mesa/src/amd/compiler/tests/helpers.cpp

776 lines
27 KiB
C++

/*
* Copyright © 2020 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "helpers.h"
#include "vulkan/vk_format.h"
#include "llvm/ac_llvm_util.h"
#include <stdio.h>
#include <sstream>
#include <llvm-c/Target.h>
#include <mutex>
using namespace aco;
extern "C" {
PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
VkInstance instance,
const char* pName);
}
ac_shader_config config;
radv_shader_info info;
std::unique_ptr<Program> program;
Builder bld(NULL);
Temp inputs[16];
Temp exec_input;
const char *subvariant = "";
static VkInstance instance_cache[CHIP_LAST] = {VK_NULL_HANDLE};
static VkDevice device_cache[CHIP_LAST] = {VK_NULL_HANDLE};
static std::mutex create_device_mutex;
#define FUNCTION_LIST\
ITEM(CreateInstance)\
ITEM(DestroyInstance)\
ITEM(EnumeratePhysicalDevices)\
ITEM(GetPhysicalDeviceProperties2)\
ITEM(CreateDevice)\
ITEM(DestroyDevice)\
ITEM(CreateShaderModule)\
ITEM(DestroyShaderModule)\
ITEM(CreateGraphicsPipelines)\
ITEM(CreateComputePipelines)\
ITEM(DestroyPipeline)\
ITEM(CreateDescriptorSetLayout)\
ITEM(DestroyDescriptorSetLayout)\
ITEM(CreatePipelineLayout)\
ITEM(DestroyPipelineLayout)\
ITEM(CreateRenderPass)\
ITEM(DestroyRenderPass)\
ITEM(GetPipelineExecutablePropertiesKHR)\
ITEM(GetPipelineExecutableInternalRepresentationsKHR)
#define ITEM(n) PFN_vk##n n;
FUNCTION_LIST
#undef ITEM
void create_program(enum chip_class chip_class, Stage stage, unsigned wave_size, enum radeon_family family)
{
memset(&config, 0, sizeof(config));
info.wave_size = wave_size;
program.reset(new Program);
aco::init_program(program.get(), stage, &info, chip_class, family, &config);
Block *block = program->create_and_insert_block();
block->kind = block_kind_top_level;
bld = Builder(program.get(), &program->blocks[0]);
config.float_mode = program->blocks[0].fp_mode.val;
}
bool setup_cs(const char *input_spec, enum chip_class chip_class,
enum radeon_family family, unsigned wave_size)
{
const char *old_subvariant = subvariant;
subvariant = "";
if (!set_variant(chip_class, old_subvariant))
return false;
memset(&info, 0, sizeof(info));
info.cs.block_size[0] = 1;
info.cs.block_size[1] = 1;
info.cs.block_size[2] = 1;
create_program(chip_class, compute_cs, wave_size, family);
if (input_spec) {
unsigned num_inputs = DIV_ROUND_UP(strlen(input_spec), 3u);
aco_ptr<Instruction> startpgm{create_instruction<Pseudo_instruction>(aco_opcode::p_startpgm, Format::PSEUDO, 0, num_inputs + 1)};
for (unsigned i = 0; i < num_inputs; i++) {
RegClass cls(input_spec[i * 3] == 'v' ? RegType::vgpr : RegType::sgpr, input_spec[i * 3 + 1] - '0');
inputs[i] = bld.tmp(cls);
startpgm->definitions[i] = Definition(inputs[i]);
}
exec_input = bld.tmp(program->lane_mask);
startpgm->definitions[num_inputs] = bld.exec(Definition(exec_input));
bld.insert(std::move(startpgm));
}
return true;
}
void finish_program(Program *program)
{
for (Block& BB : program->blocks) {
for (unsigned idx : BB.linear_preds)
program->blocks[idx].linear_succs.emplace_back(BB.index);
for (unsigned idx : BB.logical_preds)
program->blocks[idx].logical_succs.emplace_back(BB.index);
}
for (Block& block : program->blocks) {
if (block.linear_succs.size() == 0) {
block.kind |= block_kind_uniform;
Builder bld(program, &block);
if (program->wb_smem_l1_on_end)
bld.smem(aco_opcode::s_dcache_wb, false);
bld.sopp(aco_opcode::s_endpgm);
}
}
}
void finish_validator_test()
{
finish_program(program.get());
