "gen") == 0)
gen = atts[i + 1];
}
if (strcmp(element_name, "genxml") == 0) {
if (name == NULL)
fail(&ctx->loc, "no platform name given");
if (gen == NULL)
fail(&ctx->loc, "no gen given");
int major, minor;
int n = sscanf(gen, "%d.%d", &major, &minor);
if (n == 0)
fail(&ctx->loc, "invalid gen given: %s", gen);
if (n == 1)
minor = 0;
ctx->spec->gen = intel_make_gen(major, minor);
} else if (strcmp(element_name, "instruction") == 0) {
ctx->group = create_group(ctx, name, atts, NULL, false);
} else if (strcmp(element_name, "struct") == 0) {
ctx->group = create_group(ctx, name, atts, NULL, true);
} else if (strcmp(element_name, "register") == 0) {
ctx->group = create_group(ctx, name, atts, NULL, true);
get_register_offset(atts, &ctx->group->register_offset);
} else if (strcmp(element_name, "group") == 0) {
struct intel_group *group = create_group(ctx, "", atts, ctx->group, false);
ctx->last_field = create_and_append_field(ctx, NULL, group);
ctx->group = group;
} else if (strcmp(element_name, "field") == 0) {
ctx->last_field = create_and_append_field(ctx, atts, NULL);
} else if (strcmp(element_name, "enum") == 0) {
ctx->enoom = create_enum(ctx, name, atts);
} else if (strcmp(element_name, "value") == 0) {
if (ctx->n_values >= ctx->n_allocated_values) {
ctx->n_allocated_values = MAX2(2, ctx->n_allocated_values * 2);
ctx->values = reralloc_array_size(ctx->spec, ctx->values,
sizeof(struct intel_value *),
ctx->n_allocated_values);
}
assert(ctx->n_values < ctx->n_allocated_values);
ctx->values[ctx->n_values++] = create_value(ctx, atts);
}
}
static void
end_element(void *data, const char *name)
{
struct parser_context *ctx = data;
struct intel_spec *spec = ctx->spec;
if (strcmp(name, "instruction") == 0 ||
strcmp(name, "struct") == 0 ||
strcmp(name, "register") == 0) {
struct intel_group *group = ctx->group;
struct intel_field *list = group->fields;
ctx->group = ctx->group->parent;
while (list && list->end <= 31) {
if (list->start >= 16 && list->has_default) {
group->opcode_mask |=
mask(list->start % 32, list->end % 32);
group->opcode |= list->default_value << list->start;
}
list = list->next;
}
if (strcmp(name, "instruction") == 0)
_mesa_hash_table_insert(spec->commands, group->name, group);
else if (strcmp(name, "struct") == 0)
_mesa_hash_table_insert(spec->structs, group->name, group);
else if (strcmp(name, "register") == 0) {
_mesa_hash_table_insert(spec->registers_by_name, group->name, group);
_mesa_hash_table_insert(spec->registers_by_offset,
(void *) (uintptr_t) group->register_offset,
group);
}
} else if (strcmp(name, "group") == 0) {
ctx->group = ctx->group->parent;
} else if (strcmp(name, "field") == 0) {
struct intel_field *field = ctx->last_field;
ctx->last_field = NULL;
field->inline_enum.values = ctx->values;
field->inline_enum.nvalues = ctx->n_values;
ctx->values = ralloc_array(ctx->spec, struct intel_value*, ctx->n_allocated_values = 2);
ctx->n_values = 0;
} else if (strcmp(name, "enum") == 0) {
struct intel_enum *e = ctx->enoom;
e->values = ctx->values;
e->nvalues = ctx->n_values;
ctx->values = ralloc_array(ctx->spec, struct intel_value*, ctx->n_allocated_values = 2);
ctx->n_values = 0;
ctx->enoom = NULL;
_mesa_hash_table_insert(spec->enums, e->name, e);
}
}
static void
character_data(void *data, const XML_Char *s, int len)
{
}
static uint32_t zlib_inflate(const void *compressed_data,
uint32_t compressed_len,
