mesa/src/gallium/drivers/crocus/crocus_batch.c

1048 lines
34 KiB
C

/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* @file crocus_batch.c
*
* Batchbuffer and command submission module.
*
* Every API draw call results in a number of GPU commands, which we
* collect into a "batch buffer". Typically, many draw calls are grouped
* into a single batch to amortize command submission overhead.
*
* We submit batches to the kernel using the I915_GEM_EXECBUFFER2 ioctl.
* One critical piece of data is the "validation list", which contains a
* list of the buffer objects (BOs) which the commands in the GPU need.
* The kernel will make sure these are resident and pinned at the correct
* virtual memory address before executing our batch. If a BO is not in
* the validation list, it effectively does not exist, so take care.
*/
#include "crocus_batch.h"
#include "crocus_bufmgr.h"
#include "crocus_context.h"
#include "crocus_fence.h"
#include "drm-uapi/i915_drm.h"
#include "intel/common/intel_gem.h"
#include "main/macros.h"
#include "util/hash_table.h"
#include "util/set.h"
#include "util/u_upload_mgr.h"
#include <errno.h>
#include <xf86drm.h>
#if HAVE_VALGRIND
#include <memcheck.h>
#include <valgrind.h>
#define VG(x) x
#else
#define VG(x)
#endif
#define FILE_DEBUG_FLAG DEBUG_BUFMGR
/* Terminating the batch takes either 4 bytes for MI_BATCH_BUFFER_END
* or 12 bytes for MI_BATCH_BUFFER_START (when chaining). Plus, we may
* need an extra 4 bytes to pad out to the nearest QWord. So reserve 16.
*/
#define BATCH_RESERVED(devinfo) ((devinfo)->is_haswell ? 32 : 16)
static void crocus_batch_reset(struct crocus_batch *batch);
static unsigned
num_fences(struct crocus_batch *batch)
{
return util_dynarray_num_elements(&batch->exec_fences,
struct drm_i915_gem_exec_fence);
}
/**
* Debugging code to dump the fence list, used by INTEL_DEBUG=submit.
*/
static void
dump_fence_list(struct crocus_batch *batch)
{
fprintf(stderr, "Fence list (length %u): ", num_fences(batch));
util_dynarray_foreach(&batch->exec_fences,
struct drm_i915_gem_exec_fence, f) {
fprintf(stderr, "%s%u%s ",
(f->flags & I915_EXEC_FENCE_WAIT) ? "..." : "",
f->handle,
(f->flags & I915_EXEC_FENCE_SIGNAL) ? "!" : "");
}
fprintf(stderr, "\n");
}
/**
* Debugging code to dump the validation list, used by INTEL_DEBUG=submit.
*/
static void
dump_validation_list(struct crocus_batch *batch)
{
fprintf(stderr, "Validation list (length %d):\n", batch->exec_count);
for (int i = 0; i < batch->exec_count; i++) {
uint64_t flags = batch->validation_list[i].flags;
assert(batch->validation_list[i].handle ==
batch->exec_bos[i]->gem_handle);
fprintf(stderr,
"[%2d]: %2d %-14s @ 0x%016llx (%" PRIu64 "B)\t %2d refs %s\n", i,
batch->validation_list[i].handle, batch->exec_bos[i]->name,
batch->validation_list[i].offset, batch->exec_bos[i]->size,
batch->exec_bos[i]->refcount,
(flags & EXEC_OBJECT_WRITE) ? " (write)" : "");
}
}
/**
* Return BO information to the batch decoder (for debugging).
*/
static struct intel_batch_decode_bo
decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
{
struct crocus_batch *batch = v_batch;
for (int i = 0; i < batch->exec_count; i++) {
struct crocus_bo *bo = batch->exec_bos[i];
/* The decoder zeroes out the top 16 bits, so we need to as well */
uint64_t bo_address = bo->gtt_offset & (~0ull >> 16);
if (address >= bo_address && address < bo_address + bo->size) {
return (struct intel_batch_decode_bo){
.addr = address,
.size = bo->size,
.map = crocus_bo_map(batch->dbg, bo, MAP_READ) +
(address - bo_address),
};
}
}
return (struct intel_batch_decode_bo) { };
}
static unsigned
decode_get_state_size(void *v_batch, uint64_t address,
uint64_t base_address)
{
struct crocus_batch *batch = v_batch;
/* The decoder gives us offsets from a base address, which is not great.