aco_print_program(program.get(), output);
fprintf(output, "Validation results:\n");
if (aco::validate(program.get(), output))
fprintf(output, "Validation passed\n");
else
fprintf(output, "Validation failed\n");
}
void finish_opt_test()
{
finish_program(program.get());
if (!aco::validate(program.get(), output)) {
fail_test("Validation before optimization failed");
return;
}
aco::optimize(program.get());
if (!aco::validate(program.get(), output)) {
fail_test("Validation after optimization failed");
return;
}
aco_print_program(program.get(), output);
}
void finish_to_hw_instr_test()
{
finish_program(program.get());
aco::lower_to_hw_instr(program.get());
aco_print_program(program.get(), output);
}
void finish_assembler_test()
{
finish_program(program.get());
std::vector<uint32_t> binary;
unsigned exec_size = emit_program(program.get(), binary);
/* we could use CLRX for disassembly but that would require it to be
* installed */
if (program->chip_class == GFX10_3 && LLVM_VERSION_MAJOR < 9) {
skip_test("LLVM 11 needed for GFX10_3 disassembly");
} else if (program->chip_class == GFX10 && LLVM_VERSION_MAJOR < 9) {
skip_test("LLVM 9 needed for GFX10 disassembly");
} else if (program->chip_class >= GFX8) {
std::ostringstream ss;
print_asm(program.get(), binary, exec_size / 4u, ss);
fputs(ss.str().c_str(), output);
} else {
//TODO: maybe we should use CLRX and skip this test if it's not available?
for (uint32_t dword : binary)
fprintf(output, "%.8x\n", dword);
}
}
void writeout(unsigned i, Temp tmp)
{
if (tmp.id())
bld.pseudo(aco_opcode::p_unit_test, Operand(i), tmp);
else
bld.pseudo(aco_opcode::p_unit_test, Operand(i));
}
VkDevice get_vk_device(enum chip_class chip_class)
{
enum radeon_family family;
switch (chip_class) {
case GFX6:
family = CHIP_TAHITI;
break;
case GFX7:
family = CHIP_BONAIRE;
break;
case GFX8:
family = CHIP_POLARIS10;
break;
case GFX9:
family = CHIP_VEGA10;
break;
case GFX10:
family = CHIP_NAVI10;
break;
default:
family = CHIP_UNKNOWN;
break;
}
return get_vk_device(family);
}
VkDevice get_vk_device(enum radeon_family family)
{
assert(family != CHIP_UNKNOWN);
std::lock_guard<std::mutex> guard(create_device_mutex);
if (device_cache[family])
return device_cache[family];
setenv("RADV_FORCE_FAMILY", ac_get_llvm_processor_name(family), 1);
VkApplicationInfo app_info = {};
app_info.pApplicationName = "aco_tests";
app_info.apiVersion = VK_API_VERSION_1_2;
VkInstanceCreateInfo instance_create_info = {};
instance_create_info.pApplicationInfo = &app_info;
instance_create_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
VkResult result = ((PFN_vkCreateInstance)vk_icdGetInstanceProcAddr(NULL, "vkCreateInstance"))(&instance_create_info, NULL, &instance_cache[family]);
assert(result == VK_SUCCESS);
#define ITEM(n) n = (PFN_vk##n)vk_icdGetInstanceProcAddr(instance_cache[family], "vk" #n);
FUNCTION_LIST
#undef ITEM
uint32_t device_count = 1;
VkPhysicalDevice device = VK_NULL_HANDLE;
result = EnumeratePhysicalDevices(instance_cache[family], &device_count, &device);
assert(result == VK_SUCCESS);
assert(device != VK_NULL_HANDLE);
VkDeviceCreateInfo device_create_info = {};
device_create_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
static const char *extensions[] = {"VK_KHR_pipeline_executable_properties"};
device_create_info.enabledExtensionCount = sizeof(extensions) / sizeof(extensions[0]);
device_create_info.ppEnabledExtensionNames = extensions;