void **out_ptr)
{
struct z_stream_s zstream;
void *out;
memset(&zstream, 0, sizeof(zstream));
zstream.next_in = (unsigned char *)compressed_data;
zstream.avail_in = compressed_len;
if (inflateInit(&zstream) != Z_OK)
return 0;
out = malloc(4096);
zstream.next_out = out;
zstream.avail_out = 4096;
do {
switch (inflate(&zstream, Z_SYNC_FLUSH)) {
case Z_STREAM_END:
goto end;
case Z_OK:
break;
default:
inflateEnd(&zstream);
return 0;
}
if (zstream.avail_out)
break;
out = realloc(out, 2*zstream.total_out);
if (out == NULL) {
inflateEnd(&zstream);
return 0;
}
zstream.next_out = (unsigned char *)out + zstream.total_out;
zstream.avail_out = zstream.total_out;
} while (1);
end:
inflateEnd(&zstream);
*out_ptr = out;
return zstream.total_out;
}
static uint32_t _hash_uint32(const void *key)
{
return (uint32_t) (uintptr_t) key;
}
static struct intel_spec *
intel_spec_init(void)
{
struct intel_spec *spec;
spec = rzalloc(NULL, struct intel_spec);
if (spec == NULL)
return NULL;
spec->commands =
_mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal);
spec->structs =
_mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal);
spec->registers_by_name =
_mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal);
spec->registers_by_offset =
_mesa_hash_table_create(spec, _hash_uint32, _mesa_key_pointer_equal);
spec->enums =
_mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal);
spec->access_cache =
_mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal);
return spec;
}
struct intel_spec *
intel_spec_load(const struct intel_device_info *devinfo)
{
struct parser_context ctx;
void *buf;
uint8_t *text_data = NULL;
uint32_t text_offset = 0, text_length = 0;
ASSERTED uint32_t total_length;
uint32_t ver_10 = devinfo->verx10;
for (int i = 0; i < ARRAY_SIZE(genxml_files_table); i++) {
if (genxml_files_table[i].ver_10 == ver_10) {
text_offset = genxml_files_table[i].offset;
text_length = genxml_files_table[i].length;
break;
}
}
if (text_length == 0) {
fprintf(stderr, "unable to find gen (%u) data\n", ver_10);
return NULL;
}
memset(&ctx, 0, sizeof ctx);
ctx.parser = XML_ParserCreate(NULL);
XML_SetUserData(ctx.parser, &ctx);
if (ctx.parser == NULL) {
fprintf(stderr, "failed to create parser\n");
return NULL;
}
XML_SetElementHandler(ctx.parser, start_element, end_element);
XML_SetCharacterDataHandler(ctx.parser, character_data);
ctx.spec = intel_spec_init();
if (ctx.spec == NULL) {
fprintf(stderr, "Failed to create intel_spec\n");
return NULL;
}
total_length = zlib_inflate(compress_genxmls,
sizeof(compress_genxmls),
(void **) &text_data);
assert(text_offset + text_length <= total_length);
buf = XML_GetBuffer(ctx.parser, text_length);
memcpy(buf, &text_data[text_offset], text_length);
if (XML_ParseBuffer(ctx.parser, text_length, true) == 0) {
fprintf(stderr,
"Error parsing XML at line %ld col %ld byte %ld/%u: %s\n",
XML_GetCurrentLineNumber(ctx.parser),
XML_GetCurrentColumnNumber(ctx.parser),
XML_GetCurrentByteIndex(ctx.parser), text_length,
XML_ErrorString(XML_GetErrorCode(ctx.parser)));
XML_ParserFree(ctx.parser);
free(text_data);
return NULL;
}
XML_ParserFree(ctx.parser);
free(text_data);
return ctx.spec;
}
struct intel_spec *
intel_spec_load_filename(const char *filename)
{
struct parser_context ctx;
FILE *input;
void *buf;
size_t len;
input = fopen(filename, "r");
if (input == NULL) {
fprintf(stderr, "failed to open xml description\n");
return NULL;