* Binding tables are relative to surface state base address, and other
* state is relative to dynamic state base address. These could alias,
* but in practice it's unlikely because surface offsets are always in
* the [0, 64K) range, and we assign dynamic state addresses starting at
* the top of the 4GB range. We should fix this but it's likely good
* enough for now.
*/
unsigned size = (uintptr_t)
_mesa_hash_table_u64_search(batch->state_sizes, address - base_address);
return size;
}
/**
* Decode the current batch.
*/
static void
decode_batch(struct crocus_batch *batch)
{
void *map = crocus_bo_map(batch->dbg, batch->exec_bos[0], MAP_READ);
intel_print_batch(&batch->decoder, map, batch->primary_batch_size,
batch->exec_bos[0]->gtt_offset, false);
}
static void
init_reloc_list(struct crocus_reloc_list *rlist, int count)
{
rlist->reloc_count = 0;
rlist->reloc_array_size = count;
rlist->relocs = malloc(rlist->reloc_array_size *
sizeof(struct drm_i915_gem_relocation_entry));
}
void
crocus_init_batch(struct crocus_context *ice,
enum crocus_batch_name name,
int priority)
{
struct crocus_batch *batch = &ice->batches[name];
struct crocus_screen *screen = (struct crocus_screen *)ice->ctx.screen;
struct intel_device_info *devinfo = &screen->devinfo;
batch->ice = ice;
batch->screen = screen;
batch->dbg = &ice->dbg;
batch->reset = &ice->reset;
batch->name = name;
batch->contains_fence_signal = false;
if (devinfo->ver >= 7) {
batch->fine_fences.uploader =
u_upload_create(&ice->ctx, 4096, PIPE_BIND_CUSTOM,
PIPE_USAGE_STAGING, 0);
}
crocus_fine_fence_init(batch);
batch->hw_ctx_id = crocus_create_hw_context(screen->bufmgr);
assert(batch->hw_ctx_id);
crocus_hw_context_set_priority(screen->bufmgr, batch->hw_ctx_id, priority);
batch->valid_reloc_flags = EXEC_OBJECT_WRITE;
if (devinfo->ver == 6)
batch->valid_reloc_flags |= EXEC_OBJECT_NEEDS_GTT;
if (INTEL_DEBUG & DEBUG_BATCH) {
/* The shadow doesn't get relocs written so state decode fails. */
batch->use_shadow_copy = false;
} else
batch->use_shadow_copy = !devinfo->has_llc;
util_dynarray_init(&batch->exec_fences, ralloc_context(NULL));
util_dynarray_init(&batch->syncobjs, ralloc_context(NULL));
init_reloc_list(&batch->command.relocs, 250);
init_reloc_list(&batch->state.relocs, 250);
batch->exec_count = 0;
batch->exec_array_size = 100;
batch->exec_bos =
malloc(batch->exec_array_size * sizeof(batch->exec_bos[0]));
batch->validation_list =
malloc(batch->exec_array_size * sizeof(batch->validation_list[0]));
batch->cache.render = _mesa_hash_table_create(NULL, NULL,
_mesa_key_pointer_equal);
batch->cache.depth = _mesa_set_create(NULL, NULL,
_mesa_key_pointer_equal);
memset(batch->other_batches, 0, sizeof(batch->other_batches));
for (int i = 0, j = 0; i < ice->batch_count; i++) {
if (i != name)
batch->other_batches[j++] = &ice->batches[i];
}
if (INTEL_DEBUG & DEBUG_BATCH) {
batch->state_sizes = _mesa_hash_table_u64_create(NULL);
const unsigned decode_flags =
INTEL_BATCH_DECODE_FULL |
((INTEL_DEBUG & DEBUG_COLOR) ? INTEL_BATCH_DECODE_IN_COLOR : 0) |
INTEL_BATCH_DECODE_OFFSETS | INTEL_BATCH_DECODE_FLOATS;
intel_batch_decode_ctx_init(&batch->decoder, &screen->devinfo, stderr,
decode_flags, NULL, decode_get_bo,
decode_get_state_size, batch);
batch->decoder.max_vbo_decoded_lines = 32;
}
crocus_batch_reset(batch);
}
static struct drm_i915_gem_exec_object2 *
find_validation_entry(struct crocus_batch *batch, struct crocus_bo *bo)
{
unsigned index = READ_ONCE(bo->index);
if (index < batch->exec_count && batch->exec_bos[index] == bo)
return &batch->validation_list[index];
/* May have been shared between multiple active batches */