result = CreateDevice(device, &device_create_info, NULL, &device_cache[family]);
return device_cache[family];
}
static struct DestroyDevices {
~DestroyDevices() {
for (unsigned i = 0; i < CHIP_LAST; i++) {
if (!device_cache[i])
continue;
DestroyDevice(device_cache[i], NULL);
DestroyInstance(instance_cache[i], NULL);
}
}
} destroy_devices;
void print_pipeline_ir(VkDevice device, VkPipeline pipeline, VkShaderStageFlagBits stages,
const char *name, bool remove_encoding)
{
uint32_t executable_count = 16;
VkPipelineExecutablePropertiesKHR executables[16];
VkPipelineInfoKHR pipeline_info;
pipeline_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INFO_KHR;
pipeline_info.pNext = NULL;
pipeline_info.pipeline = pipeline;
VkResult result = GetPipelineExecutablePropertiesKHR(device, &pipeline_info, &executable_count, executables);
assert(result == VK_SUCCESS);
uint32_t executable = 0;
for (; executable < executable_count; executable++) {
if (executables[executable].stages == stages)
break;
}
assert(executable != executable_count);
VkPipelineExecutableInfoKHR exec_info;
exec_info.sType = VK_STRUCTURE_TYPE_PIPELINE_EXECUTABLE_INFO_KHR;
exec_info.pNext = NULL;
exec_info.pipeline = pipeline;
exec_info.executableIndex = executable;
uint32_t ir_count = 16;
VkPipelineExecutableInternalRepresentationKHR ir[16];
memset(ir, 0, sizeof(ir));
result = GetPipelineExecutableInternalRepresentationsKHR(device, &exec_info, &ir_count, ir);
assert(result == VK_SUCCESS);
for (unsigned i = 0; i < ir_count; i++) {
if (strcmp(ir[i].name, name))
continue;
char *data = (char*)malloc(ir[i].dataSize);
ir[i].pData = data;
result = GetPipelineExecutableInternalRepresentationsKHR(device, &exec_info, &ir_count, ir);
assert(result == VK_SUCCESS);
if (remove_encoding) {
for (char *c = data; *c; c++) {
if (*c == ';') {
for (; *c && *c != '\n'; c++)
*c = ' ';
}
}
}
fprintf(output, "%s", data);
free(data);
return;
}
}
VkShaderModule __qoCreateShaderModule(VkDevice dev, const QoShaderModuleCreateInfo *info)
{
VkShaderModuleCreateInfo module_info;
module_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
module_info.pNext = NULL;
module_info.flags = 0;
module_info.codeSize = info->spirvSize;
module_info.pCode = (const uint32_t*)info->pSpirv;
VkShaderModule module;
VkResult result = CreateShaderModule(dev, &module_info, NULL, &module);
assert(result == VK_SUCCESS);
return module;
}
PipelineBuilder::PipelineBuilder(VkDevice dev) {
memset(this, 0, sizeof(*this));
topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
device = dev;
}
PipelineBuilder::~PipelineBuilder()
{
DestroyPipeline(device, pipeline, NULL);
for (unsigned i = 0; i < (is_compute() ? 1 : gfx_pipeline_info.stageCount); i++) {
VkPipelineShaderStageCreateInfo *stage_info = &stages[i];
if (owned_stages & stage_info->stage)
DestroyShaderModule(device, stage_info->module, NULL);
}
DestroyPipelineLayout(device, pipeline_layout, NULL);
for (unsigned i = 0; i < util_bitcount64(desc_layouts_used); i++)
DestroyDescriptorSetLayout(device, desc_layouts[i], NULL);
DestroyRenderPass(device, render_pass, NULL);
}
void PipelineBuilder::add_desc_binding(VkShaderStageFlags stage_flags, uint32_t layout,
uint32_t binding, VkDescriptorType type, uint32_t count)
{
desc_layouts_used |= 1ull << layout;
desc_bindings[layout][num_desc_bindings[layout]++] = {binding, type, count, stage_flags, NULL};
}
void PipelineBuilder::add_vertex_binding(uint32_t binding, uint32_t stride, VkVertexInputRate rate)
{