}
memset(&ctx, 0, sizeof ctx);
ctx.parser = XML_ParserCreate(NULL);
XML_SetUserData(ctx.parser, &ctx);
if (ctx.parser == NULL) {
fprintf(stderr, "failed to create parser\n");
fclose(input);
return NULL;
}
XML_SetElementHandler(ctx.parser, start_element, end_element);
XML_SetCharacterDataHandler(ctx.parser, character_data);
ctx.loc.filename = filename;
ctx.spec = intel_spec_init();
if (ctx.spec == NULL) {
fprintf(stderr, "Failed to create intel_spec\n");
goto end;
}
do {
buf = XML_GetBuffer(ctx.parser, XML_BUFFER_SIZE);
len = fread(buf, 1, XML_BUFFER_SIZE, input);
if (ferror(input)) {
fprintf(stderr, "fread: %m\n");
intel_spec_destroy(ctx.spec);
ctx.spec = NULL;
goto end;
} else if (len == 0 && feof(input))
goto end;
if (XML_ParseBuffer(ctx.parser, len, len == 0) == 0) {
fprintf(stderr,
"Error parsing XML at line %ld col %ld: %s\n",
XML_GetCurrentLineNumber(ctx.parser),
XML_GetCurrentColumnNumber(ctx.parser),
XML_ErrorString(XML_GetErrorCode(ctx.parser)));
intel_spec_destroy(ctx.spec);
ctx.spec = NULL;
goto end;
}
} while (len > 0);
end:
XML_ParserFree(ctx.parser);
fclose(input);
/* free ctx.spec if genxml is empty */
if (ctx.spec &&
_mesa_hash_table_num_entries(ctx.spec->commands) == 0 &&
_mesa_hash_table_num_entries(ctx.spec->structs) == 0) {
fprintf(stderr,
"Error parsing XML: empty spec.\n");
intel_spec_destroy(ctx.spec);
return NULL;
}
return ctx.spec;
}
struct intel_spec *
intel_spec_load_from_path(const struct intel_device_info *devinfo,
const char *path)
{
size_t filename_len = strlen(path) + 20;
char *filename = malloc(filename_len);
ASSERTED size_t len = snprintf(filename, filename_len, "%s/gen%i.xml",
path, devinfo->ver);
assert(len < filename_len);
struct intel_spec *spec = intel_spec_load_filename(filename);
free(filename);
return spec;
}
void intel_spec_destroy(struct intel_spec *spec)
{
ralloc_free(spec);
}
struct intel_group *
intel_spec_find_instruction(struct intel_spec *spec,
enum drm_i915_gem_engine_class engine,
const uint32_t *p)
{
hash_table_foreach(spec->commands, entry) {
struct intel_group *command = entry->data;
uint32_t opcode = *p & command->opcode_mask;
if ((command->engine_mask & I915_ENGINE_CLASS_TO_MASK(engine)) &&
opcode == command->opcode)
return command;
}
return NULL;
}
struct intel_field *
intel_group_find_field(struct intel_group *group, const char *name)
{
char path[256];
snprintf(path, sizeof(path), "%s/%s", group->name, name);
struct intel_spec *spec = group->spec;
struct hash_entry *entry = _mesa_hash_table_search(spec->access_cache,
path);
if (entry)
return entry->data;
struct intel_field *field = group->fields;
while (field) {
if (strcmp(field->name, name) == 0) {
_mesa_hash_table_insert(spec->access_cache,
ralloc_strdup(spec, path),
field);
return field;
}
field = field->next;
}
return NULL;
}
int
intel_group_get_length(struct intel_group *group, const uint32_t *p)
{
if (group) {
if (group->fixed_length)
return group->dw_length;
else {
struct intel_field *field = group->dword_length_field;
if (field) {
return field_value(p[0], field->start, field->end) + group->bias;
}
}
}
uint32_t h = p[0];
uint32_t type = field_value(h, 29, 31);
switch (type) {
case 0: /* MI */ {
uint32_t opcode = field_value(h, 23, 28);
if (opcode < 16)
return 1;
else
return field_value(h, 0, 7) + 2;
break;
}
case 2: /* BLT */ {
return field_value(h, 0, 7) + 2;
}
case 3: /* Render */ {