for (index = 0; index < batch->exec_count; index++) {
if (batch->exec_bos[index] == bo)
return &batch->validation_list[index];
}
return NULL;
}
static void
ensure_exec_obj_space(struct crocus_batch *batch, uint32_t count)
{
while (batch->exec_count + count > batch->exec_array_size) {
batch->exec_array_size *= 2;
batch->exec_bos = realloc(
batch->exec_bos, batch->exec_array_size * sizeof(batch->exec_bos[0]));
batch->validation_list =
realloc(batch->validation_list,
batch->exec_array_size * sizeof(batch->validation_list[0]));
}
}
static struct drm_i915_gem_exec_object2 *
crocus_use_bo(struct crocus_batch *batch, struct crocus_bo *bo, bool writable)
{
assert(bo->bufmgr == batch->command.bo->bufmgr);
if (bo == batch->ice->workaround_bo)
writable = false;
struct drm_i915_gem_exec_object2 *existing_entry =
find_validation_entry(batch, bo);
if (existing_entry) {
/* The BO is already in the validation list; mark it writable */
if (writable)
existing_entry->flags |= EXEC_OBJECT_WRITE;
return existing_entry;
}
if (bo != batch->command.bo && bo != batch->state.bo) {
/* This is the first time our batch has seen this BO. Before we use it,
* we may need to flush and synchronize with other batches.
*/
for (int b = 0; b < ARRAY_SIZE(batch->other_batches); b++) {
if (!batch->other_batches[b])
continue;
struct drm_i915_gem_exec_object2 *other_entry =
find_validation_entry(batch->other_batches[b], bo);
/* If the buffer is referenced by another batch, and either batch
* intends to write it, then flush the other batch and synchronize.
*
* Consider these cases:
*
* 1. They read, we read => No synchronization required.
* 2. They read, we write => Synchronize (they need the old value)
* 3. They write, we read => Synchronize (we need their new value)
* 4. They write, we write => Synchronize (order writes)
*
* The read/read case is very common, as multiple batches usually
* share a streaming state buffer or shader assembly buffer, and
* we want to avoid synchronizing in this case.
*/
if (other_entry &&
((other_entry->flags & EXEC_OBJECT_WRITE) || writable)) {
crocus_batch_flush(batch->other_batches[b]);
crocus_batch_add_syncobj(batch,
batch->other_batches[b]->last_fence->syncobj,
I915_EXEC_FENCE_WAIT);
}
}
}
/* Bump the ref count since the batch is now using this bo. */
crocus_bo_reference(bo);
ensure_exec_obj_space(batch, 1);
batch->validation_list[batch->exec_count] =
(struct drm_i915_gem_exec_object2) {
.handle = bo->gem_handle,
.offset = bo->gtt_offset,
.flags = bo->kflags | (writable ? EXEC_OBJECT_WRITE : 0),
};
bo->index = batch->exec_count;
batch->exec_bos[batch->exec_count] = bo;
batch->aperture_space += bo->size;
batch->exec_count++;
return &batch->validation_list[batch->exec_count - 1];
}
static uint64_t
emit_reloc(struct crocus_batch *batch,
struct crocus_reloc_list *rlist, uint32_t offset,
struct crocus_bo *target, int32_t target_offset,
unsigned int reloc_flags)
{
assert(target != NULL);
bool writable = reloc_flags & RELOC_WRITE;
struct drm_i915_gem_exec_object2 *entry =
crocus_use_bo(batch, target, writable);
if (rlist->reloc_count == rlist->reloc_array_size) {
rlist->reloc_array_size *= 2;
rlist->relocs = realloc(rlist->relocs,
rlist->reloc_array_size *
sizeof(struct drm_i915_gem_relocation_entry));
}
if (reloc_flags & RELOC_32BIT) {
/* Restrict this buffer to the low 32 bits of the address space.
*
* Altering the validation list flags restricts it for this batch,
* but we also alter the BO's kflags to restrict it permanently
* (until the BO is destroyed and put back in the cache). Buffers
* may stay bound across batches, and we want keep it constrained.