vs_bindings[vs_input.vertexBindingDescriptionCount++] = {binding, stride, rate};
}
void PipelineBuilder::add_vertex_attribute(uint32_t location, uint32_t binding, VkFormat format, uint32_t offset)
{
vs_attributes[vs_input.vertexAttributeDescriptionCount++] = {location, binding, format, offset};
}
void PipelineBuilder::add_resource_decls(QoShaderModuleCreateInfo *module)
{
for (unsigned i = 0; i < module->declarationCount; i++) {
const QoShaderDecl *decl = &module->pDeclarations[i];
switch (decl->decl_type) {
case QoShaderDeclType_ubo:
add_desc_binding(module->stage, decl->set, decl->binding, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
break;
case QoShaderDeclType_ssbo:
add_desc_binding(module->stage, decl->set, decl->binding, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
break;
case QoShaderDeclType_img_buf:
add_desc_binding(module->stage, decl->set, decl->binding, VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER);
break;
case QoShaderDeclType_img:
add_desc_binding(module->stage, decl->set, decl->binding, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE);
break;
case QoShaderDeclType_tex_buf:
add_desc_binding(module->stage, decl->set, decl->binding, VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER);
break;
case QoShaderDeclType_combined:
add_desc_binding(module->stage, decl->set, decl->binding, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
break;
case QoShaderDeclType_tex:
add_desc_binding(module->stage, decl->set, decl->binding, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE);
break;
case QoShaderDeclType_samp:
add_desc_binding(module->stage, decl->set, decl->binding, VK_DESCRIPTOR_TYPE_SAMPLER);
break;
default:
break;
}
}
}
void PipelineBuilder::add_io_decls(QoShaderModuleCreateInfo *module)
{
unsigned next_vtx_offset = 0;
for (unsigned i = 0; i < module->declarationCount; i++) {
const QoShaderDecl *decl = &module->pDeclarations[i];
switch (decl->decl_type) {
case QoShaderDeclType_in:
if (module->stage == VK_SHADER_STAGE_VERTEX_BIT) {
if (!strcmp(decl->type, "float") || decl->type[0] == 'v')
add_vertex_attribute(decl->location, 0, VK_FORMAT_R32G32B32A32_SFLOAT, next_vtx_offset);
else if (decl->type[0] == 'u')
add_vertex_attribute(decl->location, 0, VK_FORMAT_R32G32B32A32_UINT, next_vtx_offset);
else if (decl->type[0] == 'i')
add_vertex_attribute(decl->location, 0, VK_FORMAT_R32G32B32A32_SINT, next_vtx_offset);
next_vtx_offset += 16;
}
break;
case QoShaderDeclType_out:
if (module->stage == VK_SHADER_STAGE_FRAGMENT_BIT) {
if (!strcmp(decl->type, "float") || decl->type[0] == 'v')
color_outputs[decl->location] = VK_FORMAT_R32G32B32A32_SFLOAT;
else if (decl->type[0] == 'u')
color_outputs[decl->location] = VK_FORMAT_R32G32B32A32_UINT;
else if (decl->type[0] == 'i')
color_outputs[decl->location] = VK_FORMAT_R32G32B32A32_SINT;
}
break;
default:
break;
}
}
if (next_vtx_offset)
add_vertex_binding(0, next_vtx_offset);
}
void PipelineBuilder::add_stage(VkShaderStageFlagBits stage, VkShaderModule module, const char *name)
{
VkPipelineShaderStageCreateInfo *stage_info;
if (stage == VK_SHADER_STAGE_COMPUTE_BIT)
stage_info = &stages[0];
else
stage_info = &stages[gfx_pipeline_info.stageCount++];
stage_info->sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage_info->pNext = NULL;
stage_info->flags = 0;
stage_info->stage = stage;
stage_info->module = module;
stage_info->pName = name;
stage_info->pSpecializationInfo = NULL;
owned_stages |= stage;