uint32_t subtype = field_value(h, 27, 28);
uint32_t opcode = field_value(h, 24, 26);
uint16_t whole_opcode = field_value(h, 16, 31);
switch (subtype) {
case 0:
if (whole_opcode == 0x6104 /* PIPELINE_SELECT_965 */)
return 1;
else if (opcode < 2)
return field_value(h, 0, 7) + 2;
else
return -1;
case 1:
if (opcode < 2)
return 1;
else
return -1;
case 2: {
if (opcode == 0)
return field_value(h, 0, 7) + 2;
else if (opcode < 3)
return field_value(h, 0, 15) + 2;
else
return -1;
}
case 3:
if (whole_opcode == 0x780b)
return 1;
else if (opcode < 4)
return field_value(h, 0, 7) + 2;
else
return -1;
}
}
}
return -1;
}
static const char *
intel_get_enum_name(struct intel_enum *e, uint64_t value)
{
for (int i = 0; i < e->nvalues; i++) {
if (e->values[i]->value == value) {
return e->values[i]->name;
}
}
return NULL;
}
static bool
iter_more_fields(const struct intel_field_iterator *iter)
{
return iter->field != NULL && iter->field->next != NULL;
}
static uint32_t
iter_array_offset_bits(const struct intel_field_iterator *iter)
{
if (iter->level == 0)
return 0;
uint32_t offset = 0;
const struct intel_group *group = iter->groups[1];
for (int level = 1; level <= iter->level; level++, group = iter->groups[level]) {
uint32_t array_idx = iter->array_iter[level];
offset += group->array_offset + array_idx * group->array_item_size;
}
return offset;
}
/* Checks whether we have more items in the array to iterate, or more arrays to
* iterate through.
*/
/* descend into a non-array field */
static void
iter_push_array(struct intel_field_iterator *iter)
{
assert(iter->level >= 0);
iter->group = iter->field->array;
iter->level++;
assert(iter->level < DECODE_MAX_ARRAY_DEPTH);
iter->groups[iter->level] = iter->group;
iter->array_iter[iter->level] = 0;
assert(iter->group->fields != NULL); /* an empty <group> makes no sense */
iter->field = iter->group->fields;
iter->fields[iter->level] = iter->field;
}
static void
iter_pop_array(struct intel_field_iterator *iter)
{
assert(iter->level > 0);
iter->level--;
iter->field = iter->fields[iter->level];
iter->group = iter->groups[iter->level];
}
static void
iter_start_field(struct intel_field_iterator *iter, struct intel_field *field)
{
iter->field = field;
iter->fields[iter->level] = field;
while (iter->field->array)
iter_push_array(iter);
int array_member_offset = iter_array_offset_bits(iter);
iter->start_bit = array_member_offset + iter->field->start;
iter->end_bit = array_member_offset + iter->field->end;
iter->struct_desc = NULL;
}
static void
iter_advance_array(struct intel_field_iterator *iter)
{
assert(iter->level > 0);
int lvl = iter->level;
if (iter->group->variable)
iter->array_iter[lvl]++;
else {
if ((iter->array_iter[lvl] + 1) < iter->group->array_count) {
iter->array_iter[lvl]++;
}
}
iter_start_field(iter, iter->group->fields);
}
static bool
iter_more_array_elems(const struct intel_field_iterator *iter)
{
int lvl = iter->level;
assert(lvl >= 0);
if (iter->group->variable) {
int length = intel_group_get_length(iter->group, iter->p);
assert(length >= 0 && "error the length is unknown!");
return iter_array_offset_bits(iter) + iter->group->array_item_size <
(length * 32);
} else {
return (iter->array_iter[lvl] + 1) < iter->group->array_count;
}
}
static bool
iter_advance_field(struct intel_field_iterator *iter)
{
/* Keep looping while we either have more fields to look at, or we are
* inside a <group> and can go up a level.