*/
target->kflags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
entry->flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
/* RELOC_32BIT is not an EXEC_OBJECT_* flag, so get rid of it. */
reloc_flags &= ~RELOC_32BIT;
}
if (reloc_flags)
entry->flags |= reloc_flags & batch->valid_reloc_flags;
rlist->relocs[rlist->reloc_count++] =
(struct drm_i915_gem_relocation_entry) {
.offset = offset,
.delta = target_offset,
.target_handle = target->index,
.presumed_offset = entry->offset,
};
/* Using the old buffer offset, write in what the right data would be, in
* case the buffer doesn't move and we can short-circuit the relocation
* processing in the kernel
*/
return entry->offset + target_offset;
}
uint64_t
crocus_command_reloc(struct crocus_batch *batch, uint32_t batch_offset,
struct crocus_bo *target, uint32_t target_offset,
unsigned int reloc_flags)
{
assert(batch_offset <= batch->command.bo->size - sizeof(uint32_t));
return emit_reloc(batch, &batch->command.relocs, batch_offset,
target, target_offset, reloc_flags);
}
uint64_t
crocus_state_reloc(struct crocus_batch *batch, uint32_t state_offset,
struct crocus_bo *target, uint32_t target_offset,
unsigned int reloc_flags)
{
assert(state_offset <= batch->state.bo->size - sizeof(uint32_t));
return emit_reloc(batch, &batch->state.relocs, state_offset,
target, target_offset, reloc_flags);
}
static void
recreate_growing_buffer(struct crocus_batch *batch,
struct crocus_growing_bo *grow,
const char *name, unsigned size)
{
struct crocus_screen *screen = batch->screen;
struct crocus_bufmgr *bufmgr = screen->bufmgr;
grow->bo = crocus_bo_alloc(bufmgr, name, size);
grow->bo->kflags |= EXEC_OBJECT_CAPTURE;
grow->partial_bo = NULL;
grow->partial_bo_map = NULL;
grow->partial_bytes = 0;
if (batch->use_shadow_copy)
grow->map = realloc(grow->map, grow->bo->size);
else
grow->map = crocus_bo_map(NULL, grow->bo, MAP_READ | MAP_WRITE);
grow->map_next = grow->map;
}
static void
create_batch(struct crocus_batch *batch)
{
struct crocus_screen *screen = batch->screen;
recreate_growing_buffer(batch, &batch->command,
"command buffer",
BATCH_SZ + BATCH_RESERVED(&screen->devinfo));
crocus_use_bo(batch, batch->command.bo, false);
recreate_growing_buffer(batch, &batch->state,
"state buffer",
STATE_SZ);
batch->state.used = 1;
crocus_use_bo(batch, batch->state.bo, false);
}
static void
crocus_batch_maybe_noop(struct crocus_batch *batch)
{
/* We only insert the NOOP at the beginning of the batch. */
assert(crocus_batch_bytes_used(batch) == 0);
if (batch->noop_enabled) {
/* Emit MI_BATCH_BUFFER_END to prevent any further command to be
* executed.
*/
uint32_t *map = batch->command.map_next;
map[0] = (0xA << 23);
batch->command.map_next += 4;
}
}
static void
crocus_batch_reset(struct crocus_batch *batch)
{
struct crocus_screen *screen = batch->screen;
crocus_bo_unreference(batch->command.bo);
crocus_bo_unreference(batch->state.bo);
batch->primary_batch_size = 0;
batch->contains_draw = false;
batch->contains_fence_signal = false;
batch->state_base_address_emitted = false;
batch->screen->vtbl.batch_reset_dirty(batch);
create_batch(batch);
assert(batch->command.bo->index == 0);
if (batch->state_sizes)
_mesa_hash_table_u64_clear(batch->state_sizes);
struct crocus_syncobj *syncobj = crocus_create_syncobj(screen);
crocus_batch_add_syncobj(batch, syncobj, I915_EXEC_FENCE_SIGNAL);
crocus_syncobj_reference(screen, &syncobj, NULL);
crocus_cache_sets_clear(batch);
}
void
crocus_batch_free(struct crocus_batch *batch)
{
struct crocus_screen *screen = batch->screen;
struct crocus_bufmgr *bufmgr = screen->bufmgr;
if (batch->use_shadow_copy) {
free(batch->command.map);
free(batch->state.map);
}
for (int i = 0; i < batch->exec_count; i++) {
crocus_bo_unreference(batch->exec_bos[i]);
}
pipe_resource_reference(&batch->fine_fences.ref.res, NULL);
free(batch->command.relocs.relocs);
free(batch->state.relocs.relocs);
free(batch->exec_bos);
free(batch->validation_list);
ralloc_free(batch->exec_fences.mem_ctx);
util_dynarray_foreach(&batch->syncobjs, struct crocus_syncobj *, s)
crocus_syncobj_reference(screen, s, NULL);
ralloc_free(batch->syncobjs.mem_ctx);
crocus_fine_fence_reference(batch->screen, &batch->last_fence, NULL);
if (batch_has_fine_fence(batch))
u_upload_destroy(batch->fine_fences.uploader);
crocus_bo_unreference(batch->command.bo);
batch->command.bo = NULL;
batch->command.map = NULL;
batch->command.map_next = NULL;
crocus_destroy_hw_context(bufmgr, batch->hw_ctx_id);
_mesa_hash_table_destroy(batch->cache.render, NULL);
_mesa_set_destroy(batch->cache.depth, NULL);
if (batch->state_sizes) {
_mesa_hash_table_u64_destroy(batch->state_sizes);
intel_batch_decode_ctx_finish(&batch->decoder);
}
}
/**
* If we've chained to a secondary batch, or are getting near to the end,
* then flush. This should only be called between draws.