}
void PipelineBuilder::add_vsfs(VkShaderModule vs, VkShaderModule fs)
{
add_stage(VK_SHADER_STAGE_VERTEX_BIT, vs);
add_stage(VK_SHADER_STAGE_FRAGMENT_BIT, fs);
}
void PipelineBuilder::add_vsfs(QoShaderModuleCreateInfo vs, QoShaderModuleCreateInfo fs)
{
add_vsfs(__qoCreateShaderModule(device, &vs), __qoCreateShaderModule(device, &fs));
add_resource_decls(&vs);
add_io_decls(&vs);
add_resource_decls(&fs);
add_io_decls(&fs);
}
void PipelineBuilder::add_cs(VkShaderModule cs)
{
add_stage(VK_SHADER_STAGE_COMPUTE_BIT, cs);
}
void PipelineBuilder::add_cs(QoShaderModuleCreateInfo cs)
{
add_cs(__qoCreateShaderModule(device, &cs));
add_resource_decls(&cs);
}
bool PipelineBuilder::is_compute() {
return gfx_pipeline_info.stageCount == 0;
}
void PipelineBuilder::create_compute_pipeline() {
VkComputePipelineCreateInfo create_info;
create_info.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO;
create_info.pNext = NULL;
create_info.flags = VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR;
create_info.stage = stages[0];
create_info.layout = pipeline_layout;
create_info.basePipelineHandle = VK_NULL_HANDLE;
create_info.basePipelineIndex = 0;
VkResult result = CreateComputePipelines(device, VK_NULL_HANDLE, 1, &create_info, NULL, &pipeline);
assert(result == VK_SUCCESS);
}
void PipelineBuilder::create_graphics_pipeline() {
/* create the create infos */
if (!samples)
samples = VK_SAMPLE_COUNT_1_BIT;
unsigned num_color_attachments = 0;
VkPipelineColorBlendAttachmentState blend_attachment_states[16];
VkAttachmentReference color_attachments[16];
VkAttachmentDescription attachment_descs[17];
for (unsigned i = 0; i < 16; i++) {
if (color_outputs[i] == VK_FORMAT_UNDEFINED)
continue;
VkAttachmentDescription *desc = &attachment_descs[num_color_attachments];
desc->flags = 0;
desc->format = color_outputs[i];
desc->samples = samples;
desc->loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
desc->storeOp = VK_ATTACHMENT_STORE_OP_STORE;
desc->stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
desc->stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
desc->initialLayout = VK_IMAGE_LAYOUT_GENERAL;
desc->finalLayout = VK_IMAGE_LAYOUT_GENERAL;
VkAttachmentReference *ref = &color_attachments[num_color_attachments];
ref->attachment = num_color_attachments;
ref->layout = VK_IMAGE_LAYOUT_GENERAL;
VkPipelineColorBlendAttachmentState *blend = &blend_attachment_states[num_color_attachments];
blend->blendEnable = false;
blend->colorWriteMask = VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT |
VK_COLOR_COMPONENT_A_BIT;
num_color_attachments++;
}
unsigned num_attachments = num_color_attachments;
VkAttachmentReference ds_attachment;
if (ds_output != VK_FORMAT_UNDEFINED) {
VkAttachmentDescription *desc = &attachment_descs[num_attachments];
desc->flags = 0;
desc->format = ds_output;
desc->samples = samples;
desc->loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
desc->storeOp = VK_ATTACHMENT_STORE_OP_STORE;
desc->stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
desc->stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
desc->initialLayout = VK_IMAGE_LAYOUT_GENERAL;
desc->finalLayout = VK_IMAGE_LAYOUT_GENERAL;
ds_attachment.attachment = num_color_attachments;
ds_attachment.layout = VK_IMAGE_LAYOUT_GENERAL;
num_attachments++;
}
vs_input.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vs_input.pNext = NULL;
vs_input.flags = 0;
vs_input.pVertexBindingDescriptions = vs_bindings;