*/
while (iter_more_fields(iter) || iter->level > 0) {
if (iter_more_fields(iter)) {
iter_start_field(iter, iter->field->next);
return true;
}
assert(iter->level >= 0);
if (iter_more_array_elems(iter)) {
iter_advance_array(iter);
return true;
}
/* At this point, we reached the end of the <group> and were on the last
* iteration. So it's time to go back to the parent and then advance the
* field.
*/
iter_pop_array(iter);
}
return false;
}
static bool
iter_decode_field_raw(struct intel_field_iterator *iter, uint64_t *qw)
{
*qw = 0;
int field_start = iter->p_bit + iter->start_bit;
int field_end = iter->p_bit + iter->end_bit;
const uint32_t *p = iter->p + (iter->start_bit / 32);
if (iter->p_end && p >= iter->p_end)
return false;
if ((field_end - field_start) > 32) {
if (!iter->p_end || (p + 1) < iter->p_end)
*qw = ((uint64_t) p[1]) << 32;
*qw |= p[0];
} else
*qw = p[0];
*qw = field_value(*qw, field_start, field_end);
/* Address & offset types have to be aligned to dwords, their start bit is
* a reminder of the alignment requirement.
*/
if (iter->field->type.kind == INTEL_TYPE_ADDRESS ||
iter->field->type.kind == INTEL_TYPE_OFFSET)
*qw <<= field_start % 32;
return true;
}
static bool
iter_decode_field(struct intel_field_iterator *iter)
{
union {
uint64_t qw;
float f;
} v;
if (iter->field->name)
snprintf(iter->name, sizeof(iter->name), "%s", iter->field->name);
else
memset(iter->name, 0, sizeof(iter->name));
memset(&v, 0, sizeof(v));
if (!iter_decode_field_raw(iter, &iter->raw_value))
return false;
const char *enum_name = NULL;
v.qw = iter->raw_value;
switch (iter->field->type.kind) {
case INTEL_TYPE_UNKNOWN:
case INTEL_TYPE_INT: {
snprintf(iter->value, sizeof(iter->value), "%"PRId64, v.qw);
enum_name = intel_get_enum_name(&iter->field->inline_enum, v.qw);
break;
}
case INTEL_TYPE_MBZ:
case INTEL_TYPE_UINT: {
snprintf(iter->value, sizeof(iter->value), "%"PRIu64, v.qw);
enum_name = intel_get_enum_name(&iter->field->inline_enum, v.qw);
break;
}
case INTEL_TYPE_BOOL: {
const char *true_string =
iter->print_colors ? "\e[0;35mtrue\e[0m" : "true";
snprintf(iter->value, sizeof(iter->value), "%s",
v.qw ? true_string : "false");
break;
}
case INTEL_TYPE_FLOAT:
snprintf(iter->value, sizeof(iter->value), "%f", v.f);
break;
case INTEL_TYPE_ADDRESS:
case INTEL_TYPE_OFFSET:
snprintf(iter->value, sizeof(iter->value), "0x%08"PRIx64, v.qw);
break;
case INTEL_TYPE_STRUCT:
snprintf(iter->value, sizeof(iter->value), "<struct %s>",
iter->field->type.intel_struct->name);
iter->struct_desc =
intel_spec_find_struct(iter->group->spec,
iter->field->type.intel_struct->name);
break;
case INTEL_TYPE_UFIXED:
snprintf(iter->value, sizeof(iter->value), "%f",
(float) v.qw / (1 << iter->field->type.f));
break;
case INTEL_TYPE_SFIXED: {
/* Sign extend before converting */
int bits = iter->field->type.i + iter->field->type.f + 1;
int64_t v_sign_extend = ((int64_t)(v.qw << (64 - bits))) >> (64 - bits);
snprintf(iter->value, sizeof(iter->value), "%f",
(float) v_sign_extend / (1 << iter->field->type.f));
break;
}
case INTEL_TYPE_MBO:
break;
case INTEL_TYPE_ENUM: {
snprintf(iter->value, sizeof(iter->value), "%"PRId64, v.qw);