*/
void
crocus_batch_maybe_flush(struct crocus_batch *batch, unsigned estimate)
{
if (batch->command.bo != batch->exec_bos[0] ||
crocus_batch_bytes_used(batch) + estimate >= BATCH_SZ) {
crocus_batch_flush(batch);
}
}
/**
* Finish copying the old batch/state buffer's contents to the new one
* after we tried to "grow" the buffer in an earlier operation.
*/
static void
finish_growing_bos(struct crocus_growing_bo *grow)
{
struct crocus_bo *old_bo = grow->partial_bo;
if (!old_bo)
return;
memcpy(grow->map, grow->partial_bo_map, grow->partial_bytes);
grow->partial_bo = NULL;
grow->partial_bo_map = NULL;
grow->partial_bytes = 0;
crocus_bo_unreference(old_bo);
}
void
crocus_grow_buffer(struct crocus_batch *batch, bool grow_state,
unsigned used,
unsigned new_size)
{
struct crocus_screen *screen = batch->screen;
struct crocus_bufmgr *bufmgr = screen->bufmgr;
struct crocus_growing_bo *grow = grow_state ? &batch->state : &batch->command;
struct crocus_bo *bo = grow->bo;
if (grow->partial_bo) {
/* We've already grown once, and now we need to do it again.
* Finish our last grow operation so we can start a new one.
* This should basically never happen.
*/
finish_growing_bos(grow);
}
struct crocus_bo *new_bo = crocus_bo_alloc(bufmgr, bo->name, new_size);
/* Copy existing data to the new larger buffer */
grow->partial_bo_map = grow->map;
if (batch->use_shadow_copy) {
/* We can't safely use realloc, as it may move the existing buffer,
* breaking existing pointers the caller may still be using. Just
* malloc a new copy and memcpy it like the normal BO path.
*
* Use bo->size rather than new_size because the bufmgr may have
* rounded up the size, and we want the shadow size to match.
*/
grow->map = malloc(new_bo->size);
} else {
grow->map = crocus_bo_map(NULL, new_bo, MAP_READ | MAP_WRITE);
}
/* Try to put the new BO at the same GTT offset as the old BO (which
* we're throwing away, so it doesn't need to be there).
*
* This guarantees that our relocations continue to work: values we've
* already written into the buffer, values we're going to write into the
* buffer, and the validation/relocation lists all will match.
*
* Also preserve kflags for EXEC_OBJECT_CAPTURE.
*/
new_bo->gtt_offset = bo->gtt_offset;
new_bo->index = bo->index;
new_bo->kflags = bo->kflags;
/* Batch/state buffers are per-context, and if we've run out of space,
* we must have actually used them before, so...they will be in the list.
*/
assert(bo->index < batch->exec_count);
assert(batch->exec_bos[bo->index] == bo);
/* Update the validation list to use the new BO. */
batch->validation_list[bo->index].handle = new_bo->gem_handle;
/* Exchange the two BOs...without breaking pointers to the old BO.
*
* Consider this scenario:
*
* 1. Somebody calls brw_state_batch() to get a region of memory, and
* and then creates a brw_address pointing to brw->batch.state.bo.