vs_input.pVertexAttributeDescriptions = vs_attributes;
VkPipelineInputAssemblyStateCreateInfo assembly_state;
assembly_state.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
assembly_state.pNext = NULL;
assembly_state.flags = 0;
assembly_state.topology = topology;
assembly_state.primitiveRestartEnable = false;
VkPipelineTessellationStateCreateInfo tess_state;
tess_state.sType = VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO;
tess_state.pNext = NULL;
tess_state.flags = 0;
tess_state.patchControlPoints = patch_size;
VkPipelineViewportStateCreateInfo viewport_state;
viewport_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewport_state.pNext = NULL;
viewport_state.flags = 0;
viewport_state.viewportCount = 1;
viewport_state.pViewports = NULL;
viewport_state.scissorCount = 1;
viewport_state.pScissors = NULL;
VkPipelineRasterizationStateCreateInfo rasterization_state;
rasterization_state.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterization_state.pNext = NULL;
rasterization_state.flags = 0;
rasterization_state.depthClampEnable = false;
rasterization_state.rasterizerDiscardEnable = false;
rasterization_state.polygonMode = VK_POLYGON_MODE_FILL;
rasterization_state.cullMode = VK_CULL_MODE_NONE;
rasterization_state.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rasterization_state.depthBiasEnable = false;
rasterization_state.lineWidth = 1.0;
VkPipelineMultisampleStateCreateInfo ms_state;
ms_state.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
ms_state.pNext = NULL;
ms_state.flags = 0;
ms_state.rasterizationSamples = samples;
ms_state.sampleShadingEnable = sample_shading_enable;
ms_state.minSampleShading = min_sample_shading;
VkSampleMask sample_mask = 0xffffffff;
ms_state.pSampleMask = &sample_mask;
ms_state.alphaToCoverageEnable = false;
ms_state.alphaToOneEnable = false;
VkPipelineDepthStencilStateCreateInfo ds_state;
ds_state.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
ds_state.pNext = NULL;
ds_state.flags = 0;
ds_state.depthTestEnable = ds_output != VK_FORMAT_UNDEFINED;
ds_state.depthWriteEnable = true;
ds_state.depthCompareOp = VK_COMPARE_OP_ALWAYS;
ds_state.depthBoundsTestEnable = false;
ds_state.stencilTestEnable = true;
ds_state.front.failOp = VK_STENCIL_OP_KEEP;
ds_state.front.passOp = VK_STENCIL_OP_REPLACE;
ds_state.front.depthFailOp = VK_STENCIL_OP_REPLACE;
ds_state.front.compareOp = VK_COMPARE_OP_ALWAYS;
ds_state.front.compareMask = 0xffffffff,
ds_state.front.reference = 0;
ds_state.back = ds_state.front;
VkPipelineColorBlendStateCreateInfo color_blend_state;
color_blend_state.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
color_blend_state.pNext = NULL;
color_blend_state.flags = 0;
color_blend_state.logicOpEnable = false;
color_blend_state.attachmentCount = num_color_attachments;
color_blend_state.pAttachments = blend_attachment_states;
VkDynamicState dynamic_states[9] = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
VK_DYNAMIC_STATE_LINE_WIDTH,
VK_DYNAMIC_STATE_DEPTH_BIAS,
VK_DYNAMIC_STATE_BLEND_CONSTANTS,
VK_DYNAMIC_STATE_DEPTH_BOUNDS,
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
VK_DYNAMIC_STATE_STENCIL_REFERENCE
};
VkPipelineDynamicStateCreateInfo dynamic_state;
dynamic_state.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamic_state.pNext = NULL;
dynamic_state.flags = 0;
dynamic_state.dynamicStateCount = sizeof(dynamic_states) / sizeof(VkDynamicState);
dynamic_state.pDynamicStates = dynamic_states;