enum_name = intel_get_enum_name(iter->field->type.intel_enum, v.qw);
break;
}
}
if (strlen(iter->group->name) == 0) {
int length = strlen(iter->name);
assert(iter->level >= 0);
int level = 1;
char *buf = iter->name + length;
while (level <= iter->level) {
int printed = snprintf(buf, sizeof(iter->name) - length,
"[%i]", iter->array_iter[level]);
level++;
length += printed;
buf += printed;
}
}
if (enum_name) {
int length = strlen(iter->value);
snprintf(iter->value + length, sizeof(iter->value) - length,
" (%s)", enum_name);
} else if (strcmp(iter->name, "Surface Format") == 0 ||
strcmp(iter->name, "Source Element Format") == 0) {
if (isl_format_is_valid((enum isl_format)v.qw)) {
const char *fmt_name = isl_format_get_name((enum isl_format)v.qw);
int length = strlen(iter->value);
snprintf(iter->value + length, sizeof(iter->value) - length,
" (%s)", fmt_name);
}
}
return true;
}
void
intel_field_iterator_init(struct intel_field_iterator *iter,
struct intel_group *group,
const uint32_t *p, int p_bit,
bool print_colors)
{
memset(iter, 0, sizeof(*iter));
iter->groups[iter->level] = group;
iter->group = group;
iter->p = p;
iter->p_bit = p_bit;
int length = intel_group_get_length(iter->group, iter->p);
assert(length >= 0 && "error the length is unknown!");
iter->p_end = length >= 0 ? &p[length] : NULL;
iter->print_colors = print_colors;
}
bool
intel_field_iterator_next(struct intel_field_iterator *iter)
{
/* Initial condition */
if (!iter->field) {
if (iter->group->fields)
iter_start_field(iter, iter->group->fields);
bool result = iter_decode_field(iter);
if (!result && iter->p_end) {
/* We're dealing with a non empty struct of length=0 (BLEND_STATE on
* Gen 7.5)
*/
assert(iter->group->dw_length == 0);
}
return result;
}
if (!iter_advance_field(iter))
return false;
if (!iter_decode_field(iter))
return false;
return true;
}
static void
print_dword_header(FILE *outfile,
struct intel_field_iterator *iter,
uint64_t offset, uint32_t dword)
{
fprintf(outfile, "0x%08"PRIx64": 0x%08x : Dword %d\n",
offset + 4 * dword, iter->p[dword], dword);
}
bool
intel_field_is_header(struct intel_field *field)
{
uint32_t bits;
/* Instructions are identified by the first DWord. */
if (field->start >= 32 ||
field->end >= 32)
return false;
bits = (1ULL << (field->end - field->start + 1)) - 1;
bits <<= field->start;
return (field->parent->opcode_mask & bits) != 0;
}
void
intel_print_group(FILE *outfile, struct intel_group *group, uint64_t offset,
const uint32_t *p, int p_bit, bool color)
{
struct intel_field_iterator iter;
int last_dword = -1;
intel_field_iterator_init(&iter, group, p, p_bit, color);
while (intel_field_iterator_next(&iter)) {
int iter_dword = iter.end_bit / 32;
if (last_dword != iter_dword) {
for (int i = last_dword + 1; i <= iter_dword; i++)
print_dword_header(outfile, &iter, offset, i);
last_dword = iter_dword;
}
if (!intel_field_is_header(iter.field)) {
fprintf(outfile, " %s: %s\n", iter.name, iter.value);
if (iter.struct_desc) {
int struct_dword = iter.start_bit / 32;
uint64_t struct_offset = offset + 4 * struct_dword;
intel_print_group(outfile, iter.struct_desc, struct_offset,
&p[struct_dword], iter.start_bit % 32, color);
}
}
}
}