* 2. They then call brw_state_batch() a second time, which happens to
* grow and replace the state buffer. They then try to emit a
* relocation to their first section of memory.
*
* If we replace the brw->batch.state.bo pointer at step 2, we would
* break the address created in step 1. They'd have a pointer to the
* old destroyed BO. Emitting a relocation would add this dead BO to
* the validation list...causing /both/ statebuffers to be in the list,
* and all kinds of disasters.
*
* This is not a contrived case - BLORP vertex data upload hits this.
*
* There are worse scenarios too. Fences for GL sync objects reference
* brw->batch.batch.bo. If we replaced the batch pointer when growing,
* we'd need to chase down every fence and update it to point to the
* new BO. Otherwise, it would refer to a "batch" that never actually
* gets submitted, and would fail to trigger.
*
* To work around both of these issues, we transmutate the buffers in
* place, making the existing struct brw_bo represent the new buffer,
* and "new_bo" represent the old BO. This is highly unusual, but it
* seems like a necessary evil.
*
* We also defer the memcpy of the existing batch's contents. Callers
* may make multiple brw_state_batch calls, and retain pointers to the
* old BO's map. We'll perform the memcpy in finish_growing_bo() when
* we finally submit the batch, at which point we've finished uploading
* state, and nobody should have any old references anymore.
*
* To do that, we keep a reference to the old BO in grow->partial_bo,
* and store the number of bytes to copy in grow->partial_bytes. We
* can monkey with the refcounts directly without atomics because these
* are per-context BOs and they can only be touched by this thread.
*/
assert(new_bo->refcount == 1);
new_bo->refcount = bo->refcount;
bo->refcount = 1;
struct crocus_bo tmp;
memcpy(&tmp, bo, sizeof(struct crocus_bo));
memcpy(bo, new_bo, sizeof(struct crocus_bo));
memcpy(new_bo, &tmp, sizeof(struct crocus_bo));
grow->partial_bo = new_bo; /* the one reference of the OLD bo */
grow->partial_bytes = used;
}
static void
finish_seqno(struct crocus_batch *batch)
{
struct crocus_fine_fence *sq = crocus_fine_fence_new(batch, CROCUS_FENCE_END);
if (!sq)
return;
crocus_fine_fence_reference(batch->screen, &batch->last_fence, sq);
crocus_fine_fence_reference(batch->screen, &sq, NULL);
}
/**
* Terminate a batch with MI_BATCH_BUFFER_END.
*/
static void
crocus_finish_batch(struct crocus_batch *batch)
{
batch->no_wrap = true;
if (batch->screen->vtbl.finish_batch)
batch->screen->vtbl.finish_batch(batch);
finish_seqno(batch);
/* Emit MI_BATCH_BUFFER_END to finish our batch. */
uint32_t *map = batch->command.map_next;
map[0] = (0xA << 23);
batch->command.map_next += 4;
VG(VALGRIND_CHECK_MEM_IS_DEFINED(batch->command.map, crocus_batch_bytes_used(batch)));
if (batch->command.bo == batch->exec_bos[0])
batch->primary_batch_size = crocus_batch_bytes_used(batch);
batch->no_wrap = false;
}
/**
* Replace our current GEM context with a new one (in case it got banned).
*/
static bool
replace_hw_ctx(struct crocus_batch *batch)
{
struct crocus_screen *screen = batch->screen;
struct crocus_bufmgr *bufmgr = screen->bufmgr;
uint32_t new_ctx = crocus_clone_hw_context(bufmgr, batch->hw_ctx_id);
if (!new_ctx)
return false;
crocus_destroy_hw_context(bufmgr, batch->hw_ctx_id);
batch->hw_ctx_id = new_ctx;
/* Notify the context that state must be re-initialized. */
crocus_lost_context_state(batch);
return true;
}
enum pipe_reset_status
crocus_batch_check_for_reset(struct crocus_batch *batch)
{
struct crocus_screen *screen = batch->screen;
enum pipe_reset_status status = PIPE_NO_RESET;
struct drm_i915_reset_stats stats = { .ctx_id = batch->hw_ctx_id };
if (drmIoctl(screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats))
DBG("DRM_IOCTL_I915_GET_RESET_STATS failed: %s\n", strerror(errno));
if (stats.batch_active != 0) {
/* A reset was observed while a batch from this hardware context was
* executing. Assume that this context was at fault.