gfx_pipeline_info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
gfx_pipeline_info.pNext = NULL;
gfx_pipeline_info.flags = VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR;
gfx_pipeline_info.pVertexInputState = &vs_input;
gfx_pipeline_info.pInputAssemblyState = &assembly_state;
gfx_pipeline_info.pTessellationState = &tess_state;
gfx_pipeline_info.pViewportState = &viewport_state;
gfx_pipeline_info.pRasterizationState = &rasterization_state;
gfx_pipeline_info.pMultisampleState = &ms_state;
gfx_pipeline_info.pDepthStencilState = &ds_state;
gfx_pipeline_info.pColorBlendState = &color_blend_state;
gfx_pipeline_info.pDynamicState = &dynamic_state;
gfx_pipeline_info.subpass = 0;
/* create the objects used to create the pipeline */
VkSubpassDescription subpass;
subpass.flags = 0;
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.inputAttachmentCount = 0;
subpass.pInputAttachments = NULL;
subpass.colorAttachmentCount = num_color_attachments;
subpass.pColorAttachments = color_attachments;
subpass.pResolveAttachments = NULL;
subpass.pDepthStencilAttachment = ds_output == VK_FORMAT_UNDEFINED ? NULL : &ds_attachment;
subpass.preserveAttachmentCount = 0;
subpass.pPreserveAttachments = NULL;
VkRenderPassCreateInfo renderpass_info;
renderpass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderpass_info.pNext = NULL;
renderpass_info.flags = 0;
renderpass_info.attachmentCount = num_attachments;
renderpass_info.pAttachments = attachment_descs;
renderpass_info.subpassCount = 1;
renderpass_info.pSubpasses = &subpass;
renderpass_info.dependencyCount = 0;
renderpass_info.pDependencies = NULL;
VkResult result = CreateRenderPass(device, &renderpass_info, NULL, &render_pass);
assert(result == VK_SUCCESS);
gfx_pipeline_info.layout = pipeline_layout;
gfx_pipeline_info.renderPass = render_pass;
/* create the pipeline */
gfx_pipeline_info.pStages = stages;
result = CreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &gfx_pipeline_info, NULL, &pipeline);
assert(result == VK_SUCCESS);
}
void PipelineBuilder::create_pipeline() {
unsigned num_desc_layouts = 0;
for (unsigned i = 0; i < 64; i++) {
if (!(desc_layouts_used & (1ull << i)))
continue;
VkDescriptorSetLayoutCreateInfo desc_layout_info;
desc_layout_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
desc_layout_info.pNext = NULL;
desc_layout_info.flags = 0;
desc_layout_info.bindingCount = num_desc_bindings[i];
desc_layout_info.pBindings = desc_bindings[i];
VkResult result = CreateDescriptorSetLayout(device, &desc_layout_info, NULL, &desc_layouts[num_desc_layouts]);
assert(result == VK_SUCCESS);
num_desc_layouts++;
}
VkPipelineLayoutCreateInfo pipeline_layout_info;
pipeline_layout_info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipeline_layout_info.pNext = NULL;
pipeline_layout_info.flags = 0;
pipeline_layout_info.pushConstantRangeCount = 1;
pipeline_layout_info.pPushConstantRanges = &push_constant_range;
pipeline_layout_info.setLayoutCount = num_desc_layouts;
pipeline_layout_info.pSetLayouts = desc_layouts;
VkResult result = CreatePipelineLayout(device, &pipeline_layout_info, NULL, &pipeline_layout);
assert(result == VK_SUCCESS);
if (is_compute())
create_compute_pipeline();
else
create_graphics_pipeline();
}
void PipelineBuilder::print_ir(VkShaderStageFlagBits stages, const char *name, bool remove_encoding)
{
if (!pipeline)
create_pipeline();
print_pipeline_ir(device, pipeline, stages, name, remove_encoding);
}