*/
status = PIPE_GUILTY_CONTEXT_RESET;
} else if (stats.batch_pending != 0) {
/* A reset was observed while a batch from this context was in progress,
* but the batch was not executing. In this case, assume that the
* context was not at fault.
*/
status = PIPE_INNOCENT_CONTEXT_RESET;
}
if (status != PIPE_NO_RESET) {
/* Our context is likely banned, or at least in an unknown state.
* Throw it away and start with a fresh context. Ideally this may
* catch the problem before our next execbuf fails with -EIO.
*/
replace_hw_ctx(batch);
}
return status;
}
/**
* Submit the batch to the GPU via execbuffer2.
*/
static int
submit_batch(struct crocus_batch *batch)
{
if (batch->use_shadow_copy) {
void *bo_map = crocus_bo_map(batch->dbg, batch->command.bo, MAP_WRITE);
memcpy(bo_map, batch->command.map, crocus_batch_bytes_used(batch));
bo_map = crocus_bo_map(batch->dbg, batch->state.bo, MAP_WRITE);
memcpy(bo_map, batch->state.map, batch->state.used);
}
crocus_bo_unmap(batch->command.bo);
crocus_bo_unmap(batch->state.bo);
/* The requirement for using I915_EXEC_NO_RELOC are:
*
* The addresses written in the objects must match the corresponding
* reloc.gtt_offset which in turn must match the corresponding
* execobject.offset.
*
* Any render targets written to in the batch must be flagged with
* EXEC_OBJECT_WRITE.
*
* To avoid stalling, execobject.offset should match the current
* address of that object within the active context.
*/
/* Set statebuffer relocations */
const unsigned state_index = batch->state.bo->index;
if (state_index < batch->exec_count &&
batch->exec_bos[state_index] == batch->state.bo) {
struct drm_i915_gem_exec_object2 *entry =
&batch->validation_list[state_index];
assert(entry->handle == batch->state.bo->gem_handle);
entry->relocation_count = batch->state.relocs.reloc_count;
entry->relocs_ptr = (uintptr_t)batch->state.relocs.relocs;
}
/* Set batchbuffer relocations */
struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[0];
assert(entry->handle == batch->command.bo->gem_handle);
entry->relocation_count = batch->command.relocs.reloc_count;
entry->relocs_ptr = (uintptr_t)batch->command.relocs.relocs;
struct drm_i915_gem_execbuffer2 execbuf = {
.buffers_ptr = (uintptr_t)batch->validation_list,
.buffer_count = batch->exec_count,
.batch_start_offset = 0,
/* This must be QWord aligned. */
.batch_len = ALIGN(batch->primary_batch_size, 8),
.flags = I915_EXEC_RENDER |
I915_EXEC_NO_RELOC |
I915_EXEC_BATCH_FIRST |
I915_EXEC_HANDLE_LUT,
.rsvd1 = batch->hw_ctx_id, /* rsvd1 is actually the context ID */
};
if (num_fences(batch)) {
execbuf.flags |= I915_EXEC_FENCE_ARRAY;
execbuf.num_cliprects = num_fences(batch);
execbuf.cliprects_ptr =
(uintptr_t)util_dynarray_begin(&batch->exec_fences);
}
int ret = 0;
if (!batch->screen->no_hw &&
intel_ioctl(batch->screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf))
ret = -errno;
for (int i = 0; i < batch->exec_count; i++) {
struct crocus_bo *bo = batch->exec_bos[i];
bo->idle = false;
bo->index = -1;
/* Update brw_bo::gtt_offset */
if (batch->validation_list[i].offset != bo->gtt_offset) {
DBG("BO %d migrated: 0x%" PRIx64 " -> 0x%llx\n",
bo->gem_handle, bo->gtt_offset,
batch->validation_list[i].offset);
assert(!(bo->kflags & EXEC_OBJECT_PINNED));
bo->gtt_offset = batch->validation_list[i].offset;
}
}
return ret;
}
static const char *
batch_name_to_string(enum crocus_batch_name name)
{
const char *names[CROCUS_BATCH_COUNT] = {
[CROCUS_BATCH_RENDER] = "render",
[CROCUS_BATCH_COMPUTE] = "compute",
};
return names[name];
}
/**
* Flush the batch buffer, submitting it to the GPU and resetting it so
* we're ready to emit the next batch.
*
* \param in_fence_fd is ignored if -1. Otherwise, this function takes
* ownership of the fd.
*
* \param out_fence_fd is ignored if NULL. Otherwise, the caller must
* take ownership of the returned fd.
*/
void
_crocus_batch_flush(struct crocus_batch *batch, const char *file, int line)
{
struct crocus_screen *screen = batch->screen;
/* If a fence signals we need to flush it. */
if (crocus_batch_bytes_used(batch) == 0 && !batch->contains_fence_signal)
return;
assert(!batch->no_wrap);
crocus_finish_batch(batch);
finish_growing_bos(&batch->command);
finish_growing_bos(&batch->state);
int ret = submit_batch(batch);
if (unlikely(INTEL_DEBUG &
(DEBUG_BATCH | DEBUG_SUBMIT | DEBUG_PIPE_CONTROL))) {
int bytes_for_commands = crocus_batch_bytes_used(batch);
int second_bytes = 0;
if (batch->command.bo != batch->exec_bos[0]) {
second_bytes = bytes_for_commands;
bytes_for_commands += batch->primary_batch_size;
}
fprintf(stderr, "%19s:%-3d: %s batch [%u] flush with %5d+%5db (%0.1f%%) "
"(cmds), %4d BOs (%0.1fMb aperture),"
" %4d command relocs, %4d state relocs\n",
file, line, batch_name_to_string(batch->name), batch->hw_ctx_id,
batch->primary_batch_size, second_bytes,
100.0f * bytes_for_commands / BATCH_SZ,
batch->exec_count,
(float) batch->aperture_space / (1024 * 1024),
batch->command.relocs.reloc_count,
batch->state.relocs.reloc_count);
if (INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT)) {
dump_fence_list(batch);
dump_validation_list(batch);
}
if (INTEL_DEBUG & DEBUG_BATCH) {
decode_batch(batch);
}
}
for (int i = 0; i < batch->exec_count; i++) {
struct crocus_bo *bo = batch->exec_bos[i];
crocus_bo_unreference(bo);
}
batch->command.relocs.reloc_count = 0;
batch->state.relocs.reloc_count = 0;
batch->exec_count = 0;
batch->aperture_space = 0;
util_dynarray_foreach(&batch->syncobjs, struct crocus_syncobj *, s)
crocus_syncobj_reference(screen, s, NULL);
util_dynarray_clear(&batch->syncobjs);
util_dynarray_clear(&batch->exec_fences);
if (unlikely(INTEL_DEBUG & DEBUG_SYNC)) {
dbg_printf("waiting for idle\n");
crocus_bo_wait_rendering(batch->command.bo); /* if execbuf failed; this is a nop */
}
/* Start a new batch buffer. */
crocus_batch_reset(batch);
/* EIO means our context is banned. In this case, try and replace it
* with a new logical context, and inform crocus_context that all state
* has been lost and needs to be re-initialized. If this succeeds,
* dubiously claim success...
*/
if (ret == -EIO && replace_hw_ctx(batch)) {
if (batch->reset->reset) {
/* Tell the state tracker the device is lost and it was our fault. */
batch->reset->reset(batch->reset->data, PIPE_GUILTY_CONTEXT_RESET);
}
ret = 0;
}
if (ret < 0) {
#ifdef DEBUG
const bool color = INTEL_DEBUG & DEBUG_COLOR;
fprintf(stderr, "%scrocus: Failed to submit batchbuffer: %-80s%s\n",
color ? "\e[1;41m" : "", strerror(-ret), color ? "\e[0m" : "");
#endif
abort();
}
}
/**
* Does the current batch refer to the given BO?
*
* (In other words, is the BO in the current batch's validation list?)
*/
bool
crocus_batch_references(struct crocus_batch *batch, struct crocus_bo *bo)
{
return find_validation_entry(batch, bo) != NULL;
}
/**
* Updates the state of the noop feature. Returns true if there was a noop
* transition that led to state invalidation.
*/
bool
crocus_batch_prepare_noop(struct crocus_batch *batch, bool noop_enable)
{
if (batch->noop_enabled == noop_enable)
return 0;
batch->noop_enabled = noop_enable;
crocus_batch_flush(batch);
/* If the batch was empty, flush had no effect, so insert our noop. */
if (crocus_batch_bytes_used(batch) == 0)
crocus_batch_maybe_noop(batch);
/* We only need to update the entire state if we transition from noop ->
* not-noop.
*/
return !batch->noop_enabled;
}